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Abstract
Combinatorial optimization problems arise naturally in a wide range of applications
from diverse domains. Many of these problems are NP-hard and designing efficient
heuristics for them requires considerable time, effort and experimentation. On the
other hand, the number of optimization problems in the industry continues to grow. In
recent years, machine learning techniques have been explored to address this gap. In
this paper, we propose a novel framework for leveraging machine learning techniques
to scale-up exact combinatorial optimization algorithms. In contrast to the existing
approaches based on deep-learning, reinforcement learning and restricted Boltzmann
machines that attempt to directly learn the output of the optimization problem from
its input (with limited success), our framework learns the relatively simpler task of
pruning the elements in order to reduce the size of the problem instances. In addition,
our framework uses only interpretable learningmodels based on intuitive local features
and thus the learning process provides deeper insights into the optimization problem
and the instance class, that can be used for designing better heuristics. For the classical
maximum clique enumeration problem, we show that our framework can prune a
large fraction of the input graph (around 99% of nodes in case of sparse graphs)
and still detect almost all of the maximum cliques. Overall, this results in several
fold speedups of state-of-the-art algorithms. Furthermore, the classification model
used in our framework highlights that the chi-squared value of neighborhood degree
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has a statistically significant correlation with the presence of a node in a maximum
clique, particularly in dense graphswhich constitute a significant challenge formodern
solvers. We leverage this insight to design a novel heuristic we call ALTHEA for
the maximum clique detection problem, outperforming the state-of-the-art for dense
graphs.

Keywords Combinatorial optimization · Machine learning · Maximum clique ·
Heuristics

1 Introduction

Combinatorial optimization problems typically involve finding groupings (subsets),
orderings or assignments of a discrete, finite set of objects that satisfy certain condi-
tions or constraints. Many optimization problems areNP-hard, implying that—unless
P = NP—no polynomial-time algorithms exist for these problems that can solve every
instance of the problem to optimality. Over the last century, numerous approaches have
been developed for these applications, including (i) exact algorithms with exponen-
tial time worst-case complexity (including integer linear programming and constraint
programming solvers), (ii) approximation algorithms with formal guarantees on the
solution quality, (iii) parameterized algorithms , (iv) carefully designed heuristics that
leverage the structure often available in real-world instances and (v) meta-heuristic
frameworks such as genetic algorithms or ant colony optimization. While exact
algorithms have poor scalability, the design of approximation algorithms, parame-
terized algorithms and domain-specific heuristics require considerable development
and design time. Similarly, meta-heuristics often require significant configuration time
to select the best parameters and operators for a given optimization problem and can
take considerable time to find a combination of elements close to the optimal solution.

In recent years, machine learning techniques have been used to design effective
solutions for combinatorial optimization problems. Compared to the traditional meta-
heuristic frameworks, machine learning techniques can enable us to explore the search
space of solutions in a statistically principled way and this has the potential to explore
the search space faster.

Early research on leveraging machine learning for combinatorial optimization
focused on end-to-end solutions that use a combination of deep learning [e.g., pointer
network (Vinyals et al. 2015)], reinforcement learning [e.g., neural combinatorial
optimization (Bello et al. 2017) and greedy Q-learning for graph optimization prob-
lems (Khalil et al. 2017)] and unsupervised learning [e.g., restricted Boltzmann
machines and Estimation of Distribution Algorithm (Probst et al. 2017)] techniques.
These techniques learn the exact decision boundary to separate the elements in the opti-
mal subset from the remaining elements. However, this is a challenging task requiring
complex learning models with a large number of parameters. As a result, the learning
models are not easy to interpret. Since the learned heuristic (mapping from input to
output) is implicit in the complex learningmodel, this implies that the learned heuristic
is itself not interpretable. This has the following consequences:
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– With a large number of parameters, the learned algorithm is not easy for humans
to understand and consequently there is little potential for mathematical analysis
of the resultant algorithm.

– It is not clear if the learned model will still work if there is an additional constraint
added to the problem. This is a major concern for applications in industry where
the first modelling of a problem into the optimization objective and associated
constraints is rarely enough and new constraints are incrementally discovered and
added.

– It is not clear if the learned model will still work if a dataset from a slightly
different distribution is used as an input. This has further implications for cross-
domain generalizability of the learning model.

– It is not clear how to integrate the existing knowledge in the algorithm design and
algorithm engineering community about the problem and the topological structure
of the input instances, to improve upon the solution accuracy. In this context,
we also note that in a recent survey of the area, Bengio et al. (2021) concluded
that “end to end machine learning approaches to combinatorial optimization are
not enough” and to be effective, learning frameworks should “benefit from the
theoretical guarantees and state-of-the-art algorithms already available.”

In contrast, we propose a novel framework for solving combinatorial optimization
problems that uses interpretable learning models based on intuitive local features. For
the interpretable models to work well, we focus on the relatively simpler task of (non-
exhaustive) pruning of the elements that are not in the optimal subset. This reduces the
problem size, often significantly, enabling existing solvers to deal with considerably
larger instances.

The complexity of exact algorithms generally depends only on the problem size. On
the other hand, machine learning considers the ease and the confidence of identifying
elements to either be or not to be in the optimal solution based on available information.
Thus, our framework combines the best of both worlds—it uses machine learning to
explore if an element of the problem instance can be confidently pruned based on its
associated feature vector (thereby reducing the problem size with minimal effect on
the optimal solution) and then it uses the exact algorithm to deal with the difficult core
of the problem, where the learning model was uncertain.

The existing heuristics and algorithms for a problem and the characteristics of
the input distribution can be encapsulated in the form of features in our learning
framework. Thus, our proposed framework is able to leverage the domain knowledge
and existing algorithmic literature on the problem.

To prune the elements further, we extend our framework to have multiple pruning
stages. In each stage, the framework learns a new classification model for elements
that were not pruned by earlier classification models (thereby increasingly focusing
on harder elements to prune). Figure 1 illustrates the exact decision boundary and the
multi-stage pruning framework.

Furthermore, the learning process in our framework provides deeper insights into
the optimization problem and the instance class. In particular, it identifies the combi-
nation of simple features that aremost indicative of an element belonging to an optimal
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(a) Exact decision boundary (b) Interpretable model boundary

(c) Pruning (d) Repeated pruning

Fig. 1 Depiction of the overall framework. The black stars indicate the elements in the optimal subset while
the white circles represent the elements not in the optimal subset. Earlier learning frameworks attempted to
learn the exact decision boundary (drawn with a solid black line). Our framework use simple, interpretable
classifier (shown by dashed lines) to repeatedly prune the white circles

subset. This insight can be leveraged to design better heuristics for the optimization
problems.

For the classical maximum clique enumeration problem, we show that our frame-
work can prune a large fraction of the graph (around 99% of nodes in case of sparse
graphs) and still detect almost all of the maximum cliques. For dense graphs that have
a large fraction of their edges in some maximum clique, it correctly predicts all of the
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clique edges and for the dense graphs where a very small fraction of edges are in any
maximum clique, our framework learns to prune a large fraction of edges while still
retainingmany of themaximumcliques in the graph.Overall, this results in several fold
speedups of state-of-the-art algorithms on a large number of graph instances. Further-
more, the classification model used in our framework highlights that the chi-squared
value of neighborhood degree has a statistically significant correlation with the pres-
ence of a node in a maximum clique, particularly in the case of dense graphs which
constitute a major challenge for state-of-the-art solvers. We leverage this insight to
design a novel heuristic we call ALTHEA for the maximum clique detection problem,
outperforming the state-of-the-art for dense graphs. Here, dense graphs are of partic-
ular instance as many techniques effective in practice are known for sparse graphs
(see Sect. 2.2). Furthermore, high-throughput data capture in applications in compu-
tational biology “often create graphs of extreme size and density” (Eblen et al. 2012).
We emphasize that the above framework can be used on a wide range of combinatorial
optimization problems. For instance, consider any binary integer linear programwhere
the variables need to be fixed to 0 or 1. This can be viewed as a binary classification
problem where we predict the variables to belong to either the zero class or the one
class. Similarly, even though the solution of a problem such as travelling salesperson
problem (TSP) involves all vertices, it can still be viewed as a classification problem
where the edges of the graph need to be classified into whether or not they belong to an
optimal TSP tour. Once we view our optimization problem as a classification problem,
we can use our learning framework to prune a large number of elements (e.g., vertices
or edges) or fix a large number of binary variables and solve the remaining problem
using exact and/or heuristic approaches.

Since an early version of our work was released on a pre-print server (Lauri et al.
2020), our framework has also been successfully used for many other optimization
problems such as TSP (Fitzpatrick et al. 2021), k-median (Tayebi et al. 2022), facility
location (Tayebi et al. 2022), set cover (Tayebi et al. 2022),maximumcoverage (Tayebi
et al. 2022), minimum Steiner tree problem (Zhang and Ajwani 2022), and a variant of
the electric vehicle routing problem (Fitzpatrick et al. 2023). For all of these problems,
our framework is able to achieve a significant reduction in running time,while ensuring
that the obtained solutions are close to optimal.

An important issue in this framework is to ensure that pruning does not render the
remaining problem infeasible. This can be done by carefully selecting the threshold for
pruning. Alternatively, we can use a heuristic or some fast approximation algorithm
to obtain a feasible solution for the problem and not prune the variables/elements
in that feasible solution (even if the classifier predicts so). For instance, in the case
of TSP (Fitzpatrick et al. 2021), a solution obtained from the classical double-tree
approximation was used as a set of edges that could not be pruned by the classifier.
This ensured that the graph remained connected even after the pruning and thus, at
least one feasible solution was guaranteed.
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2 Related work

In this work, we propose a new framework to leverage machine learning for com-
binatorial optimization problems and apply this to the maximum clique enumeration
problem to show its effectiveness. Therefore, as related work, we consider (i) the work
related to leveraging machine learning for combinatorial optimization problems and
(ii) the complexity of algorithms and preprocessing techniques to solve maximum
clique enumeration and detection problem.

2.1 Machine learning for combinatorial optimization

For a survey of machine learning techniques used for combinatorial optimization, we
refer the reader to the surveys by DiCarro (Caro 2019) and Bengio et al. (2021). The
existing literature on learning techniques can be broadly categorized into the following
classes.

Supervised learning to directly learn the solution of combinatorial optimization prob-
lems This set of techniques involve the use of deep-learning for learning the optimal
solution. A seminal example in this category is the work by Vinyals et al. (2015), who
viewed the task of learning combinatorial optimization solutions as a sequence-to-
sequence learning problem. They aimed for directly learning the output solution from
the input sequence for optimization problems such as convex hull and Delauney trian-
gulation. For the sequence-to-sequence learning, they used a recurrent neural network
(RNN). To deal with the issue of long-range correlations (elements far from each other
in the input sequence affecting the same output element), they used an attention mech-
anism to augment the RNN model. To deal with the issue of a fixed vocabulary size
required for the output of a recurrent neural network, they used pointers to elements
in the input stream, resulting in the name pointer network.

Reinforcement learning for combinatorial optimizationDeep learning requires a large
amount of training data and to generate this, a large number of NP-hard problem
instances need to be solved, limiting the applicability of these techniques. On the
other hand, given a solution, it is relatively easy to evaluate the quality of the solution
by computing the optimization objective. Thus, in recent years, reinforcement learning
based techniques have been developed to solve optimization problems. In this frame-
work, the goal is to learn a stochastic policy that samples solutions of high quality
with high probability. In particular, Khalil et al. (2017) used the Q-learning technique
to learn the solutions for graph optimization problems, specifically minimum vertex
cover and maximum cut. They encode nodes using a graph embedding technique and
then build a solution using a greedy construction meta-algorithm. The greedy deci-
sions are based on an estimated Q-function parameterized by the embedding. The
embedding parameters for the Q-function are updated step by step based on the par-
tial solution computed. The GCOMB approach of Manchanda et al. (2020) follows
the same framework, but claims to scale to very large graphs. Another example of
this framework is the use of neural combinatorial optimization (Bello et al. 2017) for
TSP. Very recent attempts in this direction include the development of general purpose

123



Learning fine-grained search space pruning and heuristics…

constraint programming solver guided by reinforcement learning (Chalumeau et al.
2021).

Unsupervised learning for combinatorial optimization Unsupervised approaches via
restricted Boltzmann machines have also been used to deal with combinatorial opti-
mization problems. An example of this framework is the Estimation of Distribution
Algorithm by Probst et al. (2017). This approach iteratively builds and samples from
a probabilistic model of candidate solutions. Intuitively, these approaches build infor-
mation about the probability distribution of good candidate solutions. This model is
built using contrastive divergence.

Limitations of the above frameworks The learning models used in these existing
state-of-the-art frameworks are both hard to interpret and architecturally complex.
For instance, the neural combinatorial optimization approach (Bello et al. 2017) is a
combination of pointer networks (with two LSTM networks), a Monte Carlo policy
gradient and an actor-critic architecture. The complexity of these approaches comes
at a significant cost of interpretability. Since the learned algorithm (mapping from
input to output) is implicit in the complex learning model, this implies that the learned
heuristic is itself not easy for humans to understand. As a direct consequence, it is
difficult to analyze the learned algorithmmathematically. Moreover, it is unclear what
features of the input instances are being exploited by the learned heuristic and on
which class of datasets will it perform well.

In contrast to using machine learning techniques as an end-to-end heuristic solver
(see e.g., Khalil et al. 2017; Manchanda et al. 2020; Bello et al. 2017; Huang et al.
2019; Probst et al. 2017; Amizadeh et al. 2019; Vinyals et al. 2015; Li et al. 2018),
these techniques have also been used as a component in an exact solver (see e.g., Lodi
and Zarpellon 2017; Chmiela et al. 2021). We use a lightweight supervision as a
preprocessing step to reduce the size of an instance and this can be followed by an
exact approach on the pruned instance. From this perspective, our approach can also
be viewed as a component in an exact solver, though it is not tied to any solver.

2.2 Maximum clique enumeration

We instantiate our framework for the maximum clique enumeration (MCE) problem.
In this problem, the goal is to list all maximum (as opposed to maximal) cliques in a
given graph. This listing variant of the problem,MCE, is encountered in computational
biology in problems like searching for common cis-regulatory elements (Abu-Khzam
et al. 2005), searching for putative molecular response networks (Eblen et al. 2012),
and the detection of protein-protein interaction (Yeger-Lotem et al. 2004). For an
overview of additional potential applications, see Bomze et al. (1999).

Note that for designing the heuristic in Sect. 7, we consider the maximum clique
detection problem, where the goal is to just find the size of maximum clique (e.g.,
by identifying only one maximum clique). The maximum clique problem is one of
the most heavily-studied combinatorial problems arising in various domains such as
in the analysis of social networks (Faust and Wasserman 1995; Fortunato 2010; Palla
et al. 2005; Papadopoulos et al. 2012), behavioral networks (Bernard et al. 1979), and
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financial networks (Boginski et al. 2005). It is also relevant in clustering (Stix 2004;
Yang et al. 2016) and cloud computing (Wang et al. 2014; Yao et al. 2013).

The computational aspects of this problem are well-studied. Indeed, it is NP-hard
to even approximate the maximum clique problem within n1−ε for any ε > 0 (Zuck-
erman 2006). Furthermore, unless an unlikely collapse occurs in complexity theory,
the problem of identifying whether a graph of n vertices has a clique of size k is
not solvable in time f (k)no(k) for any function f (Chen et al. 2006). As such, even
small instances of this problem can be non-trivial to solve.Moreover, under reasonable
complexity-theoretic assumptions, there is no polynomial-time algorithm that prepro-
cesses an instance of k-clique to have only f (k) vertices, where f is any computable
function depending solely on k (see e.g., Cygan et al. 2015). These results indicate that
it is unlikely that an efficient preprocessing method for MCE exists that can reduce
the size of input instance drastically while guaranteeing to preserve all the maximum
cliques. In particular, it is unlikely that polynomial-time sparsification methods (see
e.g., Batson et al. 2013) would be applicable toMCE. This has led researchers to focus
on heuristic pruning approaches.

On preprocessing for maximum clique For the discussion to follow, it will be useful
to recall the concept of a k-core of a graph G. Here, the k-core of G is a maximal
subgraph ofG where every vertex in the subgraph has degree at least k in the subgraph.
The core number of a vertex v is the largest k for which a k-core containing v exists.
A typical preprocessing step in a state-of-the-art solver is the following: (i) quickly
find a large clique (say of size k), (ii) compute the core number of each vertex of the
input graph G, and (iii) delete every vertex of G with core number less than k − 1.
This can be equivalently achieved by repeatedly removing all vertices with degree less
than k. For example, the solver pmc (Rossi et al. 2015)—which is regarded as “the
leading reference solver” (SanSegundo et al. 2016)—use this as the only preprocessing
method. However, there are two major downsides to this preprocessing step. First, it is
crucially dependant on k, the size of a large clique found. Since the maximum clique
size is NP-hard to approximate within a factor of n1−ε , maximum clique estimates
with no formal guarantees are used. Second and more important, it is typical that even
if the estimate k was equal to the size of a maximum clique in G, the core number of
most vertices could be considerably higher than k − 1. This is particularly true in the
case of dense graphs and it results in little or no pruning of the search space. Similarly,
other preprocessing strategies [see e.g., Eblen (2010) for more discussion] depend on
NP-hard estimates of specific graph properties and are not useful for pruning dense
graphs.

These facts furthermotivate the quest for preprocessingmethods that (i) are effective
on dense graphs and (ii) work independently of any estimate k for the maximum clique
size. Unfortunately, as described earlier, under widely-believed complexity-theoretic
assumptions, no methods exist that can give strong guarantees for pruning arbitrary
graphs. This raises the question if one can discover heuristic methods that can do
significant pruning, in practice, on graphs from different domains, including dense
graphs. Even more importantly, can we learn a heuristic to prune the input instance?
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3 Our framework

In this section,wedescribe our framework for subset-based combinatorial optimization
problems. For ease of exposition, we describe the framework in terms of the MCE
problem. We stress that our approach is not restricted to MCE, but can be applied to
other problems as well.

In our case, we assume the instance is represented as an undirected graph G =
(V , E). Moreover, in contrast to previous approaches, we view individual vertices of
G as classification problems as opposed to G itself. That is, the problem is to induce
a mapping γ : V → {0, 1} from a set of L training examples T = {〈 f (vi ), yi 〉}Li=1,
where vi ∈ V is a vertex, yi ∈ {0, 1} a class label, and f : V → R

d a mapping from
a vertex to a d-dimensional feature space. For reasons of scalability, we strive to keep
d small and to ensure that f can be computed efficiently.

Single-stage sparsification To learn the mapping γ from T , we use a probabilistic
classifier P which outputs a probability distribution over {0, 1} for a given f (u) for u ∈
V . A natural parameterized search strategy, which we call probabilistic preprocessing
(or single-stage sparsification), for enhancing a search algorithmA by P is as follows.
Define a confidence threshold q ∈ [0, 1]. Delete from G each vertex predicted by P
to not be in a solution with probability at least q, i.e., let V (G ′) = V (G) \ V ′, where
V ′ = {u | u ∈ V ∧ P(u = 0) ≥ q}. Execute A with G ′ as input instead of G. Here,
the purpose of q is to control the error and pruning rate of preprocessing: (i) it is more
acceptable to not remove a vertex that is not in a solution than to remove a vertex
that is in a solution, and (ii) a lower value of q translates to a possibly higher pruning
rate. Clearly, this strategy is a heuristic, i.e., it is possible that the cost of an optimal
solution in G ′ differs from that in G.

Multi-stage sparsification A natural generalization of the probabilistic preprocessing
strategy is the following approach that we call multi-stage sparsification. First, to
gain some intuition, consider a probabilistic classifier P learning to prune vertices
as a single-stage sparsifier. Plausibly, at first, P will learn to remove vertices of high
degree. However, after this first stage, there are potentially still vertices of lower degree
that could also be safely removed. To capture this, we can take a set of networks pruned
by P and train a second classifier, say P ′, to learn to remove additional vertices, this
time perhaps of lower degree. Naturally, we can continue this process to train more
classifiers (corresponding to subsequent stages) for more effective pruning.

To make our intuition precise, let G1 be the input set of networks. Consider a graph
G ∈ G1. LetM be the set of all maximum cliques of G, and denote by V (M) the set
of all vertices inM. The positive examples in the training set T1 consist of all vertices
that are in some maximum clique (V (M)) and the negative examples are the ones in
the set V \ V (M). Since the training dataset can be highly skewed, we under-sample
the larger class to achieve a balanced training data. A probabilistic classifier P1 is
trained on the balanced training data in stage 1. Then, in the next stage, we remove all
vertices that were predicted by P1 to be in the negative class with a probability above
a predefined threshold q. At this point, the classifier P1 is fixed.

Next, we generate the set G2 of subgraphs (of graphs in G1) induced on the vertices
not pruned by P1 from the instances in G1. This constitutes our training set T2. Here,
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the positive examples in the training set T2 consist of all vertices in some maximum
clique (V (M)) and the negative examples are the ones in the set V \ V (M). The
training dataset is balanced by under-sampling and we use that balanced dataset to
learn the probabilistic classifier P2. At this stage, the classifier P2 is fixed. Again, we
generate G3 and the training set T3 using P2 in a similar manner. We repeat the process
for � stages.

4 Computational features

In this section, we describe the computational features used in our framework.

Graph-theoretic featuresWe use the following graph-theoretic features: (F1) number
of vertices, (F2) number of edges, (F3) vertex degree, (F4) local clustering coefficient
(LCC), and (F5) eigencentrality.

The crude information captured by features (F1)–(F3) provides a reference for the
classifier for generalizing to different distributions from which the graph might have
been generated. Feature (F4), the LCC of a vertex is the fraction of its neighbors with
which the vertex forms a triangle, encapsulating the well-known small world phe-
nomenon. Feature (F5) eigencentrality represents a high degree of connectivity of a
vertex to other vertices, which in turn have high degrees as well. The eigenvector cen-
trality 	v is the eigenvector of the adjacency matrix A of G with the largest eigenvalue
λ, i.e., it is the solution of 	A	v = λ	v. The i th entry of 	v is the eigencentrality of vertex
v. In other words, this feature provides a measure of local “denseness”. A vertex in a
dense region shows higher probability of being part of a large clique.

Statistical features In our statistical features, we focus on encoding the deviation
of a vertex/neighborhood feature from the average characteristics as observed in the
overall graph. Intutively, any vertex that demonstrates a significant deviation from
the expected behaviour (in terms of feature values), its statistical significance would
increase, potentially indicating some observed phenomenon that cannot be attributed
solely to randomness. Hence, we train our learning model to focus on such vertices.
More details on on how such a statistical measure would work can be found in Sect. 7.

To this end, additionally, we use the following statistical features: (F6) the χ2

statistical significance value over vertex degree, (F7) average χ2 value over neighbor
degrees, (F8) χ2 value over LCC, and (F9) average χ2 value over neighbor LCCs.

The intuition behind (F6)–(F9) is that for a vertex v present in a large clique, its
degree and LCC would deviate from the underlying expected distribution characteriz-
ing the graph. Further, the neighbors of v also present in the clique would demonstrate
such behaviour. Indeed, statistical features have been shown to be robust in approxi-
mately capturing local structural patterns (Dutta et al. 2017).

Statistical significance is captured by the notion of p value (Read andCressie 1988),
and well-estimated (Read and Cressie 1989) by the Pearson’s chi-square statistic, χ2,
computed as

χ2 =
∑

∀i

[
(Oi − Ei )

2 /Ei

]
, (1)
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v

Fig. 2 The neighborhood of v contains a single color, so χd (v) = 1/3. However, the coloring obtained by
swapping the non-white colors in either triangle will only show that χd (v) ≤ 2/3. That is to say, finding an
optimal proper coloring of a graph will not necessarily suffice to determine χd (v)

where Oi and Ei are the observed and expected number of occurrences of the possible
outcomes i .

Local chromatic density Let G = (V , E) be a graph. A k-coloring of G is a function
c : V → {1, 2, . . . , k}. A coloring is a k-coloring for some k ≤ n, where n = |V |.
A coloring c is proper if c(u) �= c(v) for every edge {u, v} ∈ E . The chromatic
number of G, denoted by χ(G), is the smallest k such that G has a proper k-coloring.
We define the local chromatic density of a vertex v ∈ V , denoted by χd(v), as the
ratio between the minimum number of distinct colors appearing in N (v) among any
optimal proper colouring of G and the chromatic number of G. Informally, the local
chromatic density of v is the minimum possible number of colors in the immediate
neighborhood of v in any optimal proper coloring of G (see Fig. 2).

We use the local chromatic density as the feature (F10). A vertex v with high
χd(v)means that the neighborhood of v is dense, as it captures the adjacency relations
between the vertices in N (v). Thus, a vertex in such a dense region has a higher chance
of belonging to a large clique.

However, the problem of computing χd(v) is computationally difficult. In the deci-
sion variant of the problem, we are given a graph G = (V , E), a vertex v ∈ V , and
a ratio q ∈ (0, 1). The task is to decide whether there is proper k-coloring of V such
that χd(v) ≥ q. As shown in the following, the claimed hardness is straightforward
to establish.

Theorem 1 Given a graph G = (V , E), v ∈ V , and q ∈ (0, 1), it isNP-hard to decide
whether χd(v) ≤ q.

Proof The claim is established by giving a polynomial-time reduction from graph
k-coloring, which is well-known to be NP-complete for every k ≥ 3.

Let G be an instance of graph k-coloring, for any fixed k ≥ 3. We construct
G ′ = G ∪ Kk , i.e., G ′ is the disjoint union of G and a complete graph on k vertices.
Fix v to be an arbitrary vertex of the Kk . We claim that G has a proper k-coloring if
and only if χd(v) ≤ q, where q = k−1

k .
If G admits a proper k-coloring, we map {1, 2, . . . , k} bijectively to V (Kk), imply-

ing that χd(v) = k−1
k . On the other hand, a proper k-coloring of G ′ witnessing that

χd(v) = k−1
k is clearly a proper k-coloring when restricted to G as well. ��

Despite its computational hardness, we can estimate χd(v) with the following simple
heuristic. Compute a proper coloring for G using e.g., the well-known linear-time
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greedy heuristic of Welsh and Powell (1967) and then estimate χd(v) as the ratio
between the number of colors in N (v) divided by the number of colors used by the
greedy coloring algorithm. Note that we could use other graph coloring heuristics as
well [see e.g., Lewis (2015) for an overview of the state-of-the-art].

Learning over edges Instead of individual vertices, we can view the framework also
over individual edges. In this case, the goal is to find a mapping γ ′ : E → {0, 1}, and
the training set L ′ contains feature vectors corresponding to edges instead of vertices.
We also briefly explore this direction in this work.

Edge features We use the following features (E1)–(E9) for an edge {u, v}. (E1) Jac-
card similarity is the number of common neighbors of u and v divided by the number
of vertices that are neighbors of at least one of u and v. (E2) Dice similarity is
twice the number of common neighbors of u and v, divided by the sum of their
degrees. (E3) Inverse log-weighted similarity is the number of common neighbors
of u and v weighted by the inverse logarithm of their degrees. Formally, we com-
pute

∑
x∈N (u)∩N (v) 1/ log(deg(x)). (E4) Cosine similarity is the number of common

neighbors of u and v divided by the geometric mean of their degrees. The next three
features are inspired by the vertex features: (E5) average LCC over u and v, (E6)
average degree over u and v, and (E7) average eigencentrality over u and v. (E8) is
the number of length-two paths between u and v. Finally, we use (E9) local edge-
chromatic density, i.e., the number of distinct colors on the common neighbors of u
and v divided by the total number of colors used in any optimal proper coloring.

The intuition behind (E1)–(E4) is well-established for community detection; see
e.g., Adamic and Adar (2003) for more. For (E8), observe that the number of length-
two paths is high when the edge is part of a large clique, and at most n−2 when {u, v}
is an edge of a complete graph on n vertices. Notice that (E9) could be converted into
a deterministic rule: the edge {u, v} can be safely deleted if the common neighbors of
u and v see less than k − 2 colors in any proper coloring of the input graph G, where
k is an estimate for ω(G). To our best knowledge, such a rule has not been considered
previously in the literature. Further, notice that there are situations in which this rule
can be applied whereas the similar vertex rule uncovered from (F10) cannot. To see
this, let G be a graph consisting of two triangles {a, b, c} and {x, y, z}, connected by
an edge {a, x}, and let k = 3. The vertex rule cannot delete a nor x , but the described
edge rule removes {a, x}.

5 Experimental results

In this section, we describe how multi-stage sparsification is applied to the MCE
problem and our computational results.

All experiments are executed on a machine equipped with an Intel Core i7-4770K
CPU (3.5 GHz), 8 GB of RAM, running Ubuntu 16.04.

Training and test data All our datasets are obtained from Network Repository (Rossi
and Ahmed 2015) (available at http://networkrepository.com/). We discard all vertex
and edgeweights and parallel edges (if any) and treat every directed edge as undirected.
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For dense networks, we choose a total of 30 networks from various categories with
the criteria that the edge density is at least 0.5 in each. We name this category “dense”.
The test instances are in Table 1, chosen based on empirical hardness (i.e., they are
solvable in reasonable amount of time).

For sparse networks, we choose our training data from four different categories:
31 biological networks (“bio”), 32 social networks (“soc”), 107 Facebook networks
(“socfb”), and 13 web networks (“web”). In addition, we build a fifth category “all”
that comprises all networks from the mentioned four categories. The test instances are
in Table 2.

Feature computation We implement the feature computation in C++, relying on the
igraph (Csardi and Nepusz 2006) C graph library. In particular, our feature compu-
tation is single-threaded with further optimization possible.

Domain oblivious training via local chromatic density To achieve a high classification
accuracy, it is natural to assume that the classifier should be trained with networks
coming from the same domain, and that testing should be performed on networks
from that domain. Certainly, some similarity is needed between the two for training to
be effective. For example, sparse networks (say trees) should not be representative of
dense networks. However, we demonstrate in Table 3 that a classifier can be trained
with networks from various domains, yet predictions remain accurate across different
domains (see column “all”). The accuracy is boosted considerably by the introduction
of the local chromatic density (F10) into the feature set (see Table 3). In particular,
when generalizing across various domains, the impact on accuracy is almost 10%. For
this reason, rather than focusing on network categories, we only consider networks by
edge density (at least 0.5 or not).

Accuracy measures and setup For our experiments, the vertex pruning ratio is the
ratio of the number of vertices removed from the instance to the number of vertices
|V | in the original instance. The edge pruning ratio is defined similarly, but for edges
instead of vertices. We say clique accuracy is one precisely when the number of all
maximum cliques of the instance G is equal to the number of all maximum cliques of
the reduced instance G ′ and ω(G) = ω(G ′).
State-of-the-art solvers for MCE To the best of our knowledge, the only pub-
licly available maximum clique solvers able to list all maximum cliques1 are
cliquer (Östergård 2002), based on a branch-and-bound strategy; and MoMC (Li
et al. 2017), introducing incremental maximum satisfiability reasoning to a branch-
and-bound strategy. We use these solvers in our experiments.2

5.1 Dense networks

In this subsection, we show results for probabilistic preprocessing on dense networks
(i.e., edge density at least 0.5).

1 For instance, pmc (Rossi et al. 2015) does not have this feature.
2 It is worth noticing that in principle, one could solve the problem by any algorithm that lists all maximal
cliques However, such algorithms solve a more general problem (i.e., every maximum clique is maximal
but the opposite is not true in general) which usually comes with a significantly higher computational cost.
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Table 3 The effect of introducing the feature (F10) the local chromatic density into the feature set

bio soc socfb web all

W/o With W/o With W/o With W/o With W/o With

0.95 0.98 0.89 0.99 0.90 0.95 0.96 0.99 0.87 0.96

The column “W/o” is the vertex classification accuracy of the classifier of Sect. 5.2 without (F10) while
column “With” is the same with (F10)

Classification framework for dense networks For training, we get 4762 feature vectors
from our “dense” category. As a baseline, a 4-fold cross validation over this using
logistic regression results in an accuracy of 0.73. We improve on this by obtaining an
accuracy of 0.81 with gradient boosted trees (further details omitted), found with the
help of auto-sklearn (Feurer et al. 2015).

Search strategies Given the empirical hardness of dense instances, one should not
expect a very high accuracy with polynomial-time computable features such as (F1)–
(F10). For this reason, we set the confidence threshold q = 0.98 here.

The failure of k-core decomposition on dense graphs It is common thatwidely-adopted
preprocessing methods like the k-core decomposition cannot prune any vertices on a
dense networkG, even if they had the computationally expensive knowledge ofω(G).
This is so because the degree of each vertex is higher than than the maximum clique
size ω(G).

We showcase precisely this poor behaviour in Table 1. For most of the instances, the
k-core decomposition with the exact knowledge of ω(G) cannot prune any vertices.
In contrast, the probabilistic preprocessor prunes typically around 30% of the vertices
and around 40% of the edges.

Accuracy Given that around 30% of the vertices are removed, how many mistakes do
we make? For almost all instances we retain the clique number, i.e., ω(G ′) = ω(G),
where G ′ is the instance obtained by preprocessing G (see column “ω” in Table 1).
In fact, the only exceptions are brock200-1 and p-hat1500-1, for which ω(G ′) =
ω(G)−1 still holds. Importantly, for about half of the instances, we retain all optimal
solutions.

For some graphs, the pruning rate might appear low. This is due to the fact that (i)
even a single mispredicted edge can result in the loss of several maximum cliques and
(ii) in some cases, a largemajority of edges are part of one or the othermaximumclique,
thereby limiting the number of edges that can be pruned. For instance, we achieve an
edge prune ratio of 0.25 for heart1 yet still miss around half of its maximum cliques.
However, on this graph instance, the maximum possible prune ratio would be around
0.184 if we were not to remove any edge part of a maximum clique. Note that in
such cases, even though the pruning rate is not impressive, the solver may still gain
considerable speed-up as most of the “non-clique edges” get pruned.

Speedups We show speedups for the solvers after executing our pruning strategy in
Table 1 (last two columns).We obtain speedups as large as 53x and 38x for brock200-1
and keller4, respectively. This might not be surprising, since in both cases we lose
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some maximum cliques (but note that for keller4, the size of a maximum clique is still
retained). For p-hat300-3, the preprocessor makes no mistakes, resulting in speedups
of upto 9x. The speedup for keller5 is at least 2.5x, since the original instance was not
solved within 3600 s, but the preprocessed instances was solved in roughly 1421 s.

Most speedups are less than 2x, explained by the relative simplicity of instances.
Indeed, it seems challenging to locate dense instances of MCE that are (i) structured
and (ii) solvable within a reasonable time.

5.2 Sparse networks

In this subsection, we show results for probabilistic preprocessing on sparse networks
(i.e., edge density below 0.5).

Classification framework for sparse networks We use logistic regression trained with
stochastic gradient descent. We use a standard L2 regularizer, and use 0.0001 as the
regularization term multiplier determined by a systematic grid search. The classifier
is trained for 400 epochs. Unlike for dense graphs, we did not observe a significant
improvement over logistic regression by using other models such as gradient boosted
trees.

Implementing the k-core decompositionRecall the exact state-of-the-art preprocessor:
(i) use a heuristic to find a large clique (say of size k) and (ii) delete every vertex of G
of core number less than k − 1. For sparse graphs, a state-of-the-art solver pmc has
been reported to find large cliques, i.e., typically k is at most a small additive constant
away from ω(G).3 Further, given that some real-world sparse networks are scale-free
(many vertices have low degree) the k-core decomposition can be effective in practice.

To ensure highest possible prune ratios for the k-core decomposition method, we
supply it with the number ω(G) instead of an estimate provided by any real-world
implementation. This ensures ideal conditions: (i) themethod always prunes as aggres-
sively as possible, and (ii) we further assume its execution has zero cost. We call this
method the ω-oracle.

Test instance pruning Before applying our preprocessor on the sparse test instances,
we prune them using the ω-oracle. This ensures that the pruning we report is highly
non-trivial, while also speeding up feature computation.

Search strategiesWe experiment with the following two multi-stage search strategies:

– Constant confidence (CC): at every stage, performprobabilistic preprocessingwith
confidence threshold q.

– Increasing confidence (IC): at the first stage, perform probabilistic preprocessing
with confidence threshold q, progressing q by d for every later stage.

Our goal is two-fold: to find (i) a number of stages � and (ii) parameters q and d, such
that the strategy never errs while pruning as aggressively as possible. We do a system-
atic search over parameters �, q, and d. For the CC strategy, we let � ∈ {1, 2, . . . , 8}
and q ∈ {0.55, 0.6, . . . , 0.95}. For the IC strategy, we try q ∈ {0.55, 0.60, 0.65},
d = 0.05, and set � so that in the last stage the confidence is 0.95.

3 A table of results seen at http://ryanrossi.com/pmc/download.php.
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We find the CC strategy with q = 0.95 to prune the highest while still retaining
all optimal solutions. Thus, for the remaining experiments, we use a CC strategy with
q = 0.95.

Our 5-stage strategy outperforms, almost always safely, the ω-oracle (see Table 2).
In particular, note that even if the difference between the vertex pruning ratios is small,
the impact for the number of edges removed can be considerable (see e.g., all instances
of the “soc” category).We note that the runtime is not sensitive to the number of stages
�. In fact, already the first step of pruning makes the graph so small that further stages
add comparatively very small amounts to the overall runtime.

Speedups We show speedups for the solvers in Table 2. We use as a baseline the
solver executed on an instance pruned by the ω-oracle, which renders many of the
instances easy already. Most notably, this is not the case for soc-pokec, socfb-A-anon,
and socfb-B-anon, all requiring at least 5 min of solver time. The largest speedup is
for socfb-B-anon, where we go from requiring 40 min to only 7 s of solver time. For
MoMC, most instances report a segmentation fault (marked with an s) for an unknown
reason.

5.3 Edge-based classification

For edges, we do a similar training as that described for vertices. For the category
“dense”, we obtain 79472 feature vectors. Further, for this category, the edge classi-
fication accuracy is 0.83, which is 1% higher than the vertex classification accuracy
using the same classifier as in Sect. 5.1. However, we note that the edge feature compu-
tation is noticeably slower than that for vertex features. This reason combined with the
fact that the classification accuracy is almost the same, we omit further experiments
with the edge features due to smaller speedups.

5.4 Model analysis

Gradient boosted trees (used with dense networks in Sect. 5.1) naturally output feature
importances.We apply the same classifier for the sparse case to allow for a comparison
of feature importance. In both cases, the importance values are distributed among the
ten features and sum up to one (See Fig. 3).

Unsurprisingly, for sparse networks, the local chromatic density (F10) dominates
(importance 0.22). In contrast, (F10) is ineffective for dense networks (importance
0.08), since the chromatic number tends to be much higher than the maximum clique
size. In both cases, (F5) eigencentrality has relatively high importance, justifying its
expensive computation.

For dense networks, (F7) average χ2 over neighbor degrees has the highest impor-
tance (importance 0.23), whereas in the sparse case it is least important feature
(importance 0.03). This is so because all degrees in a dense graph are high and the
degree distribution tends to be tightly bound or coupled. Hence, even slight deviations
from the expected (e.g., vertices in large cliques) depict high statistical significance
scores. We will capitalize on this observation later on in Sect. 7.
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skrowtenesrapS)b(skrowtenesneD)a(

Fig. 3 The feature importance for a dense nets (category “dense”) and b sparse nets (category “all”)

6 On supervised learning for finding cliques

The goal of this section is two-fold: (i) to explain the high accuracy of our proposed
framework, even when it was trained with small instances, and (ii) as a consequence,
argue that supervised learning is a viable approach for solving structured instances of
certain hard problems.

To ensure that the input instances are, at some point, “structure-free” we turn to
the following heavily-studied variant of the maximum clique problem. This serves as
a representative of the worst-case input for our preprocessing strategy. Also, observe
that in case the input graph has a unique maximum clique, MCE is equivalent to
finding the (single) maximum clique. For simplicity, we restrict ourselves to single
stage sparsification in these experiments.

6.1 Planted clique

In the planted clique problem (Jerrum 1992; Kučera 1995), we are given an Erdős-
Rényi random graph H := G(n, p), i.e., an n-vertex graph where the presence of each
edge is determined independently with probability p (see Erdös and Rényi 1959). In
addition, the problem is parameterized by an integer k such that a random subset of k
vertices has been chosen from H and a clique added on it. On this input, the task is to
identify (with the knowledge of the value of k) the k vertices containing the planted
clique.

The problem is easy for k ≤ log2(n). In particular, as shown in Bollobás (2013),
the clique number of G(n, p) as n → ∞ is almost surely w or w + 1 where w is the
greatest natural number such that
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(
n

w

)
p(

w
2) ≥ log(n), (2)

where w is roughly 2 log2(n). Even when a clique of such size is known to exist
(whp), we only know how to find a clique of size log2(n) efficiently,4 and also solve
the problem in polynomial-time when k is large enough. Specifically, it is known
that several algorithmic techniques such as spectral methods [see e.g., Feldman et al.
(2017) for more] produce efficient algorithms for the problem when k = Ω(

√
n).

However, settling the complexity of the problem is a notorious open problem when
k is between 2 log2(n) and

√
n. Next, we will focus precisely on this difficult region.

6.2 Pushing the limits of preprocessing

In this subsection, we explore the limits of scalability and robustness of our framework
on the planted clique problem. All experiments are done on an Intel Core i5-6300U
CPU (2.4 GHz), 8 GB of RAM, running Ubuntu 16.04, differing only slightly from
the earlier hardware configuration. For all experiments here, we use only the igraph
algorithm.

Generation of synthetic data We use the genrang utility program (McKay and
Piperno 2014) to sample a random graph H := G(n, p). To plant a clique of size
k, we sample uniformly at random k vertices, denoted by K , from H and insert all
corresponding at most

(k
2

)
missing edges into H .

For each H , we compute the features described in Sect. 4 with the following dif-
ferences: we replace (F10) the local chromatic density with the order-four LCC and
modify (F8) and (F9) to consider order-four LCC instead of the LCC. This bringsmore
predictive power while still remaining computationally feasible for small graphs. The
values Ei in Eq. 1 for (F6) and (F7) are the expected degree n · p, while for (F8)

and (F9) they are the expected order-k LCC given as
(n−1
k−1

)
p(

k
2) · 1/( np

k−1

)
. To ensure a

balanced dataset, we sample (i) k label-0 examples from K and (ii) k label-1 examples
from G \ K , both uniformly at random.

For training, we consider n ∈ {64, 128, 256, 512} because the clique number grows
roughly logarithmically with n (see Eq. 2). We fix p = 1/2. For every n, we compute
w from Eq. 2, and sample graphs G(n, p) with a planted clique of size k ∈ {w +
2, . . . , w + 6} such that each pair (n, k) gives a dataset of size at least 100 K feature
vectors. When planting a clique of size at leastw+2, we try to guarantee the existence
of a unique maximum clique in the graph. However, this procedure does not always
succeed due to randomness, but we do not discard such rare outcomes.

Vertex classification accuracyWe study the accuracy of our classifiers for distinguish-
ing vertices that are and are not in a maximum clique. Specifically, we train a classifier
for each pair (n, k) ∈ {(64, 10), (128, 12), (256, 12)}, and test for unseen graphs with
the same n but growing planted clique size k′ = k+1, . . . , k+4. The results are shown
in Fig. 4a. As expected, the classification task becomes easier once k′ increases. This

4 It is conjectured (Karp 1976; Feldman et al. 2017) that there is no polynomial-time algorithm for finding
a clique of size (1 + ε) log2 n for any ε > 0 in G(n, 1/2).
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Fig. 4 The vertex accuracy, pruning ratio, and clique accuracy of our framework when trained with
G(n, 1/2) with three different parameter pairs (64, 10), (128, 12), and (256, 13). The predictions are for
independent, distinct samples with the same n, but growing planted clique size k

is also supported the fact that multiple algorithms solve the planted clique problem
in polynomial-time for large enough k′ (see Sect. 6.1). In addition, as n grows larger,
we see accuracy deterioration caused by the converge of the local properties towards
their expected values. For example, since an edge is present with probability p in
G(n, p), the expected degree of a vertex is n · p. As n grows large, it will become
increasingly difficult for a classifier to learn to remove vertices based on degree, as
degree deviations tend to zero providing little signal for classification. Especially for
small values of k′, the injection of the planted clique is not substantial enough to cause
significant deviations from the expected values.

Pruning ratio and clique accuracy We study the effectiveness of our framework as
a probabilistic preprocessor for the planted clique instances. We fix the confidence
threshold q = 0.55 and use the same set of classifiers and test data. The average
pruning ratios over all instances are shown in Fig. 4b. We see pruning ratios as high
as at most 0.6, while always discarding more than 40% of the vertices.

Now, it is possible that P makes an erroneous prediction causing the deletion of a
vertex, which in turn lowers the size of a maximum clique in the instance. The average
clique accuracies over all instances are shown in Fig. 4c. Here, we see that for n = 256,
the vertex accuracy (Fig. 4a) is still above 0.7, but the clique accuracy drops to above
0.4. As the vertex accuracy decreases, the probability of deleting a vertex present in
a maximum clique increases, translating to a higher chance of error in extracting a
maximum clique. However, while not completely error-free, we observe that even in
the case of (256, 13) we always delete at most two members of a maximum clique,
whereas in the case of (512, 16), 95% of the time, we extract a maximum clique of
size at least 13 (see Fig. 5).

Robustness and speedups The robustness and speedups obtained using the igraph
algorithm are given in Table 4. Here, the clique accuracy and runtime are obtained as
the average over 200 samples for each (n, k) except for (n, k) = (512, 15) for which
there are 20 independent samples. We see the drop in clique accuracy when a classifier
P is trained with (n, k) ∈ {(256, 12), (512, 15)} and is predicting for the same n but
increasing k. The clique accuracy is a strict measure, so to quantify the severeness
of the erroneous predictions made by P we show the distributions of the extracted
maximum clique sizes in Fig. 5 for some pairs (n, k). Again, we observe the effects of
growing n causing the convergence of local properties, consequently decreasing the
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Fig. 5 Distribution of extracted maximum clique size, with black bars denoting the size of the planted
clique. Both (a, b) are over 200 samples, while c is over 20 samples. In each, the predicting classifier has
been trained with 64-vertex random graphs with a planted clique of size 10

predictive power of P . For (n, k) = (128, 13), 73% of the runs still produce an optimal
solution (here, one can also observe the rare event of having a maximum clique of
size 14 when the planted clique was of size 13).

We observed that in such scenarios, the performance of the other baseline heuristic
solvers were lower in terms of accuracy, as well as suffered from higher runtime. In
fact, in certain cases (both for real and synthetic datasets), the heuristic solvers takes
longer and also extracted a maximum clique of a much smaller size, as compared to
our framework. Such performance characteristics and comparison can be observed in
Fig. 6b–e.

The case for supervised learning on intractable problems As n grows, the instances
get increasingly time-consuming to solve even for state-of-the-art solvers for suitable
k, as there is no exploitable structure. Consequently, obtaining optimally labeled data
becomes practically impossible for large enough n. However, in our experiments, we
find that random graphs with n = 64 and k = 10 are representative of the input for
moderately larger graphs as well, up to a point. Further, obtaining the optimal label
for such small graphs is fast.

We show the deviation in vertex classification accuracy in Table 5. The column
“Trained acc.” corresponds to the accuracy of the classifier trained with the values n
and k mentioned in the two first columns, while the column “Rob. acc.” is the accuracy
of a classifier trained with smaller (n, k) = (64, 10) instances, and predictions are
made for the specified (n, k) with planted clique size k + 1. A key observation is that
the difference between the two accuracies in a single row in Table 5 is small enough
not to warrant training on larger instances. This offers an explanation for the perfect
clique accuracy with limited training, observed earlier for sparse real-world networks.
This observation reduces the need of labeling costly data points for training.

Discussion.We showcase how a relatively lightweight machine learning approach
(e.g., gradient boosted trees) for vertex/edge pruning can provide significant improve-
ments in the performance of existing solvers. In fact, deep learning techniques like
graph neural networks (GNN) (Scarselli et al. 2009)might also be an alternative in this
regard, and could potentially remove the necessity of computing hand-crafted features
[for an overview, see Zhou et al. (2020)]. While such graph learning techniques in the
context of combinatorial optimization have been recently explored (Mirhoseini et al.
2021), we steer away from such GNN architectures owing to the following reasons:
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Fig. 6 Performance comparison of competing approaches on ER random graphs G(64, p) with varying
density p based on a vertex and edge pruning rates, b run-time, and c maximum clique accuracy; and on
G(256, p) with varying density p, based on d run-time and e maximum clique accuracy

– Training data limitation—Deep learning techniques rely on a large amount of
training data for the model training to converge, as well as for the model to cap-
ture fine-grained patterns present in the data. Such large amounts of training data
might not be readily available in many application domains, particularly involving
computationally difficult problems, limiting such approaches;

– Explainability—Deep learning architectures are traditionally black boxes, and do
not provide any explainability as to why the corresponding output was gener-
ated. This poses a bottleneck in many scenarios (e.g., active learning), and hence
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Table 5 Deviation in vertex
classification accuracy

n k Trained acc. Rob. acc.

128 12 0.858 0.844

256 13 0.747 0.728

512 15 0.678 0.665

provides limited opportunity to analyze the results and make subsequent modi-
fications to the learning model. Further, in cases of evolving constraints in the
applications,model explainabilitywould help better understandingof feature space
addition/modification to suit the needs. In this regard, we use gradient boosted
trees, which provide the importance values of each feature (for the decision of ver-
tex/edge pruning), enabling explainability along with performance improvements;

– Generalizability—GNNs have been shown to be difficult to generalize beyond the
training data (Knyazev et al. 2019;Yehudai et al. 2021). Although transfer learning
provides an avenue to mitigate the problem, the performance of such techniques
are low in general. This, compounded with the need for large training data, renders
such approaches infeasible for diverse application domains; and

– Computation time—GNNs typically suffer from comparatively large inference
time (i.e., time required to predict to prune vertices/edges individually), which
might be infeasible for web-scale graphs (e.g., biological and social network
graphs). Thus, the use of GNNs (as a preprocessing step) along with an exist-
ing solver might increase the overall runtime (than directly applying an existing
heuristic based solver).

Thus, based on the above, we argue that a lightweight machine learning approach suits
better the problem at hand, as depicted in this work. However, for future work, we
aim to investigate GNN approaches to the problem of finding maximum cliques. For a
comprehensive review on GNN applications in this domain, see Cappart et al. (2021).

7 ALTHEA: maximum clique-finding heuristic for dense graphs

In this section, we capitalize on the observation we made in Sect. 5.4. In particular, we
describe a heuristic we call ALTHEA (mAximum cLique exTraction using cHi-squarE
stAtistics) for extracting an approximate maximum clique from a simple input graph
G = (V , E).

7.1 Description of ALTHEA

ALTHEA hinges on categorizing the degree of each vertex in G based on its deviation
from the average degree of G. Each vertex is subsequently represented by a sequence
of category symbols encoding its neighbourhood, which are then used for computing
its statistical significance score. Any vertex depicting the maximum χ2 value (along
with its neighbourhood) forms a candidate region for containing a maximum clique
in G. ALTHEA comprises the following five steps.
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1. Initialization We compute the following three degree characteristics of G.

(i) Δ(G): the maximum degree of any vertex in G,
(ii) a(G): the average degree of the vertices in G; and
(iii) σ(G): the standard deviation of the vertex degrees of G.

Formally, we define

Δ(G) = max{deg(v) : ∀v ∈ V }, (3)

a(G) =
∑

∀v∈V deg(v)

|V | , (4)

and

σ(G) =
√∑

∀v∈V (deg(v) − a(G))2

|V | − 1
, (5)

where deg(v) is degree of vertex v.

2. Symbol categorization ALTHEA captures the nature of vertex degree deviation (in
the number of standard deviations) from the underlying degree distribution of G. The
number of category symbols τG is �(Δ(G) − a(G))/σ (G)� + 1. The obtained set of
category symbols is Γ G = {γ1, γ2, . . . , γτG }, where γi is the multiple of σ(G) by
which the degree of vi deviates from a(G). Next, we compute the expected probability
of occurrence for the symbols in Γ G .

To this end, we use Chebyshev’s inequality (Tchebichef 1867), which for a random
variable X and a real number k > 0 states that Pr(|X − μ| ≥ kδ) ≤ 1/k2. Here, μ

and δ are the mean and standard deviation, respectively, of the distribution fromwhich
the random variable X is drawn. Thus, the occurrence probability of the symbol γi is
given by Pr(γi ) = 1/i2 − 1/(i + 1)2.

Other tail distribution bounds or domain-dependent probability distributions captur-
ing the underlying characteristics ofGmight also beuseddependingon the application.
This makes ALTHEA robust to diverse domains, applicable to different input distribu-
tions.

3. Vertex symbol sequence For each vertex v ∈ V , we extract its closed neighbourhood
N [v] = {v} ∪ {u : {u, v} ∈ E}. The vertex v is then represented by a sequence of
category symbols Seq(v) of length |N [v]| based on the symbol categorization of the
degree of the vertices in its neighbourhood N [v]. Formally, this is given as

Seq(v) = {γ (u) : ∀u ∈ N [v]}, (6)

where γ (u) is the unique γi ∈ Γ G and i ∈ {1, 2, . . . , τG}, for which the inequality
i ≤ (deg(u) − a(G))/σ (G) + 1 < i + 1 holds.

4. Statistical significance computation For each vertex v, ALTHEA computes the χ2

statistical significance score using Seq(v) and the associated symbol probabilities. For
each category symbol γi ∈ Γ G , its expected occurrence count for vertex v is computed
as Ev

γi
= Pr(γi ) × |N [v]|. Similarly, the corresponding observed occurrence count
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Ov
γi

of the category symbol γi for v can be obtained from Seq(v). Combining the
above steps, the statistical significance of v is

χ2(v) =
∑

∀γi∈Γ G

(Ov
γi

− Ev
γi

)2

Ev
γi

. (7)

5. Approximatemaximum clique extractionAfter computing the statistical significance
of the vertices, ALTHEA selects the vertex v′ demonstrating the maximum statistical
significance (chosen arbitrarily in case of ties), as the best candidate whose neigh-
bourhood contains an (approximate) maximum clique for G. Intuitively, a vertex and
its neighbours that are a part of a maximum clique in G would exhibit the largest vari-
ation in the degree distribution characteristic compared to the average (or expected)
characteristic of G, which is captured by the notion of statistical significance. Finally,
the subgraph induced by the neighbourhood N [v′] is fed to a maximum clique solver
for extracting a large clique of G.

Discussion In a dense graph, the degree of any vertex is high, and the degree dis-
tribution tends to be tightly bound (or coupled). Hence, even slight deviations from
the expected behaviour (in cases of vertices that are a part of large cliques) depict
high statistical significance scores. This enables ALTHEA to effectively identify large
maximum cliques, as we will experimentally show next.

7.2 Experimental evaluation

Baselines We benchmark the performance of ALTHEA against the following existing
state-of-the-art approaches:

(i) igraph (Csardi and Nepusz 2006) C library’s implementation of the exact mod-
ified Bron-Kerbosch algorithm (Bron and Kerbosch 1973),

(ii) MoMC (Li et al. 2017) employing a branch-and-bound pruning strategy,5

(iii) FMC(E) (Pattabiraman et al. 2015) using exact hierarchical pruning strategy,6

(iv) FMC(H)—the fast heuristic variant of FMC(E),
(v) RMC (Lu et al. 2017)—randomized heuristic based on “binary search” with

optimum-bounding (obtained from the authors), and
(vi) PMC (Rossi and Gleich 2015; Rossi et al. 2013)—parallelized heuristic based on

vertex colouring and k-core computation.7

By definition, the exact algorithms give the maximum clique size ω.
Note that the final pruned subgraph obtained by ALTHEA is presented to a max-

imum clique solver. We couple ALTHEA with either the exact MoMC solver, or
the fast FMC(H) heuristic. Such a coupling is denoted as e.g., ALTHEA+MoMC or
ALTHEA+FMC(H), respectively. The approaches are evaluated on run-time efficiency

5 Available from URL: www.home.mis.u-picardie.fr/~cli/EnglishPage.html.
6 Available from URL: www.cucis.ece.northwestern.edu/projects/MAXCLIQUE/.
7 Available from URL: www.github.com/ryanrossi/pmc.
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and accuracy of extracting a maximum clique. Our implementation of ALTHEA is in
C, and all experiments are run on an Intel Xeon E5-2680 CPU (2.80 GHz) with 8 cores
and 32 GB of RAM.

7.3 Real datasets

We experiment on structured datasets from diverse domains such as biological net-
works, financial graphs, social interaction and blog conversations. Again, our instances
are obtained from Network Repository (Rossi and Ahmed 2015).

Easy instances We selected 17 dense graphs (see Table 6) with varying sizes of upto
30 K vertices and 1 M edges. Table 6 reports the vertex and edge pruning achieved by
ALTHEA+FMC(H) in addition to run-time and the maximum clique size extracted.
We see that ALTHEA is highly accurate in identifying regions that contain a maximum
clique. In fact, it is successful in extracting an optimal maximum clique in 13 of the
instances, while in the remaining 4 instances, it extracts larger cliques than standalone
FMC(H).

We observe that ALTHEA aggressively prunes the search space (with high accu-
racy), achieving vertex and edge prunings as high as 99%—with more than 80%
vertex/edge pruning on 11 instances. This enables our framework to be very efficient
in practice, showcasing consistent speedups of around 3× compared to the best per-
forming heuristic and upto 10×with respect to the exact algorithms.On the other hand,
RMC is able to extract the maximum clique size in nearly all the instances, but suffers
from large run-time in general (compared to other heuristics), owing to its dependency
on vertex coloring and independent set computation.We also observe the performance
of our approach to be consistently comparable with that of PMC in terms of finding the
maximum clique in the graph. However, in terms of run-time PMC based on a single
execution thread performs worse in most of the instances. However, considering the
inherent parallel nature, PMC provides the best run-time among the approaches when
executed with at least 3 or 4 threads. In fact, for very high density graphs with large
clique sizes, the pruning factor offered by ALTHEA outweighs the parallel nature of
PMC, when compared in terms of run-time improvement. For example, in Table 6,
the moreno-blogs dataset has an average density of around 1K with a maximum
clique of size 1490. For this instance, ALTHEA (even with a small pruning ratio) offers
a run-time improvement of 10× compared to PMC with 8 execution threads.

Hard instances We select 8 additional hard instances, on which exact algorithms
were unable to run to completion with a timeout of 5 min. Table 7 tabulates these
instances and the performance of the competing approaches. Here, we also evaluate
the performance of ALTHEA when coupled with the exact MoMC solver.

Similar to our previous observations from Table 6, ALTHEA+FMC(H) again per-
forms better than the standalone FMC(H) heuristic, and extracts better solutions.
Further, vertex and edge pruning (of around 40% on average) gives ALTHEA faster
run-times with upto 5× speedups over FMC(H). Again, RMC requires high compu-
tation time but extracts larger cliques.
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From Table 7, we see that the pruning strategy of ALTHEA with MoMC provides
an interesting trade-off between solution quality and run-time. This approach is able
to identify significantly better solutions compared to others, in all instances. In fact,
for the last two instances in Table 7 (also in Table 6), we are now able to extract the
optimal solution. Although ALTHEA+MoMC consumes slightly more run-time (than
FMC(H)), it is still faster than RMC. It is interesting to note, thet ALTHEA+MoMC
depicts a far better performance quality (in terms of maximum clique extraction)
compared to PMC. However, PMC is much faster than the other heuristics, even with
only a single execution, and provides a fast approximation, albeit with lower accuracy.

To summarize, we see that ALTHEA provides an efficient and robust pruning strat-
egy for finding an approximate maximum clique with high accuracy in dense real-life
graphs from diverse domains, providing an effective trade-off between quality with
slight increase in run-time. Further, as is well-known, such dense instances constitute
a major challenge for state-of-the-art solvers.

7.4 Synthetic datasets

We turn to study the robustness of ALTHEA on Erdős-Rényi (ER) random graphs,
denoted as G(n, p), which is an n-vertex graph where every edge is present with
independent probability p. We observe the pruning ratio, run-time and accuracy of the
approaches, by varying the two parameters n and p. Particularly for p ≥ 0.5, random
graphs present a challenging benchmark for pruning. Hence, we relax the accuracy
measure by considering a heuristic accurate if the size of the clique returned is at
most 1 less than the optimum.

Graph density The effect of density on the performance of the approaches is shown
in Fig. 6a–c obtained on ER-graphs with 64 vertices with varying density of p ∈
{0.25, 0.33, 0.5, 0.67, 0.75}. In terms of pruning rate, we observe in Fig. 6a that
ALTHEA effectively prunes nearly 50% of the edges (and vertices) even in dense
random graphs (i.e., p = 0.5). However, the pruning rate decreases linearly with
increase in density (to around 20% for p = 0.75). The high pruning rate enables
ALTHEA (coupled with FMC(H) heuristic) to be superior than the other approaches
in terms of run-time demonstrating upto 1.5× speedups compared to the standalone
FMC(H). Similar to the real datasets, RMC suffers from high run-time (upto 10×
slower). Interestingly, we observe that ALTHEA exhibits higher accuracy compared to
FMC(H) (Fig. 6c). ForG(64, 0.75), we report an accuracy ofmore than 70%compared
to around 50% for FMC(H). The accuracy of FMC(H) is seen to degrade significantly
as density increases. For low density graphs (i.e., p < 0.5), both heuristics perform
similarly. RMC has perfect accuracy, but infeasible running times for larger and denser
graphs.

Graph sizeWeassess the effect of varying n on the performance ofALTHEA. Figure 6d,
e present the results for n = 256.

The approaches are seen to exhibit similar behaviour as above, with high pruning
rates for ALTHEA, along with a large speedup in extracting large cliques compared to
FMC(H). From Fig. 6e, we observe that our approach depicts significantly superior
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accuracy (compared to FMC(H))—being nearly 6× more accurate in identifying a
maximum clique in dense input graphs. Finally, we remark that similar results were
observed on ER-graphs for other parameter values of n and p, but omit further details.

8 Conclusions

We have proposed a novel framework for learning to scale-up combinatorial opti-
mization algorithms. In contrast to the existing learning frameworks that use
difficult-to-interpret learning models to learn the exact decision boundary, our pro-
posed framework relies on interpretable learning models with local features to prune
the elements that are not in any optimal solution(s). The deeper insights learned by
our multi-stage pruning framework result in the identification of feature combinations
relevant to the optimization problem and the instance class. This can result in bet-
ter heuristics for the problem, as evidenced by our heuristic for the maximum clique
detection problem.

Our framework has been designed primarily for combinatorial optimization prob-
lems that involve finding an optimal subset of elements. A crucial direction for future
research is to explore if this framework can be extended to deal with combinatorial
optimizations involving ordering and assignment problems. Other avenues for future
research include the design of approaches to improve the accuracy of the pruning by
incorporating problem constraints in the learning process.
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