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ABSTRACT 
Blood comprises a wide array of specialized cells, all of which share the same genetic information and ultimately derive from the same 
precursor, the hematopoietic stem cell (HSC). This diversity of phenotypes is underpinned by unique transcriptional programs gradually 
acquired in the process known as hematopoiesis. Spatiotemporal regulation of gene expression depends on many factors, but critical 
among them are enhancers—sequences of DNA that bind transcription factors and increase transcription of genes under their control. 
Thus, hematopoiesis involves the activation of specific enhancer repertoires in HSCs and their progeny, driving the expression of sets 
of genes that collectively determine morphology and function. Disruption of this tightly regulated process can have catastrophic con-
sequences: in hematopoietic malignancies, dysregulation of transcriptional control by enhancers leads to misexpression of oncogenes 
that ultimately drive transformation. This review attempts to provide a basic understanding of enhancers and their role in transcriptional 
regulation, with a focus on normal and malignant hematopoiesis. We present examples of enhancers controlling master regulators of 
hematopoiesis and discuss the main mechanisms leading to enhancer dysregulation in leukemia and lymphoma.

INTRODUCTION

The human hematopoietic system encompasses a wide range 
of cell types with unique morphologies and functions, involved 
in processes as disparate as immune defense, nutrient transport, 
or coagulation. However, like every other organ and tissue in 
the human body, they all carry the exact same genetic informa-
tion: 46 chromosomes containing roughly 20,000 protein-cod-
ing genes.1,2 If they all share the same genome, what accounts 
for the full spectrum of cells in the blood, not to mention the 
entire organism? The answer resides in the precise regula-
tion of gene expression. Although between 40% and 50% of 
human genes are ubiquitously expressed, a subset of genes that 
determine cell identity are only expressed in a tissue-specific 
manner.3–6 These patterns of expression change along hemato-
poiesis, as cells progressively specialize and commit to certain 
lineages. To understand why some genes are active and others 
are silent, ensuring the maintenance of highly specific transcrip-
tional programs, one must look beyond coding sequences, and 
put the lens on a much less understood part of the genome—
regulatory elements.

The concept of gene regulation can be traced back to the 
model of Jacob and Monod, derived from their studies of the 
lactose system in bacteria.7 In their seminal publication, they 
proposed that repressor molecules could bind regulatory ele-
ments (operators) on the DNA to regulate the synthesis of pro-
teins through short-lived RNA intermediates. Despite significant 
advances in the field, this surprisingly prescient model outlined 
the 2 major modes of transcriptional regulation. On the one 
hand, molecules that bind the DNA are transcription factors 
(TFs) that act in trans to control the expression of multiple 
genes across the entire genome. On the other hand, noncoding 
DNA regions bound by these factors are cis-regulatory elements 
(CREs) that are specific to genes in the vicinity. In turn, CREs 
can be classified into various functional classes, among which 
enhancers are of particular interest as critical determinants of 
cell identity.8

This review describes the role of enhancers in transcriptional 
regulation during hematopoiesis, with a focus on their involve-
ment in malignant transformation. Although key aspects about 
enhancer biology are presented here, we refer the reader to other 
excellent reviews for a more in-depth discussion.8–11

ENHANCERS IN TRANSCRIPTIONAL REGULATION

Principles of transcriptional regulation
Gene expression starts with transcription, defined as the 

copying of a DNA sequence into complementary RNA by 
a member of the RNA polymerase family of enzymes. RNA 
polymerase (RNA pol) II transcribes all protein-coding and 
most noncoding genes, whereas RNA pol I and III tran-
scribe ribosomal RNA and certain small noncoding RNAs, 
respectively.12 Transcription can be divided into 3 distinct 
phases: initiation, elongation, and termination. It begins at 
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the transcriptional start site (TSS), located at the 5ʹ end of 
a gene, and progresses toward its 3ʹ end. Upon completion 
of this process, the product of protein-coding genes, known 
as mRNA, is imported into ribosomes for translation.13 In 
this final step, a protein is synthesized by sequentially adding 
amino acids, following the order dictated by sequences of 3 
nucleotides (codons) in the mRNA.14

Spatiotemporal regulation of gene expression is mediated 
by CREs, which include promoters, enhancers, insulators, and 
silencers (Figure 1A). Originally identified by Monod and col-
leagues in 1964, a promoter is a start signal at the beginning of 
a gene that directs RNA pol II to initiate transcription.15,16 The 
minimal stretch of DNA sufficient to direct this process is known 
as the core promoter, defined as a 50-bp region around the TSS 
that docks the preinitiation complex, which consists of RNA 
poll II together with general transcription factors (GTFs).9,16 
Moreover, the rate of initiation can be modulated by TFs, pro-
teins that bind specific DNA motifs and recruit components of 
the transcription machinery.17,18 To achieve this goal, they rely 
on 2 types of functional domains: DNA-binding domains recog-
nize TF-binding sites (TFBS), whereas effector domains interact 
with other proteins, including RNA pol II and transcriptional 
cofactors (which can be either activators or repressors).19–22 
TFBS appear at CREs in dense clusters, arranged with precise 
order, orientation, and spacing to ensure that TFs can cooperate 
effectively.17 Various modes of cooperativity, which can involve 
direct protein-protein interactions,23 DNA-facilitated interac-
tions,24 or other indirect mechanisms, enable a finer control of 
transcriptional patterns.25

Although core promoters are capable of driving autonomous 
transcription, they often have low basal activity. In order to 
reach the expression levels required by the cell, they may thus 
require input from enhancers.26,27 Enhancers collaborate in the 
recruitment of RNA pol II by forming loops with target promot-
ers, which can be located kilobases away in the linear genome 
(Figure 1B).28 In addition, there are a number of other distal CREs 
that participate in gene regulation, including silencers and insu-
lators. Silencers reduce transcription from their target promoters 
by bringing repressive TFs, known as repressors (Figure 1A).29 
Insulators bind architectural proteins such as CCCTC-binding 
factor (CTCF) or cohesin that generates loop domains, thereby 
blocking interaction across domains and favoring those within 
the same loop.30 Thus, contacts between CREs and their target 
genes usually take place within these insulated regions, often 
referred to as topologically associated domains (TADs).31

What is an enhancer?
Enhancers are DNA sequences of a few hundred basepairs 

that contain TFBS and increase the level of transcription from 

their target promoters.32,33 Enhancers were discovered in the 
1980s through the identification of a 72-bp DNA sequence from 
the SV40 virus that increased transcription of a reporter gene 
by ≈200-fold, irrespective of distance and orientation.27,34 The 
first cellular enhancer was later found in the immunoglobulin 
heavy chain (IGH) gene locus, within the intron preceding the 
constant region exons.35,36 The authors noted the striking tissue 
specificity of this element, which was only active in B cells. These 
early discoveries established the key properties of enhancers: (1) 
they augment gene expression of their target genes; (2) act inde-
pendently of orientation; (3) can function at large distances; and 
(4) are often tissue-specific. Furthermore, enhancers preserve 
their function even in a different genomic context, as shown 
by reporter assays, which also has implications for disease. 
Successive studies have consistently confirmed these features, 
and the importance of enhancers for tissue-specific gene regula-
tion in vivo.37,38 Moreover, enhancers are modular and can con-
tribute either additively or synergistically to the transcriptional 
output of their target genes.39–41 Long-distance interactions are 
mainly synergistic and confer robustness against comutagenesis, 
whereas the additivity of short-range enhancers maintains high 
expression.42

Recent estimates of the number of potential enhancers in the 
human genome range from a low of 40,00043 to more than a 
million,44–46 depending on the predictive approaches employed 
and the number of tissues surveyed. Despite the disparity of 
these figures, in all cases they greatly exceed the number of pro-
moters detected. Nevertheless, the repertoire of enhancers active 
in each lineage is only a fraction of this number. Together with 
the fact that most binding events of TFs take place at enhancers, 
this points to a pivotal role for enhancers in the regulation 
of tissue-specific gene expression and cell identity.8 Indeed, 
enhancers in conserved regions are key regulators of develop-
ment and disease47,48 and enhancer activity strongly correlates 
with gene expression in genome-wide studies.49–51 In the hema-
topoietic system, this notion is further supported by the fact that 
clustering of chromatin accessibility classifies cell types better 
than gene expression.52 More recently, multimodal single-cell 
approaches have demonstrated positive correlation between 
CRE accessibility and gene expression, with enhancer activation 
in early hematopoietic stages preceding transcription in more 
differentiated cells.53,54 Moreover, use of a Venus-YFP reporter 
in embryonic stem cells (ESCs) undergoing hematopoietic 
specification provided functional evidence that tissue-specific 
enhancers were associated with expression of genes in the same 
stage.55 A recent publication using bacterial methylation label-
ing showed coordinated enhancer and gene activity throughout 
enterocyte differentiation.56

The myeloid master regulator CEBPA offers a clear example 
of tissue-specific regulation, with different enhancers active in 
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each tissue that expresses said gene, and complete absence of 
enhancer activity in tissues where CEBPA is silent (Figure 2).57 
Other enhancers, however, are constitutively active. Thus, 2 
broad classes can be distinguished: housekeeping or ubiquitous 
enhancers are active across tissues, whereas developmental or 
tissue-specific enhancers are restricted to specific cell types.43,58 
Tissue specificity is the result of the recruitment of TFs and 
cofactors, which in turn depends on (a) the pool of TFs available 
in a particular cell type, and (b) the accessibility of their binding 
sites at a given enhancer.22 For instance, binding sites for the 
ETS, C/EBP, and NF-κB families are accessible in monocyte-spe-
cific enhancers, whereas neuronal enhancers are enriched for 
RFX and SOX proteins.43 Cooperative binding of TFs further 
narrows both tissue and genomic specificity of developmental 
enhancers.59 On the one hand, the requirement for simultane-
ous engagement of multiple TFBSs at enhancers prevents tran-
scriptional noise due to spurious recognition of short motifs. 
On the other hand, it allows a finer control of transcriptional 
patterns during differentiation, as specific combinatorial pat-
terns are uniquely expressed in specific cell types. Thus, in 
hematopoietic stem and progenitor cells (HSPCs), a heptad of 
TFs (TAL1, LYL1, LMO2, ERG, FLI1, GATA2, and RUNX1) 
frequently colocalize at CREs of key hematopoietic genes and 
act in concert to regulate their expression.60,61 At least 4 of these 

regulators establish protein-protein interactions that stabilize 
their DNA-binding and facilitate complex formation.

Although binding of lineage-determining TFs (LDTFs) estab-
lishes the repertoire of tissue-specific enhancers in a cell, not all 
of them are immediately active. Some of them, known as induc-
ible enhancers, require binding of additional TFs in response to 
internal or external signals.8,62 This type of enhancer is particu-
larly common in plastic cell types that undergo phenotypic adap-
tations upon changes in the environment, like macrophages, T 
cells, or neutrophils. For example, macrophages stimulated with 
TLR4 ligands activate preexistent enhancers that control genes 
involved in inflammatory responses.63–65 During macrophage 
differentiation, these enhancers are primed by combinations of 
LDTFs, such as PU.1 or C/EBPβ,66,67 and become fully activated 
upon stimulation by TFs such as NF-κB, IRFs, and AP-1.63–65 
Similarly, acquisition of a regulatory phenotype by CD4+ T cells 
following TCR stimulation largely results from activation of 
preestablished enhancers by newly attached FOXP3.68 Although 
most inducible enhancers seem to be previously primed during 
development, a fraction of them, known as latent enhancers, 
are created de novo upon reception of external stimuli.64,65,68 
Those are roughly 10% of all enhancers induced during macro-
phage differentiation, but <1% in regulatory T cells. Inducible 
enhancers are critically dependent on cohesin.69
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Figure 2.  Control of CEBPA expression by tissue-specific enhancers, adapted from. 57 The CEBPA locus contains multiple putative enhancers, identi-
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Anatomy of active and inactive enhancers
Enhancer states can be classified as inactive, primed, poised or 

active, each of which is associated with distinct epigenetic marks 
(Box 1; Figure  3). Inactive enhancers are located in compact 
chromatin and thus are inaccessible to TFs and cofactors, which 
results in lack of histone modifications. However, pioneer factors 
have the unique ability to strongly bind DNA wrapped around 
nucleosomes71–74 and recruit chromatin remodelers75,76 to make 
the region accessible to other TFs and epigenetic modifiers. Cirillo 
and colleagues first coined the term “pioneer factors” to describe 
FOXA (HNF3) and GATA4, after demonstrating they bind nucle-
osome arrays and open compacted chromatin,77 but multiple 
other LDTFs have a similar function in the hematopoietic system, 
including C/EBPβ,78 GATA1,79,80 and PU.1.66 These factors direct 
the selection of primed enhancers that are ready for further acti-
vation (see81 for a review on chromatin priming), exhibit reduced 
DNA methylation82 and are flanked by nucleosomes with lysine 4 
monomethylation at histone 3 (H3K4me1).49,66,83

Poised enhancers are a category of primed enhancers associ-
ated with lineage specification marked by both H3K4me1 and 
H3K27me3,84 which is associated with transcriptional silenc-
ing and is established by the polycomb repressive complex 2.85 
The role of H3K4me1, primarily deposited by MLL3/4 methyl-
transferases,86 is uncertain, but it may contribute to increased 
responsiveness to activating signals49,87 and serve as a molec-
ular memory of previous stimulation in the case of inducible 

enhancers.8,65 This mark is thought to be a key mechanism in 
the acquisition of inflammatory memory, or trained immunity, 
which depends on the opening of chromatin domains by TFs 
like AP-1.88,89 On the contrary, it is plausible that H3K4me1 pre-
vents de novo DNA methylation at poised enhancers, as shown 
for a similar mark (H3K4me3) at bivalent promoters that also 
harbor H3K27me3.90

A primed enhancer becomes fully active upon binding of 
additional TFs and cofactors that further modify the epigene-
tic landscape.8,33 The histone acetyl transferases (HATs) CREB-
binding protein (CBP) and p300 deposit acetylation marks like 
histone H3 lysine 27 acetylation (H3K27ac)91 and H3K9ac,92 
which neutralize the positive charge of lysine residues, thereby 
decreasing their affinity for DNA and destabilizing the nucle-
osome to increase chromatin accessibility.93 Indirectly, acetyl 
groups act as docking sites for bromodomain-containing pro-
teins such as the switch/sucrose non-fermentable (SWI/SNF) 
chromatin remodeler,94,95 leading to the displacement of nucle-
osomes and increased chromatin accessibility.96 Moreover, the 
acetylating activity of CBP/p30097–99 facilitates the recruitment 
of RNA pol II and GTFs at enhancers100,101 to initiate tran-
scription. Analogously to gene promoters, this results in the 
production of enhancer RNAs (eRNAs),102 which are often 
bidirectional and whose biological function remains obscure 
(see Box 1). Elongation of these transcripts, but also of mRNA 
at cognate promoters, involves the enlistment of BRD4, which 

Box 1: Epigenetic features associated with enhancer function
Histones: These are small, positively charged proteins that can strongly bind the negatively charged backbone phosphates of 
DNA through electrostatic interactions.113 Histone proteins consist of a well-ordered globular core (histone fold) flanked by 
intrinsically disordered tail domains (histone tails).114

Histone posttranslational modifications (PTMs): Histone tail domains contain a large number of sites that can be target of PTMs, 
which modulate the charge of the tail and thus alter the electrostatic interactions supporting chromatin structure.115 The existence 
of histone tail PTMs has been known since 1964, when Vincent Allfrey showed that acetylation and methylation are incorpo-
rated after synthesis of the polypeptide chain.116 Despite the strong association between histone PTMs and gene expression, their 
role in transcriptional regulation may be more limited than originally thought. Experiments in drosophila revealed that gene 
activation occurs in the absence of H3K4 methylation117 and that point mutations in H3K27 only lead to a loss of repression, 
suggesting that acetylation mainly antagonizes H3K27me3.118

Histone code: the histone code hypothesis proposed by C. David Allis and Brian Strahl suggested that histone tail domains 
encode a language that could be read, written, or erased by specific proteins.119 Examples of readers are bromodomain-contain-
ing proteins that bind acetylated lysines,120 whereas HATs like p300 are writers that mediate acetylation.121 In contrast, histone 
deacetylases (HDACs) are erasers that removes acetylation.122 Another prediction of this hypothesis was that PTMs may be 
interdependent and act in combination, which has been confirmed by the integration of multiple chromatin marks into so-called 
chromatin states.123 These inferred functional associations are a result of specific recognition by reader proteins that contain 
motifs able to distinguish residues based on their methylated stated and surrounding sequence.

Histone variants: These are paralogues of the so-called canonical histones, with differences that can range from a few amino 
acids to 50% of their sequence.124 Some examples include H2A.Z and H3.3, both of which are associated with enhancers. While 
canonical histones assemble into nucleosomes behind the replication fork, variants are incorporated during the cell cycle, in a 
replication-independent manner.125 The replacement of canonical histones by their variants changes the properties of nucleo-
somes and their interaction with remodelers and other proteins, thus having an effect on gene expression.

Nucleosome-free regions: Nucleosome eviction or destabilization in nucleosome-free regions is a critical requirement for the 
binding of TFs to cis-regulatory elements and initiation of transcription.111 These accessible chromatin regions are susceptible to 
digestion by nucleases, and as such they are also known as DNase hypersensitive sites (DHS).126 Chromatin accessibility is facili-
tated by several processes, including the replacement of canonical histones with histone variants, the eviction or repositioning of 
histones by chromatin remodelers, and the covalent modification of histones.127

Enhancer-derived RNAs: eRNAs are generally bidirectional, unspliced, and nonpolyadenylated,102 although a recent study in 
single cells concluded that this bidirectionality is an artifact of bulk data.128 Three main models have been proposed to explain 
the role of eRNA in gene regulation, reviewed in more depth.33 First, both the transcription of enhancers and the resulting eRNAs 
are nonfunctional and merely a byproduct of high RNA pol II concentrations. Second, the act of transcription participates in 
the remodeling of chromatin, by carrying histone transferases or opening up chromatin, although the resulting eRNAs would be 
irrelevant. Third, eRNAs themselves have a function, such as the stabilization of enhancer-promoter looping, the binding of TFs, 
or the sequestration of transcriptional repressors. Although these different possibilities are not mutually exclusive, a recent study 
provided convincing evidence that, at least in some instances, enhancer transcripts are required for physical interaction between 
enhancers and promoters.129

D
ow

nloaded from
 http://journals.lw

w
.com

/hem
asphere by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

y
w

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 12/06/2023



5

  (2023) 7:11� www.hemaspherejournal.com

also recognizes H3K27ac, to release RNA pol II from proximal 
pausing.103–105 Another essential cofactor is Mediator, a large 
multisubunit complex that associates with enhancers106 to trans-
mit regulatory signals to promoters and stimulate initiation of 
mRNA transcription.107,108

Finally, active enhancers can be decommissioned by a process 
that involves TF release, removal of active histone marks, loss of 
chromatin accessibility, and gain of DNA methylation.70

Altogether, active enhancers are characterized by a number 
of epigenetic features, including open chromatin109–111; clustered 
binding of TFs and cofactors such as p30083,112 or Mediator106; 
and enrichment for H3K27ac and H3K4me1 histone modifi-
cations at nearby nucleosomes,51,83,91 with comparatively low 
H3K4me3 levels (see Box 1 for details). Moreover, these flank-
ing nucleosomes contain certain histone variants that destabilize 
them, facilitating displacement.51 Another hallmark of enhancers 
is the bidirectional production of eRNAs at levels that correlate 
with mRNA synthesis by their target genes.83,102 Although these 
characteristics have been defined through statistical associa-
tions, they have a direct function in enhancer biology, rather 
than being mere bystander effects.

Identification and validation of enhancers
Starting with the seminal article of Banerji et al in 1981, the 

first efforts to identify enhancers relied on reporter assays that 
exploited the capability of these elements to augment gene tran-
scription, regardless of cellular context, distance, or orientation. 
While successful, this approach was limited by its low through-
put, the inability to determine whether enhancers are active in 
vivo and in which cell types or tissues. Therefore, more scalable 
methods to detect novel enhancers have been developed and are 
currently in use.10 These can be broadly classified as follows:

	 1.	 Biochemical annotations: the biochemical features of 
active enhancers described in the previous section have 
been exploited to detect putative enhancers on the basis 

of annotations from various molecular biology tech-
niques (Box 2). These include DNase I hypersensitiv-
ity sequencing (DNAse-seq) and assay for transposase 
accessible chromatin with sequencing (ATAC-seq) to 
measure open chromatin, and chromatin immunoprecip-
itation with sequencing (ChIP-seq) and cleavage under 
targets and release using nuclease (CUT&RUN) to assay 
for histone modifications and TF-binding. In particular, 
p300 binding has shown to be strongly predictive for tis-
sue-specific enhancers.112 The ability to produce bidirec-
tional transcripts has also been exploited to detect active 
putative enhancers.43,130 Among the various epigenetic 
marks, H3K27ac is the best predictor for validated active 
regulatory regions,131 although eRNA discriminates bet-
ter between genes with high or low expression.132 Such 
methods have been employed extensively by consortia 
like ENCODE or Roadmap, on account of their excep-
tional scalability and their ability to measure enhancer-as-
sociated signal in their genomic context across multiple 
tissues. Nevertheless, the predictions upwards of 1 mil-
lion putative enhancers contain numerous false positives, 
whereas enhancers characterized by atypical marks (such 
as H3K64ac or H3K122ac, located in the histone globu-
lar domains133) may be missed.

	 2.	 Massively parallel reporter assays (MPRAs): validating 
predicted regions as bona fide enhancers requires func-
tional characterization, proving they can indeed increase 
transcription from a reporter gene. This task can be 
accomplished using MPRAs, such as CRE analysis by 
sequencing (CRE-seq)134 or self-transcribing active reg-
ulatory region sequencing (STARR-seq).38 In CRE-seq, 
the putative enhancers are inserted upstream of a mini-
mal promoter in barcoded plasmids, whereas in STARR-
seq they are inserted in the 3ʹ UTR of the reporter gene, 
avoiding the need for barcodes. These techniques can be 
applied in an unbiased manner or in combination with 
biochemical annotations. Their main appeal is that they 

Figure 3.  Enhancer activation and decommissioning (adapted from 70 and 33). Pioneer factors mediate chromatin remodeling and make the region acces-
sible to other TFs and epigenetic modifiers, turning inactive regions into primed enhancers marked by H3K4me1. Full activation entails recruitment of Pol II and 
histone acetylases that deposit H3K27ac marks. When enhancers are no longer needed, they can be decommissioned by enzymes that reverse these changes 
and render chromatin closed. H3K27ac = histone H3 lysine 27 acetylation; H3K4me1 = histone H3 lysine 4 monomethylation; Pol II = RNA polymerase II; TF = transcription factor. 
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directly test for the intrinsic ability of an enhancer to 
increase expression, which constitutes the functional 
basis of their definition. On the other hand, these early 
MPRAs rely on a single promoter and are conducted out-
side the original cellular and genomic contexts, ignoring 
the influence of factors such as enhancer-promoter (E-P) 
compatibility, chromatin looping, or the available TF rep-
ertoire. In recent years, strategies that overcome some of 
these drawbacks have been developed. For example, in 
site-specific integration fluorescence-activated cell sort-
ing followed by sequencing, putative enhancers coupled 
with a reporter are integrated into the HPRT locus of 
ESCs, ensuring a constant and accessible chromatin envi-
ronment.55,135 Differentiating cells are next sorted based 
on reporter expression and candidate regions enriched 
in populations with high reporter signal are considered 
functionally active enhancers. Despite its advantages, 
this approach is still constrained by the use of a single 
promoter, and the dependency on ESC differentiation 
trajectories.

	 3.	 Targeted genome editing screens: techniques based on 
clustered regularly interspaced short palindromic repeats 
(CRISPR) are a relative newcomer to this field, but their 
potential is becoming increasingly clear. In CRISPR-based 
screens, guide RNAs (gRNAs) targeted against a collec-
tion of enhancers are delivered to a pool of cells and those 
gRNAs associated with changes in the expression of genes 
of interest are identified.10 Targeted enhancers can be 
deleted with Cas9,136 repressed with dead Cas9 (dCas9) 
either on its own or fused to a repressor like KRAB 
(CRISPRi),137 or activated by dCas9 with a transcriptional 
activator, such as VP64 (CRISPRa).138 In most studies so 
far, the technique has been applied to a single gene, iden-
tifying gRNAs that are enriched in a fraction of cells with 
phenotypic changes related to that gene. It can also be 
applied to determine which specific regions of a putative 
enhancer region are essential for gene regulation, as shown 
for a MYB binding site in a relocated GATA2 enhancer.139 
More recent approaches harness the power of single-cell 
(sc) sequencing to determine which enhancers are per-
turbed in each cell and their corresponding transcriptomic 
profiles.140,141 These have received various names, but can 
be collectively referred to as scCRISPR-seq.142 The main 
strength of CRISPR-based screens is that they assay for 
changes in the expression of genes while targeting their 

putative enhancers in their cellular context, thus over-
coming shortcomings of the previous 2 approaches. On 
the negative side, they are expensive and can be hampered 
by the low efficiency of gRNAs at certain regions, and by 
the presence of shadow enhancers that mask the effect 
of targeting a single enhancer. Furthermore, they are only 
applicable to cells that grow in culture, of which not all 
are amenable to genetic manipulation.

	 4.	 In vivo validation: only experiments in entire organisms 
can confirm the role of an enhancer in physiological con-
ditions, not only in the control of gene expression, but 
also in cellular processes like differentiation. For exam-
ple, deletion of an H3K27ac-marked region +42 kb down-
stream of CEBPA resulted in loss of CEBPA expression 
and neutrophil depletion, establishing such region as a 
bona fide enhancer critical for neutrophil commitment.57 
Nevertheless, such experiments are very costly and limited 
to a single candidate, so they are exclusively employed for 
validation. Alternatively, expression quantitative trait loci 
(eQTLs) located inside enhancers may act as an indirect 
confirmation that such regions control gene expression in 
humans.

These methods have their own strengths and weaknesses 
(Table  1), so they are best used in combination. Biochemical 
annotations can be used to catalogue enhancers in a given cell 
type at a low cost, which can then be further validated with 
MPRAs or CRISPR screens, or more targeted experiments for 
only a few loci of interest. An emerging technology that may aid 
in these efforts is the prediction of enhancer activity on the basis 
of sequence features using deep learning, which has seen some 
success in Drosophila.143

How do enhancers activate their target promoters?
Enhancers fine-tune gene expression by transmitting regu-

latory input to promoters in the form of TFs and transcrip-
tional cofactors, which modulate the transcriptional output 
at multiple levels.32 At the stage of initiation, some of these 
proteins contribute to the assembly and the stabilization of 
the PIC and the recruitment of RNA pol II, as is the case of 
the Mediator complex155 and p300/CBP.156 However, some 
core promoters autonomously recruit high levels of RNA pol 
II and their limiting factor is elongation. In these cases, their 
cognate enhancers are likely to display high levels of proteins 
involved in pause-release, such as BRD4104 and p300/CBP.156 

Box 2: Next-generation sequencing techniques used for the detection of enhancers
We present here some of the most popular technologies used to detect signals typically associated with enhancers. This list is not 
meant to be exhaustive.

ChIP-seq: This is a technique whereby DNA bound by a protein of interest is immunoprecipitated with specific antibodies and 
subsequently sequenced.144 Following alignment to a reference genome, the sequencing reads exhibit enrichment in the shape of 
peaks at the genomic regions bound by the target protein. An alternative that requires smaller amounts of starting material and 
provides higher signal-to-noise ratio is CUT&RUN, in which antibodies directed against proteins of interest are recognized and 
bound by protein A-micrococcal nuclease (MNase) for directed cleavage.145

DNAse-seq and ATAC-seq: DNase-seq relies on the principle that open chromatin regions are susceptible to digestion by nucle-
ases to identify nucleosome-free regions as peaks enriched for sequencing reads, known as DHS.146,147 Narrow depressions in 
these peaks correspond to TF footprints protected from DNAse degradation by associated proteins. More recently, the ATAC-
seq has gained prominence as an alternative to DNAse-seq.148 This technology probes DNA accessibility with hyperactive Tn5 
transposase, which inserts sequencing adapters into open chromatin regions.

3C/4C/Hi-C: chromosome conformation capture (3C) uses proximity ligation together with formaldehyde crosslinking, fol-
lowed by restriction enzyme digestion, to detect long-range chromatin interaction between any pair of genomic loci (1 versus 
1).149 In circular 3C (4C), a second round of digestion and ligation is used to increase resolution, and an inverse PCR captures 
interactions between the locus of interest and the rest of the genome (one versus all).150,151 When followed by sequencing, this 
method known as 4C-seq.152 In Hi-C, the digested DNA is labeled with biotin, enabling the enrichment for ligation products with 
streptavidin pull-down and creating genome-wide contact maps that reflect chromatin organization (all versus all).153 A powerful 
alternative to Hi-C is Micro-C, which harnesses MNase digestion to achieve higher resolution.154
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Finally, while transcriptional burst size is a fixed property of the 
core promoter, the frequency of these bursts can be increased by 
developmental enhancers.157

One of the most puzzling aspects in enhancer biology is their 
ability to activate remote genes. The majority of enhancers 
are located within 200 kb from their target promoters, with a 
median distance of 120 kb,158,159 or 24 kb using only function-
ally tested enhancers.141 In contrast, the limb-specific enhancer 
of SHH is located 1 Mb away for its target gene,37 whereas 
the hematopoietic enhancer of MYC is 1.7 Mb downstream.160 
Enhancer-mediated promoter activation is made possible by 
chromatin looping, which was first proposed in the 1980s,161 
but only confirmed almost 2 decades later by pioneering work 
on the globin gene.162 Another key piece of evidence was the 
observation that forced looping of an enhancer with a pro-
moter led to gene expression.163 Strikingly, live imaging of E-P 
loops in Drosophila embryos further confirmed that physical 
proximity between enhancer and promoter was correlated 
with transcriptional activation.164 While E-P interactions 
are necessary for gene expression, they are not sufficient, as 
they can exist before activation.159,165 Thus, other factors are 
involved, such as the existence of a suitable TF repertoire in 
the cell or E-P biochemical compatibility (see next section). 
These preformed contacts could facilitate the rapid activation 
of transcription upon the reception of external stimuli or dif-
ferentiation cues.

According to the loop extrusion model, chromatin loops 
are formed by the extruding activity of SMC proteins such 
as cohesin or condensin, which progressively reel DNA 
until blocked by a CTCF protein in proper orientation166–168 
(Figure  4). This mechanism operates both in the formation 
of E-P loops and TAD boundaries, but there are differ-
ences between these layers of spatial organization. While 

CTCF is present at the vast majority of TAD boundaries, 
it is only found at a small fraction of E-P loops.170 Instead 
of CTCF, the anchors of these cell-type-specific interactions 
are frequently occupied by another DNA-binding zinc factor 
called YY1.171,172 Depletion of YY1 leads to changes in gene 
expression and loss of E-P loops, which are restored upon 
recovery of YY1 levels. The Mediator complex has also been 
implicated in short-range interactions in collaboration with 
cohesin,106,170 but later studies indicate it may act as a func-
tional rather than an architectural bridge between enhancers 
and promoters.108,173 Thus, while Mediator is not required for 
physical contacts, it relays information from TFs to RNA pol 
II, contributing to the assembly of the preinitiation complex. 
In addition, cohesin at non-CTCF sites may be stabilized by 
other TFs.174

Consistently with the loop extrusion model, depletion 
of either CTCF175 or cohesin176 results in loss of all CTCF-
mediated loops. However, the changes in chromatin struc-
ture observed in these experiments had small effects on gene 
expression, with only a few hundred of genes found differen-
tially expressed. This suggests additional layers of spatial orga-
nization beyond cohesin-mediated loops. For example, LDB1 
is an adaptor protein that dimerizes and forms loops163 upon 
recruitment by TFs such as GATA1 or TAL1, as it does not 
bind DNA directly.177 More recently, the group of Robert Tjian 
showed that E-P contacts are preserved upon acute depletion 
of the abovementioned architectural proteins, hinting at a 
model in which they are only necessary for loop formation, 
rather than maintenance.178

E-P specificity
A single promoter is often under the regulation of 4–5 

enhancers, possibly alternating along differentiation; in turn, 
enhancers interact with 2 promoters on average.43 It has been 
suggested that the existence of multiple redundant enhancers, 
also known as shadow enhancers, guarantees the robustness and 
precision of gene expression, even in the presence of mutated 
enhancers.179–181 Although proximity plays a strong role in the 
choice of an enhancer, 33% of the genes skip the closest one.141 
These observations raise questions about the determinants that 
drive E-P specificity, aside from proximity in the linear genome.

A crucial requirement in the selection of an enhancer among 
the repertoire of potential enhancers is its activation by TFs 
expressed in a given cell type.8 Two other important factors 
are spatial architecture and biochemical compatibility.182 For 
enhancers and promoters to interact, chromatin loops must be 
formed with the aid of specialized architectural proteins. As pre-
viously explained, this model is substantiated by multiple lines 
of evidence, including forced chromatin looping and correlation 
between E-P proximity and gene expression. Genomic interac-
tions are typically constrained within TADs, the disruption of 
which leads to aberrant expression of genes in development183,184 
and cancer.185 Nevertheless, this boundary is not absolute, as 
29% of enhancers are not located in the same TAD as their tar-
get gene.141

Nevertheless, even forced contacts between an enhancer and a 
promoter are not always sufficient to activate transcription, sug-
gesting they must be compatible as well.32 Thus, different classes 
of promoters, possibly depending on their sequence composi-
tion, may require specific TF and cofactors that are only present 
at certain enhancers. In Drosophila, STARR-seq revealed that 
enhancers display strong preference for either housekeeping or 
developmental promoters, a degree of specificity that is at least 
partially mediated by binding of TFs and cofactors.58,186,187 In 
line with this notion, coenrichment of TF motifs can be detected 
at E-P pairs validated by a CRISPRi screen in K562.141 A com-
prehensive MPRA involving >10,000 pairwise combinations 
of candidate CREs in murine ESCs concluded that >60% of 
them exhibited selectivity, which was at least partly mediated by 

Table 1

Summary of Methods Used for the Identification of Enhancers

Type of 
Approach Techniques Advantages Limitations 

Biochemical 
annotations

ChIP-seq, 
CUT&RUN, 
ChIP-exo
DNAseq-seq, 
ATAC-seq

Very scalable and 
reproducible
Detection of putative 
enhancers in their 
context across tissues

Lack of functional  
validation leading to 
false positives
Constrained by the 
choice of epigenetic 
marks

MPRAs CRE-seq, 
STARR-seq, 
SIF-seq

Directly testing the 
functional definition of 
an enhancer
Possibility to synthesize 
tested regions

Relatively expensive and 
complex
Observations are made 
out of the real cellular 
context (except SIF-seq)
Ignore enhancer-pro-
moter compatibility

Targeted 
genome edit-
ing screens

CRISPR-Cas9, 
CRISPRi, 
CRISPRa, 
scCRISPR-seq

Functional testing of 
enhancers in their 
genomic context
Inference of E-P 
assignment

Expensive
Low efficiency of some 
gRNAs
Differences in applicabil-
ity between cell systems

In vivo 
validation

Animal models, 
eQTL

Understanding of the 
role of an enhancer 
in vivo

Low throughput and very 
expensive

ATAC-seq = assay for transposase accessible chromatin with sequencing; ChIP-seq = chromatin 
immunoprecipitation with sequencing; CRE-seq = CRE analysis by sequencing; CRISPR = clustered 
regularly interspaced short palindromic repeats; CRISPRa = CRISPR activation; CRISPRi = CRISPR 
interference; CUT&RUN = cleavage under targets and release using nuclease; E-P = enhancer-pro-
moter; eQTL = expression quantitative trait loci; gRNA = guide RNA; MPRA = massively parallel 
reporter assays; scCRISPR-seq = single-cell CRISPR sequencing; SIF-seq = site-specific integra-
tion fluorescence-activated cell sorting followed by sequencing; STARR-seq = self-transcribing 
active regulatory region sequencing.
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combinations of multiple motifs.188 A similar study testing over 
600,000 E-P pairs in K562 also identified a class of enhancers 
that exhibited preferential responsiveness for certain promot-
ers, but differences were subtle.40 The authors concluded there 
is broad E-P compatibility and most (but not all) transcriptional 
output may be explained by a multiplicative model.

The requirements for biochemical and structural compatibil-
ity caution against assigning an enhancer to the closest promoter. 
Alternative methods to identify E-P interactions include the use 
of (a) chromatin interactions derived from 3C technologies, 
especially Hi-C or promoter-capture Hi-C,158 or (b) correlations 
between features of promoters and putative enhancers, such 
as open chromatin, transcription, or H3K27ac.51 Chromatin 
conformation data in 1% of the human genome showed that 
only 27% of putative enhancers interact with the nearest TSS, 
or 47% if only expressed genes are considered.158 This is sim-
ilar to estimates based on pairwise expression correlation, 
which linked 40% of enhancers to their closest TSS.43 However, 
CRISPR-based perturbation of regulatory regions coupled with 
measurement of gene expression revealed that these approaches 
are also of modest value.189 The results fit better with an activ-
ity-by-contact (ABC) model whereby the effect of an enhancer 
on gene expression depends on its activity and the contact fre-
quency with a given promoter. Based on this model, predictions 
can be improved by combining data on open chromatin (ATAC-
seq), enhancer activity (H3K27ac), and chromatin interactions 
(Hi-C). In addition, machine-learning computational tools have 
been developed to predict E-P relationships based on various 
genomic features, such as EAGLE.190

Super-enhancers, key regulators of cell identity
Super-enhancers (SEs) are clusters of enhancers characterized 

by very high levels of transcriptional activators and chromatin 
modifications, often involved in the regulation of cell identity 
genes and oncogenes.191,192 Contrary to conventional enhancers, 
which have a clear functional definition, SEs were identified 
based on bioinformatic analysis of ChIP-seq data (Figure 5).191 
In the original publication, the authors first stitched enhancers 
within 12.5 kb of each other and ranked these clusters, and any 

remaining individual enhancer, by MED1 (part of the Mediator 
complex) binding levels measured by ChIP-seq. After plotting 
these values, regions to the right of the inflection point of the 
curve were considered as SEs. Since then, they have been also 
defined based on other epigenetic features associated with active 
chromatin, particularly H3K27ac.193 Other similar entities, 
partially but not completely overlapping, have been proposed 
independently, such as stretch enhancers194 or locus control 
regions.195

Although the exact number varies across tissues and cell types, 
an analysis of H3K27ac data from 86 human tissues revealed 
that cells have an average of 678 SEs, with an average length of 
36345 bp, versus 5154 bp of normal enhancers.196 Genes under 
the control of SEs are enriched for lineage-specifying TFs and 
oncogenes, whose dysregulation may be due to the acquisition 
of novel SEs in tumor cells.191

The majority of SEs (84% in ESCs) are contained within 
CTCF-bound cohesin loops that confine their activity to spe-
cific target genes, contrary to normal enhancers (48% in the 
same study).197 Disruptions of these boundaries result in dysreg-
ulation of nearby genes that can lead to cancer.198 The individ-
ual components of SEs often interact with each other through 
cohesin loops and establish functional interdependence.199 The 
individual components may act additively, redundantly, or syn-
ergistically.200,201 Dissection by genetic manipulation revealed 
that disruption of constituent enhancers enriched in chromatin 
interactions (hub enhancers) destabilizes the whole SE, suggest-
ing a hierarchical model of organization.199,201

THE IMPORTANCE OF ENHANCERS IN HEMATOPOIESIS

Hematopoiesis is a tightly regulated process that ensures a 
steady supply of blood cells of multiple lineages, originating 
from a pool of hematopoietic stem cells (HSCs) that progres-
sively specialize into progenitor cells and finally into function-
ing mature phenotypes.202 Transitions along the hematopoietic 
continuum are accompanied by modifications in the epigene-
tic landscape, which collectively govern the transcriptional 
program of cells: chromatin becomes open or closed, DNA is 
methylated or demethylated, histones tails are modified, and 

CTCF CTCF

CTCFCTCF

SMC1

RAD21

SMC3

STAG1/STAG2

Cohesin

CT
CF

CT
CF

CTCF CTCF

CTCF CTCF

Forward motif Reverse motif

CTCFForward motif Reverse motif

A B

C

CTCF

CCACTAGGTGGCAG5' 3' CCACTAGGTGGCAG

5'3'

Figure 4.  Stabilization of enhancer-promoter loops by cohesin and CTCF. (A) According to the loop extrusion model, cohesin reels in DNA until it 
encounters 2 convergently oriented CTCF binding sites. Extrusion by human cohesin is symmetrical.169 (B) Schematic overview of the cohesin complex. (C) 
CTCF motifs at loop anchors are arranged in opposite orientation at each strand. CTCF = CCCTC-binding factor. 
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chromatin interactions are lost or gained. In turn, these changes 
are instructed by a handful of master regulator TFs that dictate 
fate choices and maintain cell identity, and whose expression is 
exquisitely regulated.203

As drivers of cell-type-specific gene expression, enhancers 
are a key part of this process. In keeping with this notion, sin-
gle-nucleotide polymorphisms (SNP) that affect blood traits and 
diseases are frequently located in candidate enhancer regions, 
explaining between 19% and 46% of heritable variation.204,205 
Importantly, variants associated with those traits are enriched 
at related cell-type-specific enhancers; for example, coagulation 
phenotypes are linked to SNPs enriched at enhancers active in 
megakaryocytes. Furthermore, these polymorphisms modify 
known motifs of hematopoietic TFs and are associated with 
changes in chromatin accessibility. In animal models, perturba-
tion of various hematopoietic enhancers also leads to dramatic 
blood phenotypes, such as neutropenia and HSC depletion in 
mice lacking a Cebpa enhancer,57,206 failure to generate HSCs in 
a murine model with a deleted Gata2 enhancer,207 and reactiva-
tion of fetal hemoglobin production upon editing of the Bcl11a 
enhancer.136

In the next sections, we describe how the enhancer landscape 
changes during hematopoiesis and highlight some key examples 
of enhancers of master regulators.

A reshuffling of the enhancer repertoire drives hematopoiesis
Different models have been put forward to explain the 

emergence of lineage-specific transcriptional programs during 
hematopoiesis.208 On the one hand, the blank slate model posits 
that differentiation requires de novo formation and activation 
of regulatory regions as cells progress toward more specialized 
stages. Alternatively, the multilineage priming model proposes 
that multiple differentiation trajectories are available in early 
progenitors and they progressively become restricted. The latter 
was formulated on the basis of results from single-cell RT-PCR 
in HSPCs, which revealed coexpression of lineage-specific 
markers at low levels before commitment to a single lineage.209 
Crucially, myelo-eyrthroid genes were circumscribed to com-
mon myeloid progenitors (CMPs), whereas genes linked to the 
T and B lymphoid lineages were only present in common lym-
phoid progenitors (CLPs).210

The advent of next-generation sequencing made it possi-
ble to discriminate between these 2 possibilities. Seemingly 
confirming the existence of multilineage priming, single-cell 
ATAC-seq showed that chromatin is more accessible in HSCs 
and it becomes increasingly condensed as differentiation pro-
gresses.54,211,212 However, this phenomenon is primarily limited 
to promoters, whereas open chromatin regions at enhancers are 
frequently created de novo during differentiation.54,211 Similarly, 
profiling of H3K4me1, H3K4me2, H3K4me3, and H3K27ac 
showed that hematopoietic lineage commitment is accompanied 
by widespread change in the chromatin landscape.213 Up to 90% 
of the enhancers change state, of which 60% are active only in 
HSCs and a specific lineage, as predicted by multilineage prim-
ing. The rest, however, are established de novo during differen-
tiation. While enhancer decommissioning is a gradual process, 
de novo formation mostly occurs at key transitions, with CMPs 
and granulocyte-monocyte progenitors (GMPs) accounting for 
a large fraction of newly formed enhancers in myelopoiesis.213 
Furthermore, the acquisition of different histone marks takes 
place in a sequential manner, typically starting with H3K4me1/2 
at poised enhancers in early progenitors and following with 
H3K27ac as soon as transcription starts.

Altogether, the emerging consensus is that hematopoiesis fol-
lows a hybrid model of increasing restriction of multilineage 
priming and de novo enhancer activation.54,211 Nevertheless, even 
newly formed enhancers are primed before their final activa-
tion in later stages of hematopoiesis, as shown by the fact that 
H3K4me1 is present at enhancers of multipotent progenitors 
before they become fully active or repressed in a lineage-restricted 
manner.214 In keeping with this notion, H3K4me1-based cluster-
ing grouped progenitors with their respective terminally differen-
tiated cells, contrary to RNA-seq.213 Likewise, a study combining 
ATAC-seq and RNA-seq in 16 major blood cell types confirmed 
that chromatin accessibility in HSCs/MPPs preceded associated 
transcriptional changes in later stages.52 The authors also demon-
strated that chromatin accessibility at distal regions, but not at 
promoters, is a better predictor of cell type than gene expression.

Changes in the activity of enhancers during hematopoiesis 
are linked to their occupancy by TFs, particularly the so-called 
master regulators that act as primary determinants of cell fate. 
These often function as pioneer factors, reshaping chromatin to 
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2. Stitching of nearby regions

3. Quantification of signal in stitched regions
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Figure 5.  Bioinformatic definition of super-enhancers by rank ordering of super-enhancers. Enhancers are first identified by peak calling algorithms 
(1), and next stitched if they are at a distance of 12.5 kb or less (2). Following quantification of mapping reads (3), stitched regions are ranked by signal (4) and 
super-enhancers are defined as those to the right of the inflection point of the curve. The identification of enhancers and signal quantification can be conducted 
with different types of ChIP-seq data, such as MED1 or H3K27ac. ChIP-seq = chromatin Immunoprecipitation with sequencing; H3K27ac = histone H3 lysine 27 acetylation. 

D
ow

nloaded from
 http://journals.lw

w
.com

/hem
asphere by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

y
w

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 12/06/2023



10

Mulet-Lazaro and Delwel� Enhancers in Normal and Malignant Hematopoiesis

facilitate the binding of other TFs.215 Expression of master regu-
lators is often sufficient to direct differentiation into a particular 
lineage and even force reprogramming of a committed cell into 
a different lineage.202 Several of these master regulators make up 
the aforementioned heptad of TFs, which concomitantly bind 
CREs associated with genes involved in hematopoietic develop-
ment, including genes encoding for themselves.61 Although all 
7 TFs frequently colocalize in HSPCs, specific combinations of 
different heptad members are restricted to individual progeni-
tors, where they dictate fate choice and regulate lineage-specific 
gene expression.216 Indeed, chromatin accessibility at merely 
9 enhancers bound by this heptad can be used to predict cell 
identity at early stages of hematopoiesis.212 Interestingly, hep-
tad binding may precede the formation of E-P loops in more 
mature cells, supporting the notion that commitment is a grad-
ual process.216

Enhancers control the expression of hematopoietic master regulators
Although the implementation of lineage-specific programs 

involves alterations in hundreds or thousands of enhancers, 
those that control master regulators are of special interest, as 
they induce and maintain other cell-type-specific enhancers. We 
present here a few representative examples.

PU.1
PU.1 (encoded by SPI1) is involved in both myeloid and lym-

phoid development, as it is required for the formation of GMPs 
and CLPs, but not erythrocytes and megakaryocytes.217,218 Low 
levels of PU.1 induce B-cell differentiation, whereas high lev-
els promote myelopoiesis at the expense of other lineages.219–221 
Within the myeloid lineage, higher levels favor macrophage 
over granulocyte commitment, with haploinsufficiency result-
ing in increased neutrophil numbers.222 Although PU.1 remains 
expressed in early T-cell precursors up to the DN2 stage, its 
downregulation is necessary for terminal T-cell maturation.223 
The significance of PU.1 in these various processes stems from 
its role as a pioneer factor: in macrophages-specific enhancers, 
it initiates nucleosome remodeling, followed by deposition of 
H3K4me1 and H3K27ac.63,66

The transcription of PU.1 is under strict regulation by dis-
tal enhancers (Figure  6A). One of them is located −15 kb 
upstream of the SPI1 gene (−14 kb in mice) and is necessary to 
sustain adequate levels of PU.1.224 Accordingly, ablation of this 
enhancer, termed upstream regulatory element (URE), results 
in 80% loss of PU.1, with loss in HSC function and failure in 
terminal myeloid differentiation that give rise to leukemia.225,226 
Nonetheless, the fact that loss of the −15 kb enhancer affects all 
blood lineages indicates it is a general hematopoietic enhancer. 
Precise transcriptional fine-tuning in each cell type is achieved 
through the collaboration with other upstream CREs, including 
a −12 kb enhancer that is specific for myeloid cells, but not B 
cells.227 Activation of this −12 kb enhancer is indirectly driven 
by the binding of C/EBPα at the URE228 together with PU.1 
itself, which establishes an autoregulatory loop.229 In B cells, it is 
thought that the binding of lymphoid TFs such as FOXO1 and 
E2A to the URE is sufficient to elicit transcription of PU.1 with-
out activation of the −12 kb, yielding the lower levels required 
for that differentiation trajectory.

C/EBPα
C/EBP alpha (C/EBPα), encoded by the CEBPA gene, is a 

master regulator of myelopoiesis, required for GMP forma-
tion,230,231 granulopoiesis,232,233 and monopoiesis.234 Indeed, 
overexpression of CEBPA is sufficient to enforce a myeloid 
program in lymphoid progenitors235 and reprogram B cells 
into macrophages.236 First expressed in early myeloid progen-
itors,206 C/EBPα directs differentiation into GMPs while block-
ing erythroid development.237 At the GMP stage, C/EBPα acts 
as a regulatory switch: while high levels can set off granulocyte 

differentiation by activating genes such as GFI1 or CEBPE, low 
levels direct monopoiesis.234,238 These effects involve the binding 
of C/EBPα to both preformed and de novo enhancers during 
differentiation, including that of PU.1, which suggests a role as 
a pioneer factor.239,240

The expression of CEBPA in myeloid cells is primarily driven 
by interaction of its promoter with an enhancer located +42 kb 
downstream (+37 kb in mouse), which is uniquely active in blood 
tissues57,241 (Figure 6B). Several other putative enhancers can be 
identified by H3K27ac in the vicinity of CEBPA, but only the 
+42 kb and +9 kb enhancers are accessible in HSPCs. Because 
hematopoietic TFs bind only to the +42 kb enhancer, this ele-
ment probably initiates CEBPA expression in HSPCs, enabling 
the transition from CMP to GMP.57 Disruption of the +42 kb 
hematopoietic enhancer in mice blocks differentiation from 
CMP to GMP, leading to a complete loss of granulocytes. The 
activation of the +42 kb enhancer is, at least partially, driven by 
binding of RUNX1, whose deletion causes reduced expression 
of CEBPA and impaired granulopoesis in murine models.242 It 
remains to be elucidated how other regulatory elements, par-
ticularly the +9 kb enhancer, participate in the modulation of 
CEBPA expression.

GATA2
GATA2 is a member of the GATA family of zinc-finger (ZF) 

TFs, whose name derives from their ability to bind the (A/T)
GATA(A/G) consensus sequence, also denoted as WGATAR.243 
Interplay between various proteins of the GATA family takes 
place in the form of a GATA switch whereby one of them 
replaces another at key stages of differentiation.244 For exam-
ple, GATA1 displaces GATA2 from the GATA2 promoter in 
erythropoiesis, leading to transcriptional repression.245 GATA2 
is indispensable for HSC proliferation and survival,246,247 and 
for HSC generation in the embryo248,249 and GMP function.250 
Accordingly, expression of GATA2 can be detected in HSCs, 
early myeloid progenitors and erythroid cells.251

In keeping with its essential role in hematopoiesis, a fine 
control of GATA2 expression levels must be maintained. 
Transcription of GATA2 is controlled by a number of enhancers 
that also act as GATA switch sites, including an intronic 
+9.9 kb enhancer (+9.5 in mice), several proximal enhancers 
and a distal −110 kb (−77 in mice) enhancer252 (Figure  6C). 
While the proximal enhancers are dispensable for Gata2 
expression and hematopoiesis,253 loss of either the +9.5 kb254 
or the −77 kb255 enhancers dramatically reduces Gata2 levels 
and disturbs hematopoiesis. In particular, the −77 kb element is 
mainly involved in Gata2 expression in myeloid commitment, 
whereas the +9.5 kb enhancer regulates HSC emergence. In 
humans, haploinsufficiency resulting from inactivating muta-
tions in its +9.9 kb enhancer is one of the causes of the disorder 
known as GATA2 deficiency.256,257 Patients with these defects 
exhibit various cytopenias and frequent infections and are at 
risk for developing familial myelodysplastic syndromes (MDS) 
and acute myeloid leukemia (AML).258

Ikaros
The DNA-binding protein Ikaros (encoded by IKZF1) is 

the founding member of the zinc-finger TF family that bears 
the same name. Ikaros is a master regulator of lymphopoie-
sis, as demonstrated by the complete lack of B cells, fetal T 
cells, natural killer cells, and CLPs in mice with a homozy-
gous mutation in Ikzf1; they produce adult T cells, although 
in very small numbers.259–261 Ikaros primes HSCs for subse-
quent lymphoid development and upregulates this program 
in lymphoid-primed multipotent progenitors (LMPPs), medi-
ating their transition into CLPs.262,263 Ikaros is also critical in 
later stages of B-cell specification and commitment264,265 and 
in T-cell differentiation.266 Mechanistically, Ikaros binds to 
enhancers and promoters and recruits chromatin remodelers 
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such as NuRD,267 activating genes that drive lymphopoiesis 
while antagonizing those that participate in myeloid develop-
ment and in multipotency.263,268,269

The precise regulation of IKZF1 transcription across cell 
types is achieved through combinatorial activation of 2 promot-
ers (A and B) and at least 7 enhancers, most of them intronic 
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Figure 6.  Enhancer landscape of master regulators of hematopoiesis. This figure shows the regulatory regions of SPI1 (A), CEBPA (B), GATA2 (C), IKZF1 
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(D through J).270,271 According to the model proposed by the 
Georgopoulos lab (Figure  6D), induction of IKZF1 in LMPP 
requires input from enhancer D to the lympho-myeloid pro-
moter B, which is insufficient to upregulate expression above 
HSC levels. Further activation of this same promoter is achieved 
by collaboration between D and H in T lymphocytes, leading to 
the higher expression of Ikaros seen in these cells. Accordingly, 
enhancer D contains binding sites for early myeloid-lymphoid 
TFs, whereas enhancer H exclusively binds TFs associated with 
T-cell development. In B cells and granulocytes, promoter B 
together with enhancer D seem to be sufficient to drive IKZF1 
expression, but may collaborate with any of the other enhancer 
regions. In contrast, the erythroid lineage specifically uses pro-
moter B in combination with enhancers F and G. More recently, 
a highly conserved SE ≈80 kb upstream of the TSS (120 in 
mouse) has been identified in a parallel reporter assay.272 This 
regulatory element exhibits open chromatin in HSCs and lym-
phoid precursors, allowing the binding of lymphopoietic TFs. Its 
deletion reduces, yet not abolishes, Ikzf1 expression in a murine 
T cell line, confirming the involvement of this SE in the tran-
scriptional control of Ikaros in T cell development.

PAX5
PAX5 is a crucial TF for stable B-cell commitment that activates 

genes specific of B cells and abrogates alternative lineages, follow-
ing the previous specification of CLP cells dictated by the TFs 
TCF3 (E2A) and EBF1.273,274 Thus, generation of pro-B cells can 
proceed without PAX5, but those cells fail to progress into sub-
sequent stages and express genes from alternative lineages.273,275 
As an essential driver of B-cell identity, it is exclusively expressed 
in cells of this lineage, ranging from pro-B cells to mature 
B-lymphocytes.276 Its continued presence is necessary to preserve 
their phenotype, as deletion of Pax5 in mouse models allows cells 
to dedifferentiate into uncommitted progenitors.277 PAX5 directly 
binds enhancer regions and recruits chromatin remodelers and 
histone modifiers to activate or repress its target genes.278

The expression of PAX5 itself is controlled by a tissue-specific 
enhancer located in intron 5 of the gene, which is bound and 
activated by PU.1, IRF4, IRF8, and NF-κB279 (Figure 6E). This 
region is repressed by DNA methylation in ESCs, but becomes 
demethylated at the onset of hematopoiesis and is activated in 
a fraction of CLPs, presumably those committed to the B-cell 
lineage. It remains active in all B cell stages until its downreg-
ulation in plasma cells. In contrast, the promoter is silenced by 
H3K27me3 in ESCs, but binding of EBF1 induces chromatin 
remodeling during lymphopoiesis.

The examples above are a glimpse into the intricate regula-
tory networks that control gene expression in a spatiotemporal 
manner, but appropriately illustrate some of the challenges in 
the study of enhancers. They also reflect the properties described 
in previous sections, including the ability to act at large distances 
and the presence of multiple enhancers that modulate the final 
transcriptional output.

ENHANCER DYSREGULATION IN HEMATOLOGIC 
MALIGNANCIES

Cell identity along with the hematopoietic continuum 
emerges from transcriptional programs under strict regulation. 
Disruptions in the epigenetic mechanisms that instruct and 
maintain these programs may severely compromise cell identity 
and lead to aberrant behavior. As key regulators of cell-type-
specific gene expression, enhancers are often the target of such 
alterations.

The first report of enhancers involved in malignant transfor-
mation was in Burkitt lymphoma with translocations relocat-
ing the oncogene MYC to regions containing immunoglobulin 
genes, including IGH in t(8;14) and, less frequently, IGK in 
t(2;8) and IGL in t(8;22).280,281 In 1983, 2 groups independently 

identified the murine Igh enhancer and proposed its human 
homolog was involved in the abnormal expression of the 
translocated MYC,35,36 which was confirmed in human-derived 
Manca cells only a year later.282 This stunning realization set 
the precedent for decades of discoveries that have cemented 
enhancer dysregulation as a key driver of carcinogenesis. In 
particular, SEs have garnered special attention in later years, 
given their frequent involvement in the regulation of cell iden-
tity genes that are also dysregulated in cancer.191 A general over-
view of the role of enhancers and SEs in cancer is available 
in other excellent reviews.283–285 Here, we focus on alterations 
involving enhancers primarily in the context of hematological 
malignancies.

The various mechanisms of enhancer dysregulation described 
in the literature can be grouped into the following categories: 
enhancer hijacking, point mutations and small insertions/dele-
tions (indels), focal amplifications, and epigenetic modulation 
of enhancers. Representative examples of each of these mecha-
nisms are provided in Table 2.

Enhancer hijacking
Also known as enhancer adoption, enhancer hijacking occurs 

when aberrant expression of a gene is driven by an enhancer that 
would normally control the transcription of another gene, result-
ing in altered patterns of gene expression that frequently contribute 
to tumorigenesis.297 This is usually the consequence of structural 
variants that juxtapose a gene to an active enhancer,298,299 namely 
translocations, interstitial deletions, and inversions. The earliest 
known example of this phenomenon is the previously mentioned 
repositioning of the IGH enhancer to MYC in lymphomas with 
t(8;14).282 In AML with inv(3) or t(3;3), the adoption of a GATA2 
enhancer relocated to 3q26 causes overexpression of EVI1 with 
concomitant GATA2 haploinsufficiency (Figure 7).185,286 These 2 
simultaneous events result in a block of differentiation with accel-
erated blast expansion.300 Recently, we have shown that EVI1 
overexpression in other AMLs with 3q26 rearrangements usually 
involves hijacking of a repositioned SE active in HSPCs, including 
those controlling ARID1B, CDK6, and MYC in t(3;6), t(3;7) and 
t(3;8), respectively.301

Aside from structural variants, enhancer hijacking can also 
stem from the loss of TAD boundaries that would otherwise 
preclude the interaction between an enhancer and a promoter. 
In T-cell acute lymphocytic leukemia (T-ALL), deletions of 
CTCF binding sites in TAD boundaries cause overexpression 
of LMO2, possibly driven by an enhancer in the CAPRIN1/
NAT10 locus.198 Inactivation of CTCF is also necessary to enable 
contacts between TLX3 and a relocated BCL11B enhancer in 
T-ALL with t(5;14).302 Conversely, CTCF-dependent loops medi-
ate the interaction of EVI1 with the translocated MYC enhancer 
in AML with t(3;8),303 indicating that chromatin conformation 
ultimately drives enhancer adoption.

Point mutations and indels
Alterations in enhancers and promoters can modify the bind-

ing of TFs, RNA-binding proteins, and micro RNAs, leading 
to transcriptional changes at the genes under their control. A 
paradigmatic example is the hotspot for insertions that create a 
de novo super-enhancer upstream of TAL1, leading to its over-
expression in roughly 5% of pediatric T-ALLs.287 In contrast, 
an enhancer located 330 kb away from PAX5 is disrupted by 
somatic mutations in 8% cases of chronic lymphocytic leukemia 
(CLL), 29% of diffuse large B-cell lymphoma (DLBCL) and 5% 
of mantle cell lymphoma (MCL).288

Focal amplifications of enhancers
Amplifications increase the number of copies of an enhancer, 

augmenting its ability to bind TFs and recruit transcriptional 
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machinery, and possibly turning it into a SE. Surveys of copy 
number alterations in adult and pediatric AML identified focal 
amplifications of the 8q24.21 region in 3%–4% of cases,290,291 
which were later shown to involve a hematopoietic SE 1.7 Mb 
downstream of MYC.289 Focal amplification of a region 730 kb 
downstream of BCL11B causes the generation of a hyperactive 
enhancer driving overexpression of this gene in a subgroup of 
lineage-ambiguous stem cell leukemias.292

Epigenetic modulation of enhancers
Activation and decommissioning of enhancers is an integral 

part of cellular differentiation and the transcriptional response 
to external stimuli. However, dysregulation of these processes 
can lead to aberrant expression of critical genes involved in cell 
identity and function, ultimately resulting in leukemogenesis. 
These so-called epimutations are often secondary consequences 

of other oncogenic events, many of which affect transcrip-
tional and epigenetic regulators in hematopoietic malignancies. 
Indeed, mutationally-defined AML subtypes exhibit mark-
edly different chromatin landscapes,304,305 suggesting aberrant 
enhancer activation that enables the implementation of onco-
genic transcriptional programs. However, it is challenging to 
pinpoint which of these events are truly leukemogenic, rather 
than a consequence of the altered differentiation status. One 
of such driver epimutations is the inactivation of the CEBPA 
+42 kb enhancer in AML with t(8;21),294–296 stemming from 
the recruitment of HDACs and other repressors306,307 by the 
RUNX1-ETO oncoprotein. In T-ALL, mutated NOTCH1 over-
activates a T-lineage-specific enhancer of MYC, a well-known 
oncogene.293

Nevertheless, primary epimutations that confer selective 
advantage may also arise independently, in a similar fashion 
to genetic lesions. A large-scale study in adult T-ALL identified 

Table 2

Recurrent Examples of Enhancer Dysfunction in Hematological Malignancies

Mechanism Cause Donor 
Affected 

Gene Disease  References 

Enhancer hijacking by structural variants t(8;14) relocating MYC to IGH enhancer IGH MYC Burkitt lymphoma, other B-cell 
lymphomas, MM

35,36,282

Enhancer hijacking by structural variants t(3;3) or inv(3) relocating a GATA2 
enhancer to EVI1

GATA2 EVI1 
(MECOM)

AML 185,286

Enhancer hijacking by mistargeted looping Deletion of TAD boundary causing LMO2 
overexpression

CAPRIN1/
NAT10

LMO2 T-ALL 198

Indels creating an enhancer Insertion creates a MYB binding site 
upstream of TAL1

- TAL1 T-ALL 287

Indels disrupting an enhancer Various mutations in the PAX5 enhancer - PAX5 CLL, DLBCL, MCL 288

Focal amplification of enhancers Amplification of a +1.7 Mb super-en-
hancer of MYC

- MYC AML 289–291

Focal amplification of enhancers Amplification of a 2.5-kb element 3ʹ of 
BCL11B

 BCL11B MPAL 292

Epigenetic activation of enhancers NOTCH1-dependent activation of a 
MYC SE

- MYC T-ALL 293

Epigenetic inactivation of enhancers RUNX1-ETO represses the +42 kb 
CEBPA enhancer

- CEBPA AML 294–296

AML = acute myeloid leukemia; MM = multiple myeloma; T-ALL = T-cell acute lymphocytic leukemia; CLL = chronic lymphocytic leukemia; DLBCL = diffuse large B-cell lymphoma; MCL = mantle cell 
lymphoma; MPAL = mixed phenotype acute leukemia; SEs = super-enhancers.

Healthy cells

AML with inv(3)

GATA2 mRNA

GATA2 -110 kb enhancer
TFTFTF

Promoter PromoterEVI1

STOP

40 Mb

GATA2 Promoter PromoterEVI1

TF

-110 kb enhancer
TFTFTFTF

EVI1 mRNA

40 Mb
STOP

chr3
3q263q21

3q21 3q26
chr3

Figure 7.  Enhancer hijacking of EVI1 by 3q26 rearrangements. In myeloid cells of healthy individuals, GATA2 (on 3q21) transcription is controlled by a 
distal −110 kb enhancer as shown in Figure 6, whereas EVI1 (on 3q26) is silent. In AML with inv(3), the −110 kb enhancer is relocated 3ʹ of EVI1, acquires the 
characteristics of a super-enhancer (shown here as additional TF-binding) and drives overexpression of EVI1. Simultaneously, the loss of this enhancer at the 
GATA2 locus in the other allele results in GATA2 haploinsufficiency, which collaborates with EVI1 in promoting leukemogenesis. A similar mechanism operates 
in AML with t(3;3), but the broken portion of chromosome 3, containing the −110 kb enhancer, reattaches 5ʹ of EVI1 on the other allele (not shown). As a result, 
the donor allele loses GATA2 expression. Red thunderbolt signs indicate chromosomal breakpoints. AML = acute myeloid leukemia; TF = transcription factor. 
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>100 tumor-specific SEs near known oncogenes, including 
CCR4, not linked to any specific genetic lesion.308 While some 
of these may be a consequence of transformation, it is tempting 
to speculate that others are drivers of leukemogenesis.

CONCLUSIONS AND PERSPECTIVES

Our understanding of transcriptional regulation has dramat-
ically improved in the last few decades, boosted by new tech-
nological developments such as high-throughput sequencing 
or genome editing. In this conceptual framework, enhancers 
have emerged as critical regulators of tissue-specific expression 
patterns that control cell identity and the response to external 
stimuli. As such, they play central roles in hematopoietic dif-
ferentiation, turning on and off as cells progress toward their 
fate. Dysregulation of this tightly regulated process results in 
the enforcement of aberrant transcriptional programs that lead 
to cancer. Various mechanisms, including enhancer hijacking 
and de novo enhancer formation, may contribute to this process 
by inducing the transcription of oncogenes or silencing tumor 
suppressors.

Despite tremendous progress, many open questions remain. 
At a fundamental level, we do not know what elements are min-
imally required for enhancer formation, how they organize and 
what rules govern their cooperation or competition. Analysis 
of thousands of enhancer sequences across multiple cell types 
or organisms may eventually reveal the so-called enhancer 
grammar. This is the approach used by DeepSTARR to unveil 
essential TF motifs and basic syntax rules, such as position or 
distance, in Drosophila.143 This deep learning model accurately 
predicts enhancer activity and, strikingly, can be used to design 
de novo synthetic enhancers. Even so, the generalization of this 
model to humans is limited, so it may be necessary to train new 
models using human data. More importantly, it fails to take into 
account determinants of E-P compatibility, and other layers of 
epigenetic regulation beyond sequence features, such as chro-
matin interactions, DNA methylation, or histone modifications. 
The development of algorithms that successfully integrate this 
information to model enhancer activity in vivo promises to be 
an exciting area of research in coming years.

So far, relatively few examples of enhancer dysfunction have 
been reported in hematological malignancies, most of which 
involve hijacking by gross structural variants. It is likely those 
are only the tip of the iceberg. The diminishing costs of whole 
genome sequencing, together with clever computational tools 
that exploit ChIP-seq, Hi-C, and other related techniques, will 
uncover other genetic lesions that create or perturb enhancers. 
Epigenetic events, primary or secondary, may be more chal-
lenging to discriminate from normal changes that occur during 
differentiation, but single-cell technologies may help in these 
efforts. Any findings must be validated in suitable models, not 
only to confirm the affected regions are bona fide enhancers that 
regulate their cognate promoters, but also that they are involved 
in tumorigenesis. Genome editing with CRISPR/Cas9 can repro-
duce genetic aberrations, but sequence-independent epimuta-
tions may be better modeled with CRISPRi137 or CRISPRa.138 
Another relevant question is how these alterations cooper-
ate with coding mutations. For example, double mutations 
of CEBPA in AML cooccur with allele-specific expression of 
GATA2, resulting from simultaneous silencing of its promoter 
with hyperactivation of a distal −110 kb enhancer.309 Does this 
epimutation favor leukemogenesis induced by CEBPA lesions?

Finally, oncogenic enhancers and the proteins they recruit 
constitute attractive therapeutic opportunities. There is an 
urgent need for effective treatments against malignancies that 
remain largely refractory to current strategies, such as AML with 
EVI1 overexpression, which has a dismal prognosis. Instead of 
targeting aberrantly expressed TFs, many of which have long 
been considered undruggable due to their disordered structure 

and lack of enzymatic activity, it may be possible to perturb the 
oncogenic enhancers that control their expression. The growing 
knowledge of enhancer biology can thus be exploited to identify 
key transcriptional and chromatin regulators that are amenable 
to pharmacological intervention.
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