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INVARIANT SUBMANIFOLDS
OF CONFORMAL SYMPLECTIC DYNAMICS

BY MAaRrIE-CraupE ARNAUD & JAcQuEs Frioz

Asstract. — We study invariant manifolds of conformal symplectic dynamical systems on a
symplectic manifold (M,w) of dimension > 4. We first prove the w-isotropy of an invariant
manifold N, assuming the entropy of N is small with respect to the conformality rate. Next,
when (M, w) is exact and N is isotropic, we show that N must be exact for some choice of
the primitive of w, under the condition that the dynamics acts trivially on the cohomology of
degree 1 of N. The conclusion partially extends if a one-sided orbit of N has compact closure.
We eventually describe some conditions showing the uniqueness of N.

Resume (Variétés invariantes des dynamiques conformément symplectiques)

Nous étudions les variétés invariantes des systémes dynamiques conformes symplectiques
sur une variété symplectique (M, w) de dimension > 4. Nous montrons d’abord qu’une variété
invariante N est w-isotrope, a supposer que l’entropie de la dynamique restreinte soit petite par
rapport au taux de conformalité. Ensuite, quand (M, w) est exacte et N isotrope, nous montrons
que N est exacte pour un certain choix de primitive de w, sous la condition que la dynamique
agit trivialement sur la cohomologie de degré 1 de N. La conclusion se généralise partiellement si
une demi-orbite de N est d’adhérence compacte. Enfin, nous décrivons des conditions montrant
I'unicité de N.
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1. INnTRODUCTION

Let (M24,w) be a symplectic manifold. Symplectic dynamical systems form a class
of infinite codimension. We will study conformal symplectic dynamics, a now classical
extension of symplectic dynamics") where the symplectic form may change in its own
direction:

Derinirion 1

— A diffeomorphism f : M < is conformal symplectic if f*w = aw for some a > 0
(conformality ratio).(®

— A complete vector field X on M is conformal symplectic if Lxw = aw, where
Lx is the Lie derivative, for some o € R (conformality rate).(®)

Such dynamics encapsulate mechanical systems whose friction force is proportional
to velocity, in which case a <1 or a < 0.

In this paper we will focus on the non-symplectic case, i.e., a # 1 and o # 0.
Of course, time reversal changes a in 1/a and « in —a.

For such a dynamics, the volume form w"?
ists on M, M cannot be closed and has infinite volume. Moreover, when the dynamics

is monotonic. So if such a dynamics ex-

is given by a vector field X, the symplectic form satisfies w = éL xw=d (éz Xw) and
is exact. Hence conformal vector fields exist only on exact symplectic manifolds. Yet
this is not the case for conformal diffeomorphisms (see an example in Proposition 2).

Also, if a vector field X is conformal symplectic of conformality rate « and if Z is
the Liouville vector field associated with the 1-form A = —éixw, i.e., izw = A, then
X + aZ is symplectic. Thus, when w is exact, conformal symplectic vector fields form
a l-dimensional extension of the space of symplectic vector fields.

When (M, w) is exact, there exists a 1-parameter subgroup € of the set of conformal
symplectic diffeomorphisms such that the group of conformal symplectic diffeomor-
phisms is {fog; (f,g) € €x 8} where § is the set of symplectic diffeomorphisms. When
M is not exact, let R be the subgroup of R¥ of conformality ratios of conformal sym-
plectic diffeomorphisms of M. This subgroup can be trivial, e.g. when M is compact
(all conformal symplectic diffeomorphism are symplectic).

Questions. — Can R be strictly between {1} and R%? Assuming that R = R, does
there exist a continuous 1-parameter family of conformal symplectic diffeomorphisms
indexed by its conformality ratio in R%?

An important case is that of cotangent bundles (M = T*Q,w = —d\), where Q is
a manifold and A is the canonical Liouville 1-form. A continuous-time example is the
flow exp(tZy)(q,p) = (¢, e *p) of the Liouville vector field Z, defined by iz, (—d\) = A

(Vaisman [15] and others have defined local conformal symplectic structures on a manifold M.
There is a corresponding notion of dynamics preserving the structure, thus extending our setting.

(2)As Libermann noticed [9]: if f¥*w = aw for some smooth function a, aw being closed we have
da A w = 0, which implies, if M has dimension > 4, that a is constant.

at

(3)Then the flow (¢¢) of X is conformal symplectic and pfw = e*tw.

JE.P — M., 2024, tome 11



CONFORMAL SYMPLECTIC DYNAMICS 161

and a discrete-time example is f = exp Zy : (¢,p) — (q,ap), a = e~!. These two
examples of conformal symplectic dynamics have a very simple behaviour:

— there is a global attractor A;
— the w-limit set of every orbit is a point of A.

More generally, consider a discounted Tonelli vector field X on T*Q of negative rate «;
by definition it satisfies i xw = dH + a\ for some Hamiltonian H which is superlinear
in the fiber direction and whose Hessian in the fiber direction is positive definite.
It has been shown that the flow of such a vector field has a global attractor [11].

In the general setting, many natural questions are open, for example:

Questions. — Which conditions ensure the existence of a global attractor? And pro-
vided that the global attractor exists (necessarily having zero volume), what can be
said of its size?

As a first step, in this article we focus on the case of invariant submanifolds (with
a digression on the case of submanifolds with compact orbit), although the study
of dissipative twist maps proves that there can exist invariant subsets that are not
submanifolds [8].

First, we explore the isotropy of invariant submanifolds. This question is akin to
its analogue in symplectic dynamics, where both negative and positive results have
been proved in particular for invariant tori carrying minimal quasiperiodic flows.

We start by providing an example where an invariant submanifold is a hypersur-
face and hence non-isotropic (Propositions 1 and 2 in section 2). There exist similar
examples due to McDuff, [12] and Geiges [3, 4], but our example is somewhat more
explicit. We do not know if there exist examples of invariant non-isotropic submani-
folds that are invariant by a conformally symplectic dynamics on a cotangent bundle.
An even more difficult question is to determine whether such submanifolds may exist
for discounted Tonelli flows on cotangent bundles. In this case and when dim M > 4,
the global attractor never separates M and hence cannot be a hypersurface.

In turn, we show some positive results regarding the isotropy of invariant sub-
manifolds. If the invariant submanifold is a surface, isotropy follows from a simple
argument using the growth of the area. In higher dimension, a first result follows
from Yomdin’s theory [20, 6]. Proposition 4 of section 2 states that if a smooth(¥
conformal diffeomorphism f : M © with conformality rate a has an invariant smooth
submanifold N = M such that the topological entropy of fi is less than |log(a)l,
then N is isotropic.

But Yomdin’s proof can be improved in the setting of diffeomorphisms which are
conformal with respect to a presymplectic form. Here, we prove that the so-called
local entropies have no effect on the volume growth transversally to the characteristic
foliation of N (section 3). It follows that if a conformal symplectic C3-diffeomorphism
of conformality ratio a has an invariant C3-manifold on which w has constant rank 2/

(4)Smooth means C®.

JEP — M., 2024, lome 11



162 M.-C. Arnaup & J. Frjoz

and such that the entropy of fj is smaller than £ |logal, N is isotropic. In particular,
if an invariant submanifold carries a minimal dynamics (every orbit is dense) with
zero entropy, it is isotropic (Corollary 2).

This new result assumes less regularity than the former one (C® instead of smooth
in Proposition 4) but requires that the symplectic form restricted to the submanifold
has constant rank.

A related result is [2, 2.2.1], where the authors prove that if a C! conformal dy-
namics has a C' invariant torus on which the dynamics is C' conjugate to a rigid
rotation, then this torus is isotropic. This results is a direct consequence of Propo-
sition 4. Corollary 2 of section 3 doesn’t imply this result because our result require
more regularity, and on the other hand our result applies when a C® dynamics is C°
conjugated to a transitive rotation.

Second, we examine the question of exactness. In this purpose, in section 4 we as-
sume that (M,w = —d]) is exact. Define the Liouville class of an isotropic embedding
in M as the cohomology class of the form induced by A. The embedding is called
exact when this class vanishes. The action of conformal symplectic diffeomorphisms
on Liouville classes depends on a notion of exactness for the diffeomorphisms them-
selves. Let f : M O be a conformal symplectic diffeomorphism of conformality ratio
a. The form f*X\ — al is closed.

Derinition 2. — The diffeomorphism f is A conformal exact symplectic (CES) if
f*X—al is exact.

It is Hamiltonian if f is the time-one map of the flow of a non autonomous con-
formal Hamiltonian vector field X; (meaning that ix,w = oy A + dH; for all t).

These definitions depend of the chosen primitive of the symplectic form. We prove
in appendix B that there is always a choice of primitive for which f is exact. Alter-
natively, we also show that f is symplectically conjugate to a diffeomorphism which
is exact with respect to the initial A (see appendix B). Hence we state our results
for exact conformal symplectic dynamics (see section 4 for more comprehensive state-
ments).

Our main result here is that if f is an exact conformal symplectic diffeomorphism
and if 8 is a strongly f-invariant submanifold (in the sense that jo f(8) = j(8) and f
acts trivially on H'(j(8),R)), j is exact.

When £ is a Lagrangian submanifold that is H-isotopic® to a graph in M = T*Q
and f is CS isotopic® to Idy;, we obtain the same conclusion when assuming only
that the orbit of £ is bounded. For example, the submanifolds that are H-isotopic to
the zero section and contained in an attractor satisfy this hypothesis.

Question. — Is it possible to obtain similar results without assuming that the
Lagrangian submanifold is H-isotopic to a graph? On other manifolds?

(5)By H-isotopic, we mean isotopic among Hamiltonian diffeomorphisms.

(G)By CS isotopic, we mean isotopic among conformal symplectic diffeomorphisms.

JE.P — M., 2024, tome 11
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Third, in section 6, we raise the question of the uniqueness of a invariant Lagrangian
submanifolds in a cotangent bundle (T#Q, —d\). Indeed, let f : T*Q O be a CES
diffeomorphism that is CH isotopic™ to Ids#o. We show that there exists at most
one submanifold of 7*Q that is H-isotopic to the zero section and invariant by f. Key
to the proof is the Viterbo distance of Lagrangian submanifolds which are H-isotopic
to the zero section, and the fact that this distance is monotonic with respect to the
action of f.

A recent result of Shelukhin even allows us to show the following. Let f : T*T™ ©
be a CES diffeomorphism that is CH-isotopic to Idrsp». Then there exists at most
one submanifold £ which is H-isotopic to the zero section and such that

U f¥(£) is relatively compact.
keZ
Hence when it exists, £ is invariant by f.

For discounted Tonelli flows, it was known that there is at most one invariant exact
Lagrangian graph because this corresponds to the unique weak KAM solution [11].
But we give in Section 7 an example of such a dynamics with an invariant H-isotopic
to a graph submanifold that is not a graph, hence even in this case our uniqueness
result is new.

2. IsoTroPY

The so-called Mafié example [10] (see section 7.1) shows that any flow defined on a
closed manifold Q can be achieved as the restriction of a Tonelli conformal Hamiltonian
flow to the zero section of 7*Q. In this case, the zero section is an invariant Lagrangian
submanifold.

The following example, which is very similar to an example of [4], is key to this
section. It shows that a closed submanifold which is invariant by a conformal sym-
plectic dynamics may be non w-isotropic. In the remaining of the section, we will give
some general conditions under which the submanifold must be w-isotropic.

Prorosition 1. — There exists a conformal symplectic vector field X on a 4-dimen-
sional symplectic manifold (M,w), with a 3-dimensional invariant submanifold L
(hence L is not isotropic).

Moreover, the submanifold £ is the global attractor for the flow (p¢) of X, (¢4c) is
conjugate to the suspension of an Anosov automorphism of T2 with 2-dimensional sta-
ble and unstable foliations, and (@4 ) is transitive with entropy equal to o, where o
is the conformality rate of X.

Remarks 3

(1) In our example, £ is coisotropic, but it is easy to extend this example to an
invariant submanifold which is neither isotropic nor coisotropic. Indeed, let Y be a
conformal symplectic vector field on a symplectic manifold (N,w’) with a periodic

(7)By CH-isotopic, we naturally mean isotopic among conformally Hamiltonian diffeomorphisms.
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164 M.-C. Arnaup & J. Fesoz

orbit «v. Then the sum X @Y admits £ x v as an invariant submanifold that is neither
isotropic nor coisotropic in M x N if dimN > 4.

(2) The submanifold £ is the maximal (among compact subsets) attractor of the
dynamics.

(3) Replacing the vector field X by bX for b € R, we can achieve any positive value
for the entropy.

Questions. — We don’t know if it is possible to build a non-isotropic example on
a cotangent bundle endowed with its usual symplectic form or, even stronger, if a
similar example exists on such a manifold among Tonelli flows.

Proof of Proposition 1. — We consider an Anosov automorphism A : T? © induced by
amatrix (¢ Y) € SL(2,Z) with eigenvalues 0 < A_ < 1 < A} = 1/A_ and eigenvectors
v4+. An example of such an automorphism is A(z,y) = (2z+y, x +y), with eigenvalues
A =(B3—-+5)/2<land Ay = (3++5)/2> 1.

Following [1], we define a suspension T of the diffeomorphism by using the following
relation on T2 x R (writing & = (x,v)):

V(€,2)eT* xR, (£,2) ~F(&2) = (A&, z—1).

Denote by a4 the linear forms on R? such that a4 (vE) = 1 and a4 (v) = 0. Observe
that a4 0o A = Ayay. Rescale the forms oy in the z-direction in order to get F-in-
variant forms on T? x R: define

Be(€,2) = (A\s) ax(6),
so that
F*Be = (As)" Tz oA = (\s)0x = fe.
Hence 34 is F-invariant and defines a 1-form on the quotient manifold N'= (T? x R)/~.
We use the same notation for these 1-forms. Then

(2].) dﬁi =In )‘i dz A ﬁi'
We consider the vector field X = (0,0, 1) on N. The lift of its flow to T?xR is defined by
By(6,2) = (&2 + 1),

hence the first return map to {z = 0} is ®1(£,0) = (A, 0) and is conjugate to A. The
flow (®;) is a suspension of A and has the same Lyapunov exponents as A.
We endow the manifold M =N x R with the 1-form

A= 57 + sﬁJr?
where s is the R-coordinate. We define 2 = dA. By (2.1), we have
Q=dB_+dsnfBy+sdB =dznr(InA_B_ +slnA.B,)+ds A By.

Thus 22 = 2InA_dz A B+ Ads A B4 £ 0 and Q is a symplectic form.
We define on M the vector field Y = X + 2In A_0s. Its flow is

De(€,2,8) = (B4(€,2), (A2)™s).

JE.P — M., 2024, tome 11
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Hence N x {0} is the global attractor for (i;). We have
QO =dz A (mA_ (AL B+ (A2)? - s)In Ay - (A+)’fﬂ+) + (A)Hds A (My)'B4

As A_\; =1, we finally obtain
PrQ=ALQ. O

There are also examples of conformal symplectic diffeomorphisms on a non-exact
symplectic manifold that have a non-isotropic invariant submanifold on which the
restricted dynamics is Anosov.

Prorosirion 2. —  There exists a conformal symplectic diffeomorphism f on a 6-di-
mensional symplectic manifold (M, w),with a 4-dimensional invariant submanifold L
(so L is not isotropic).

Moreover, the submanifold £ is the global attractor for f, fiz is conjugated to
a hyperbolic automorphism of T* with 2-dimensional stable and unstable foliations,
and fg 1is transitive with entropy equal to —loga, where a is the conformality ratio

of f.

Question. — In our example we have a = ((3 — \/5)/2)2 In fact we can replace
this number by the square of the largest eigenvalue of any Anosov automorphism
of T2. We do not know if we can achieve other constants by a conformal symplectic
diffeomorphisms of the same symplectic manifold.

Proof. — We consider the hyperbolic toral automorphism 7' : T? — T? that is defined
by T(61,602) = (201 + 02,01 + 62). The associated linear map has eigenvalues \ =
(3—45)/2 < 1and A™' = 3++/5)/2 > 1. Let p = (v/5—1)/2. The unstable
direction is spanned by (1, p) and the stable one by (1, —1/p). The topological entropy
is —log A (see [7]).

Then the product map F = (T,T) : (01,62, 03,04) € T2xT? — (T(61,02),T(03,04))
has topological entropy equal to —2log A. We endow T* with the closed 2-form ) that
is defined by

Q= (d92 —pd@l) A (d94 —pdeg).
Observe that the kernel of € is the direction of the unstable foliation. Obviously,
F*Q = A2Q. Now, we consider the subbundle

M = {(9,r)€T4 xRYry =pry and 1y =P7°3}

of T* x R*. This bundle corresponds to the tangent bundle to the unstable foliation
in the identification of TT* with T4 x R*.

We denote by €; the closed 2-form on M that is equal to 7*Q where 7 : (0,7) €

M +— 0 e T* and by Qs the restriction of the usual symplectic form df A dr of T*T*
(df2 — pdbr1) A (dbs — pdfs),

to M:
0
{92 5(dby + Ldfr) A (dra + Sdry) + §(dfs + 5d3) A (dra + Sdrs).
Let then w = Q7 + Q5 be the chosen symplectic form on M.

JEP — M., 2024, lome 11



166 M.-C. Arnaup & J. Frjoz

If we define f : M — M by £(6,r) = (T(6), (3 — v/5)/2)° 1), then we have
f¥Qq = * F*Q = \2Qy,
¥ = (A3/N)Q2 = A2Q.
So finally f : M — M is a conformal symplectic diffeomorphism such that f*w = \%w
and f*(T* x {0}) = T* x {0}, where T* x {0} is not isotropic and the topological
entropy of firax oy is —2log A. g
Let us come back to the general case of a C'! conformal symplectic diffeomorphism f
of a symplectic manifold (M, w), of conformality ratio a # 1.

Prorosition 3. — A O closed submanifold £ of even dimension which is invariant
by f is nowhere symplectic. In particular, if £ is a surface, it is isotropic.

Proof. — Assume the conformality ratio a of f is # 1 and an f-invariant subman-
ifold £ has dimension 2¢. Let Q = w’, so that f*Q = a’§Q. Choose a finite atlas
A ={(U;,®;)}1<i<n of £, endow £ with a Riemannian metric and define

HQHL,OO _ sup | (ula au€)|
welun,ueeTyo\oy U] - - [l
D!
HD‘I);l‘ Lo = sup H 7 (U)H .
ueT £\{0} (|

Then, SU Q) is bounded over open subsets U of L:

N
[ <X leoiparit e
U i=1 (I:'i(Um)

Now, let U be any open set of £. For n € Z, f"U is an open subset of £ and

(2.2)

Q=a" f Q.
U U
Since a is assumed # 1, SUQ must thus be zero. Hence the 2¢-form induced by
vanishes identically, whence the conclusion. ]

If £ has any dimension, the same conclusion holds provided some constraint on the
topological entropy ent(f|¢) of the dynamics carried by £. Define the spectral radius
of a self-map g as

rad(Dg) = limsup | Dg"™ || 4"
n—-+0
Prorosition 4. Let f be a conformal diffeomorphism of (M,w), i.e., such that

f*w = aw with a € ]0,1[. Let £ be an invariant closed submanifold. Assume one of
the following hypothesis.

(1) The diffeomorphism f is smooth, L is smooth and
ent(fic) < —log(a);
(2) The diffeomorphism f and £ are C” for some r =1 and
ent(fiz) + log™ (Rad(Df‘zl)z/r) < —log(a).

Then L is w-isotropic.

JE.P — M., 2024, tome 11
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Proof. We assume that £ is invariant and not isotropic. There exists a constant
k > 0 such that on £, we have |w| < k|vol| where vol is the 2-dimensional volume
form induced by the Riemannian metric. We choose in £ a small piece 8 of symplectic
surface (whose tangent space intersects the characteristic bundle of £ only in 0). Then
w(f~™(8)) = a ™w(8) * 0 and then
limsup + log ‘vo1(f*”(3)‘ > Tim  (log |w(f ()] - log k) = — log(a).
n—oo N n—ow n

The conclusion follows from Yomdin’s inequality, which we have recalled in appen-
dix A. |

Remark 4. — This statement implies in particular that if £ is an invariant subman-
ifold by a conformal flow (y;) then

— if £ and (p¢) are C* and if ¢y is C' conjugate to a rotation on a torus for some
t £ 0, then £ is isotropic; indeed, in this case, the entropy vanishes and the spectral
radius of Df is 1. A simpler proof of this statement is given in [2].

—if £ and (y¢) are smooth and if oy ¢ is C° conjugate to a rotation on a torus for
some t % 0, then £ is isotropic; indeed, in this case, the entropy vanishes.

3. EnTROPY

The purpose of this section is to improve regularity in Proposition 4. We will start
by giving an abstract result on a manifold endowed with a form with constant rank
and then we will give an application to invariant submanifolds of conformal symplectic
dynamics.

Let

— N™ be a compact Riemannian C? manifold and d its distance

— F be a C? foliation induced by a subbundle F of TN of rank p< n — 1

— Q be an (n — p)-form on N which induces a volume on submanifolds transverse
to I

— f be a C'-diffeomorphism of N preserving F and such that

ffQ=0bQ
for some b > 1.
Turorem 5. — The topological entropy of f satisfies
ent f > Inb.
Proof. Key to the proof is the refined distance dg on N defined by

oo if z and y are not on the same leaf,

dj’(l‘,y) = {

distance from z to y along their common leaf, otherwise.

Lemva 1. — There exist € > 0 and K > 0 such that for every x,y € N
3.1) dz(z,y) <e = dy(z,y) < Kd(z,y).

JEP — M., 2024, lome 11



168 M.-C. Arnaup & J. Frjoz

Replacing the Riemannian metric d by (1/¢)d, we will assume that e = 1.

Proofof Lemma 1. — We choose £ > 0 that is strictly less than the radius of injectivity
of the metric d restricted to every leaf and introduce

D = {(z,y) e N x N; dy(z,y) < e}

This set is closed and due to our choice of ¢, dg is continuous on D. If we use the
notation

A = {(z,2); v e N},
then the continuous function ds/d is bounded on the complement of every neighbour-
hood of A in D.
The exponential maps for the Riemannian form g and for the Riemannian form g+
restricted to the leaves are tangent along the tangent bundle to the leaves, hence

dﬂ’(xvy) =1. 0

(zy)—A d(x,y)

For every = € N, let u;”"’ ) be a submanifold through x of dimension n — p,
transverse to & and homeomorphic to a ball, such that its normal bundle is trivial.
Let V,, be a tubular neighborhood of U, of the form

vz = U {Z € N; dg‘(y,Z) < E:E}’
YUy

We choose U, and £, < 1 small enough so that V, has a product structure. Further-
more, let

W, = U {zeN; ds(y,2) <e/2}.
YUy

Let Fy, be the foliation induced on 'W,, by F. (Due to the product structure, leaves
of Fyw, are of the form W, n L,, where L, is the leaf through x of the foliation
induced on V,.) The neighborhood W, has the property that for any two points y
and z of Wy, if dy(y, 2) < €;/2 then y and z must belong to the same leaf of Fyy,_;
indeed, if y and z do not lie on the same leaf of Fyy_, their distance must be > ¢,
since any path from y to z along a leaf of F runs twice across V,\W,..

Let W,,,..., W,, be a finite subcovering of N. Denote W;, by W;, and let ¢ =
min; €., /2. So, the following property holds:

(%) For every i = 1,...,I and y,z € W; such that ds(y, z) < e, y and z belong to
the same leaf of the foliation Fw, induced by J on W;.

Moreover, since f~! and F are continuous and f preserves F, there exists 7 < ¢
such that

(xx) For every x,y € N such that dg(x,y) <n, de(f o, fly) <e.

According to Lebesgue covering lemma, there exists § < /K such that every ball
of radius 0 is inside at least one of the W,’s.

Let (Q;)1<j<s be a decomposition of N into cubes (or compact submanifolds with
boundaries) such that each cube is contained in a ball of radius < 6.

JE.P — M., 2024, tome 11
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Ficure 3.1. Construction of the finite covering of N

Let § be a submanifold of N of dimension n — p, included into some cube @; and
transverse to F. 8§ must lie into some W,. For any W; containing 8, § meets each leaf
of Fw, at isolated points. By narrowing 8, we may assume that § meets each leaf of
Fw, at one point at most.

We claim that

(###) For every k and j1,...,jr € {1,...,J},
FEE) A Q) N 1 @y
meets each leaf of any W; containing @), at one point at most.

Let j € {1,...,J}. Then 8 = f(8) n Q; is also transverse to the foliation. Let
z,y € 8 be on a common leaf of Fyy,, with Q; < W;,. Since such leaves have a
diameter < 1 (due to our choice &, < 1), using (3.1)®), we see that

dg(z,y) < Kd(z,y) < Kdiam Q; < K6 <1

Using (#%), dg(f 'z, f~'y) < e. But using (), f~'2 and f~'y belong to the same
leaf of Fyw, . So, by the constructing property of W;,, flz = flyand z = 4.
By induction, (x##) holds.

If § € 'W;, we have

2 (F5(8) N f7H@Qs) - 0 Q)] < max{|QW)], .., [Q(UL)[} = M,
uniformly with respect to k. Let

Ny = ﬁ{(jla cee 7jk)7 fk<s) N fk_l(le) NN ij 7 ®}
Then
b 1Q8)| < N M,

(8)Recall the metric was changed in order to have ¢ = 1 in (3.1).
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hence

1

n%—ﬁ—lnb,

1 1
—InN, > —
R
hence the wanted inequality. ]

Now assume that w is a presymplectic form® of N of (even) rank 2¢ > 2 and
ffo=aw, a>1.

The kernel of w is a uniquely integrable subbundle F' of corank 2¢. Setting Q = w*’
and b = a’ brings us back to the prior setting.

CoroLrary 1. The topological entropy of f : N D satisfies

rank(w)

5 Ina

ent f >
Let us now return to our usual setting, where (M, w) is a symplectic manifold.

COROLLARY 2. Let f : M © be a C® conformal symplectic diffeomorphism such
that f*w = aw with a > 1. Suppose that N is an invariant C3 submanifold such that
the induced form w;x on N has constant rank. Then

rank(w)

ent =
VRS 5

Ina;

in particular, if the entropy of fix vanishes, N is isotropic.

Note that if N is a compact submanifold such that f is minimal,(*?) w)n has
constant rank and so the corollary applies.

Proof. — As N is C3, its tangent bundle is C?. Then Frobenius Theorem applies to
F =kerwp'" and the characteristic foliation F exists. O

4. LIOUVILLE CLASS OF INVARIANT SUBMANIFOLDS

In this section we assume that (M, w = —d) is an exact symplectic manifold. The
goal is to prove that, given a conformal dynamics, there is only one Liouville class
that an isotropic invariant submanifold may have.

N presymplectic form is a a closed 2-form with constant rank.
(10)By definition, it is minimal if every orbit is dense.

(1) The infinitesimal integrability condition is well known: if X,Y are sections of F' and Z is a
section of TN, 0 = dw(X,Y, Z) = —w([X, Y], Z), which shows that [X, Y] itself is a section of F.
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4.1. ACTION OF CONFORMAL DYNAMICS ON LLIOUVILLE CLASSES
Derinition 6. — Let § : 8 < M be an isotropic embedding.

— Tts Liouville class [j] € H'(8,R) is the cohomology class of the induced form j*\.
— It is ezxact if its Liouville class vanishes.

So, the notion of exactness is independent of the embedding with a given image.
When M = T*Q is the cotangent bundle of a closed manifold endowed with its
tautological 1-form A and £ is a Lagrangian submanifold of T*Q that is homotopic
to the zero section Z, the restriction to £ of the canonical projection 7 : T#*Q — Q
is a homotopy equivalence between £ and Q and induces an isomorphism between
H'(L,R) and H'(Q,R). Denoting by jz : £ < T*Q the canonical injection defined
by jz(z) = x, the Liouville class of the submanifold £ is the cohomological class

[£] = [ (me), (jEN) | € H' (@ R).
In this case, we may thus update the definition of Liouville classes.

Derinimion 7. — Let £ be a Lagrangian submanifold of 7#Q that is homotopic to
the zero section, the Liouville class [£] of £ is the cohomology class on Q whose pull
back by 7| is the cohomology class of \|7..

The following straightforward proposition explains that the group of conformal dy-
namics acts on the set of Liouville classes of isotropic embeddings that are homotopic
to a given isotropic embedding of a given manifold 8 by homotheties (translations
when the dynamics is symplectic).

Prorosition 5. Let f : M D be a conformal diffeomorphism with conformality
ratio a. Then n = f*A —al is a closed 1-form.

Let jo : § — M be an isotropic embedding. For every isotropic embedding j : § — M
that is homotopic to jo, the Liouville class of the isotropic embedding foj:8 — M
18

[f 041 = alj] + ]

Proof. — We have dnp = —f*w + af*w = 0 and 7 is closed. For v : T — M, let us
compute

Fedlb) - |

ol

(Foix=| 3o - Lj*(mcm)

~[rea| A=alipl+ i)

= a[j][v] + [ljo © 7] = aljl[v] + [F*nl[V]- 0

Derintrion 8. A diffeomorphism f : M © is A conformal Hamiltonian (CH) if
there exists an isotopy (fi)e[o,1] such that fo = Ida, fi = f and two functions
H:[0,1] x M - R and « : [0,1] — R such that

V(t,x) € [0,1] x M, by ()W = a(t)\ + 0. H(t, ).
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Remark 9. A diffeomorphism f : M © is conformal Hamiltonian if and only if
there exists an isotopy (f¢)te[o,1] of CES diffeomorphisms such that fo = Idy and

h=1

Derinirion 10. — The flow (p;) associated to the vector field X on M is A conformal
Hamiltonian if there exists « € R and H : M — R such that ixw = a\ + dH.

Remark 11. — A flow is a flow of A conformal exact symplectic diffeomorphisms if
and only if it is A conformal Hamiltonian.

To describe the behavior of Lagrangian submanifolds of T#Q that are H-isotopic
to a graph, we first need the following invariance result.

Prorosition 6. Let (L) be an isotopy of Lagrangian submanifolds of T*Q such
that Lo = Z. Then L1 is H-isotopic to a graph.

COROLLARY 3. Let (g¢)te[o,1] be an isotopy of conformal symplectic diffeomorphisms
such that go = Idrxq. Let £ be a Lagrangian submanifold of T*Q that is H-isotopic
to a graph. Then g1(L) is H-isotopic to a graph. If moreover L is H-isotopic to the
zero-section and the isotopy is conformal Hamiltonian, then g1 (L) is H-isotopic to the
zero-section.

Proof of Proposition 6. — We will prove

Levva 2. Assume that £ is H-isotopic to the zero section and that (L¢)ie[—c ] 5
an isotopy of exact Lagrangian submanifolds such that Lo = L. Then there exists a
neighbourhood N of 0 in [—e, e] such that for every t € N, L; is H-isotopic to the zero
section.

Proofof Lemma 2. — We use Weinstein tubular neighbourhood Theorem, [19]. Let T
be a symplectic tubular of £, i.e., there exists a neighbourhood U of the zero section
in T*L and a symplectic embedding ¢ : U — T*Q with image T that is Idz on £.
As ® maps the exact Lagrangian submanifold £ of T*£ onto the exact Lagrangian
submanifold £ of T*Q, then ® is exact symplectic.

This implies that every submanifold ¢=1(£;) is exact Lagrangian. Moreover, there
exists a neighbourhood N of 0 in [—¢, ] such that for every t € N, $=1(£,) is a graph.
Hence this is the graph of an exact 1-form du;. Then ¢—1(L;) is the image by the
time-1 Hamiltonian flow of H = —% o m. Using a bump function, we can assume
that H has support in U, and then the time-1 map of the Hamiltonian H o ¢ maps £

onto L;. O

We now prove Proposition 6. Let us firstly deal with the case when all the £;s are
exact. We introduce

{t € [0,1];Vs € [0,1],gs(L) is H — isotopic to the zero section}.

Lemma 2 and the transitivity of the relation of H-isotopy imply that this set is closed
and open in [0, 1], hence equal to [0, 1].
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Now we just assume that (£;) is an isotopy of Lagrangian submanifolds of 7%Q
such that £o = Z. We choose an arc (1;)se[o,1] of closed 1-forms on Q whose coho-
mology class [n;] = [£¢] is the Liouville class of £;. We denote by T; : T*Q © the
symplectic diffeomorphisms such that T;(p) = p + 1, o w(p). Then L£LF =T_,(£,;) de-
fines a homotopy of exact Lagrangian submanifolds of T*Q. A result of the first part
of the proof is that £ is H-isotopic to the zero section, i.e., there exists a H-isotopy
(#t)te0,1] such that ¢o = Id and ¢1(Z) = LF. Hence £; = T1(L]) is H isotopic to
the graph of 7; via the H-isotopy

(Vt)tefo,1] = (T1 © ¢ 0 Ti Mieo.1]- U

Proof of Corollary 3. — We assume that (g¢)se[0,1] is an isotopy of conformal symplec-
tic diffeomorphisms such that go = Idr+o and that £ is a Lagrangian submanifold
of T*Q that is H-isotopic to a graph. Then there exist a closed 1-form 1 on Q and a
H-isotopy (hi)tefo,1] such that hg = Idpxq and £ = hy(graph(n)). We introduce the
symplectic diffeomorphisms (7} )seq0,1] of 7%Q that are defined by T}(p) = p+tnon(q).
Then
(Lt)tef0,1] = (gt © bt © Ty(Z))refo,1]

is a isotopy of Lagrangian submanifolds such that £y = Z and £1 = g1(£). A result
of Proposition 6 is that g1 (£) is H-isotopic to a graph.

If moreover £ is H-isotopic to the zero-section and the isotopy is conformal Hamil-
tonian, then all the maps g; o hy o Ty are conformal Hamiltonian and thus every

manifold £; is exact Lagrangian. The conclusion is a result of the second part of
Corollary 3. O

4.2. LIOUVILLE CLASSES OF INVARIANT SUBMANIFOLDS. — Let jo : 8 < M be an isotropic
embedding. We denote by J(jo) the set of isotropic embeddings j : § < M that are
homotopic to jg.

A consequence of Proposition 5 is:

Provosirion 7. — Let f : M be a conformal diffeomorphism. Let j € J(jo) be an
isotropic embedding which is strongly f-invariant in the sense that

= J(8) = foj(8),

— f acts trivially on H'(j(8),R).
Then j may have only one Liouville class, that we denote by [£4(d(jo))]. In particular,
when f is CES, then [£;(J(jo))] = 0 and j has to be exact.

Proof. — Let j : 8 — M be such an embedding. With the notations of Proposition 5,
we have

[f o] = alj] + [5n].
Let us denote by i : j(8) < M the canonical injection. As f acts trivially on on
H'(5(8),R), we have

[fogl=[(iofos)*A] = 5*[f*@*N)] = [1*A] = [j]
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and finally [j] has to be the only fixed point of the homothety that maps [j] on
alj] + [ign]- O
As a consequence:

Prorosition 8. — Let f: M < be a A\ CES diffeomorphism. Then every invariant
isotropic submanifold 8 such that fs acts trivially on HY(8) is exact.

COROLLARY 4. Let X be a CS vector field on M with flow (). Let jo : 8§ — M be
an isotropic embedding. We denote by d(jo) the set of isotropic embeddings j : § — M
that are homotopic to jo. Then there is only one Liouville class that we denote by
[¢x(d)], that an isotropic embedding j € J(jo) such that

vt e R, (j(8)) = 3(8)
may have. In particular, when X is CH, then [{x(d)] = 0.

COROLLARY J. Let f : T*Q D be a CS-diffeomorphism that is homotopic to Idpxq.
Then there is only one Liouville class that we denote by [(¢], that a homotopic to the
zero section and f-invariant submanifold may have.

Proofof Corollary 5. — Let jo : Q < T*Q be the canonical injection onto the zero-
section. We assume that £ is an f-invariant submanifold that is isotopic to the zero
section. Because

— ¢ defines an homotopy equivalence between £ and Q;

— 7 defines an homotopy equivalence between T*Q and Q;

— f is homotopic to Idrxq,
then f acts trivially on H'(£,R). Let (1/;) be an isotopy of diffeomorphisms of 7%Q
such that 1o = Idp+g and 91 (Z) = L. Then ¢10jy € J(jo) and a result of Proposition 7
is that [¢1 o jo] = [¢;(d(jo))]. Moreover, if iz : L < T#Q is the canonical injection,
we have

[¥1 0 o] = [ic o ¥1 0 jo] = [(¥1 0 jo)* (iZ N)].

Observe that ¥ 0 jo : Q — £ is an homotopy equivalence such that and 7 o (1 o jp)
acts trivially on H(Q,R). We deduce that

[1 0 o] = [(¥1 ©0)* ((ZA)] = [ma (2] = [£].
and then [£] = [¢¢(d(jo))]- O

5. LiouviLLE cLAsS OF LAGRANGIAN SUBMANIFOLDS OF 1#Q WITH COMPACT ORBITS

The goal of this section is to prove that, given a conformal dynamics on T*Q, there
is only one Liouville class that a Lagrangian submanifold with compact orbit may
have.

We assume that M = T*Q and that f : M © is CS-isotopic to Idy.

We suppose that j : Q — M is a Lagrangian embedding such that j(Q) = £
is H-isotopic to a graph and has compact orbit (for example is contained in some
compact attracting set).
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Tueorem 12. Let f : M D be a diffeomorphism that is CS-isotopic to Idye and let £
be a Lagrangian submanifold that is isotopic to the zero section among Lagrangian
submanifolds and such that | J,, f*(£) is relatively compact, then [L] = (;.

CoroLrary 6. — Let (o) be the flow of the conformal symplectic vector field X and let
L be a Lagrangian submanifold that is isotopic to the zero section among the Lagran-
gian submanifolds of T*Q such that |J,cp pt(£) is relatively compact, then [L] = €x.

Remark 13. — We give a proof of Theorem 12 that uses the notion of graph selector.
If Q (as T") satisfies that every element of H!(Q,R)\{0} contains a non-vanishing
1-form, we can give a simpler proof. Indeed, in the proof, we are reduced to prove
that if we have a sequence (£,,) of Lagrangian submanifolds such that

[£n] = a"([Lo] =€) + 45

tends to infinity as n — oo, then (J, .y £ is not relatively compact. If n = f*X\ — A
and the 1-form vy on Q is non-vanishing and represents [Lo] — ¢¢, then £,, and the
graph of ﬁ 1 + a"vy intersect. As vy doesn’t vanish, we can conclude.

Proof of Theorem 12. — We endow Q with a Riemannian metric and denote by |.|
the norm on TQ. Changing f into f~!, we can assume that a > 1. As f is CS, then
f*A—aAX = nis closed, We deduce from the proof of Proposition 7 that £ = ﬁ[j*n]
where j is the canonical injection from @ in T*@Q = M on the zero section. Then f*
is also CS with

(F)*A—a" = Zak TN = ad) Zak T
7=0
Suppose ad absurdum that [£] is not £;. Let v be a closed 1-form on Q such that
l¢ + [v] = [£]. There is a loop v : T — Q such that Sv v =+ 0.
As f is CS-isotopic to Idy; and by transitivity of the relation of CS-isotopy, f* is
also CS-isotopic to Idyc. Hence by Corollary 3, f*(£) is H-isotopic to a Lagrangian
graph. The submanifold £ is

Proposition 5 is that f*(£) is H-isotopic to the graph of

1 1
k(__— % k]l* _ k T )
a(l_ajn—i—l/) Za au—l—l_ajn.

If we denote by 75, : M O the symplectic diffeomorphisms 7% (p) = p + afv(7(p)) +
L n(j(r(p))), then 77" o f¥(£) is H-isotopic to the zero section and then admits
a generating function and a graph selector that is (see e.g. [14] p 98 and references
herein) a Lipschitz function uy : Q — R that is C! on an open subset U of Q with
full Lebesgue measure such that

Vge U, dug(q)e Tk_1 o fk([,)
Using Fubini theorem, we find a loop 73 that is C* close to v and such that

— 7, is smooth and isotopic to 7;
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— for Lebesgue almost s € T, we have y;(s) € Uy.

As uy, o7y is Lipschitz and then absolutely continuous, we have

[ d(uk o)
0= J;r T(s)ds.

Because i (s) € Ug for almost every s, we deduce

0= | dun(on(s)) (o)

and because 7 is homotopic to v and a*v + ﬁ j*n is closed,

[ (vu) + 2 G uto) + (D) o) = * | w7 | o
T 2!

1 1—-a

As the loops 7 are C'-close to v, there exists a constant K that is a upper bound
for all the ||y, (s)|. Hence there is a subset Ej with non-zero Lebesgue measure of T
such that for every s € Fj, we have

1
k - .
(5:1) |a"v(3(s)) + 7 1 (0 (9)) + dur((s))| > 5 | j Tl j ar
Moreover, for almost every s € T, we have

dug(vx(s)) € 71;1 o fk(L)7

ie.,

(5.2) () + 1 n(i()) + du((s)) € FHE).

We deduce from (5.1) and (5.2) that there is p € fk(L) such that

Ipl > 2K” 1-aK U”’ B

Question. — Is the hypothesis on H-isotopy to the zero section necessary?

6. UNIQUENESS

We work on the cotangent bundle (T*Q,—d)\) of a closed orientable manifold.
Viterbo introduced in the seminal paper [16], see also [18], the spectral distance ~y
that is defined on the set of H-isotopic to the zero-section Lagrangian submanifolds.
We will recall the main results of this theory and apply this to prove that if two
submanifolds £, £ are H-isotopic to the zero section and if (¢;) is a CH flow of T*Q,
then

cither  v(p(£), (L") 25 400, or A(pi(L), pi(L")) =5 fo0.

Using a recent result due to Shelukhin, [13], we will deduce that for certain mani-
folds Q, e.g. tori T, there is at most one H-isotopic to the zero section submanifold
whose orbit is compact and when it exists, this submanifold is in fact invariant.
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6.1. ON VITERBO SPECTRAL DISTANCE 7. If £, £’ are H-isotopic to the zero sec-
tion submanifolds of T*Q, they have quadratic at infinity generating functions
S:0xRF ->Rand §':Q xR - R.

We recall that a generating function S for £ is such that

— if we use the notation (g, &) € QxR¥, on Xg = (05/0¢)71(0), 0S/0¢ has maximal
rank;

— the map jg : ¥g — T#Q defined by js(q,&) = 05/0q(q,€) is an embedding and
its image is £.
The generating function is quadratic at infinity is there exists a non-degenerate qua-
dratic form @ : R¥ — R such that outside a compact subset of Q x R*, we have

S(q,€) = Q(&). /
The function SO S’ : M x RF x R¥ — R is defined by

(S©5)(q,&x) =5(q,8) —5"(¢,x)-
Observe that

!

£t = {00806 = 0} = {0 0: (50 8) (a6 = 0}

The function S © S’ is not quadratic at infinity, but it satisfies conditions of [17,
Prop. 1.6.] that ensure that it can be replaced by such a function, which we also
denote by S © S’. There exists a compact set K < Q x RF x R* such that

V(Q7£aX) ¢ K, (S@S/)(Q7£aX) = Q(gaX)v

where (@ is a non degenerate quadratic form on R¥ x R* . We denote by m its index.
Moreover, there exist a,b € R such that

Kn ({(S@S’) >hu{(Sos) < a}) -
For c € R, we denote by £° and F¢ the sublevels
£ = {(0.6,): (SO @Ex) <} and F° = {(€,%); Q6 ) < b
As (S©95)(q,€,x) and Q(€, ) are equal on € and outside €°, we have
Ved¢ la,b[, &°=QxJF°.
Hence, by Kunneth theorem [5], there is an isomorphism
K:H(F* ) ® H(Q) — H(E® &%).

As @ is a non-degenerate quadratic form with index m, we have H?(F°, ) = {0}
for p + m and H™(F°,F%) = RC is one dimensional. We deduce an isomorphism

T:RC® H*(Q) — H*T™ (& &).
Then, if « € H*(Q) is non-zero,
(0,50 8") = int{t  [a,b], j(C ® a) + 0},

where j; : (E%,€%) — (€,€7) is the inclusion. The number c(a, S © ') is then a
critical value of S © S’ that continuously depend on S and S’ for the uniform C°
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distance. Viterbo proved that ¢(«, S © S”") depends only on £ and £’ and not on the
choice of generating functions. It is then denoted by ¢(«, £, L").
If 1 is the orientation class of Q, the distance v(£, £L’) is defined by

Y(L, L") = e(p, £,L") —c(1,£,L").

Turorem 14. — Let f: M O be a CES diffeomorphism that is CH-isotopic to Idpxq.
Let £, L' be two distinct submanifolds of T*Q which are H-isotopic to the zero section,
then

either (f™(L), f*(£") 2= 4o,
or y(fTML), FTL)) Sy,

Cororrary 7. — Let f : M D be a CES diffeomorphism that is CH-isotopic to Idpsq.
Then there exists at most one H-isotopic to the zero section submanifold of T*Q that
1s invariant by f.

Proof of Theorem 14. — This is direct application of the following result of which we
provide a proof. O

Lemma 3. — Let £, £’ be two H-isotopic to the zero section submanifolds of T*Q.
Let (¢4) be an isotopy of exact conformal symplectic diffeomorphisms of T*Q such
that ¢o9 = Idp+q and ¢fw = a(t)w. Then

V(@e(L), ¢:(£7)) = a(t)y(£, L)

Proof. — As the distance v continuously depends on the generating functions, we only
need to prove the results for submanifolds £ and £’ whose intersections are all trans-
verse. In this case, there is only a finite number of critical points and critical values for
SeS . Mfx,ye Lnk wedenote by A(z,y, L, L") the difference of the corresponding
critical values of S© 5’, i.e.,

Aw,y, L") = (S0 i ) = 80 j5t () = (S 05" (@) = 80 j5 ().
Then if 17 is a path in £ joining x to y and 72 a path in £’ joining y to z, the difference
of the two corresponding critical values of S© S’ is

A(z,y, L,L) = J A

VN2
We can always choose 7; and 72 that are homotopic with fixed ends. Then, if D is a
disc with boundary 7n; v 12, we have
Az, y,L,L) = f w.
D
The intersection points of ¢;(£) and ¢.(L’) are the points ¢¢(x) with z € £ n L.
For z, y in £ n L', we have

Ae(@), 64y, (L), $1(L))) = f = L w = a(t)A(,y, 5, 5).
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Hence t — (1/a(t))(c(p, ¢e(£), (L)) — c(1,¢¢(£), $¢(£"))) is a continuous map that
takes its values in a fixed finite set, it has to be constant. O

6.2. AN APPLICATION OF A RESULT OF SHELUKHIN

Turorem 15. — Let f : T*T"™ © be a CES diffeomorphism that is CH-isotopic to
Idpsmn. Then there exists at most one H-isotopic to the zero section submanifold £
such that

U f¥(L) is relatively compact.
keZ

Hence when it exists, L is invariant by the f.

Proof. — In [13], Shelukhin defines a notion of string-point invertible manifold. The
tori T™ are examples of such manifolds. His result implies

Treorewm (Shelukhin, [13]). — Let g be a Riemannian metric on T™. Then there exists
a constant C(g) such that for all exact Lagrangian submanifolds Lo, £1 contained in
the unit codisk bundle D*(g) < T*T", we have v(Lg,L1) < C(g).

The Liouville vector field Z that is defined by iz, w = A satisfies
Lz w=d\=—w.

tw and even exact

Hence its flow (') is conformal symplectic with (¢)sw = e~
conformal symplectic because it preserves the zero section (and then the zero Liouville
class). We have seen in Lemma 3 that o} alters the distance v up to the scaling
factor et

Observe also that this flow is a homothety the fiber direction: ;' (p) = e~!p. Hence
the image of the unit codisk bundle D*(g) by ¢ is the codisk bundle D¥*_,(g) with
radius e,

Let us introduce the following notation for K < T*T".
dg(K) = min{r > 0; K < D}(q)}.

Finally, we have that for every H-isotopic to the zero section submanifolds £, £’ of
T*T™,

(6.1) (L, L") < 2C(g) max{dy(L),d,4(L")}.

If now £ and £’ are two distinct H-isotopic to the zero section submanifolds of T*T"
and f: T*T™ © is a CES diffeomorphism that is CH isotopic to Idp«rn, we deduce
from Theorem 14 that

either (f"(L), f™(£)) =2 +o0,
or A(fTL), fTML)) B2EEs oo
By (6.1), one of the two sets

U 752 U (L),

keZ keZ
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is not relatively compact. We deduce that there is at most one £ H-isotopic to the
zero section such that

U f*(L) is relatively compact.

keZ
When £ is H-isotopic to the zero-section, f(£) is also H-isotopic to the zero-section
because f is CH-isotopic to Idr«pn, see Corollary 3. Moreover, the orbits of £ and

f(L) coincide. This implies that £ = f(£). O
7. ExampLES
7.1. MARE exampLe. — This example was introduced by Mané in the Hamiltonian

setting, [10]. It can be extended to the conformal symplectic setting. For every vector
field X of a closed manifold Q, it provides a conformal Hamiltonian Tonelli flow of
T*Q such that the zero section is invariant and the flow restricted to this zero section
is conjugated to the flow of X.

Let Q be a closed manifold endowed with a Riemannian metric, 7%Q is endowed
with its tautological 1-form A and the symplectic form w = —d\. We denote by |.|
the norm on the fibers of 7*Q that is dual to the Riemannian norm of Q and by p, a
point of T*Q above ¢ € Q.

If X is a vector field on Q, we denote by px the 1-form on Q that is dual to X via
the Riemannian scalar product. We define the Hamiltonian

I”

1 1
Hx(pq) = 5lpg + px (@)* = S lpx (@)]*

Since the zero-section Z = {p = 0} is contained in the zero-energy level and is
Lagrangian, Z is invariant by the Hamiltonian flow of Hx. The restriction to Z of the
vector field is dual via w to the derivative of H in the fiber direction, so if we denote
by §: T M — T, M the duality that is defined by the Riemannian metric, we have

qz = li(p+pX(Q))‘Z = fipx(q) = X(q)-

Hence on the zero-section, the vector field is X.

In the conformal Hamiltonian setting, we add « times the Liouville vector field to
the Hamiltonian vector field X g of H, for some « € R. Since the Liouville vector field
vanishes on Z, the dynamics remains conjugate to X.

Remark 16. — The global attractor may differ from the zero section. For example,
X may have an attractive fixed point whose unstable manifold is not contained in the
Z, in which case the global attractor is not a submanifold either.

7.2. AN ExampPLE OF A ToNeELLI HAMILTONIAN THAT HAS AN INVARIANT LLAGRANGIAN SUB-
MANIFOLD THAT 1S NOT A GRAPIT. — The example we are about to describe is inspired
by an example of Le Calvez [8].

Let B > 0 be a positive number and let a € (3,23). On T*R = R2, let H be the
quadratic Tonelli Hamiltonian

H(z,y) = y* — Bay.
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Consider the sum of the Hamiltonian vector field of H and of « times the Liouville
vector field —y 0,

1) {x = —Bx + 2y,

y=(B-a)y.
The matrix of this linear system is (_05 /ﬁa). Hence ((1)) is an eigenvector for the
eigenvalue —f and (5_10/2) is an eigenvector for the eigenvalue § —a. As a € (53,20),
(0,0) is an attracting fixed point and the line R(}J) is the strong stable eigenspace.

Every solution that is not contained in an eigenspace is contained in a curve whose

equation is
2

20—«
where K = 0, and then is not a graph if (0) - y(0) > 0.

z = y+ Kly??),

Y

T

\

Let us choose two large real numbers B > A > 0 and let V : R — [—1,0] be a

function with support in [—B, B] such that Vjj_4 4] = —1, V|_p,_ 4] is non-increasing
and V|4, ) is non-decreasing. Then we add V() to H(z,y) and the equations become
T = —Px + 2y,
(7.2) b= L
y=-V'z)+ (B -y

As the support of V' is in [—B, —A] u [A4, B], the two vector fields are equal in the
complement of ([—B, —A] U [A4, B]) xR. As V|/[73,7A] < 0, the orbit on the z-axis for
x < —B is pushed to the half plane y > 0 and then coincides with an orbit of (7.1)
which tends to (0,0). In the same way, the orbit that coincides with the z-axis for
x = B tends to (0,0) at +oo0 with an incursion into the half-plane y < 0. Hence the
union of these two orbits and {(0,0)} is an invariant curve I' for (7.2) that is not a
graph.
Now, let us choose D > C' > B. Let X : R — R be a vector field such that

- Vze -2 —Blu[B, %], X(z) = —Ba;
— X(=D) = X(D) = 0 and all the derivatives of X are the same at —D and D;
— (=D, —B] (resp. [B, D)) is a piece of unstable manifold of the equilibrium —D

(resp. D).
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Then X defines also a vector field on the circle €p = [-D, D]/D ~ —D. Let Hx be
the Hamiltonian that is associated to X on T*R = R? via the Maiié construction

1
Hx(z,y) = 5 yly +2X(2)).
Let us eventually define

K(z,y) = (1 —n(z))Hx (z,y) + n(z) (H(z,y) + V(z))

= 220y 49X (@) 4 )0 — By + V),

where 7 : R — [0, 1] is a bump function with support in [—C, C] that is equal to 1 on

[—B, B]. The function K is also Hamiltonian on the annulus Cp x R and, since

’°K
672(1,?1) = (1 =n(x)) +2n(z) > 1,
hence K is Tonelli.
Note the following;:

- ([-D,—B] v [B,D]) x {0} is in the zero level of K and then is locally inva-
riant by the Hamiltonian flow of K and also by the conformal Hamiltonian flow
(0K /oy, —0K [0x — ay);

- Kj_,B)xr = (H + V)|[-B,B]xR-

Finally, the vector field (0K /0y, —0K /dx — ay) has an invariant curve that is not a
graph, which is the union of ([—D,—B] u [B, D]) x {0} and the part of T that is
between x = —B and =z = B.

AprpENDIX A. YOMDIN’S INEQUALITY

Let £ be a a compact Riemannian C" manifold, § < £ be a compact C” subman-
ifold of dimension s and f : £ © be a C"-diffeomorphism (r > 1). (The general
statement does not require f to be invertible.)

Define the logarithmic volume growth of f|s as

1
logvol(fis) = limsup — log | vol(f"(8)|,
n—+o0w N
where vol is the s-dimensional Riemannian volume, and

ad(Df) = limsup |[DF"|2",  |Df oo = sup |Dfel.

Tueorem 17 (Yomdin [20], Gromov [6])
logvol(fs) < ent(f) + log™ (rad(Df)s/T)

(where log™ t = max(0,logt)). In particular, if £ and f are smooth,

logvol(fis) < ent(fis) < ent f.
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AprpPENDIX B. ConFORMAL DYNAMICS ARE EXACT

We assume that (M,w = —d\) is an exact symplectic manifold. We prove that
every conformal dynamics is symplectically conjugate to a CES dynamics.

Our first result explains that every conformal dynamics on an exact symplectic
manifold is exact conformal with respect to some primitive of the symplectic form.

Prorosition 9. — Let f: M D be a (CS) diffeomorphism that is homotopic to Idy
and such that f*w = aw. Then there exists a primitive \1 of —w, namely

1
Al=——(A—=f*X
1=7—, (A=
such that f is \y CES. Hence is j : 8 — M is an isotropic embedding such that j(8)
is f invariant, j(8) is A1 ezact.

Proof'of Proposition 9. We denote n = f*\ —aX. Then dyp = —f*w + aw = 0 and
so n is closed. Observe that

1 1
N —

']’]:

(A= F*X)) = A,

1—a 1—a

S0 A1 is a primitive of —w. We have
1
[\ —ar =n— T4 (f*n—an).
Because f is homotopic to Idyg, f*n — 7 is exact and
1
*A1 —ad; = —— (n— f*n).

J5A —a) 1_@(77 f*n)

is exact. The conclusion comes from Proposition 8 for the 1-form Ay instead of A. [

Prorosition 10. — Let f : M < be a conformal symplectic diffeomorphism that is
homotopic to Idye and such that f*w = aw witha >0 and a = 1. Then n = f*\—al
1s a closed 1-form that is dual to a symplectic vector field Y such that iyvw = 7.
When Y is complete, there exists a symplectically isotopic to Idy diffeomorphism
g : M D such that g*\ — X + ﬁ n is exact and then go fog~! is A\ CES.

Proof. — We denote n = f*\ — aX. Then dnp = —f*w + aw = 0 and so 7 is closed.
We denote by A; the primitive of w that was defined in Proposition 9.

Levva 4. — There exists a symplectic vector field X with flow (g¢) such that gFA— X\
15 exact.

Proof. — We consider the vector field X that is defined by ixw = 7. As 1 is
closed, X is symplectic. As Y is assumed to be complete and X = ﬁ Y, the vector
field X is also complete and defines a flow (g:). Then we have

1
If we denote by [.] the cohomology class, this gives
1 . d[giX — \] 1
LN = — e S 1.
[X] 1_a[n]a Le., dt 1_a[gt77]
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We deduce that for all ¢ we have gf\ — A + ﬁ—a n is exact. In particular, g¥\ — A\; is
exact. g

We now consider F' =g 0 fo gl’l. We have

F*A=(g7") o ffogi(N) = (97) o f* (M + 1),
where v is exact by lemma 4. By Proposition 9, o = f*A; — a)\; is exact and we
have

F*\ = (gl_l)*(a)\l + o+ fFrr) =ar+ (gl_l)*(—aul + v+ fFuy). O

Prorosition 11. — Let X be a conformal symplectic vector field on M such that
Lxw = aw with a« € R*. The 1-form £ = ixw + a\ is closed and the vector field X
defined by ix,w = & is symplectic. When X is complete, there exists a symplectically
isotopic to Idye diffeomorphism g : M O such that g*\ — X + (1/@)€ is exact. Then
g*X is X\ conformal Hamiltonian.

Proof. — We have d€ = Lxw — aw hence £ is closed.

Lemwva 5. There exists a primitive \y of —w, namely
1 1
)\1 =A- 75 = —7ixw,
@ @

such that X is Ay Hamiltonian.

Proof. — The 1-form
ixw+al =ixw+ar—&=0

is exact. O

Levmma 6. There exists a symplectic vector field Y with flow (1) such that FA—Xy
s exact.

Proof. — We consider the vector field YV that is defined by iyw = (1/a)€. As & is
closed, Y is symplectic. As X7 is complete and Y = (1/a) X1, Y is also complete and
defines a flow. Then we have

1
Lyl = —iyw + d(iy\) = —& d(iy A).
We deduce that the flow (¢;) of Y satisfies
d. 1
LrpEn— A = -~ [¢].
AN e
Hence A — A1 = FA — A+ (1/a)¢ is exact. O

We denote g = 1. Let us prove that g* X is A conformal Hamiltonian. Because g
is symplectic, we have

g xW = s (Z'Xw) = g« (& — a)).

Because g*\ — A1 is exact, gy ({ — a/\) + a is exact and igx xw + a is exact and
so g* X is conformal Hamiltonian. |
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