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MOTIVATION The evolution of advanced volumetric fluorescence and high-throughput screening micro-
scopy techniques has ushered in a new era of data-intensive cellular imaging. These advancements have
triggered the development of computational algorithms for extracting biological insights from multidimen-
sional image datasets. Various computational methods have been proposed to deal with object segment-
ing/tracking problems emerging from high-throughput data (>20,000 objects per field of view). However,
challenges remain in capturing intricate cellular behaviors from densely populated cultures: cells that are
prone to overlap make high-throughput cell segmentation difficult, resulting in a low cell tracking accuracy;
large datasets are hard to process in real time, meaning existing computational pipelines can typically not
provide instant (<10min) tracking outcomes right after image acquisition. To bridge the technology gap, we
present the FACT (fast and accurate real-time cell tracking) algorithm, which combines GPU-based,
ground-truth-assisted trainable Weka segmentation (GTWeka) and real-time Gaussian-mixture-model-
based cell linking.
SUMMARY
Quantifying cellular characteristics from a large heterogeneous population is essential to identify rare, disease-
driving cells. A recent development in the combination of high-throughput screening microscopy with single-
cell profiling provides an unprecedented opportunity to decipher disease-driving phenotypes. Accurately and
instantly processing large amounts of image data, however, remains a technical challenge when an analysis
output is required minutes after data acquisition. Here, we present fast and accurate real-time cell tracking
(FACT). FACT can segment �20,000 cells in an average of 2.5 s (1.9–93.5 times faster than the state of the
art). It can export quantifiable features minutes after data acquisition (independent of the number of acquired
image frames) with an average of 90%–96% precision. We apply FACT to identify directionally migrating glio-
blastomacellswith 96%precision and irregular cell lineages froma 24hmoviewith an averageF1 score of 0.91.
INTRODUCTION

The advent of modern, large-scale volumetric fluorescence mi-

croscopy and high-throughput screening microscopy have

driven rapid development in computational methods.1,2 Several

advanced, automated computational methods have been

recently introduced to accurately and rapidly process the big

multidimensional image data generated from these new micro-

scopes1–4 and to extract meaningfully biological information:
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cell migration, division, morphological changes, differentiation,

or cell-cell interactions.1–3,5,6

Prior to these newly developed computational methods, tera-

bytes of image data have required months of processing instead

of a number of days.7–9 Real-time accurate cell-shape extractor

(RACE),1 for example, can segment cells from 3,836 time points

within 1.4 days compared to 100–700 days used by other state-

of-the-art cell segmentation methods.7–9 To accurately and

rapidly process cellular dynamics and lineages, the tracking
s Methods 3, 100636, November 20, 2023 ª 2023 The Author(s). 1
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Gaussian mixture model (TGMM) cell tracking algorithm,2 for

another example, can process 26,000 cells/min (including cell

segmentation + cell linking) compared to other state-of-the-art

cell tracking algorithms, which can only process a number of

thousands of cells/min.10,11

Inspired by TGMM, our recently developed cell tracking algo-

rithm, mTGMM (modified TGMM),3 can process �42,000 cells/

min. mTGMM has been successfully applied to process and

extract quantifiable characteristics and phenotypic information

of individual cells (i.e., cells with fast migration or spindle-shaped

morphology)3 imaged through our high-throughput screening

microscope, the ultrawide field-of-view optical (UFO) micro-

scope.3 mTGMM can efficiently process UFO-acquired big im-

age data, for instance, processing a 2 h time-lapse movie (less

than 30 frames) with 20,000 cells/frame within 10 min. This pro-

cessing time is sufficient for subsequent selective isolation of

cells of interest from the imaging dish (for cells migrate % 1

mm/min), as those target cells remain close to the coordinates

of the last acquired image frame. The capability to rapidly pro-

cess and isolate subpopulations of cells from a large pool of het-

erogeneous cells opens an unprecedented possibility to dissect

molecular mechanisms of phenotypes of interest, as the isolated

cells with desired phenotypes can be directly subjected to

downstream (single cell) sequencing and profiling. The profiled

genomes, transcriptomes, or proteomes can be straightfor-

wardly linked to their corresponding cellular phenotypes, namely

genotype-to-phenotype linking.3,12–14

Despite the remarkable advances in fast cell tracking methods

(cell segmentation + cell linking), these methods decrease

tracking accuracy when cells have complicated cellular behav-

iors (like cells migrating across each other) or when cells are

densely populated (> �100,000 cells/cm2); such a density often

occurs when tracking cells or studying cell lineages over days or

is required when searching for rare biological events (0%–5%).

Most importantly, the processing speed of these new computa-

tional methods cannot satisfy the demand of instantly process-

ing hundreds or thousands of image frames within a number of

minutes, which is critical when isolating cells of interest from

the imaging dish is required. These constraints stop us from

directly profiling cells displaying, among others, abnormal, longi-

tudinal migratory behaviors, anomalous cell lineages (both

require longitudinal imaging), or irregular cell divisions (rare bio-

logical events), which are important in cancer research and treat-

ment development. Deciphering the underlying mechanisms of

these abnormal phenotypes is important, as they are linearly

correlated with poor prognosis.15–17

To have superior cell linking and tracking performance, high

accuracy in cell segmentation is extremely critical. Deep-

neuronal-network-based cell segmentation have been demon-

strated to address this challenge,18 but the amount of labeled

data required for training to reach high performance often limits

the widespread applications of these methods; the amount of

training data is intensified when applying to different types of

cells or samples as new training is often required.

To address the abovementioned challenges, here, we present

FACT (fast and accurate real-time cell tracking algorithm). FACT

is a real-time, instant cell segmentation and cell linking algorithm

combining GPU-based, machine-learning-assisted cell segmen-
2 Cell Reports Methods 3, 100636, November 20, 2023
tation (Figure 1) and a GMM-based cell tracking algorithm.

FACT also incorporates automatic cell track correction to accu-

rately and instantly process big image data (i.e., 20,000–30,000

cells/frame for more than hundreds of image frames) and can

export quantitative characteristics of individual cells minutes after

data acquisition. The algorithm can easily be adapted to segment

different cell typeswith 30–60min of human annotation to achieve

peak performance for unseen sample types and has higher seg-

mentation and tracking performance than the state of the art.

RESULTS

Highly accurate cell segmentation with sparse
annotation
As mentioned, deep-learning-based models18 (i.e., U-NET,19

mask R-CNN,20 StarDist,21 CellSeg,22 or Cellpose23) have been

shown to perform well when used to tackle difficult problems

in cellular image analysis and image segmentation.18 However,

creating or (re-)training models that are customized for each

sample type or experiment is often required to reach high perfor-

mance, resulting in hours to days of data annotation, ground-

truth preparation, and model training. Low-annotation machine

learning methods, such as trainable Weka segmentation

(TWS)24 or ilastik,25 on the other hand, can finish data annotation

and training for each sample type within 30–60min and therefore

are easier to implement when model creation or (re-)training is

required. Despite the great potential and promising results of

TWS or ilastik, a better cell segmentation performance (i.e.,

>0.95 F1 score at an intersection over union [IoU] threshold of

0.5) is required to have higher accuracy in cell tracking and line-

age construction. The necessary performance improvement

seems difficult to reach using TWS, ilastik, or even deep learning

methods18 (see below). In addition, a fast processing time is

often required when screening and identifying rare biological

events from a large quantity of cells, especially when immediate

isolation of those rare cells is needed.

To improve segmentation performance and processing time,

here, we introduce a GPU-based, ground-truth-assisted TWS

method called GTWeka (Figure 1). GTWeka improves cell seg-

mentation accuracy (R0.95 F1 score at an IoU threshold of

0.5; Figure S1A) by optimizing random forest classification using

sparse ground-truth reference data, which consist of foreground

and background labeled images and which can be prepared

within 30–60 min (Figures 1, S2, and S3; STAR Methods). The

ground-truth data act as a reference during the process of se-

lecting the best random forest parameter option (Figure S2B),

i.e., the depth of the tree and the number of leaves, etc., by

checking the segmentation performance (i.e., F1 score) (Figure 1;

see Figure S2B for detail). The minimal effort needed for ground-

truth data preparation makes the method easily adaptable to

other sample types without compromising its performance.

Furthermore, GTWeka improves the processing time by (1)

computing the segmentation via GPU instead of CPU (STAR

Methods; Figure 1) and by (2) selecting the most relevant image

features for classification (instead of running all 57 image fea-

tures)24,25 (Figures S1A and S2C). Image features are the images

processed with a number of different filters (Gaussian filer, Sobel

filter, difference of Gaussians filter, Hessian matrix, membrane
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Figure 1. Ground-truth-assisted trainable

Weka segmentation (GTWeka) pipeline

The original TWS pipeline is highlighted in blue.

(A) Image features, generated by applying all default

image filters on an input image.

(B) Data annotation (or labeling). Manual assignment

of pixels to three classes: nucleus (blue), back-

ground (green), and edge (red).

(C) Training data, a combination of annotated pixels

and their corresponding values from image features.

(D) Random forest classifier, which is trained with

the input training data.

(E) We then use the well-trained model to perform

the semantic segmentation. Connected component

analysis is applied to generate the instance seg-

mentation from the semantic segmentation. If

needed, users can improve the segmentation per-

formance by adding more annotations and re-

training the classifier (steps A–D) until no further

improvement is observed.

The processes from (A)–(E) take �30–60 min. Our

GTWeka (highlighted in red) improves the segmen-

tation speed via GPU-based operation and key

feature selection and increases the segmentation

accuracy by incorporating ground-truth reference

data (F), which only requires 30–60 min of prepara-

tion. The reference data are used to optimize the

random forest classifier. Reference data are gener-

ated from a number of cropped regions of the orig-

inal input image and labeled as individual nuclei and

background.
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projections, and median filter). They hold major information per

image, e.g., a Sobel filter can find pixels that represent the

edge of a nucleus while suppressing the edge-irrelevant pixels.

The ground-truth reference data, used in the selection of the

best random forest model, is also applied to the selection of

the most relevant image features (see Figure S2C for details).

By default, TWS generates 57 image features (all features) and

uses them to construct a random forest model. With our

GTWeka, we observed that a random forest model constructed

using a subset of image features (selected features), selected by

the forward selection method26 (see STAR Methods for details),

achieves similar performance to one constructed using all fea-

tures (Figure S1A) but is �8 times faster (Figure S1B). With this

processing speed (2.5 s/frame), our GTWeka method makes it

possible to screen, segment, and identify rare cell subpopula-

tions from a population of close to a million cells in a matter of

minutes. High-speed identifications of cellular subtypes in pop-

ulations of this size are, for instance, essential for genotype-to-

phenotype linking experiments,3,13 where >100 cells per subtype

need to be identified and analyses of smaller populations are not

sufficient. We can, for example, identify extremely rare tripolar

dividing cells at a rate sufficient for follow-up sequencing: we

have applied GTWeka to identify 50 tripolar division events

from a population of �0.8 million MCF10A epithelial cells in

�5 min (�100 s of cell segmentation +�200 s of tripolar division

detection) (Figure S4).

Ilastik,25 arguably the most commonly used, state-of-the-art

Weka-based cell segmentation method,24 also allows users to

select key features instead of using its all-feature method (32 im-

age features are used in ilastik; STARMethods). ilastik offers three
different types of key feature selection methods, namely filter

method, Gini importance, and wrapper method (Figure S1A);

none of these feature selection methods outperform either our

GTWeka feature selection method or ilastik’s all-feature method

(Figure S1A).

To properly assess the performance, three different types of

cell images that are often seen in biological data were further

used in benchmarking the performance of GTWeka against other

segmentation methods (Weka-based and deep-learning-based

methods): (1) low signal-to-noise ratio images from densely

packed cells (here, we choseMCF10A epithelial cells); (2) smaller

nuclei size (here, we chose glioblastomamultiforme [GBM] cells);

and (3) large nuclei size and decent signal-to-noise ratio images

(here, we chose HeLa cancer cells). The indicated performance

mentioned below is calculated from the average of these three

cell image types.

When comparing our GTWeka method with state-of-the-art

Weka-based methods (TWS and ilastik), GTWeka outperforms

these methods, both in segmentation performance (average F1

score at an IoU of 0.5 or 0.7) and computational time (32.8 times

faster than TWS and 2 times faster than ilastik; STAR Methods;

Figure 2). Please note that the segmentation performance was

evaluated based on the comparison of ground-truth data (un-

seen images) and the segmented results (Figure 2). The high per-

formance on segmenting unseen data indicates that our model

was not overfitted.

As deep-learning-based segmentation methods have been

shown to yield high performance in cell/nuclei segmentation,

we then also compare our GTWeka method with state-of-the-

art deep-learning-based segmentation methods, StarDist,21
Cell Reports Methods 3, 100636, November 20, 2023 3
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Figure 2. Benchmarking of cell segmentation

methods (GTWeka, TWS, ilastik, StarDist,

CellSeg, and Cellpose)

(A) Cell segmentation using different Weka-based

segmentation methods with different cell image

datasets (MCF10A, GBM, and HeLa). Images from

top to bottom: raw image, images processed by

GTWeka_all features, GTWeka_selected features (3

features), TWS, ilastik_all features, and ilastik_se-

lected features (3 features by the ilastik_filter

method).

(B) Comparison of performance (average F1 score at

IoU = 0.5 or 0.7) and processing time (s) of all the

methodsmentioned in (A). Fast processing, asmuch

as possible to the degree of seconds, is crucial for

applications of identifying rare cells out of a large

population; see Figure S4.

(C) Cell segmentation using GTWeka and other

deep-learning-based methods (StarDist, CellSeg,

and Cellpose) with different cell image datasets

(MCF10A, GBM, and HeLa). Images from top to

bottom: raw image, images processed by GTWe-

ka_selected features (3 features), StarDist, CellSeg,

and Cellpose.

(D) Comparison of performance (average F1 score at

IoU = 0.5 or 0.7) and processing time (s) of all the

methods mentioned in (C).
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CellSeg,22 and Cellpose.23 The average F1 scores of GTWeka_-

selected features, StarDist, CellSeg, and Cellpose are 0.95, 0.94,

0.93, and 0.85, respectively, for an IoU of 0.5 and are 0.81, 0.74,

0.78, and 0.53, respectively, for an IoU of 0.7; the average pro-

cessing times of GTWeka_selected features, StarDist, CellSeg,

and Cellpose are 2.5, 4.8, 233.8, and 39.3 s, respectively.

Furthermore, we benchmarked our GTWeka against other seg-

mentation methods using images consisting of cell nuclei with

heterogeneous fluorescent intensities (Figures S5A and S5B),

different shapes or non-convex shapes (Figure S5C). Our

method either reached a similar performance to or, in most

cases, outperformed the tested methods.
4 Cell Reports Methods 3, 100636, November 20, 2023
As shown, our GTWeka cell/nuclei seg-

mentation method can handle different

types of input image data well and outper-

forms both state-of-the-art Weka-based

and deep-learning-based methods with

a faster processing time (1.9–93.5 times

faster).

Instant cell linking and cell track
correction
Highly accurate cell segmentation is

required and crucial for accurate cell

tracking. With the high performance of our

GTWeka cell segmentation, we then apply

it to link and track cells from frame to frame.

The ability to accurately link positions of in-

dividual cells frame to frame and to recon-

struct the movement and divisions of cells

is crucial for dissecting cell lineage and their
correlation with cell functions and cell-fate decisions.17,27 TGMM2

and mTGMM3 are fast state-of-the-art cell linking and tracking al-

gorithms, with �26,000 and �42,000 cells being processed per

minute, respectively, compared to other cell tracking algorithms,

which can only process a number of thousands of cells/min.10,11

Tracking cell lineages often requires over a day of image acquisi-

tion, resulting in hundreds to thousands of image frames. Even

with mTGMM, the algorithm cannot sufficiently process this

amount of image frames within a number of minutes, which is

required for downstream phenotype-to-genotype linking experi-

ments. We therefore develop an instant, GMM-based cell linking

algorithm.



Figure 3. Cell merging and demerging

(A) Graphical illustration of two complete tracks (top)

and incomplete tracks (bottom). For the contami-

nated case, two cells merge at frame t = 2, giving

rise to (1) a false division at frame t = 3 and (2) an

incomplete track of the orange cell that ends at

frame t = 1.

(B) Two examples of the merging-demerging prob-

lem shown in the raw image data of GBM cells. Top:

two cells (blue and orange arrows) merge for over

30 min and then deviate. A snapshot at time

‘‘120 min’’ shows the merging event. Bottom: two

cells (blue and orange arrows) merge twice at times

‘‘32 min’’ and ‘‘48 min.’’ This is caused by both

complicated cell behaviors as well as false seg-

mentation.

Article
ll

OPEN ACCESS
Similar to TGMM2 and mTGMM,3 individual cells are modeled

as a 2D Gaussian,N ðx;m;SÞ, with x being the 2D coordinates, m

being the mean location, and S being the covariance (i.e., repre-

senting the shape of a Gaussian blob). All Gaussians (represent-

ing all individual cells) of the entire image constitute a Gaussian

mixture per image frame. Calculating the expected properties

per cell (i.e., intensity, size, shape) over time is performed by a

full Bayesian approach,2,28 with the assumption that cell proper-

ties between two consecutive frames are correlated. If corre-

lated, the same cells of the current frame and the previous frame

will be linked (see details in STAR Methods).

To instantly complete image analysis (independent of the

number of frames) after the acquisition of the last image frame,

we implemented a real-time cell segmentation and linking

method: once a new image is generated, it is directly pro-

cessed by our GTWeka cell segmentation; when two consecu-

tive images are segmented, cells of these two image frames

are linked and tracked; and lastly, when the tracked frames

are >3, the algorithm reviews all the connected tracks (from

the current frame and the past few frames, pre-defined by

users) and performs cell track corrections if needed (see

below). With this instant processing of freshly generated image

frames, FACT can complete the cell segmentation and linking

and export quantifiable features in a matter of minutes, inde-

pendent of the number of image frames. In our case, process-

ing a 24 h time-lapse movie (361 frames with a 4 min interval,

�10,000 cells/frame) took 2.88 h after data acquisition to

export quantifiable results by mTGMM, while FACT required

0.17 h to obtain the results. FACT is built based on mTGMM3

with further development of real-time cell linking and cell track

correction. FACT’s computational speed maintains �30,000

cells/min, which tends to be slower than mTGMM, as we
Cell Report
add the function of cell track correction.

Accurate cell lineage reconstruction high-

ly relies on precise detection of cell divi-

sions and differentiation of true divisions

from false divisions. False cell divisions

often arise from either mis-segmented

cells or cells crossing each other’s trajec-

tory; methods to correct the former cases

have been reported27,29,30 but not for the
latter scenarios. When two cells bump into each other and

share a fraction of their boundaries, this causes the disappear-

ance of one cell track (Figure 3). We call this phenomenon cell

merging. A false cell division occurs when the two cells de-

merge, meaning the two cells move apart from each other after

merging (Figure 3). Figure 3B shows cell merging-demerging

found in the GBM image data. The cell merging-demerging

problem is exacerbated when cell density is high or cell

behavior is complicated, such as the directionally walking

pattern employed by GBM cells (Figure 3B). To address this

challenge, FACT implemented an automatic, real-time cell

track correction function, which includes three steps as fol-

lows: (1) when a cell division is detected, we search for any

incomplete cell tracks nearby (Figure 4A, top). Should the divi-

sion occur next to an incomplete cell track within a pre-defined

(Euclidean) distance (i.e., 10 pixels) and time window (i.e., 5 im-

age frames), the division is deemed false division. The pre-

defined distance and time window are based on users’ prior

knowledge for each cell type. (2) When a false division is de-

tected, the link between the mother and daughter cells will

be disconnected, and the falsely generated cell link will be

removed accordingly (Figure 4A, middle). (3) Two incomplete

tracks (after step 2) will be re-connected by generating

‘‘fake’’ cell(s) in any position between the two incomplete

tracks (Figure 4A, bottom).

We verified our cell track correction method on GBM image

data (Figures 4B and 4C), as these cells often travel directionally

from point to point31 and the cell merging-demerging issue is

exacerbated in this cell type. For example, when tracking

�3,000 cells over 5 h,�450merging-demerging events were de-

tected. With our cell track correction method, we have corrected

those (�450) falsely detected cell divisions; with correction, we
s Methods 3, 100636, November 20, 2023 5



Figure 4. Cell track correction

(A) Graphic illustration of cell track correction. (Top) Step 1: examine if a division is valid. We see that amerging at t = 2 causes a cell track (orange) to disappear at

location xdisappear and a demerging at t = 3 causes a division at location xdivide. The false cell division is detected when the event is next to an incomplete track

within a pre-defined (Euclidean) distance (Dx between xdisappear and xdivide) and within a pre-defined time window (time difference, Dt, between the merging and

demerging events). (Middle) Step 2: remove the link of a false division. Compared to step 1, the frames with changes are highlighted in yellow. We disconnect the

link (green) from t = 2 to t = 3 (in step 1), as this daughter cell (green) is closer to xdisappear than the other daughter cell (blue). The link removal generates an

incomplete track (green) from t = 3 to t = 4. (Bottom) Step 3: close the gap between the incomplete tracks. Compared to step 2, the frames with changes are

highlighted in yellow. The two incomplete tracks (orange and green) are to be connected. There is a gap between them, which refers to the disappeared cell at t =

2. We then construct a fake cell (gray) at this frame at any location of xgenerate between xdisappear and xdivide. We update the reconstructed cell to the subsequent

frames t = 3;4. At t = 4, we obtain two complete tracks.

(B) Merging-demerging caused a false division (top). The tracks are corrected with our cell track correction method (bottom).

(C) Merging-demerging caused three false divisions (top) (merging happened at ‘‘76 min,’’ ‘‘120 min,’’ and ‘‘264 min’’), and tracks were corrected with our cell

track correction method (bottom).

6 Cell Reports Methods 3, 100636, November 20, 2023
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Figure 5. Application of FACT to identify abnormal cancer cells

(A–C) GBM cell tracking.

(A) Distribution of directionality ratio (r) over 2,724 cells. Over all cells, we looked for the ones giving a ratio r > 0.90.

(B) Example trajectories of cells with directional walk; directionality ratio (r) is indicated per cell.

(C) Example trajectories of cells without directional walk; directionality ratio (r) is indicated per cell.

(D and E) Cell lineage tracking of MCF10A cells.

(D) Topology of lineages from 3 groups, ‘‘tree-3-div’’ (left), ‘‘tree-4-div’’ (middle), and ‘‘tree-5-div’’ (right). In each plot, time is represented as the vertical axis, going

from 0 to 24 h. Daughter cells generated in different generations are color-coded. Videos of these cases are included in Video S1.

(E) Migratory trajectories of the lineage of interest (tree-5-div) (left image), and the final coordinates of the cells (yellow cross, right image).
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reached 91%precision, while without correction, the precision is

12% due to heavy contamination from merging-demerging.

FACT identifies abnormal cancer cells
We then applied FACT to identify abnormallymigrating GBMcells,

namely themostdirectionallymigrating cells, as thisbehavior is lin-

early correlatedwith cancer cell aggressiveness.31–33Weused the

metric of directionality ratio (r = Dlinear

Dtotal
) tomeasure thedeviation be-

tween thecumulativedistanceDtotal (total distance traveledover all

time points) and the linear distance Dlinear (the distance from the

start to theend timepoint).When r isclose to1,acell’swalk isclose

todirectionalwalk. Froma5h time-lapsemovie,�3,000GBMcells

were tracked and analyzed via FACT. Please note that manual

checking and validation of all the tracked trajectories are required,

and therefore a relatively small number of cells were used in this

particular application. The directionality ratios (r) of all the tracked

cells were processed immediately and exported in <2 min after

data acquisition. Based on the density distribution of all direction-

ality ratios (Figure 5A), themean ratio m (0.40) and the standardde-

viation s (0.24) were calculated. We set the ratio r > 0:90 as the

threshold to define a directional trajectory. With FACT, we found

28 single cells (�1.0% of the whole population) displaying a direc-

tional walking pattern, and we have validated the results manually

with a precision of 96% (Figures 5B, 5C, and S6).
Next, we applied FACT to segment and track MCF10A cells

(�10,000 cells/frame) from a 24 h time-lapse movie in real time

(361 frames, 4 min/frame), from which cell lineages of individual

cells will be extracted. The precision of cell tracking is, on average,

96% (see STAR Methods). We aim to identify abnormal cell line-

ages that deviate from the rest of lineages. MCF10A cells are

epithelial cells with a tendency to densely pack and connect

with each other and are therefore used as the samplemodel here.

After the FACT analysis, we grouped the lineage trees by the

number of cell divisions. ‘‘tree-1-div,’’ ‘‘tree-2-div,’’ or ‘‘tree-5-

div’’ indicates a lineage tree with 1, 2, or 5 cell divisions, respec-

tively. For example, a lineage tree in the ‘‘tree-5-div’’ group in-

cludes 5 divisions within 24 h (Figure 5D).

From the assayed�10,000 MCF10A cells, FACT exported the

lineage information of each cell less than �10 min after the data

acquisition with an average F1 score of 0.91. We identified

52.8%, 12.2%, 6.9%, 0.5%, and 0.1% of cells dividing once,

twice, three, four, and five times, respectively.

Figure 5D shows 3 representative lineage trees of fast-dividing

cells (‘‘tree-5-div’’) identified from the assayed cells (see the orig-

inal movies of these 3 lineages in Video S1), fromwhich the ‘‘tree-

5-div’’ case is shown in Figure 5E. The coordinates of those 5

daughter cells of this irregular lineage tree were immediately ex-

ported within 10 min after the image acquisition.
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Figure 6. FACT tracking steps

(A) Nuclear-mask images as input for tracking. The input images are the pixel-wise dot product of raw and GTWeka segmented images.

(B) Transforming each input It into a mixture of Gaussian models (GMs)Gt , where each cell i is considered as one Gaussian gt
i . The properties of a Gaussian (i.e.,

mean, variance) can describe a cell’s location and shape. And aGaussian distribution itself denotes a cell’s intensity. Frame-to-frame linking per cell is performed

by ‘‘finding nearest neighbors of Gaussians between adjacent frames’’ if we say a cell’s position in one frame is the nearest neighboring location to its position in

the next frame. The nearest neighbors are searched in multidimensions, including changes of location, shape, and intensity. The algorithm behind is Bayesian

inference, a probabilistic model that calculates expected changes (e.g., location, intensity, shape) of all cells (per frame) over time. Similar cells are linked over

time. Division can be followed by examining if one Gaussian is splittable.

(C) Forwarding GMs gives initial tracking outcomes, which might be prone to contamination. The outcomes are saved in XML files. Here, we visualize them as a

table. Cells that are tracked at each frame generate ‘‘complete tracks.’’ Cells that are missed for at least one frame generate ‘‘incomplete tracks.’’

(D) Correction of tracks that are contaminated. The correction goes sequentially as follows: (1) looking for false divisions, with the information of detected divisions

and incomplete tracks. (2) Breaking the mother-daughter link if a false division is confirmed. The breakup also generates new incomplete tracks. (3) Updating the

incomplete tracks with new ones. (4) Bridging the incomplete tracks as one complete track (a way of closing gaps). A gap refers to the spatial and temporal

distance between two (or more) track segments; meanwhile, these track segments are parts of one same cell track.
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DISCUSSION

We have developed a real-time cell segmentation and tracking al-

gorithm, called FACT, to instantly process large-scale image data

(>104�6 cells/frame for >102�3 image frames) and export quantita-

tive cellular characteristics within minutes after data acquisition.

FACT implements ground-truth-assisted Weka-based cell seg-

mentation (GTWeka),which outperforms state-of-the-artmethods

and only requires 30–60min of human annotation to achieve peak

performance for unseen sample types. High segmentation perfor-

mance (R 0.95F1 score at an IoU threshold of 0.5), in combination

with real-time cell track correction, results in high tracking perfor-

mance, as theprogramcancorrectwrongly detectedcell divisions

and falsely linked cell tracks in real time. As shown, FACT can

correctly track GBM cells, which tend to migrate across each

other, and track densely packed MCF10A epithelial cells, with an

average of 90%–96% precision.

When combined with high-throughput screening microscopy,

FACT can be used to instantly identify rare subpopulations of

cells during large-scale image data acquisition, enabling imme-

diate isolation of target cells for downstream assays, like sin-

gle-cell sequencing or proteomic profiling.3,13 For example,

FACT can instantly identify sparse, tripolar dividing cells, aggres-

sively migrating cells, and fast-dividing cells; these are examples

of extremely low occurrence events. Linking rare, abnormal

cellular phenotypes (i.e., metastatic cells or abnormally dividing

cells) to genotypes, transcriptomes, or proteomes is possible
8 Cell Reports Methods 3, 100636, November 20, 2023
with FACT, as instant export of cellular characteristics is required

for target cell identification and isolation. This creates an unprec-

edented opportunity to decipher the underlying mechanisms of

the observed irregular or disease-driving phenotypes.
Limitations of the study
Potential limitations of themethods described here are as follows.

d The instant segmentation of GTWeka comes from both a

powerful GPU as well as a low number of selected features

(i.e., 3 features). If a less powerful GPU or no GPU is imple-

mented, and/or more selected features (>>3 features) are

needed for a dataset, one may not achieve the processing

time presented in this study.

d Regarding tracking and track correction, FACT can correct

merging of two cells but not more. If more than two cells are

merging, FACT will not be able to correct tracks and close

gaps correctly. If a dataset contains cells prone to overlap-

ping, correction may take more time, as there will be more

‘‘incomplete tracks’’ to be fixed via FACT track correction.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE



Figure 7. Comparing FACT tracking to other popular tracking approaches such as linear assignment problem (LAP)

When cells are prone to move toward each other, often causing overlapping, FACT gives higher precision and F1 score regarding cell division estimation. Details

of cell track correction used by LAP47 and our FACT method are summarized in this figure.
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movement patterns of metastatic cancer cells revealed in microfabricated

systems and implicated in vivo. Nat. Commun. 9, 4539. https://doi.org/10.

1038/s41467-018-06563-w.

34. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,

Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.

(2012). Fiji - an Open Source platform for biological image analysis. Nat

Methods. 9. https://doi.org/10.1038/nmeth.2019.

35. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al. (2020).

Array programming with NumPy. Nature 585, 357–362. https://doi.org/10.

1038/s41586-020-2649-2.

36. Bradski, G. (2000) (The OpenCV Library). https://github.com/opencv/

opencv/wiki/CiteOpenCV.

37. Okuta, R.a.U., Yuya, Nishino, D., Hido, S., and Loomis, C. (2017). CuPy: A

NumPy-Compatible Library for NVIDIA GPU Calculations. Proceedings of

Workshop on Machine Learning Systems (LearningSys) in the Thirty-First

Annual Conference on Neural Information Processing Systems (NIPS).

38. Raschka, S.a.P., Joshua, and Nolet, C. (2020). Machine Learning in Py-

thon: Main Developments and Technology Trends in Data Science, Ma-

chine Learning, and Artificial Intelligence. Preprint at arXiv. https://doi.

org/10.3390/info11040193.
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Deposited data
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Human: MCF10A Laboratory of Dr. Agami

(Netherlands Cancer Institute)

N/A
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Center, Molecular Genetics

N/A

Human: HeLa Erasmus University Medical

Center, Molecular Genetics

N/A

Software and algorithms

All source codes used in this paper This paper Zenodo https://doi.org/10.5281/zenodo.8372760

Automatic cell tracking analysis You et al.3 https://sourceforge.net/projects/funseq/

Python Python Software Foundation https://www.python.org/

Trainable Weka Segmentation Arganda-Carrera et al.24 https://ImageJ.net/plugins/tws/

ilastik Berg et al.25 https://www.ilastik.org/

Stardist Schmidt et al.21 https://github.com/stardist/stardist

CellSeg Lee et al.22 https://michaellee1.github.io/CellSegSite/index.html

Cellpose Stringer et al.23 https://www.cellpose.org/

ImageJ Schneider et al.34 https://ImageJ.nih.gov/ij/

MATLAB MathWorks https://nl.mathworks.com/products/MATLAB.html

TrackMate Ershov et al.11 https://ImageJ.net/plugins/trackmate/
RESOURCE AVAILABILITY

Lead contact
d Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact:

Miao-Ping Chien (m.p.chien@erasmusmc.nl).

Materials availability
d This study did not generate new unique reagents.

Data and code availability
d Cell images (.tif files) used in the application to identify abnormal cancer cells are available at Figshare https://doi.org/10.6084/

m9.figshare.24187455.

d The original code has been deposited in Zenodo https://doi.org/10.5281/zenodo.8372760.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

MCF10A cells
MCF10A epithelial cells, a gift fromDr. Reuven Agami (Dutch National Cancer Institute, NKI), were grown in DMEM (Dulbecco’smodi-

fied Eagle’s medium)/F-12 (ThermoFisher) supplemented with 5% horse serum, 1%penicillin/streptomycin, Epidermal growth factor

(10 ng mL�1; ThermoFisher), Hydrocortisone (500 ng mL�1; Stem Cell), cholera toxin (100 ng mL�1; Sigma) and insulin (10 mg mL�1;

ThermoFisher) in a 37�C incubator under 5% CO2.
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Before conducting experiments, �50,000 cells were seeded on a fibronectin (0.1 mg/mL)- coated 35 mm-glass bottom dish with a

20 mm-microwell (Cellvis) in the MCF10A culture medium (described above) without phenol red and were stained with a SPY650-DNA

nuclear dye (Spirochrome) (1:2000) (lex: 652, lem: 674nm). Experimentswere performed�24 h after plating on the glass-bottomdishes.

Glioblastoma multiforme (GBM) cells
GBM cells were maintained on reduced growth factor basement membrane extract (Cultrex, Bio-techne R&D systems) coated petri

dishes in serum-free Dulbecco’s Modified Eagle Medium (DMEM)/F12 supplemented with 1% penicillin/streptomycin, 2% B27

without vitamin A (Gibco, ThermoFisher), 20 ng/mL basic fibroblast growth factor (Gibco, ThermoFisher), 20 ng/mL epidermal growth

factor (Sigma Aldrich), and 5 mg/mL heparin (Alfa Aesar, ThermoFisher). Cells were maintained in a humidified incubator (37�C, 5%
CO2) and culture medium was refreshed every 3–4 days). Passaging of the cells was performed around 80–90% confluency using

enzymatic dissociation (Accutase, Invitrogen). The use of GBM samples and study was approved by Erasmus University Medical

Center ethics committee (MEC-2013-090).

Before conducting experiments,�19,000 cells were seeded onCultrex (0.1mg/mL)- coated 35mm-glass bottomdishwith a 20mm-

microwell (Cellvis) in the GBM culture medium (described above) without phenol red and were stained with a SPY650-DNA nuclear dye

(Spirochrome) (1:2000) (lex: 652, lem: 674nm). Experiments were performed �24 h after plating on the glass-bottom dishes.

HeLa cells
HeLa human cervical carcinoma cells, a gift from Dr. Roland Kanaar (Erasmus University Medical Center), were cultured in DMEMme-

dium (Thermo Fisher) with 10% Fetal Bovine Serum (Thermo Fisher), 1% penicillin/streptomycin at a 37�C incubator under 5% CO2.

Before conducting experiments,�200,000 cells were seeded on a fibronectin (0.1 mg/mL)- coated 35 mm-glass bottom dish with a

20mm-microwell (Cellvis) in the HeLa culture medium (described above) without phenol red and were stained with a SPY650-DNA nu-

clear dye (Spirochrome) (1:2000) (lex: 652, lem: 674nm). Experiments were performed�24 h after plating on the glass-bottom dishes.

METHOD DETAILS

Image data preparation
The images used in this paper are eitherMCF10A epithelial cells, glioblastomamultiforme (GBM) primary culture cells or HeLa cells (see

SupplementaryMethods for the detail of cell culture). The imageswere taken by a custom-built microscope, ultrawide field-of-view op-

tical (UFO) microscope,3 which incorporates a large chip-size camera (CMOS Point Gray, GS3-U3-123S6M-C (4,096 3 3,000 pixels,

3.45 mm per pixel) for MCF10A and GBM cell images; pco.panda 26 DS (5,120 3 5,120 pixels, 2.5 mm) for HeLa cell images) and a

large-field-of-view (FOV) objective (Olympus MVP Plan Apochromat, 30.63)3 with comparatively high numerical aperture (NA = 0.25).

Workstation and software information
All segmentation work was done via Ubuntu 18.04 environment with Intel(R) i9-9980XE CPU, 128 GB ram, two of Nvidia QUADRO

RTX 8000GPUs. GTWeka was implemented in Python 3 using open-source packages: NumPy,35 OpenCV,36 CuPy,37 cuML,38 scikit-

image,39 SciPy40 and Matplotlib.41

Real-time cell linking was performed on a single workstation, Dell Precision 7920, with the following hardware components: dual

Intel(R) Xeon(R) Gold 6130 CPUs, 12 3 32GB ram, a Nvidia GeForce GTX 1080 GPU.

Details of ground truth-assisted Trainable Weka Segmentation (GTWeka)
GTWeka is inspired by andmodified from original TrainableWeka Segmentation (TWS).24We first introduce themethod, andwe intro-

duce and explain our improvements on this method.

Trainable Weka segmentation

Different image filters are used to generate image features as follows: Gaussian filer, Sobel filter, difference of Gaussians filter, Hes-

sian matrix, Membrane projections andMedian filter. TWS starts with semantic segmentation, which classifies each pixel into one of

the three classes: background, foreground or edge. The class of foreground is of our interest. TWS uses a random forest classifier42 to

determine a label for each pixel, i.e., a collection of decision trees where each tree represents a ‘test’ if a given pixel contributes

enough or not to the class (i.e., background, foreground or edge) prediction.

After we obtained all the foreground pixels, we added a step of instance segmentation to identify each single cell, such as giving

each object an id. We used connected component analysis39,43 on the semantic segmentation to generate the indices.

Trainable Weka segmentation on GPU

Processing a single image, e.g., 4096 3 3000 pixels, takes �55 s when using TWS from Fiji44 (TWS provides a Fiji plugin for users

without specific programming skills). This version runs on CPU. We use GPU to accelerate the whole process, and it takes �16 s

(for segmenting an image of 4096 3 3000 pixels). We observed significant improvement in processing speed by implementing it

on GPU. We implemented GPUs (two NVIDIA QUADRO RTX 8000) to generate key image features by the RAPIDS cuCIM library.45

Reference dataset preparation (see Figure S3 for detail)

The reference image preparation was done with the Fiji image processing program.44 We randomly selected 3 cropped images from

the raw images and use the LabKit plugin46 (Weka-base segmentation) to generate the labeling of foreground, background and edge
Cell Reports Methods 3, 100636, November 20, 2023 e2
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(edge labeling is optional) (Step 1–2, Figure S3). After that, the (foreground) segmentation result can be generated (Step 3, Figure S3)

and converted to regions of interest (Step 4, Figure S3). Thewrongly segmented objects can bemanually corrected (Step 5, Figure S3)

and the final segmentation result can be saved as reference ground truth data (Step 6, Figure S3). The whole process takes�30 min.

Random forest and its structure

Implementing TWS on GPU is one of our improvements to achieve fast and accurate high-throughput cell segmentation. The other

improvement lies on the random forest optimization, which is introduced subsequently.

The nature of a random forest classifier indicates that how the forest ‘look alike’ and is critical for pixel-classifications. Variation (i.e.,

the parameters) includes the number of trees, the depth of each tree, and the number of nodes per tree, etc. If parameters of the

model change, the prediction might also change, yielding the question ‘what are the best model parameters for our data of interest’?

To find the best random forest model per dataset, we applied grid search (and cross validation) to find the best parameters for the

model, including the number of estimators, themaximum number of features, themaximum depth of the tree and theminimum number

of sample leaf. To do this, a ground truth reference dataset is required, which, in our case, is a foreground/background labeled imaging

dataset. This ground truth reference data acts as a reference during the process of selecting the best random forest parameter option

(i.e., the depth of the tree and the number of sample leaf etc.) by checking the segmentation performance (i.e., accuracy or F1 score)

(Figure 1, see Figure S2 for detail).

Key feature selection

We call the features that are relevant to our pixel classification the ‘key features’. Now the question comes to how to figure out the

features that are the key ones. We applied forward selection26 to find out the key features - Recall that we have in total 57 default

features S = fIj : Ij is a feature image;1 % j %57g, and we want to find a subset s3S as key features:

1. With respect to each Ij a classifier is trained, and corresponding segmentation accuracy is obtained via comparing to reference

data.

2. The feature, say Ik , that contributes to the highest accuracy will be selected as the first key feature s = fIkg. There are hence 56
features left (S = S � s), out of which we will choose the second key feature.

3. We let s = fIk ; Iig where Ii ˛S for every i˛ f1;2;.; k � 1; k + 1;.; 57g: A classifier is trained with every feature subset s, and

the second key feature, say Ip, is determined as s = fIk ; Ipg together contributing to the highest accuracy.

If we want to continue the selection, we shall repeat Step 2 by adding a third key feature s = fIk ; Ip; Iqgwhere Iq ˛S for every q˛ f1;
2;.;k � 1;k + 1;.;p � 1;p + 1;.;57g. The forward selection continues till the number of elements from s reaches a pre-defined

number of features. For example, if the pre-defined number of features is 3, then the selection stops once we have s = fIk ; Ip; Iqg.
In our case, using 3 key features provides us with the fastest and most accurate segmentation (Figures 2 and S1).

Training dataset preparation
For all the cell image datasets, we selected 3 frames at different timepoints (frame 0, 360 and 720) from the entire time lapse movie

(1080 frames in total, 4 min/frame). For annotation, we focused only at a partial region of a FOV, and wemanually annotated the cho-

sen region with 3 classes, i.e., nuclei, background, and edge (Figure 1). All the annotation work was done with Fiji.

Benchmarking
Input data

We randomly selected cropped images fromall the different cell imagedatasets as our test images (5 cropped images from theMCF10A

3-day image data, 6 cropped images from the GBM2-day image data and 3 cropped images from the HeLa 1-day image data), and the

ground truth on these test images were annotated manually. We compared our segmentation performance and computational time to

other state-of-the-art Weka-based and neural network-based cell segmentationmethods. Themethods that are compared to are listed

as follows.

d TWS. This is the default setup of TWS, where there are 57 features generated for the random forest classifier (to determine if a

pixel is of the Class foreground, background or edge).

d GTWeka_all features.Unlike TWSwhich uses a fixed structure of random forest (by default) for any input dataset, we search for

the structure, out of many combinations, that can give the highest accuracy per input dataset. Optimization is bounded to the

reference data, which helps to optimize the best parameters of the random forest classifier. In this case the all features (57 fea-

tures) are used. We aim to compare this method with TWS when the all features are included during classification.

d GTWeka_selected features. Instead of using all features, we apply only the key features (described above) to the classifier. Opti-

mization of the random forest classifier, including key feature selection, is restricted to the reference data. We aim to compare

this method to TWS when a subset of features is chosen.

d StarDist. StarDist,21 a cell segmentation method for microscopy images with star-convex shape priors. The ‘2D_versatile_fluo’

pre-trained model was used in this paper.

d CellSeg. CellSeg22 is an open-source cell segmentation method using pre-trained models. The method is based on a Mask

region-convolutional neural network (R-CNN) architecture.
e3 Cell Reports Methods 3, 100636, November 20, 2023
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d Cellpose. Cellpose23 is an open-source cell segmentation method using various pre-trained models. The ‘Nucleus’ pre-trained

model was used in this paper.

The comparison results can be found in Figure 2.

To compare only the feature selection methods, we examine:

d Ilastik. Ilastik is a TWS-based cell segmentation method with an option of selecting key features. ilastik provides three kinds of

feature selection methods25: filter method, GINI importance and wrapper method. According to the all features S used for clas-

sifier, feature selection method helps users to choose a subset of it s˛S, on the classifier. We followed the filters which are

provided by ilastik with sigma settings as 1, 2, 4, and 8. The used image filters are Gaussian filter, Laplace filter, gradient magni-

tude, difference of Gaussians, structure tensor eigen values and Hessian matrix eigen values. The total amount of image fea-

tures provided in ilastik is 32. Please note that the image filters mentioned here are different than the filter setting used in the

segmentation comparison analysis (Figure 2) as ilastik only offers the abovementioned filters (total 32 image features,

compared to TWS or our GTWeka methods, 57 image features). Also, for ilastik’s wrapper method, we set the parameter of

size penalty to 0.01, 0.04, 0.1 and this method only allows for up to 6 features.

d GTWeka_selected features.Herewe use the same training dataset and image feature setting.We compare our GTWekamethods

with selected 3 key features with ilastik’s feature selection methods; our method outperforms ilastik’s feature selection methods.

The comparison results can be found in Figure S1a, where we selected 3 to 9 features from the all features.

Single cell tracking via FACT
The segmented cells are linked over time via theGaussian Mixture Model-based method.2,47 FACT tracking steps are summarized in

Figure 6. Details of the approach per step are explained afterward.

Nuclear-mask images as input for tracking

After a microscope generates raw images and GTWeka gives segmented nuclei-masks (Figure 6A), we obtain input images (Fig-

ure 6B) for mTGMM tracking. These are the dot product of raw images and nuclei-masks.

Cell intensity as a Gaussian

Connected pixels (fromGTWeka) are considered as one single cell, and its intensity profile ismodeled as a 2DGaussian:N ðx;m;SÞwith

x being the 2Dcoordinates,m being themean location andS being the covariance (i.e., representing the shape of aGaussian blob). Each

cell/Gaussian is independent from each other. Herebywe treat an object as a probabilistic model: Using the information of a cell at t, we

could predict, for this cell, a ‘bounding box’ at (t + 1), which in our case is a probabilistic distribution of (ut;St). In other words, if we know

the moving object distribution in the previous frame(s), we can locate the object in the next frame by tracking the expected changes.

Tracking one cellmeans forwarding itsGaussian by calculating its expected changes, in the dimensions of location, shape and intensity.

Image as a Gaussian mixture

When dealing with an entire image, we want to forward all Gaussians from that image simultaneously over time. Then wemove to the

next step, modeling an image It (of many objects) at frame t as a Gaussian Mixture:

Itf
Xnt

k = 1

ut
kN

�
xk ;m

t
k ;S

t
k

�

where nt is the number of nuclei at frame t, xk are the 2D coordinates for the k-th nucleus. The parameters ut
k , u

t
k ;S

t
k , define the k-th

Gaussian, i.e., respectively, they describe the contribution of the k-th nucleus to the image, estimated mean location and shape.

Calculating the expectation per cell over time is performed by a full Bayesian approach,2,28 with the assumption that cell properties

between two consecutive frames are correlated.

Cell division

We handled cell divisions separately in this process: First we shall determine if a cell is going to divide, then we include the newly

generated cell into a Gaussian mixture. For each nucleus we perform Otsu thresholding on only the foreground pixels, and we

see if two unconnected regions are generated. If not, we do not find a case of dividing and we do not proceed with splitting one

Gaussian into two components. If two unconnected regions are found, we further assess if the size per region is larger than a

pre-defined value (as a region can be too small to represent a daughter cell).

Once we have detected a cell division at frame t, we accordingly need to update the Gaussian mixture at t, by letting nt = ðnt + 1Þ.

Cell track correction
Solution to merging-demerging problem

We propose to correct the corrupted tracks by three steps (see Figure 4A).

d Step 1: We examine if a cell division is valid. A cell division that is next to one or more incomplete tracks in both space and time is

the consequence of a merging-demerging. In Figure 4A, a merging at t = 2 causes a cell track (orange) disappearing at location

xdisappear , a demerging at t = 3 causes a division at location xdivide. We call xdisappear also the location of the incomplete track (or-

ange). The cell division is next to the incomplete track in space if the (Euclidian) distanceDx between xdisappear and xdivide is smaller

than a pre-defined value (such as 10 pixels). The cell division is next to the incomplete track in time if the time difference Dt
Cell Reports Methods 3, 100636, November 20, 2023 e4
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between themerging anddemerging events is smaller thanapre-definedvalue (such as 5 frames). In this example, the cell division

is found invalid, and we move to the next step.

d Step 2: For an identified false division, we break the mother-daughter. The daughter cell that is closer to and forming smaller

angle with respect to the incomplete track is excluded.We remove the link (green) from t = 2 to t = 3, as this daughter (green) is

closer to xdisappear than the other daughter (blue) is, while angle:orange;blue; green < angle:blue;blue;blue (over t = 1;2;3).

The link removal generates an incomplete track (green) from t = 3 to t = 4.

d Step 3: We connect two incomplete tracks, and close the gap between the two incomplete tracks. The gap closing is done via

linear assignment problem (LAP),48 which searches if (at each frame) any track end can be connected to a track start, and this

connection is a 1-to-1 relationship. The cost to close a gap is constrained to where and when the tracks exist. For example, if

the end of incomplete track A is 10 frames (>30 min, a pre-defined temporal threshold) away from the start of incomplete track

B, the cost to connect will be too high to perform. In Figure 4A, the two incomplete tracks (orange and green) are to be con-

nected (assuming the cost function agrees). There is a gap between them, which refers to the disappeared cell at t = 2.

We then construct a fake cell (gray) at this frame at a random location xgenerate between xdisappear and xdivide. This fake cell re-

sembles the two cells at t = 1 and t = 3: its mean intensity is a random value between the two cells’ mean intensity, and its

size (i.e., number of pixels) is also a random value tween the two cells’ sizes. Once the intensity, size and location of this

fake cell are known, a Gaussian is constructed for this cell. This Gaussian is representing the ‘look’ of this fake cell. We update

the reconstructed cell to the subsequent frames t = 3;4. At t = 4 we obtain two complete tracks.

QUANTIFICATION AND STATISTICAL ANALYSIS

Segmentation performance
We examined the segmentation performance (average F1 score) over different methods: TWS, ilastik, StarDist, CellSeg, Cellpose and

our GTWeka method with all features or with selected features (main text Figure 2). Cell segmentation images and results are shown in

Figure 2. These outcomeswere achievedusing the same input image.Ground truth (GT) segmentationwas prepared independently.We

compared the segmentation outcome per method to the GT by calculating the IoU (intersection-over-union) value. We quantified the

segmentation performance (see Figure 2) by looking at the segmentation accuracy per method at the IoU threshold of 0.5 or 0.7.

We obtained a true positive (TP) when the calculated IoU is R IoU threshold, a false positive (FP) if the calculated IoU is between

0.1 - IoU threshold, a false negative (FN) if the calculated IoU is <0.1. The computational time was an average of fourteen FOVs.

Tracking accuracy and computational time
Tracking accuracy

We assess the accuracy of cell linking by examining how many cell tracks, out of all, are accurately followed. We call a cell is accu-

rately tracked if its centroids between any two adjacent time points are accurately linked: Let (xi;yi;t) represent the centroid coordi-

nates of cell i at t˛ f1; 2;.;Tgwith T be the length of a time lapse movie. Cell track i is accurate if (xi;yi;t) is accurately linked to (xi;yi;

t +1) for every t.

Weselectedtwo regionsof time lapsemovies (MCF10Acells)andmanuallychecked the trackingaccuracy:Region1contains31 frames

with a dimension of 1170 by 724 pixels, Region 2 contains 31 frames with a dimension of 1628 by 978 pixels. We compared the tracking

results of FACT to the ground truth data and obtained an average precision of 96% per region (95% for Region 1 and 97% for Region 2).

The tracked images are shown in Supplementary Information: Video S2, left for Region 1 and Video S2, right for Region 2.

Tracking efficiency

For real-time experiment, the tracking efficiency is crucial. A real-time tracking method shall be able to catch up the speed of image

acquisition. When tracking two image frames of MCF10A cells with �20,000 cells/frame, FACT requires �100 s (an average of three

runs: 101.37, 98.50, and 99.96 s).

Cell lineage accuracy
We calculate, for each lineage tree, its F1 score: we check manually if each detected division from this tree is a TP or FP. We also

check any missed divisions (compared to the raw images) and treat it as an FN. We define that a detected division is a TP if 1) it

is truly a division from this lineage, as well as 2) the detected splitting time is +/� 5 frames compared to the true division time. For

example, if a detected lineage tree has 5 divisions, with 2 divisions being FPs, 3 divisions being TPs, and 1 missed division as 1

FN, then the F1 score of this detected tree is 0.67 (= 3
3+0:5�ð2+1Þ).

In Table S1 the performance of lineage tracking is shown. On average we can reach 0.91 F1 score per lineage.

In addition, we compared our cell tracking method with TrackMate,11 which also uses LAP to link cells and correct wrong cell

tracks. The main difference of our approach from the existing LAP is that we only applied LAP on incomplete tracks, instead of all

tracks (including the completed ones). Our approach not only shortens the time of wrong-track correction, but also improves linking

accuracy, as correcting cell tracks by incorporating completed tracks could potentially wire incomplete tracks to complete ones,

thereby creating false cell-to-cell linking and false cell divisions (see the comparison table below). Averaging over two regions,

FACT gave 0.92 precision and 0.92 F1 score; TrackMate gave 0.80 precision and 0.83 F1 score. The detailed differences of our

cell track correction method versus the current LAP method can be found in Figure 7.
e5 Cell Reports Methods 3, 100636, November 20, 2023


	Instant processing of large-scale image data with FACT, a real-time cell segmentation and tracking algorithm
	Introduction
	Results
	Highly accurate cell segmentation with sparse annotation
	Instant cell linking and cell track correction
	FACT identifies abnormal cancer cells

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	MCF10A cells
	Glioblastoma multiforme (GBM) cells
	HeLa cells

	Method details
	Image data preparation
	Workstation and software information
	Details of ground truth-assisted Trainable Weka Segmentation (GTWeka)
	Trainable Weka segmentation
	Trainable Weka segmentation on GPU
	Reference dataset preparation (see Figure S3 for detail)
	Random forest and its structure
	Key feature selection

	Training dataset preparation
	Benchmarking
	Input data

	Single cell tracking via FACT
	Nuclear-mask images as input for tracking
	Cell intensity as a Gaussian
	Image as a Gaussian mixture
	Cell division

	Cell track correction
	Solution to merging-demerging problem


	Quantification and statistical analysis
	Segmentation performance
	Tracking accuracy and computational time
	Tracking accuracy
	Tracking efficiency

	Cell lineage accuracy




