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ABSTRACT: Nanocomposites comprising plasmon active metal
nanostructures and semiconductors have been used to control the
charge states in the metal to support catalytic activity. In this
context dichalcogenides when combined with metal oxides offer
the potential to control charge states in plasmonic nanomaterials.
Using a model plasmonic mediated oxidation reaction p-amino
thiophenol ↔ p-nitrophenol, we show that through the
introduction of transition metal dichalcogenide nanomaterial,
reaction outcomes can be influenced, achieved through controlling
the occurrence of the reaction intermediate dimercaptoazobenzene
by opening new electron transfer routes in a semiconductor-plasmonic system. This study demonstrates the ability to control
plasmonic reactions by carefully controlling the choice of semiconductors.

■ INTRODUCTION
Advanced materials and new techniques offer significant
opportunities to advance control over surface catalytic
reactions.1−7 Such surface reactions can be potentially applied
in a wide range of areas such as chemical production or for the
removal of contaminants. Currently, used catalysts have well-
known limitations regarding reactivity, selectivity, and/or
stability.8−10 For example, for many current industrial catalytic
processes, catalysts require high temperatures and/or pressures
to operate efficiently.11,12 The use of plasmon resonances in
metal nanostructures to control the rate and selectivity of
photocatalytic reactions offers significant potential.13−17 The
localized surface plasmon resonance (LSPR) excitation of
metal nanostructures produces enhanced light-matter inter-
action, resulting in a strongly enhanced plasmonic electro-
magnetic field on the surface of a plasmon active
nanostructure.8−12 The oscillation of free electrons quickly
decays via the excitation of energetic electron−hole pairs.7−10

These initially excited electrons rapidly thermalize and
equilibrate via electron−electron scattering, creating a “hot”
Fermi−Dirac distribution.2−6 Then the hot distribution cools
via the coupling between the “hot electrons” and the phonons
of the metal lattice. These generation “hot” electrons are seen
as essential in catalysis through their interaction with the target
chemical. However, hot electrons possess short subpicosecond
lifetimes which presents a significant challenge for efficient
surface plasmon-induced hot electron transfer catalytic
reactions.11−14

The development of transition metal dichalcogenide
(TMDC) materials has opened up new opportunities in
optoelectronics applications. Molybdenum disulfide (MoS2) is

emerging as a unique material with a range of optical and
electrical properties. It demonstrates a layer-dependent band
gap and excitons in both the visible and infrared regions of the
electromagnetic spectrum. Among the unique characteristics of
MoS2

18−22 is that photogenerated excitons remain stable at
room temperature because of their high binding energy. In
contrast, devices made completely of MoS2 have a significant
limitation because of their limited capacity to absorb light.
MoS2-based heterostructures formed by combining MoS2 with
materials such as zinc oxide (ZnO) offer the potential to
enhance the optical qualities of the TMDC. ZnO possesses a
wide direct bandgap of 3.37 eV at room temperature and a
work function of 5.2 eV.23,24 In addition, ZnO is low-cost and
exhibits high resistance to defects, high stability, environ-
mentally friendly characteristics, and biosafety.25−28 When
these plasmonic nanoparticles attach to semiconductors such
as ZnO, a Schottky barrier will form at the interface between
the metal and the semiconductor. The formation of this
metal−semiconductor heterojunction is an effective way to
enhance charge carrier separation and improve photocatalytic
efficiency.29 Combining TMDCs nanostructures with ZnO/
plasmonic metal nanomaterials offers a potential route to
control surface catalytic reactions. It has been demonstrated
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that the addition of MoS2 to ZnO concentrates charge onto
MoS2 through photoabsorption-based processes.

30,31 This can
potentially enhance plasmonic catalysis rates through a
strengthened exciton−plasmon interaction between silver
nanoparticles (AgNPs) and MoS2, creating a stronger electric
field at the AgNP/MoS2 interface resulting in longer-lived hot
electrons resulting in enhanced plasmonic catalysis properties.
Additionally, MoS2 can protect plasmonic metals, for example,
by preventing the oxidation of Ag. MoS2 can bind strongly to
plasmonic metals such as Ag due to the favorable bonding
between S (sulfide atom) and the Ag metal atoms. Simulations
of AgNPs when attached to MoS2 showed that strong
excitation-plasmon coupling of the silver lattice with MoS2
layers can occur,32,33 resulting in the altering of the density of
states (DOS) and increasing the hot electrons’ lifetimes which
can potentially improve plasmonic catalysis reaction rates.34,35

Moreover, ZnO and MoS2 have lattice constants that are very
well matched, which makes them ideal for interfacial carrier
transfer in ZnO/MoS2 heterostructures.

36

Here we study the effect of combining TMDCs and metal
oxides on a model plasmonic catalysis reaction. We undertake
this study using the oxidation of p-amino thiophenol (PATP)
to p-nitrophenol (PNTP). We show that in a model oxidation
reaction PATP ↔ PNTP, the reaction is controlled by the
introduction of the TMDC nanomaterial MoS2 to a ZnO/

AgNP system by opening up new electron transfer routes. This
study demonstrates the ability to control plasmonic reactions
by carefully controlling the choice of semiconductor used to
support the plasmon active nanomaterial.

■ RESULTS AND DISCUSSION
Photoluminescence (PL) emission spectra of ZnO and MoS2/
ZnO mix (Figure 1a) revealed the predicted wide peak located
at around 750 nm. When ZnO is introduced to MoS2, a
significant quenching effect is noticed. This reduced PL
intensity suggests that the rate of electron−hole recombination
has decreased. This indicates that the TMDC and semi-
conductor have a strong interaction. Compared to MoS2 or
ZnO alone, the optical characteristics of ZnO coupled with
MoS2 exhibit no variation in absorption peak. As shown in
Figure 1a, MoS2 exhibits an absorption peak at ca. 600 nm
(arising from exciton A and B transitions), while for ZnO, the
absorption peaks are found at 450 nm. After mixing the
composite, we found that the MOS2/ZnO mix exhibits
stronger absorption ability than pristine MoS2, suggesting
that the heterostructure has more intensive light-matter
interaction.37,26,29,58 In Figure 1b, a graph depicting the
relationship between the photon energy hν (eV) and (ν*hν)
1/n was plotted, where n is a constant that relates to various
electronic transition types (n = 3 for indirect forbidden

Figure 1. (a) Optical absorption spectra (UV−vis) of ZnO NWs (red) MoS2 (black) ZnO:MoS2 (blue). Insert: fluorescence spectra of ZnO NWs,
MoS2, and ZnO:MoS2 also fluorescence spectra of ZnO:MoS2 at different concentrations. (b) Tauc plots of ZnO NWs and ZnO:MoS2 to
determine the value of the band gap. (c) Raman spectra of ZnO NWs (black), MoS2 (red) and ZnO:MoS2 (blue). (d) FTIR spectra of the of ZnO
NWs (black) MoS2 (red) ZnO:MoS2 (blue) (e) SEM: (i) ZnO NWs, (ii) MoS2 and (iii) ZnO:MoS2.
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transitions, n = 2 for indirect allowed, n = 3/2 for direct
forbidden, and n = 1/2 for direct allowed).

= A
T

( ) 2.303 log
( )

(1)

where α stands for the absorbance coefficient, A represents the
absorbance, and T represents the sample’s thickness.26,38−50 A
linear fit to this data reveals that the absorption band edge
shifts to the red shift by about 0.2 eV from 3.1 eV for ZnO to
2.9 eV for ZnO/MoS2. This redshift possibly occurs from an
increase in AgNPs electron density which changes the
reflective index of the nanoparticles. Studies of MOS2/ZnO
using Fourier transform infrared (FTIR) spectroscopy were
conducted (Figure 1c). The characteristic stretching mode of
the ZnO bond is assigned a large vibration band in the FTIR
spectra ranging from 400 to 550 cm−1. The presence of
hydroxyl is shown by a broad peak at 3430 cm−1 stretching
mode and 1330 cm−1 to 1670 cm−1 bending mode.59,60 In
addition, a band at 490 cm−1 is observed corresponding to a
Mo−S vibration. Raman spectra of ZnO in (Figure 1d)
showed the strongest peak at 440 cm−1 which is attributed to
the phonon mode wurtzite hexagonal phase E2 of ZnO. In
addition, two peaks are seen at 330 and 380 cm−1, which are
allocated to the multiphoton process 2E2 and A1-TO modes,

respectively. In addition to the Raman spectra of MoS2 excited
at 532 nm, we noted the two main phonon peaks located at
370 cm−1 arising from the E12g in-plane and 410 cm−1 assigned
to A1g out-of-plane.

51,37 The Raman spectra for MoS2 and ZnO
combined showed spectral features arising from combining the
Raman spectral features from each component. Scanning
electron microscopy (SEM) images of the pure MoS2, ZnO
and MoS2/ZnO combined are shown in (Figure 1e)
respectively. The pristine MoS2 nanoparticles have a size
range between 50 and 1000 nm and are clustered. MoS2:ZnO
nanocomposites, the MoS2 layers whose crystalline sizes are ca.
300 nm, are self-restacked and form thick layers. The small
panels of ZnO are decorated on the surface, and edge of the
large, in a small number of layered MoS2.
An investigation into the effect that MoS2/ZnO had on the

plasmonic catalytic conversion of PATP to PNTP was
undertaken. The Raman spectra of PATP and PNTP powder
were first acquired using a dielectric substrate (Figure 2a). The
Raman spectra shows A1 modes with peaks at 1080 and 1595
cm−1 in agreement with literature values.2,3,8−14 The SERS
spectrum of PATP on AgNPs (Figure 2b) reveals strong A1
1077, 1190, and 1600 cm−1 in addition to b2 modes at 1142
ascribed to C−H bend vibration, 1391 and 1440 cm−1 ascribed
to the stretching vibration, and 1550 cm−1 for both frequency

Figure 2. (a) Normalized Raman spectra for PATP or PNTP on a dielectric substrate. (b) Normalized SERS spectra, PATP recorded on AgNPs
only (black), ZnO/AgNPs (blue), MoS2/AgNPs (red) and the composite of ZnO:MoS2 /AgNPs (Pink). (c) Normalized SERS spectra of PNTP
deposited on ZnO/AgNPs, MoS2/AgNPs and ZnO/MoS2 /AgNPs (d) Schematic of the oxidation reaction of PATP showing the formation of
DMAB and PNTP.
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location and relative intensities.8−14 It has been determined
that a photocatalytic process takes place on the metal substrate,
which is responsible for this difference in spectra when
comparing PATP on a dielectric substrate to AgNPs. This
photocatalytic process may result from the hot electrons
formed when the Raman excitation laser excites the localized
surface plasmon resonance (LSPR) of AgNPs.1−3,8−14 There
are two possible mechanisms for this plasmon-driven oxidation
of PATP to p,p′-dimercaptoazobenzene (DMAB). First, the
hot electrons that are produced as a result of plasmon decay
are transferred to adsorbed singlet oxygen molecules from the
surrounding air. This produces reactive triplet 3O2, which is
then engaged in the oxidation of PATP to DMAB. The second
mechanism is that plasmonic hot electrons leap off the surface
of the metal, and the hot holes that are left behind on the metal
oxidize PATP to DMAB. It has been found that if a sufficiently
enough external stimulus was introduced into the system,
PATP would be oxidized to PNTP rather than oxidized to
DMAB.52,8−14 PATP on AgNPs/ZnO (Figure 2b) produces a
Raman spectrum that replicates for PATP on only AgNPs with
the spectrum assigned to DMAB. In contrast, when PATP is
present on AgNPs/MoS2, the substrate prevents the formation
of DMAB. The SERS spectrum possesses a peak at 1350 cm−1

arising from the presence of PNTP formed from the oxidation
of PATP. When PATP is added to AgNPs/MoS2/ZnO, the
spectra show features arising from a combination of DMAB
and PNTP in comparison to when AgNPs/ZnO is studied
where DMAB only is observed. Examining placing PNTP on
the semiconductor-plasmonic substrate was then undertaken to
assess how adding MoS2 to ZnO/AgNPs affects this molecule.
For PNTP on AgNP/ZnO, the Raman spectra of PNTP is
preserved, with the Raman spectra (Figure 2c) showing the
same features as recorded for PNTP (Figure 2a). In contrast,
when MoS2 is added forming ZnO/MoS2/AgNP, PNTP
partially converts to DMAB with the Raman spectra showing
peaks assigned to PNTP and DMAB.9−14,52

A band diagram (Figure 3a) shows a band diagram of ZnO
and MoS2. The semiconductor ZnO has an electron affinity

(χ) = 3.87 eV, work function (φ) = 5.28 eV, and bandgap (Eg)
= 3.26 eV.29,53,54 While, MoS2 has an estimated Eg = 1.4 eV, φ
= 5.15 eV, and χ = 4.3 eV.25,38,55 When adding AgNPs to MoS2
and ZnO, a heterojunction is formed (Figure 3b). Following
the application of the Raman excitation wavelength (532 nm)
electron−hole pairs are formed in MoS2. Electrons from MoS2
conduction band can transfer the Ag Fermi level. As
mentioned earlier, the transfer of electrons from MoS2
conduction band to the Ag Fermi level will suppress PL

(Figure 1a), as the Schottky contact will reduce the rate of
radiative recombination. When ZnO is introduced, this
semiconductor forms a ZnO/MoS2/AgNP system. Photo-
generated electrons from MoS2 could transfer to ZnO, and as
the conduction band edge potential of ZnO is lower in energy
than MoS2, the electrons in the conduction band of MoS2
could transfer into the conduction band of ZnO.29,38,51,53,54,56

This results in reduced efficiency of forming PNTP from
PATP for ZnO/MoS2 /AgNPs relative to MoS2/AgNPs (as
observed in Figure 2).
Overall, we demonstrate that dichalcogenides when

combined with metal oxides offer the potential to control
charge states in plasmonic nanomaterials. This is demonstrated
in a model oxidation reaction PATP ↔ PNTP.57 The use of
molybdenum disulfide influences the reaction of intermediate
dimercaptoazobenzene by introducing a new electron transfer
pathway thereby affecting reaction selectivity. The use of
heterostructures potentially offers a route for the regulation of
the reaction pathway and reduction of consecutive reactions
which may be used to reduce overoxidation.

■ MATERIALS AND METHODS
Substrates and Chemicals. Transition metal dichalcoge-

nides (TMDCs) molybdenum disulfide suspension (MoS2 lot
# MKCH5329) liquid, 5 mg/mL in H2O, 50−1000 nm
thickness, 3 layers, (Aldrich 902012-25 ML) 2D single layered
nanomaterials were used. Zinc oxide nanowires (ZnO NWs)
(Aldrich: SKU: 774006−500MG, CAS: 1314-13-2, MW:
81.39), with a length of 4−5 m, were placed into distilled
water at a concentration of 10−1 M and sonicated for 30 min
with an ultrasonic cleaning bath to make sure the wires were
spread out evenly in the water. The solution was then casted
over a coverslip or silicon substrate to produce zinc oxide
nanowire substrates. Nanocomposite ZnO-NWs/MoS2/
AgNPs substrates were produced by combining ZnO, MoS2
AgNPs (Aldrich: SKU 730807-25 ML; nanoparticles, 40 nm
particle size (TEM), 0.02 mg/mL in an aqueous buffer)
solutions in a 1:1:1 ratio after depositing the mixture on a
coverslip or a silicon substrate.
Preparing Solutions of Probe Molecules. A solution of

4-aminothiophenol (4-ABT) in methanol at a concentration of
10−2 M was produced. The solution was then diluted to a final
concentration of 10−5 M using deionized water. Then, 30 L of
the liquid probe molecule was drop cast onto the substrates
prior to the Raman observations. 1:1:1 ratio (semiconduc-
tors:metals:molecule).
Raman Spectroscopy. SERS spectra are collected using a

monochromatic light green laser (HeNe, ThorLabs). Ex-
citation wavelength is 532 (nm). Laser power and energy
meter: a microscopy slide power meter sensor head (SN:
09113026, S121 C, 400−1100 (nm), 500 (mW), LMR1/M,
Thorlabs) and energy meter are used to measure the incident
laser power. The energy of the laser power is focused by an
attenuator at 5 mW to control the laser power at a distance of
ca. 2 cm for the entire experiment. Briefly, the beam passes
through an interference filter and is directed by a mirror to
angle prism, which drives the beam at 90 towered the sample.
Then, it passes through a lens, which can be focused onto the
samples to obtain the best signals. Here, the sample is excited
and scatters light, which is collected by the lens and passes
through a notch filter. This lowers the impact from the laser
line before it enters the spectrograph. Raman spectra are
collected with an exposure time of 1 s and 10 accumulation

Figure 3. An energy band diagram showing the electronic transition
between ZnO:MoS2 and AgNPs and the PATP analyte molecule. (a)
MoS2/ZnO before contact and (b) formation of MoS2/ZnO
heterojunction.
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modes. Calibration of the Raman spectrographic windows is
conducted by acquiring a Raman spectrum from the toluene
and using it as a standard spectrum. The mean and standard
deviation of 10 measurements is recorded.
Optical Spectroscopy UV−vis Absorption. Optical

absorbance (UV−vis) measurements were accomplished with
the use of an absorbance spectrometer (V-650, JASCO, Inc.),
with the following settings: 1 nm step size, UV−vis bandwidth
of 2 nm, and 200 nm/min scan speed across a range of 200−
800 nm. For the purpose of performing out the measurements,
a coverslip substrate was used.
Fourier Transform Infrared Spectroscopy. Setup for

Fourier transform infrared spectroscopy (FTIR) measurement
parameters included a resolution of 4 cm−1, a sample scan time
of 8 scans, a measurement period of more than 10 s, data
stored between 400 and 4000 cm−1, result spectrum trans-
mission mode, and accessory ATR platinum diamond. As a
solid state, we recorded the FTIR spectra of both ZnO and
MoS2 as well as the composite of ZnO and MoS2. The Alpha
Platinum Bruker system was used in order to acquire data from
the FTIR instrument.
Transmission Electron Microscopy. TEM is used to

examine the thin sample ultrastructure (limited by the
penetration of electron beam). The transmission electron
microscope utilizes an electromagnetic lens to concentrate
electrons into a very tiny beam. The electrons then either
scatter or strike a fluorescent screen at the bottom of the
microscope after passing through a very thin object. An picture
of the specimen with its many components shown in various
hues based on its density shows on the screen. This picture
may then be examined or photographed immediately inside the
TEM.
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