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Abstract. We consider the problem of chance constrained optimization where it is sought to optimize a function
and satisfy constraints, both of which are affected by uncertainties. The real world declinations of this problem are
particularly challenging because of their inherent computational cost.

To tackle such problems, we propose a new Bayesian optimization method. It applies to the situation where the
uncertainty comes from some of the inputs, so that it becomes possible to define an acquisition criterion in the joint
optimized-uncertain input space. The main contribution of this work is an acquisition criterion that accounts for
both the average improvement in objective function and the constraint reliability. The criterion is derived following
the Stepwise Uncertainty Reduction logic and its maximization provides both optimal design variables and uncertain
parameters. Analytical expressions are given to efficiently calculate the criterion. Numerical studies on test functions
are presented. It is found through experimental comparisons with alternative sampling criteria that the adequation
between the sampling criterion and the problem contributes to the efficiency of the overall optimization.

1. Introduction

Despite the long-term research efforts put into numerical optimization, many practical applications
remain difficult. There are three main reasons: most real problems involve nonlinear constraints, the
objective function or the constraints are numerically costly to evaluate (e.g., when nonlinear finite
elements underlie the optimization criteria), and some of the parameters are uncertain.

To ease the computing load, Bayesian Optimization (BO) incorporates kriging surrogates to save
calls to the objective function, as embodied in the archetypal EGO algorithm [46]. The original opti-
mization problem is translated into a series of other problems, that of the acquisition of new points
where the costly function will be calculated. The acquisition criterion is based on the kriging model
and it mitigates the optimization of the function and the improvement of the kriging model [20]. BO
has rapidly been extended to encompass constraints [17, 21, 37, 45].
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In this article, the focus is not only on costly and general nonlinear constrained optimization but
also on problems that are affected by uncertainties.

Uncertainties may originate from random environments such as weather, noise in sensors or un-
controlled boundary conditions. Many physical models also come with uncertainties in an attempt
to describe a lack of knowledge about the true phenomena. Big data applications are confronted to
uncertainties which reflect the part of the data that cannot be handled at a time, either because the
data arrive as a dynamic flow, or because the volume is too large to be processed in a single step. Since
uncertainties are so ubiquitous, robustness against uncertainties is becoming an important aspect of
optimization problem solutions.

When the uncertainties cannot be characterized in stochastic terms such as probabilities, strong
guarantees about the robustness of the solutions can be obtained with deterministic approaches based
on worst-case scenarios over the set of possible uncertainties [8, 19, 29]. If this set is large (possi-
bly infinite) and the problem non-convex, the conservatism of the solutions and the computational
tractability are inherent difficulties of this family of methods. When the uncertainties are seen as
stochastic, two situations may be distinguished.

In a first class of problems, the uncertainties are instantiated within the objective or constraint
functions and cannot be chosen. Such uncertainties are a hard coded, not controllable, noise corrupting
the objective and the constraint functions. A typical situation is when the functions resorts to random
number generations, e.g., for a Monte Carlo simulation, and no access to the source code is granted.
Stochastic algorithms can, under conditions about their own stochasticity, accomodate the noise in the
observations and still converge to problem solutions: this has given rise in the early 50’s to stochastic
descent algorithms [3, 24] that have since then experienced great developments [2, 48] often in relation
to machine learning [25]; well-performing versions of (stochastic) evolutionary algorithms for noisy
functions have been identified [11, 28] thanks to competitions on reference benchmarks [4].

In a second class of problems, the uncertainties perturb parameters that are distinct from the
optimization variables and can be chosen during the simulations. The separation between optimization
(or design) variables and uncertain parameters was already underlying Taguchi’s design of experiments
in the 80’s [27]. Because of this separation and providing that a probability of occurence of the
uncertainties exists, a statistical modelling in the joint design × uncertain parameters space is possible.
This will be the context of the current work.

A key step when optimizing in the presence of uncertainties is the formulation of the problem, i.e.,
the choice of the robustness criteria. Considering first unconstrained problems, relevant criteria are the
expectation of the objective [23] or one of its (super-)quantiles [49, 50]. In Robust Optimization, the
uncertainties are handled in terms of specific compromises between the average performance and its
dispersion [9, 34] or by investigating all such Pareto optimal compromises through a multi-objective
formulation [42].

When there are constraints that depend on the uncertainties, the feasibility of the solutions is typi-
cally measured in probability. Probabilistic models of the constraints are called chance constraints [32]
or reliability constraints [10]. The field of Reliability-Based Design Optimization (RBDO) is concerned
with the resolution of optimization problems that contain reliability constraints [5]. The optimization
problems are formulated in terms of statistical criteria such as probabilities of satisfying the constraints,
expectations or (super-)quantiles or conditional quantiles of the objective function [26, 40, 49]. When
the statistical criteria cannot be calculated analytically, the bottleneck of the computational cost of
the optimization is even more stringent since the statistical criteria must be numerically estimated
within the optimization iterations. This is sometimes called the double loop issue i.e., for each de-
sign point visited, many simulations are needed to encompass the effects of the uncertainties. Several
paths have been proposed to circumvent the double loop issue, some approximating the probability
of feasibility by reliability indices [51], others improving the efficiency of the probability calculations
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(e.g., stratified sampling in [53]), others decoupling the reliability estimation from the optimization.
[47] gives a review of some of these techniques.

In the last decade, numerous contributions to the optimization of costly functions with uncertainties
have relied on the learning of a metamodel of the true functions, in particular Gaussian processes (GP)
[14, 31]. In [23] and [1], the GP not only helps for the optimization (or for the inversion) of the design
variables, but it also serves to define an optimal sampling scheme.

In this article, the problem of minimizing the mean of a stochastic function under chance constraints
is addressed. The objective function and the constraints are costly in the sense that they cannot be
calculated more than a hundred times. Furthermore the problem is assumed to be nonconvex so that
part of the solution process will not be analytical. Uncertainties are described by parameters different
from the optimization variables and that can be chosen in the calculations. Generalizing [23], an
optimization and sampling Bayesian procedure is proposed that accounts for probabilistic constraints.
The acquisition criterion is based on the feasible improvement, which is known to be more myopic (less
explorative) but also numerically more tractable than its information theoretic counterparts [21, 36].
Indeed, information theoretic criteria, which quantify reductions in the entropy of the predicted optima
locations or values, imply internal optimizations of the GP trajectories. Note also that [21, 36] do not
consider uncertain parameters. A less myopic feasible improvement criterion, which looks two-steps
ahead, is given in [52], yet, again, this work does not address uncertain parameters. On the contrary,
uncertainties are examined in [41]: thanks to a spectral decomposition of the GP covariance functions,
the variance and the mean of the objective function under the uncertain parameters become a GP,
which then opens the way to acquisition criteria based on improvement. The constraint bears on the
objective variance. Our contribution differs from [41] essentially by the proposition of a policy to
choose where to evaluate the uncertain parameters, and secondarily, by the consideration of general
constraints.

After formulating the problem (Sections 2.1 and 2.2), a principle for devising robust bayesian prob-
lems is stated (Section 2.3) which applies to any given progress measure. In Section 3, this principle is
applied to the feasible improvement as a specific progress measure. The associated sampling criterion
is introduced in Section 4. It is a Stepwise Uncertainty Reduction (SUR) criterion [7], a one-step-ahead
variance reduction, for which a proxy which is easier to compute is presented. The resulting algorithm
is summarized in Section 5, and its performance assessed on an analytical and an industrial test case.

2. Problem formulation

2.1. Starting problem

Let f(x, u) be the scalar output of an expensive computer simulation and let gi(x, u), i = 1, . . . , l be
the set of constraints, where x ∈ SX can be precisely chosen while u ∈ SU is a realization of a vector of
random variables U with a specified probability density function ρU. Such a formulation with design
and random variables is general to all optimization problems under uncertainty. The examples in this
article belong to continuous optimization in the sense that SX ⊂ Rd and SU ⊂ Rm. Nevertheless, it is
important to note that the framework of our work, the Gaussian processes and the algorithms which
will be introduced, generalize nicely to spaces that contain discrete variables (see for example [35, 43]).

Our goal is to find x which minimizes f while insuring that the gi’s lies under a failure threshold (0
in general). In the presence of uncertainties, Robust Optimization aims at controlling the impact of
uncertainties on the performance of the optimal solution. The problem is that f(x, U) and gi(x, U),
i = 1, . . . , l are random quantities induced by U. In order to perform optimization, we need to fall
back on a deterministic form which is achieved by applying some statistical measures to f(x, U) and
gi(x, U), i = 1, . . . , l [26, 49].
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In this article, the constrained optimization problem under uncertainties is formulated as the mini-
mization of the expectation over U of f while all the constraints gi(x, U) ≤ 0, i = 1, . . . , l are satisfied
with a high probability:

x∗ = arg min
x∈SX

E[f(x, U)] s.t. P(gi(x, U) ≤ 0, i = 1, . . . , l) ≥ 1− α

where U ∼ ρU with support SU .
(2.1)

α is a reliability parameter representing the allowed constraint violation level (0 < α < 1).
In the formulation of Equation (2.1), the emphasis is on constraint satisfaction with a guaranteed

reliability. This is common in RBDO where constraints are satisfied in probability and the objective
function is deterministic [14]. Such problems are also said to have chance constraints [8]. In addition
in Equation (2.1), random events affect the objective function and are taken into account through
an expectation. Thanks to its linearity, the expectation is the simplest statistical measure. Besides,
efficient approaches exist to estimate and optimize it [23]. Formulations such as Equation (2.1) with a
mean objective function and chance constraints have been called a “model for qualitative failure” [2]
in which the objective function and the constraints are taken as independent. Other formulations with
quantiles conditioned by feasibility have been given in [26, 40] but they remain an open challenge for
costly problems. In the current work, Equation (2.1) is addressed because it is a compromise between
complete robust formulations and mathematical tractability.

By seeing the probability as an expectation, the constraint part of Equation (2.1) becomes

P(gi(x, U) ≤ 0, i = 1, . . . , l) ≥ 1− α

⇔ 1− α− E[1{gi(x,U)≤0, i=1,...,l}] ≤ 0.

From the last expression, the problem (2.1) is equivalent to

x∗ = arg min
x∈SX

z(x) s.t. c(x) ≤ 0 (2.2)

where z( · ) := E[f( · , U)] and c(x) := 1− α− E[1{gi(x,U)≤0, i=1,...,l}].

2.2. Gaussian Process regression framework

In the context of expensive computer simulation, the Problem (2.2) is approximated with Gaussian
processes (GPs). Directly building a metamodel for z and c would need too many evaluations of f and
gi to estimate the expectation and the probabilities. Therefore, GP approximations of f and the gi’s
are built in the joint space SX ×SU . Models for z and c in the design space SX are then deduced from
them. More precisely, we suppose that f and the constraints (gi)l

i=1 are realizations of independent
Gaussian processes F and Gi such that

F (x, u) ∼ GP(mF (x, u), kF (x, u, x′, u′)),
∀i = {1, . . . , l} , Gi(x, u) ∼ GP(mGi(x, u), kGi(x, u, x′, u′)),

where mF and mGi are the mean functions while kF and kGi are the covariance functions.
Let F (t) and G

(t)
i denote the Gaussian processes conditioned on the t observations, f (t) =

(f(x1, u1), . . . , f(xt, ut)) and g
(t)
i = (gi(x1, u1), . . . , gi(xt, ut)), obtained at points D(t) = {(xk, uk),

k = 1, . . . , t}. Since the expectation is a linear operator applied to f , it follows that Z(t)(x) =∫
Rm F (t)(x, u)ρU(u)du is still a Gaussian process with known mean m

(t)
Z and covariance function
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k
(t)
Z given by:

m
(t)
Z (x) =

∫
Rm

m
(t)
F (x, u)ρU(u)du,

k
(t)
Z (x, x′) =

∫∫
R2m

k
(t)
F (x, u, x′, u′)ρU(u, u′)dudu′.

(2.3)

The integrals that appears in (2.3) can be evaluated analytically for specific choices of ρU and kF

(see [23]). In the general case, a quadrature rule can be used to approximate these integrals or a
Monte Carlo method if m is large.

We also introduce the process

C(t)(x) = 1− α−
∫
Rm

1∩l
i=1{G

(t)
i (x,u)≤0}ρU(u)du

which is the statistical model of the constraint c (Equation (2.2)). Note that the process C(t) is not
Gaussian.

To solve Problem (2.2), Bayesian optimization is used where functions z and c are considered
realizations of processes Z and C. The procedure is detailed next.

2.3. A general principle for devising robust Bayesian optimization algorithms

Now that the problem has been formulated (Section 2.1) and the GP models introduced (Section 2.2),
we present a Bayesian algorithm to solve Problem (2.1) within a restricted number of calls to f and
the gi’s. Before going into the details of the method, it is important to understand the general principle
that underlies the design of robust Bayesian Optimisation (BO) algorithms.

Proposition 2.1 (A general principle to devise robust BO algorithms). Robust Bayesian Optimization
algorithms can be designed as follows:

(A) define a progress measure P (x) in relation with the problem formulation and calculated from
the GPs trajectories.

(B) The robust BO algorithm is:
Define an initial space filling design in the joint space SX × SU : D(n0)

Initialize all conditional GPs: F (n0), G
(n0)
i , i = 1, . . . , l with D(n0)

while stopping criterion not met do
Determine a desirable, targeted, x by maximizing the expectation of the progress measure,

xtarg = arg max
x∈SX

E
(
P (t)(x)

)
. (2.4)

The next iterate minimizes the one-step-ahead variance of the progress measure at xtarg,

(xt+1, ut+1) = arg min
x̃,ũ∈SX ×SU

VAR
(
P (t+1)(xtarg)

)
(2.5)

where P (t+1) is evaluated with GPs updated according to D(t+1) = D(t) ∪ {(x̃, ũ)}.
Calculate the simulator response, i.e., f and gi, i = 1, . . . , l, at the next point (xt+1, ut+1).

Update the design D(t+1) = D(t) ∪ {(xt+1, ut+1)}
Update the Gaussian processes, F (t+1), G

(t+1)
i , i = 1, . . . , l.

end while
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Various algorithms can be obtained by changing the measure of progress P . In this article it will be
the feasible improvement, which will soon be presented. Other measures of progress are possible, for
example P (x) = −F (x)−

∑l
i=1 pi max(0 , Gi(x, umod)) where the pi’s are positive penalty parameters

and umod the mode of U, or P (x) = max([zfeas
min −Z(x) | C(x) ≤ 0], 0) where zfeas

min is the best objective
function associated to a feasible point. The goal of the next sections is to present the methodology and
the associated formulas when the progress measure is the feasible improvement, chosen for its closeness
to the problem formulation and its computability. The one-step-ahead variance can be difficult to tackle
so approximations are useful. In this text, the generic term “sampling criterion” relates to the one-
step-ahead variance or its proxy. For costly problems, the stopping criterion in Proposition 2.1 is often
a given number of calls to the simulator.

3. The progress measure and the associated targeted point xtarg

Following Proposition 2.1, the first step consists in defining a progress measure P (t), which will be the
cornerstone of the definition of what a most promising candidate for evaluation, xtarg, is. The max-
imization of its expectation should contribute to both solving the constrained optimization problem
and improving the GPs. The most popular progress measure for optimization under constraints is the
Feasible Improvement [44, 46] defined by

FI(t)(x) = I(t)(x) 1{C(t)(x)≤0} ,

where I(t)(x) =
(
zfeas

min − Z(t)(x)
)+ denotes the improvement over the current feasible minimum value.

In our case, zfeas
min must be further explained because it is not directly observed. This will be the

subject of the next section. The definition of zfeas
min and the fact that C(t)(x) is not Gaussian is a

difference between the FI of this article and those in [44, 46].
Following Proposition 2.1 and Equation (2.4) the promising point in the control space is obtained by

maximizing the expectation of the progress measure. Here it corresponds to maximizing the Expected
Feasible Improvement (EFI),

xtarg = arg max
x∈SX

EFI(t)(x). (3.1)

where EFI(t)(x) is E
(
FI(t)(x)

)
. The independence of the GP processes implies that the EFIcan be

expressed as

EFI(x) = EI(t)(x)P(C(t)(x) ≤ 0).

The first term is the well known Expected Improvement (EI) for which an analytical expression is
available,

EI(t)(x) = (zfeas
min −m

(t)
Z (x))Φ

(
zfeas

min −m
(t)
Z (x)

σ
(t)
Z (x)

)
+ σ

(t)
Z (x)ϕ

(
zfeas

min −m
(t)
Z (x)

σ
(t)
Z (x)

)
, (3.2)

where σ
(t)
Z (x) =

√
k

(t)
Z (x, x), Φ and ϕ are the normal cumulative distribution and density functions,

respectively. The second term, P(C(t)(x) ≤ 0), can be approximated with available numerical methods
(see details in Section 5.2).

Definition of the current feasible minimum zfeas
min

To solve problem (3.1), we need to define zfeas
min. We extend the definition of the current minimum

for a non-observed process Z introduced in [23] to a problem with constraints. zfeas
min is defined as the
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minimum of the mean of the process Z(t) such that the constraint is satisfied in expectation

zfeas
min = min

x∈Xt

m
(t)
Z (x) s.t. E[C(t)(x)] ≤ 0 . (3.3)

Under Fubini’s condition and as the constraints are conditionally independent given x and u,
the expectation of C(t) is an integral over the uncertain space of a product of univariate Gaussian
cumulative distribution functions

E[C(t)(x)] = E
[
1− α−

∫
Rm

1∩l
i=1{G

(t)
i (x,u)≤0}ρu(u)du

]

= 1− α−
∫
Rm

l∏
i=1

E[1{G
(t)
i (x,u)≤0}]ρu(u)du

= 1− α−
∫
Rm

l∏
i=1

Φ

−m
(t)
Gi

(x, u)

σ
(t)
Gi

(x, u)

 ρU(u)du.

(3.4)

If there is no solution to problem (3.3), we choose the most feasible point in expectation,

zfeas
min = m

(t)
Z (xmf) where xmf = arg max

x∈Xt

∫
Rm

l∏
i=1

P(G(t)
i (x, u) ≤ 0)ρU(u)du.

4. Extending the acquisition criterion

The sequential methodology introduced in Proposition 2.1, Equation (2.5), requires to choose a couple
(xt+1, ut+1) such that the variance of the one-step-ahead feasible improvement is minimal, i.e.,

(xt+1, ut+1) = arg min
(x̃,ũ)∈SX ×SU

VAR
(
I(t+1)(xtarg) 1{C(t+1)(xtarg)≤0}

)
, (4.1)

where I(t+1) and C(t+1) are the updated I(t) and C(t) taking into account the observations at the point
(x̃, ũ). This choice increases the most the information provided at the current point of interest, xtarg,
where the information now includes both the probabilistic constraints and the improvement.

In [23], the authors noted that xt+1 is usually very close to xtarg so instead of looking for the couple
(xt+1, ut+1), we assume that xt+1 = xtarg. This simplifies the optimization of the sampling criterion
because it reduces the dimension of the minimization (Equation (4.1)). As the one-step-ahead variance
of the feasible improvement is difficult to evaluate, a computationally more tractable quantity, built
with a product of variances, is now proposed.

The sampling criterion

We introduce a new sampling criterion specific to the robust optimization Problem (2.1), denoted S for
Sampling as it is used to generate a new value for u. It is inspired by the variance of the one-step-ahead
feasible improvement but easier to assess.

Proposition 4.1. The sampling criterion, given a new observation at point (x̃, ũ), is

S(x̃, ũ) = VAR
(
It+1(xtarg)

) ∫
Rm

VAR
(
1∩l

i=1{G
(t+1)
i (xtarg,u)≤0}

)
ρU(u)du,

= VAR(
(
zfeas

min − Z(t+1)(xtarg)
)+)

∫
Rm

VAR
(
1∩l

i=1{G
(t+1)
i (xtarg,u)≤0}

)
ρU(u)du.

(4.2)

In Equation (4.2) the first part of the expression forces the sampling to reduce the uncertainty in
the improvement value while the second part focuses on the averaged predicted feasibility variance.
For the sake of calculation simplicity, it might seem preferable to replace the improvement by the
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objective process Z(t+1) and the variance of feasibility by the variance of the constraints. However,
such variances are not those of the quantities of interest. In optimization, it is not important to reduce
the variance of the constraints if it is clear that points are feasible or infeasible. However it is important
to reduce the variance when there is a large uncertainty on feasibility, which is achieved by considering
the variance of the Bernoulli variable 1∩l

i=1{G
(t+1)
i (xtarg,u)≤0}. In the same way, the variance of Z(t+1)

in regions where it is clearly above the target does not matter, but the variance of the process where
improvement is uncertain should be reduced.

The ideal sampling criterion for the optimization problem at hand, the variance of the feasible
improvement (Equation (4.1)), is the variance of the product of the improvement times a feasibility
with confidence. The criterion S bears some resemblance but is not equivalent to the variance of the
feasible improvement. It is a product of variances, which is not equivalent to the variance of a product1.
Furthermore, the second term in the product for S (Equation (4.2)) is an averaged variance of feasibility
1∩l

i=1{G
(t+1)
i (xtarg,u)≤0} as opposed to a variance of feasibility with 1− α confidence, 1C(t+1)(xtarg)≤0.

So, we choose the best candidate uncertainty ut+1 as
ut+1 = arg min

ũ∈SU
S(xtarg, ũ). (4.3)

The calculation of both terms of S is now presented.

Calculation of VAR
(
It+1(xtarg)

)
The expression of VAR

(
It+1(xtarg)

)
given a new observation at point (x̃, ũ) is

VAR
(
It+1(xtarg)

)
= VAR

((
zfeas

min − Z(t+1)(xtarg))+
)

= VAR
((

zfeas
min − Z(xtarg)

)+ ∣∣∣F (D(t)) = f (t), F (x̃, ũ) = f(x̃, ũ)
) (4.4)

The expression of the expected improvement in terms of PDF and CDF of Gaussian distribution is
well-known. The closed-form expression of the Variance of the Improvement stated in Proposition 4.2
can be obtained using the expression of the generalized expected-improvement criterion introduced
in [46]. For the convenience of the readers, we provide a complete proof in Appendix A.1.

Proposition 4.2 (The Variance of the Improvement).

VAR
(
I(s)(x)

)
= EI(s)(x)

(
zfeas

min −m
(s)
Z (x)− EI(s)(x)

)
+ (σ(s)

Z )2(x)Φ
(

zfeas
min −m

(s)
Z (x)

σ
(s)
Z (x)

)
,

where σ
(s)
Z (x) =

√
k

(s)
Z (x, x).

As f(x̃, ũ) is unknown, we cannot apply Proposition 4.2 to Equation (4.4). We use that F (t)(x̃, ũ) ∼
N
(
m

(t)
F (x̃, ũ), k

(t)
F (x̃, ũ; x̃, ũ)

)
and the law of total variance

VAR
(
It+1(xtarg)

)
= E

[
VAR

((
zfeas

min − Z(xtarg)
)+ ∣∣∣F (D(t)) = f (t), F (x̃, ũ)

)]
+ VAR

[
E
((

zfeas
min − Z(xtarg)

)+ ∣∣∣F (D(t)) = f (t), F (x̃, ũ)
)]

. (4.5)

To compute Equation (4.5), notice that the inside of the brackets have closed-form expressions in
terms of m

(t+1)
Z and σ

(t+1)
Z , which are given by Proposition 4.2 and Equation (3.2) for the first and

second brackets, respectively. The external E and VAR only concern m
(t+1)
Z (xtarg) whose randomness

1Let U and V be two random variables, U ⊥⊥ V , VAR(UV ) = EU2EV 2 − (EU)2(EV )2.
VARU VARV = (EU2 − (EU)2)(EV 2 − (EV )2) = EU2EV 2 − (EU)2(EV 2 − (EV )2) − EU2(EV )2. The variance of the
product is the product of the variances only if EU = EV = 0 when VAR(UV ) = VARU VARV = EU2EV 2.
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comes from F (x̃, ũ), σ
(t+1)
Z (xtarg) being not dependent on the evaluation of the function. It is proved

in Appendix A.2 that m
(t+1)
Z (xtarg) follows

m
(t+1)
Z (xtarg) ∼ N

(
m

(t)
Z (xtarg),

(∫
Rm k

(t)
F (xtarg, u; x̃, ũ)ρU(u)du√

k
(t)
F (x̃, ũ; x̃, ũ)

)2)
. (4.6)

Finally, the external E and VAR in Equation (4.5) are numerically evaluated. Details are given in
Section 5.2.

Calculation of
∫
Rm VAR

(
1∩l

i=1{G
(t+1)
i (xtarg,u)≤0}

)
ρU(u)du

Regarding the second term, we follow the Kriging Believer principle, leading to suppose that ∀i =
1, . . . , l ; m

(t+1)
Gi

(xtarg, u) = m
(t)
Gi

(xtarg, u). Under the hypothesis of independence of the constraint
GPs, we have ∫

Rm
VAR

(
1∩l

i=1{G
(t+1)
i (xtarg,u)≤0}

)
ρU(u)du =

∫
Rm

p(u)(1− p(u))ρU(u)du,

where

p(u) =
l∏

i=1
Φ
(

−m
(t)
Gi

(xtarg, u)√
k

(t+1)
Gi

(xtarg, u, xtarg, u)

)
,

and k
(t+1)
Gi

(xtarg, u, xtarg, u) = k
(t)
Gi

(xtarg, u, xtarg, u)−
(k(t)

Gi
(xtarg,u;x̃,ũ))2

k
(t)
Gi

(x̃,ũ;x̃,ũ)
(cf. [13]). Further details about

the numerical estimation of the above integral are given in Section 5.2.
The steps of the proposed methodology are summarized in Algorithm 1, called EFISURfor Expected

Feasible Improvement with Stepwise Uncertainty Reduction sampling.

Algorithm 1 : EFISUR(Expected Feasible Improvement with Stepwise Uncertainty Reduction sampling)

Create an initial Design of Experiments (DoE) of size t in the joint space and calculate simulator
responses:
D(t) = {(xi, ui) , i = 1, . . . , t}, and associated f (t) and g

(t)
i

while t ≤ maximum budget do
Create the GPs of the objective and the constraints in the joint space: F (t) and (G(t)

i )l
i=1

Calculate the GP of the mean objective, Z(t), in the search space SX
Optimize EFIto define xtarg = arg maxx∈SX EFI(t)(x) (Eq. (3.1))
Set xt+1 = xtarg
Sample the next uncertain point by solving
ut+1 = arg minũ∈SU S(xtarg, ũ) (Eq. (4.3))
Calculate simulator responses at the next point (xt+1, ut+1)
Update the DoE: D(t+1) = D(t) ∪ (xt+1, ut+1), f (t+1) = f (t) ∪ f(xt+1, ut+1),
g

(t+1)
i = g

(t)
i ∪ gi(xt+1, ut+1) , i = 1, . . . , l, t← t + 1

end while

5. Numerical experiments

In this section the performance of the EFISURmethod is studied first on an analytical test case, and
then on an industrial application. The results are compared to two alternative procedures which are
described below.
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The code and data generated or used during the current study are available in the first author’s
GitHub repository [16].

5.1. Competing algorithms

Two algorithms serve as bases for comparison for EFISUR. To the best of our knowledge, although
inspired by previous works, these algorithms are new. First, the EFIrandalgorithm is identical to
EFISURto the exception of the point ut+1 which is simply sampled from its distribution. This
EFIrandalgorithm will be useful to judge the usefulness of the sampling criterion S in EFISUR.

Algorithm 2 : EFIrandExpected Feasible Improvement with random sampling
Create an initial DoEof size t in the joint space and calculate simulator responses:
D(t) = {(xi, ui) , i = 1, . . . , t}, and associated f (t) and g

(t)
i

while t ≤ maximum budget do
Create the GPs of the objective and the constraints in the joint space: F (t) and (G(t)

i )l
i=1

Calculate the GP of the mean objective, Z(t), in the search space SX
Optimize EFIto define xt+1 = arg maxx∈SX EFI(t)(x) (Eq. (3.1))
Sample the next uncertain point randomly, ut+1 ∼ ρU
Calculate simulator responses at the next point (xt+1, ut+1)
Update the DoE: D(t+1) = D(t) ∪ (xt+1, ut+1), f (t+1) = f (t) ∪ f(xt+1, ut+1),
g

(t+1)
i = g

(t)
i ∪ gi(xt+1, ut+1) , i = 1, . . . , l, t← t + 1

end while

The other algorithm to which EFISURwill be compared uses the quantile as an alternative way of
measuring the failure probability. For the first constraint, the quantile writes,

P(g1(x, U) ≤ 0) ≥ 1− α⇐⇒ q1−α(g1(x, U)) ≤ 0.

When dealing with several constraints, P(g(x, U) ≤ 0) is then replaced by individuals constraints
with quantile level 1 − α/l. The quantile of the constraint i = 1, . . . , l is approximated using the
predictive mean of the GP model G(t),

q1−α/l(gi(x, U)) ≈ q1−α/l(m
(t)
Gi

(x, U)). (5.1)

Further implementation details about the quantile estimation are given in Section 5.2.
In order to choose the next point in the design space, xt+1, this last competing methodology

maximizes the expected improvement under constraints about the empirical quantiles:

xt+1 = arg max
x∈SX

EI(t)(x)

such that ∀i ∈ {1, . . . , l}, q1−α/l(m
(t)
Gi

(x, U)) ≤ 0.
(5.2)

The sampling in the uncertain space is based on the deviation number developed in [15, 18] for the
Active Kriging Monte Carlo simulation technique. In these works, the uncertainty that is most likely
to improve the GP is the one that minimizes the following DN(Deviation Number) function,

DNi(u) =
|m

G
(t)
i

(xt+1, u)|

σ
(t)
Gi

(xt+1, u)
. (5.3)

The points that have a low deviation number are either close to the constraint threshold (null in
Equation (5.3)), or they have a high GP variance. To handle multiple constraints, the constraint with
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the minimum value of DNis selected (as in [30]),

DNc(u) = min
i=1,...,l

DNi(u). (5.4)

The whole algorithm is called cEIdevNumfor Constrained EIplus Deviation Number. The
cEIdevNumalgorithm is an alternative to EFISURfor handling chance constraints in the augmented
space. During the optimization step for xt+1, the constraints are handled explicitely through an an-
cilliary constrained optimization algorithm, as opposed to the EFIthat aggregates them in a single
objective. However, the reliability is defined independently for each constraint, which is not equivalent
to the real problem given in Equation (2.1). The sampling step (the DNminimization) accounts only
for the constraints satisfaction and not for the objective function. The cEIdevNumalgorithm bears some
resemblance to the approach described in [31]: in both cases, the reliability constraint is estimated
with a kriging model used to estimate quantiles, and sampling occurs through the minimization of
the deviation. The generalization of EGO to constrained problems by approximating the constraints
through kriging models and keeping them separated from the objective, as it is done in Equation (5.2),
can be found in other papers, e.g., [6]. However, to the authors’ knowledge, cEIdevNumintegrates these
techniques within an EGO-like algorithm in an original manner.

Algorithm 3 : cEIdevNum
Create an initial DoEof size t in the joint space and calculate simulator responses:
D(t) = {(xi, ui) , i = 1, . . . , t}, and associated f (t) and g

(t)
i

while t ≤ maximum budget do
Create the GPs of the objective and the constraints in the joint space: F (t) and (G(t)

i )l
i=1

Calculate the GP of the mean objective, Z(t), in the search space SX
Optimize the expected improvement under quantile constraints to determine the next iterate

xt+1 = arg max
x∈SX

EI(t)(x)

such that ∀i ∈ {1, . . . , l}, q1−α/l(m
(t)
Gi

(x, U)) ≤ 0, (Eq. (5.2))

Sample the next uncertainty by minimizing the deviation number,
ut+1 = arg min

u
DNc(u) (Eq. (5.4))

Calculate simulator responses at the next point (xt+1, ut+1)
Update the DoE: D(t+1) = D(t) ∪ (xt+1, ut+1), f (t+1) = f (t) ∪ f(xt+1, ut+1),
g

(t+1)
i = g

(t)
i ∪ gi(xt+1, ut+1) , i = 1, . . . , l, t← t + 1

end while

5.2. Implementation details

Two strategies are adopted depending on the numerical cost of the integrals.

Common Random Numbers for u samples

All three algorithms include Monte Carlo simulations with respect to u samples. The efficiency of all
three algorithms is enhanced by a common random numbers (CRN) technique. This means that the
same seed is used to generate all random variables throughout the optimization. In particular, the
same realizations of the uncertain variables {u1, . . . , uM}, obtained by a quantization technique [33],
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are considered in all iterations. The CRN produces more stable optimizations and reduces the variance
of the estimated probabilities since the induced error is consistent within different designs. There is
however a bias in the Monte Carlo estimations, which we keep small here by choosing relatively large
Monte Carlo number of simulations.

More precisely, the EFISURalgorithm uses the CRN at different steps:

• In the EFIformula, the calculation of the quantity P(C(t)(x) ≤ 0) is approximated by

P(C(t)(x) ≤ 0) ≈ 1
N

N∑
k=1

1(
1−α− 1

M

∑M

j=1 1
(

G
(t)
i

(x,uj,ωk)≤0, i=1,...,l

)≤0
) (5.5)

where N realizations of the GPs are needed.

• In the zfeas
min formula, the calculation of E[C(t)(x)] is approximated by :

E[C(t)(x)] ≈ 1− α− 1
M

M∑
j=1

l∏
i=1

Φ

−m
(t)
Gi

(x, uj)

σ
(t)
Gi

(x, uj)

 .

• In the second term of the sampling criterion,
∫
Rm p(u)(1− p(u))ρU(u)du is approximated by

1
M

∑M
j=1 p(uj)(1− p(uj)).

The experiments reported in this article have as default N = 1000 trajectories of the GPs and
M = 300 common random numbers.

The EFIrandalgorithm is identical to EFISURto the exception of the sampling of the next uncertain
point which is random, hence it has a lower computational complexity.

Concerning the cEIdevNumalgorithm, the quantiles making the constraints, q1−α(m(t)
Gi

(x, U)) ≤ 0,
are approximated by the corresponding order statistic associated to the sample {m(t)

Gi
(x, uj)}Mj=1. For

sharper comparisons, we use the same seed (M = 300 common random numbers) to estimate the
quantiles.

Computational complexity

Remember that t is the iteration number and the number of data points, t ≤ budget, M is the number
of u samples and N is the number of GP trajectories in the simulations, l the number of constraint GPs,
d and m the dimensions of u and x, respectively. The memory usage of the GPs grows in O(t2) and is
essentially the same for the EFISUR, EFIrandand cEIdevNumalgorithms. The details of the calculations
of the time complexities of the three algorithms are provided in Appendix B. The time complexities
of the EFISURand EFIrandalgorithms are identical and of the order of max[O(budget3) × (l + 1) ×
(d + m) , d ×N × O(M3)], where the first term in O(budget3) comes from learning the GPs in the
augmented space while the second term in O(M3) comes from calculating the EFI. Learning the GPs
is the critical component of cEIdevNumwhich therefore is computationally cheaper than EFISURand
EFIrandin most situations where M > budget. For large budgets however, the cost of GPs construction
will dominate that of the EFI, making all three algorithms equivalent in terms of complexity.

Quantization for m
(t+1)
Z samples

The calculation of the first term of the criterion S requires realizations of m
(t+1)
Z (see Equation (4.5)).

To this end, we approximate the continuous distribution of m
(t+1)
Z (given in Equation (4.6)) by a

discrete one. As m
(t+1)
Z follows a Gaussian distribution, we approximate it using the inverse trans-

formation of the Sobol sequence. Thus, the external variance and expectation of Equation (4.5) are

296



The EFISUR algorithm

discretized at values representing the distribution of m
(t+1)
Z . In the upcoming experiments, a quantizer

of size 20 is chosen.

Internal optimizations

The EFISURalgorithm and its two competitors involve several internal optimization problems that
must be solved at every iteration. Some of these problems are unconstrained: the maximization of
EFIwith respect to x (EFISURand EFIrandalgorithms) or the minimization of S or Uc with respect to
u (EFISURand cEIdevNum). Such internal continuous unconstrained optimization problems are handled
with the derivative-free solver BOBYQA [39].

The Problem (5.2) in the algorithm cEIdevNumfurther requires a solver that can handle constraints.
It is addressed with the COBYLA program [38].

5.3. Analytical test case

A first test-case is now considered to compare the three competing algorithms in moderate dimensions.
A fully random search, Random, is added for reference. The problem has two design variables, two
uncertain parameters and a single reliability constraint:

minimize E[f(x, U)]
such that P(g(x, U) ≤ 0) ≥ 1− α

where f(x, u) = 5(x2
1 + x2

2)− (u2
1 + u2

2) + x1(u2 − u1 + 5) + x2(u1 − u2 + 3)
g(x, u) = −x2

1 + 5x2 − u1 + u2
2 − 1

with x ∈ [−5, 5]2

U ∼ U([−5, 5]2)
By setting the target probability of failure to α = 0.05, the computed reference solution is x∗ =
(−3.62069,−1.896552). This reference was found semi-analytically because some of the calculations
are manually tractable in the above problem. Figure 5.1 shows the contour plots of the functions
E[f( · , U)] and P(g( · , U) ≤ 0) obtained from a 40 × 40 grid experiments, where at each grid point
the expectation and the probability are approximated by a Monte Carlo method over 104 realizations
of U.

To account for the inherent statistical variability of the algorithms, the runs are repeated 30 times
for each method. The inital Design of Experiments of each method is a random Latin hypercube of
4 + (d + m) = 8 points. An additional budget of 56 iterations2 is used as a stopping criterion. The
default Gaussian Process has a Matérn 5/2 covariance function and a constant trend. The performance
of the various methods is measured by the average Euclidean distance between the optimum given by
the method and the true minimum, at each iteration. The distance to the solution, averaged over the
30 runs, is plotted in Figure 5.2.

EFISURand EFIrandconverge faster to the optimum than cEIdevNum. After 40 iterations,
EFISURapproaches the solution more closely than EFIranddoes. A complementary view of the con-
vergence, with dispersions, can be found in Figure 5.3 which shows the boxplots of the distances to
the reference solution at iterations 15 (left panel), 40 (middle) and 60 (right). It is observed that
EFISURleads to an accurate solution from 40 iterations onwards with a small deviation between the
runs. At all iterations, cEIdevNumhas a larger mean distance to the solution (but the median is better
at 60 iterations) and, mainly, a larger spread in results. Figure 5.4 shows the “a posteriori” probability,
calculated by Monte Carlo, of satisfying the constraint at the current point seen as feasible by the

2An iteration encompasses one call to the objective function and one call to all the constraints.
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Figure 5.1. Contour plots of P(g( · , U) ≤ 0) and E[f( · , U)]: failure and feasible
regions in red and green, respectively, the limit-state function in blue, objective function
in dashed black lines. The solution is the yellow bullet.

Figure 5.2. Mean convergence rates (Euclidean distance to the solution) on the an-
alytical test case. The EFISURmethod is plotted with green triangles, EFIrandwith red
rounds, cEIdevNumwith blue squares and Randomwith the black crosses. The initial DoE
which precedes these iterations is not represented.
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EFISURand EFIrandstrategies at different iterations. Unlike EFIrandalgorithm, starting from iteration
25, all the points proposed by the EFISURalgorithm satisfy the probabilistic constraint. Thus, the
points proposed by EFISURare not only close to the reference solution, but they are also inside the
safe region.

Figure 5.3. Distance to the reference solution at iteration 15 (left panel), 40 (middle
panel) and 60 (right panel) for the three strategies. The boxplots summarize 30 repli-
cations of the runs.

Figure 5.4. A posteriori probability of satisfying the constraint at the current “feasi-
ble” point zfeas

min for different iterations of the EFISURand EFIrandstrategies.

Figure 5.5 shows the enrichment in the uncertain space SU for all methods and all runs. It is clearly
visible that EFIrand, in the middle plot, samples the u’s randomly. The Random search does the
same, of course. EFISUR(left) and cEIdevNum(right) both sample large |u2|’s because they contribute
to constraint violation irrespectively of x through the “+u2

2” term (cf. g(x, u) expression above). In
addition, cEIdevNumsamples large values |u1|’s for varied u2’s because they are on the edge of the
domain where the kriging variance is large (hence DNsmall). EFISURbreaks this symmetry and more
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sparingly tries small (negative) u1’s associated to varied u2’s because its criterion also accounts for
low objective function values: in the optimal region, x∗ ≈ (−3.6,−1.9), a small negative u1 provides
improvement through the term “−x1u1”.

Figure 5.5. Enrichment in the uncertain space, SU, for the three methods.

Two partial conclusions can be presumed from this set of experiments. First, the algorithms that
rely on the EFIaggregated criterion to choose the next set of design variables, i.e., EFIrandand
EFISUR, converge better than cEIdevNumand its constrained problem handled through COBYLA. Sec-
ond, EFISURprovides an additional gain in efficiency thanks to its sampling criterion S which properly
mixes the uncertainty about constraint satisfaction and improvement.

5.4. Industrial test case

We now report the application of the EFISURmethod to an aeronautical test case. The NASA rotor 37
is a representative transonic axial-flow compressor that has been used extensively in the computational
fluid dynamics (CFD) community to test optimization algorithms and validate CFD codes (see [22]).
The optimization of the NASA rotor 37 compressor blade is a challenging test case primarily because
of its high dimensionality: it has 20 design variables and 7 uncertain parameters. As such, to the
best of the author’s knowledge, such optimization has never been attempted using global metamodels.
Furthermore, the design of the NASA rotor 37 compressor blade is highly nonlinear. And, as is common
in CFD, each evaluation of the optimization criteria involves costly finite elements analyses. Formally,
the optimization problem reads as follows:

minimize: E[f(x, U)]
satisfying: P(gi(x, U) ≤ 0,∀i ∈ {1, . . . , 5}) ≥ 1− α

with α = 5%,

x ∈ SX , SX = [0, 1]20 ⊂ R20,

U ∼ U(SU ), , SU = [0, 1]7 ⊂ R7.

Because of the dimensionality and the numerical cost, the use of surrogate models is the only path
to perform such an optimization. To highlight the importance of carefully sampling in the joint-space
during the optimization, we compare our approach to the EFIrandalgorithm. For comparison purposes,
we also carry out a random search. All the methods are started with a DoEof 100 points drawn from
an optimal Latin Hypercube Sampling. The enrichment then proceeds by adding 137 points, for a
total of 237 model evaluations. Figure 5.6 shows the convergences of the feasible minimum in terms of
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mean objective function. We first note that the EFIrandand EFISURmethods very clearly give access
to better designs than the random search does. We observe that, after a warm-up phase of about
140 analyses, EFISURfinds better designs than EFIranddoes. This behavior is attributed to the only
difference between EFISURand EFIrand, that is the sampling in the uncertain space. Properly choosing
the random variables u results in a more accurate estimation of the criterion of merit, the feasible
improvement, in the target region, which translates into more frequent progress.

Figure 5.6. Convergence history of the average objective function of the current fea-
sible minimum, zfeas

min.

Figure 5.7 shows two distributions of the objective: first, in grey, all the estimated mean objective
functions m

(T )
Z (x) of the points evaluated during, both, the initial DoE and the optimization; second, in

blue, the estimated mean objective of the best feasible point, zfeas
min, during the optimization iterations.

Note that the best feasible objective has shifted from −0.876 at the end of the DoE to −0.90174 after
the optimization, representing 51.2% of the objective’s range. All mean objectives shown on the Figure
are evaluated with the last, most up-to-date, GPs.

Figure 5.8 shows, at the estimated feasible optimum, the relative value of each design variable with
respect to its lower and upper bounds in polar coordinates. The largest radii are attributed to the
variables which are close to their maximum allowable values, and vice versa.

Because it is generated by EFISUR, the above result assumes that the final GPs are accurate enough
to correctly predict the probability of constraints satisfaction. In order to validate the surrogate model
accuracy in the vicinity of the limit-state surface, the calculation of the probability of being feasible
(Equation (5.5)) is repeated 500 times with M = 1000 u samples and N = 1000 trajectories of the
GPs. Figure 5.9 provides the statistics of the probability of constraints satisfaction through a boxplot.
Accounting for the bootstrap standard deviation, the targeted probability (0.95) remains below the
confidence interval of the estimated probabilities. Thus the final GP models of the constraints are
deemed accurate enough. It is worth emphasizing that only 237 calculations of f and the gi’s have
been necessary to solve this 27-dimensional optimization problem.

6. Concluding remarks

We have proposed a robust Bayesian optimization algorithm to solve computationally intensive chance
constrained problems. The algorithm, called EFISUR, carefully models all available information with
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Figure 5.7. Histograms of i) in grey, the 237 estimated mean objectives (m(T )
Z (x)) of

the initial DoE followed by the optimization, ii) in blue, the 137 mean objectives of the
best feasible point generated during the optimization. The red line corresponds to the
mean objective of the best feasible point at the first iteration.

Figure 5.8. Relative coordinates of the optimal design with respect to their respective
lower and upper bounds.

Gaussian processes built in the augmented space of the design variables and uncertain parameters. New
calls to the objective and constraint functions are based on extrema of an acquisition criterion followed
by a sampling criterion. The acquisition criterion is an expected feasible improvement that accounts
for both the average improvement in objective function and the constraint reliability. The associated
sampling criterion is inspired by the one-step-ahead variance reduction in feasible improvement and
computationally tractable.

The article has detailed the analytical expressions of the acquisition and sampling criteria.
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Figure 5.9. Distribution of constraints satisfaction probabilities at the optimal design
computed with the final GPs. The boxplot summarizes 500 replications. The dashed
line is the lower bound on constraint satisfaction (0.95).

EFISURhas been compared to two alternative algorithms which differ in the acquisition and sampling
criteria. The results show a gain in favor of the expected feasible improvement and the proposed one-
step-ahead variance reduction criterion. This set of criteria accounts for both the objective function
and the constraints, it is opportunistic in the sense that it strives for feasible improvement at the next
iteration, and both criteria (EFIand S) are coherent because they both relate to the feasible improve-
ment. The sampling criterion follows a principle of maximal uncertainty reduction. The applicability
of EFISURto an industrial test case has also been checked.

From a methodological perspective, further work on the topic might seek to account for the correla-
tion that typically exists between the constraint functions or between the objective and the constraint
functions. This would potentially improve the overall Gaussian model of the optimization functions.
It should also make it possible to assign priorities for evaluating the constraints.
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Appendix A. Expression of the aggregated variance sampling criterion

A.1. The Variance of the Improvement

The closed-form expression of the Variance of the Improvement stated in Proposition 4.2 can be
obtained using the expression of generalized expected-improvement criterion introduced in [46]. For
the convenience of the reader we still recall the details of the proof.
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Proof.
V I(x) = VAR(I(x))

= E[I2(x)]− E[I(x)]2

=
∫ zmin

−∞
(zmin − z)2fN (mZ(x),σ2

Z(x))(z)dz − (EI(x))2,

=
∫ zmin−mZ (x)

σZ (x)

−∞
(zmin −mZ(x)− σZ(x).v)2ϕ(v)dv − (EI(x))2,

= σ2
Z(x)

∫ zmin−mZ (x)
σZ (x)

−∞
v2ϕ(v)dv + (zmin −mZ(x))2

∫ zmin−mZ (x)
σZ (x)

−∞
ϕ(v)dv

− 2σZ(x)(zmin −mZ(x))
∫ zmin−mZ (x)

σZ (x)

−∞
vϕ(v)dv − (EI(x))2,

= σ2
Z(x)

∫ zmin−mZ (x)
σZ (x)

−∞
v2ϕ(v)dv + (zmin −mZ(x))2Φ

(
zmin −mZ(x)

σZ(x)

)
+ 2σZ(x)(zmin −mZ(x))ϕ

(
zmin −mZ(x)

σZ(x)

)
− (EI(x))2,

= σ2
Z(x)

(
[−vϕ(v)]

zmin−mZ (x)
σZ (x)

−∞ +
∫ zmin−mZ (x)

σZ (x)

−∞
ϕ(v)dv

)
+ (zmin −mZ(x))2Φ

(
zmin −mZ(x)

σZ(x)

)
+ 2σZ(x)(zmin −mZ(x))ϕ

(
zmin −mZ(x)

σZ(x)

)
− (EI(x))2,

= −σZ(x)(zmin −mZ(x))ϕ
(

zmin −mZ(x)
σZ(x)

)
+ σ2

Z(x)Φ
(

zmin −mZ(x)
σZ(x)

)
+ (zmin −mZ(x))2Φ

(
zmin −mZ(x)

σZ(x)

)
+ 2σZ(x)(zmin −mZ(x))ϕ

(
zmin −mZ(x)

σZ(x)

)
− (EI(x))2,

=
((

zmin −mZ(x)
)2 + σ2

Z(x)
)

Φ
(

zmin −mZ(x)
σZ(x)

)
+ σZ(x)(zmin −mZ(x))ϕ

(
zmin −mZ(x)

σZ(x)

)
− (EI(x))2,

= EI(x)
(
zmin −mZ(x)− EI(x)

)
+ σ2

Z(x)Φ
(

zmin −mZ(x)
σZ(x)

)
.

Use was made of the expression of the expected improvement, EI, Equation (3.2). This shows that
the Variance of the Improvement can be expressed in terms of PDF and CDF of N (0, 1).
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A.2. Variance of the Improvement at step t + 1

Recall the expression of the variance of the improvement given in Equation (4.5) that results from the
law of total variance,

VAR(I(t+1)(xtarg)) = E
[
VAR

((
zfeas

min − Z(xtarg)
)+ ∣∣∣F (D(t)) = ft, F (x̃, ũ)

)]
+ VAR

[
E
((

zfeas
min − Z(xtarg)

)+ ∣∣∣F (D(t)) = ft, F (x̃, ũ)
)]

= E[V I(t+1)(xtarg)|m(t+1)
Z (xtarg)] + VAR(EI(t+1)(xtarg)|m(t+1)

Z (xtarg)]).
The last line is because the improvement variance and expectation at t+1 are closed-form expressions
of m

(t+1)
Z and σ

(t+1)
Z and only m

(t+1)
Z is random through F (x̃, ũ).

It is now proved that the one-step-ahead mean of F , m
(t+1)
Z , is also Gaussian. The proof makes use

of the one step update formula which is found in [12]:
m

(t+1)
F (x, u) = m

(t)
F (x, u) + k

(t)
F (x,u;x̃,ũ)

k
(t)
F (x̃,ũ;x̃,ũ)

(
F (x̃, ũ)−m

(t)
F (x̃, ũ)

)
,

k
(t+1)
F (x, u, x′, u′) = k

(t)
F (x, u, x′, u′)− k

(t)
F (x,u;x̃,ũ)k(t)

F (x′,u′;x̃,ũ)
k

(t)
F (x̃,ũ;x̃,ũ)

,

where ((x̃, ũ); F (x̃, ũ)) is the new, yet still random, observation.

m
(t+1)
Z (xtarg) =

∫
Rm

m
(t+1)
F (xtarg, u)ρU(u)du,

=
∫
Rm

(
m

(t)
F (xtarg, u) + k

(t)
F (xtarg, u; x̃, ũ)
k

(t)
F (x̃, ũ; x̃, ũ)

(F (t)(x̃, ũ)−m
(t)
F (x̃, ũ))

)
ρU(u)du,

= m
(t)
Z (xtarg) + F (t)(x̃, ũ)−m

(t)
F (x̃, ũ)√

k
(t)
F (x̃, ũ; x̃, ũ)

∫
Rm k

(t)
F (xtarg, u; x̃, ũ)ρU(u)du√

k
(t)
F (x̃, ũ; x̃, ũ)

,

∼ N
(

m
(t)
Z (xtarg),

(∫
Rm k

(t)
F (xtarg, u; x̃, ũ)ρU(u)du√

k
(t)
F (x̃, ũ; x̃, ũ)

)2)
.

Appendix B. Time complexity calculation details

Again, recall that t is the iteration number and the number of data points, t ≤ budget, M is the
number of u samples and N is the number of GP trajectories in the simulations, l the number of
constraint GPs, d and m the dimensions of u and x, respectively. The steps for the derivation of the
time complexity of the three algorithms are detailed below. It is assumed that the cost of the various
internal optimizations is linear in the search space dimension.

• Learning of the (l + 1) GPs: O(t3)× (l + 1)× (d + m), where the product by (d + m), the input
dimension size, accounts for the internal likelihood maximization.

• Prediction of a GP (mean, variance, EI) at a point, assuming the covariance matrix was
decomposed and inverted before: O(t2)

• Sampling of a GP trajectory at M points: O(M3).

• P(C(t)(x) ≤ 0): it costs N trajectories at M points that is N ×O(M3).

• E[C(t)(x)] for the calculation of zfeas
min: M × l predictions, i.e., M × l ×O(t2).
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• One calculation of EFI: the sum of the 2 aboves items plus the EI calculation, N ×O(M3) +
M × l ×O(t2)

• The maximization of EFI: the input dimension times the above complexity but zfeas
min is calcu-

lated only once, d×N ×O(M3) + M × l ×O(t2), the dominant term is d×N ×O(M3).

• Variance of the improvement: N predictions, N ×O(t2).

• Constraints variance,
∫
Rm p(u)(1− p(u))ρU(u)du: M × l predictions, M × l ×O(t2).

• Sampling criterion: the sum of the 2 aboves items, max(N, M × l)×O(t2).

• Minimization of the sampling criterion: the dimension of the uncertainties times the calculation
of the sampling criterion, m×max(N, M × l)×O(t2).

The overall time complexity of EFISURis max[O(budget3)× (l + 1)× (d + m) , d×N ×O(M3)]. The
complexity of EFIrandis the same as that of EFISURbecause the GP learning and the EFI maximization
which are common to both algorithms are driving it. The cost of the sampling criterion minimization
is of second order. Now, the cost of the cEIdevNumalgorithm is split as follows.

• Calculation of the quantiles : M predictions of l constraints, M × l ×O(t2).

• Calculation of the EI : one calculation of zfeas
min per iteration and a prediction of GP mean and

variance.

• Maximization of the quantile constrained EI: d× (M × l + 2)×O(t2).

• Calculation of the deviation number, DN: l × 2×O(t2).

• Minimization of DN: m× l × 2×O(t2).

The complexity of cEIdevNumis dominated by the cost of learning the GPs, O(budget3) × (l + 1) ×
(d+m). If the number of uncertain parameters samples is larger than the budget of the GP regression,
M > budget, then cEIdevNumwill be faster to execute than EFISURand EFIrand.
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