
140

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

#8

141

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

Constant
Software
Updates vs
Public Software
Acquisition

Tommi Mikkonen

142

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

143

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

Abstract
Software industry has widely adopted agile
software development model, where it is
accepted that change is constant. Indeed,
as the environment in which the software is
run changes – be it changes in jurisdiction,
language, user expectations, reinterpretation
or requirements, or something else – the soft-
ware needs to be modified to satisfy end-user
needs. At the same time, many organizations,
especially those that operate in the public
sector, rely on tendering and detailed require-
ments documentation when acquiring soft-
ware, with an assumption that once deployed,
the software would continue to serve the end
users unaltered or with minor changes covered
by a maintenance contract. In this article, we
will consider this fundamental mismatch from
the viewpoint of what we know about software
evolution in general, and then propose ways
forward to design and implement public sector
software that can be adapted to new, emergent
needs.

144

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

1. Introduction

Who wouldn’t be annoyed that just when
there’s an important task at hand, a
computer – be it a smartphone, tablet, PC
or cloud service – announces that unfortu-
nately right now a software update is
mandatory? After all, in just about any
other business, the expectation is that at
the time of transaction, complete goods are
delivered, and there is no need to continu-
ously patch it after the transaction. What
makes software fundamentally different in
this respect?

Software can be updated with relative
ease and with low cost, at least in compari-
son to related hardware components.
Therefore, it has become customary to
adapt the software to better serve users’
needs. Granted, for an individual user the
changes may seem irrelevant, if the
changes are made to parts that are not in
active use or changes are made to improve
the non-functional characteristics of the
software, such as security for instance.

The fact that we know that software
will constantly change is in a sharp
contradiction with the practices we have
for acquiring software, especially when the
acquirer is a public sector organization.
The acquisition is typically based on a
tendering process where software provid-
ers compete to provide software that meets
the associated specification. Usually, there
is little or no room to negotiate over other
issues than the functions of the software
and the related cost. Considering changes
that inevitably will be needed is easily
overlooked. In fact, even phasing or
incremental delivery of the system is often
not considered, as many organizations find
such deployment unthinkable and risky
(Koski, 2019).

This article addresses the apparent
contradiction between continuous soft-
ware development and public software,
where large systems are typically acquired
– for instance, Apotti 1, an information
system for merging social care and health
care services and to standardize associated
operational routines for Helsinki Metro-
politan region, Finland, has been estimated
to cost over 800 Me (Wikipedia, 2023).
The system was acquired by a plan-first
approach, but it has a phased SW delivery,
with new features and expanding user base
in each phase.

First, the article will provide back-
ground on software evolution and tech-
niques that companies apply to support
continuous change. Next, we provide an
overview to today’s practices for public
tendering. Finally, proposals are made to
transform public sector actors to software
organizations, so that they can truly
benefit from the digital transformation.

2. Basics of Software
Evolution

The origins of the so-called Lehman’s laws
of software evolution are in the work of
Meir ‘Manny’ Lehman, who categorized
software to three flavors, called S, P and E
type software (Lehman, 1996). Of these, S
type software is based on a precise specifi-
cation, such as a mathematical formula. P
type software does not have such an exact
specification, but it always performs
certain well-defined operations that
determine everything the software can ever

1 https://www.apotti.fi/en/

145

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

do – such as chess game moves. E type
software, in contrast, are part of real-world
processes and are inextricably linked to
their environment.

Based on the above, while S and P type
software can be designed to satisfy the
whole specification or design space, E type
software requires constant fine-tuning to
serve users and operate in a changing
context, constituted by the connection to
the real world. This continuous fine-tun-
ing leads to continuously increasing
complexity, which in the case of software
typically means decomposing the software
to smaller pieces, each of which can be
worked on separately.

3. Software Solutions
for Supporting
Software Evolution

Due to the omnipresent nature of change
in software, a large part of software
engineering has been the invention of
technical and methodological solutions for
managing and organizing increasing
complexity. Examples are many. Modular-
ity allows changing internals of a module
without harming other modules that rely

on its services (Parnas, 1972). Inheritance
enables making new variants of a baseline
module that differ from the baseline a bit
or combine things that go hand in hand in
design (Taivalsaari, 1996). Virtual
machines allow running the same software
on different hardware (Goldberg, 1974).
Containers enable bundling together
pieces of software that implement a
coherent whole that can be deployed
independently (Koskinen et al., 2019).
Microservice architecture (Nadareishvili et
al., 2016) provides instructions how such
containers should be best used, to flexibly
introduce new configurations, and so on.

With the new infrastructure, releasing
new software has become easier and
cheaper. Today, instead of releases that
were made at regular intervals, say every
six months, which were common in the
past, new software can be deployed at the
very moment it is considered ready for
operational use – at very least for a selected
population of users. This has been made
possible by new development approaches,
such as continuous software engineering
(Fitzgerald and Stol, 2017) and DevOps
(Ebert et al., 2016). Both require maintain-
ing a sophisticated deployment pipeline
(Humble and Farley, 2010), but in contrast
to investing the effort to each time
software is released, this maintenance task
is considered smaller. While in general,
rapid speed of software development has
been considered as a negative thing for
software quality, it has been shown that
this need not be the case, as many of the
quality assurance actions can be automated
as well (Tamburri & Perez-Palacin, 2018).
Moreover, if a new release is faulty, it is
possible to return to using an older version
that has been validated in use using the
same release mechanisms.

"Considering
changes that
inevitably will be
needed is easily
overlooked."

146

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

4. Public Sector
Software: S, P, or E
type?

Today, there are large organizations that
acquire large software systems, with an
expectation that the acquired system will
serve the organization unchanged for a
long time, if software requirements are
sufficiently well and precisely formulated.
In fact, creating a requirements specifica-
tion is often an effort of its own. Then,
when this task is completed, the require-
ments are used as basis for tendering, or
placing an open offer for software vendors
to fulfill.

Tendering is the process where an
organization that needs a software system
invites bids for software projects, to be
delivered within a fixed deadline (Koski
2019). The process starts by describing a
problem the acquiring organization has
and outlining a project with which to solve
the problem. The acquiring organization
concentrates on describing the problem
they have and ask potential suppliers to
describe ways to meet the requirements,
together with an estimate on pricing. Then,
the suppliers study the requirements and
propose a solution they see fit for satisfy-
ing the requirements.

Based on the proposals, one of the
suppliers is selected, based on price,
assumed quality of the proposal, or a
weighted combination of the two. Some-
times, politics, personal contacts, track
record, and other non-technical aspects
also have an impact on the selection,
although tendering should be independent
from such and only focus on the offering
made by the potential suppliers. After the

closure of the tendering process itself, the
actual development will begin. More time
is spent on the further specification,
design, development, testing, releasing,
and eventually resulting in the deployment
of the system to its operative environment.

Because of the time and cost of the
tendering process, it often happens that
organizations do not want to change the
software they have, but rather change the
behavior of the people. In terms of
software evolution, this means that while
everyone understands that the software in
question is of type E – living and evolving
with its environment – the organization
that uses it does its best to make it an S or
P type of software, by changing the way
the organization works, thus omitting the
changes to the software. Moreover, while
tendering the acquiring organization often
specifies its current ways of working,
instead of critically assessing those to
improve the underlying processes.

Typically, the system being purchased
is a prerequisite for the buyer's core
functions, such as patient management in
the case of a hospital, for instance. Pur-
chasing such a core system from a subcon-
tractor introduces a fundamental trust
relationship to the software provider, who
therefore must be a well-established
company to manage risks related to the
relationship. This in essence eliminates all
small companies from the business.
Furthermore, because the system is
question is tailor-made, it is impossible to
consider similar systems from another
supplier, so there is little room for new
partnerships. Therefore, there are two
paths to consider – either pay extra for
every new feature in the software that runs
everyday operations to the selected vendor,

147

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

who is the only game in town and takes
that into account in pricing, or, alterna-
tively, adapt everyday functions to the
software as it is when it was purchased.
Both are costly operations.

5. Macro-services to
the rescue
Because it is next to impossible to acquire
large systems as E-type systems, one
should consider scaling down the expecta-
tions. Instead of acquiring one, massive
system that is completely managed by the
vendor that delivering it, it is possible to
decompose the needs to a collection of
subsystems, each consisting of functions of
meaningful size. These subsystems can be
regarded as macroservices (Setälä et al.,
2021), in analogy to microservices men-
tioned above. However, while microser-
vices are the smallest meaningful opera-
tional units in the implementation sense,
macroservices are the smallest meaningful

software systems to be tendered and
subcontracted. Then, each of the services
can evolve separately, and the complete
system, constituted by all the necessary
macroservics, will remain in operation,
even if some of the macroservices are
updated or even replaced by new versions,
provided by different vendors.

While the majority of the macroser-
vices would be built to order, some of
them might be services from other
organizations. Often, this is the case
already today, as for example from the
Digital and Population Information
Agency provides services to several public
organizations, and their services need to be
compatible with each other. Each macros-
ervice can then evolve, maintaining their E
type software status, on their own terms, if
the interface to the services they provide
remains unaltered or backward compati-
ble. Sometimes, this is what takes place
behind the curtains when acquiring a
monolithic application built to order, but
the vendor who provides the system will
not reveal the details to the client or
consider the implications in pricing. An
example of such is sketched in (Ghezzi et
al. 2023).

The trend towards macroservices has
also been noticed at the EU scale. The
Gaia-X initiative (Braud et al., 2021) is an
approach that aims at ensuring data
sovereignty and defining of data usage
constraints, which effectively means
leaving single-vendor, monolithic software
systems, and entering an era where systems
are built out of services that can be
adapted to different use cases. However, as
Gaia-X is still at an initial phase, its role as
a cradle of microservice development
remains unclear.

"Because it is
next to impossible
to acquire large
systems as E-type
systems, one should
consider
scaling down the
expectations."

148

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

6. Conclusions

While software in operational use is
constantly updated and modified to better
serve users’ needs, organizations that are
bound by legislation to invite tenders must
seek ways to enable software evolution.
This evolution can take place in two ways,
either behind the curtains by the vendor
that delivers the software and charges for
every change, or transparently by selecting
an architecture where individual parts of
the system can be replaced. The former
leaves the acquiring organization at the
mercy of the vendor, whereas the latter
provides more freedom to operate – if the
acquiring organization can take responsi-
bility for managing the evolution of the
system. To improve awareness of this
choice, one alternative is to change the
procurement law that bounds public
organizations, so that they demonstrate
awareness of the evolving nature of
software and are prepared to face it in
systems they acquire. Otherwise, the
history will simply repeat itself, and we
end up paying more and more for our
public services.

Kirjoittaja

Tommi Mikkonen

Tommi Mikkonen on ohjelmistotekniikan professori
Jyväskylän yliopiston Informaatioteknologian
tiedekunnassa. Hänen tutkimusintressinsä keskittyvät
ohjelmistotuotannon menetelmiin ja käytännön
ohjelmistotyöhön.

149

CONSTANT SOFTWARE UPDATES VS PUBLIC SOFTWARE
ACQUISITION

References

Braud, A., Fromentoux, G., Radier,

B., & Le Grand, O. (2021). The Road

to European Digital Sovereignty

with Gaia-X and IDSA. IEEE

Network, 35(2), 4-5.

Ebert, C., Gallardo, G., Hernantes,

J., & Serrano, N. (2016). DevOps.

IEEE Software, 33(3), 94-100.

Fitzgerald, B., & Stol, K. J. (2017).

Continuous software engineering:

A roadmap and agenda. Journal

of Systems and Software, 123,

176-189.

Ghezzi, R., Koski, A., Lautanala,

J., Lehtisalo, M., Mikkonen,

T. and Setälä, M. Towards

Sustainable Software for Public

Sector Information Systems. In

Proceedings of ICSSP'23, IEEE,

2023.

Goldberg, R. P. (1974). Survey

of virtual machine research.

Computer, 7(6), 34-45.

Humble and D. Farley. (2010).

Continuous delivery: Reliable

software releases through build,

test, and deployment automation.

Pearson Education.

Koski, A. (2019). On the

Provisioning of Mission Critical

Information Systems based

on Public Tenders. Doctoral

Dissertation, University of

Helsinki, Finland.

Koskinen, M., Mikkonen, T.,

& Abrahamsson, P. (2019).

Containers in Software

Development: A Systematic

Mapping Study. In International

Conference on Product-Focused

Software Process Improvement

(pp. 176-191). Springer, Cham.

Lehman, M. M. (1996). Laws of

software evolution revisited. In

European Workshop on Software

Process Technology (pp. 108-124).

Springer, Berlin, Heidelberg.

Nadareishvili, I., Mitra, R., McLarty,

M., & Amundsen, M. (2016).

Microservice architecture: aligning

principles, practices, and culture.

O'Reilly Media, Inc.

Parnas, D. L. (1972). On the criteria

to be used in decomposing

systems into modules. In Pioneers

and Their Contributions to

Software Engineering (pp. 479-

498). Springer, Berlin, Heidelberg.

Setälä, M., Abrahamsson, P., and

Mikkonen, T. (2021). Elements of

Sustainability for Public Sector

Software–Mosaic Enterprise

Architecture, Macroservices,

and Low-Code. In International

Conference on Software Business

(pp. 3-9). Springer, Cham.

Taivalsaari, A. (1996). On the

notion of inheritance. ACM

Computing Surveys (CSUR), 28(3),

438-479.

Tamburri, D. A., & Perez-Palacin,

D. (2018). DevOps Quality

Engineering. Journal of Software:

Evolution and Process, 1-3.

Wikipedia. (2023) Apotti

(potilastietojärjestelmä). Available

at https://fi.wikipedia.org/wiki/

Apotti_(potilastietojärjestelmä)

(referenced Sept. 18, 2023)

https://fi.wikipedia.org/wiki/Apotti_(potilastietoj%C3%A4rjestelm%C3%A4)
https://fi.wikipedia.org/wiki/Apotti_(potilastietoj%C3%A4rjestelm%C3%A4)

