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INVARIANT SUBMANIFOLDS

OF CONFORMAL SYMPLECTIC DYNAMICS

by Marie-Claude Arnaud & Jacques Fejoz

Abstract. — We study invariant manifolds of conformal symplectic dynamical systems on a
symplectic manifold pM, ωq of dimension ě 4. We first prove the ω-isotropy of an invariant
manifold N, assuming the entropy of N is small with respect to the conformality rate. Next,
when pM, ωq is exact and N is isotropic, we show that N must be exact for some choice of
the primitive of ω, under the condition that the dynamics acts trivially on the cohomology of
degree 1 of N. The conclusion partially extends if a one-sided orbit of N has compact closure.
We eventually describe some conditions showing the uniqueness of N.

Résumé (Variétés invariantes des dynamiques conformément symplectiques)
Nous étudions les variétés invariantes des systèmes dynamiques conformes symplectiques

sur une variété symplectique pM, ωq de dimension ě 4. Nous montrons d’abord qu’une variété
invariante N est ω-isotrope, à supposer que l’entropie de la dynamique restreinte soit petite par
rapport au taux de conformalité. Ensuite, quand pM, ωq est exacte et N isotrope, nous montrons
que N est exacte pour un certain choix de primitive de ω, sous la condition que la dynamique
agit trivialement sur la cohomologie de degré 1 de N. La conclusion se généralise partiellement si
une demi-orbite de N est d’adhérence compacte. Enfin, nous décrivons des conditions montrant
l’unicité de N.
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1. Introduction

Let pM2d, ωq be a symplectic manifold. Symplectic dynamical systems form a class
of infinite codimension. We will study conformal symplectic dynamics, a now classical
extension of symplectic dynamics(1) where the symplectic form may change in its own
direction:

Definition 1
– A diffeomorphism f : M ý is conformal symplectic if f˚ω “ aω for some a ą 0

(conformality ratio).(2)

– A complete vector field X on M is conformal symplectic if LXω “ αω, where
LX is the Lie derivative, for some α P R (conformality rate).(3)

Such dynamics encapsulate mechanical systems whose friction force is proportional
to velocity, in which case a ă 1 or α ă 0.

In this paper we will focus on the non-symplectic case, i.e., a ‰ 1 and α ‰ 0.
Of course, time reversal changes a in 1{a and α in ´α.

For such a dynamics, the volume form ω^d is monotonic. So if such a dynamics ex-
ists on M, M cannot be closed and has infinite volume. Moreover, when the dynamics
is given by a vector field X, the symplectic form satisfies ω “ 1

αLXω “ d
`

1
α iXω

˘

and
is exact. Hence conformal vector fields exist only on exact symplectic manifolds. Yet
this is not the case for conformal diffeomorphisms (see an example in Proposition 2).

Also, if a vector field X is conformal symplectic of conformality rate α and if Z is
the Liouville vector field associated with the 1-form λ “ ´ 1

α iXω, i.e., iZω “ λ, then
X `αZ is symplectic. Thus, when ω is exact, conformal symplectic vector fields form
a 1-dimensional extension of the space of symplectic vector fields.

When pM, ωq is exact, there exists a 1-parameter subgroup C of the set of conformal
symplectic diffeomorphisms such that the group of conformal symplectic diffeomor-
phisms is tf ˝g; pf, gq P CˆSu where S is the set of symplectic diffeomorphisms. When
M is not exact, let R be the subgroup of R˚

` of conformality ratios of conformal sym-
plectic diffeomorphisms of M. This subgroup can be trivial, e.g. when M is compact
(all conformal symplectic diffeomorphism are symplectic).

Questions. — Can R be strictly between t1u and R˚
`? Assuming that R “ R˚

`, does
there exist a continuous 1-parameter family of conformal symplectic diffeomorphisms
indexed by its conformality ratio in R˚

`?

An important case is that of cotangent bundles pM “ T˚Q, ω “ ´dλq, where Q is
a manifold and λ is the canonical Liouville 1-form. A continuous-time example is the
flow expptZλqpq, pq “ pq, e´tpq of the Liouville vector field Zλ defined by iZλ

p´dλq “ λ

(1)Vaisman [15] and others have defined local conformal symplectic structures on a manifold M.
There is a corresponding notion of dynamics preserving the structure, thus extending our setting.

(2)As Libermann noticed [9]: if f˚ω “ aω for some smooth function a, aω being closed we have
da ^ ω “ 0, which implies, if M has dimension ě 4, that a is constant.

(3)Then the flow pφtq of X is conformal symplectic and φ˚
t ω “ eαtω.

J.É.P. — M., 2024, tome 11



Conformal symplectic dynamics 161

and a discrete-time example is f “ expZλ : pq, pq ÞÑ pq, apq, a “ e´1. These two
examples of conformal symplectic dynamics have a very simple behaviour:

– there is a global attractor A;
– the ω-limit set of every orbit is a point of A.

More generally, consider a discounted Tonelli vector field X on T˚Q of negative rate α;
by definition it satisfies iXω “ dH `αλ for some Hamiltonian H which is superlinear
in the fiber direction and whose Hessian in the fiber direction is positive definite.
It has been shown that the flow of such a vector field has a global attractor [11].

In the general setting, many natural questions are open, for example:

Questions. — Which conditions ensure the existence of a global attractor? And pro-
vided that the global attractor exists (necessarily having zero volume), what can be
said of its size?

As a first step, in this article we focus on the case of invariant submanifolds (with
a digression on the case of submanifolds with compact orbit), although the study
of dissipative twist maps proves that there can exist invariant subsets that are not
submanifolds [8].

First, we explore the isotropy of invariant submanifolds. This question is akin to
its analogue in symplectic dynamics, where both negative and positive results have
been proved in particular for invariant tori carrying minimal quasiperiodic flows.

We start by providing an example where an invariant submanifold is a hypersur-
face and hence non-isotropic (Propositions 1 and 2 in section 2). There exist similar
examples due to McDuff, [12] and Geiges [3, 4], but our example is somewhat more
explicit. We do not know if there exist examples of invariant non-isotropic submani-
folds that are invariant by a conformally symplectic dynamics on a cotangent bundle.
An even more difficult question is to determine whether such submanifolds may exist
for discounted Tonelli flows on cotangent bundles. In this case and when dimM ě 4,
the global attractor never separates M and hence cannot be a hypersurface.

In turn, we show some positive results regarding the isotropy of invariant sub-
manifolds. If the invariant submanifold is a surface, isotropy follows from a simple
argument using the growth of the area. In higher dimension, a first result follows
from Yomdin’s theory [20, 6]. Proposition 4 of section 2 states that if a smooth(4)

conformal diffeomorphism f : M ý with conformality rate a has an invariant smooth
submanifold N Ă M such that the topological entropy of f|N is less than | logpaq|,
then N is isotropic.

But Yomdin’s proof can be improved in the setting of diffeomorphisms which are
conformal with respect to a presymplectic form. Here, we prove that the so-called
local entropies have no effect on the volume growth transversally to the characteristic
foliation of N (section 3). It follows that if a conformal symplectic C3-diffeomorphism
of conformality ratio a has an invariant C3-manifold on which ω has constant rank 2ℓ

(4)Smooth means C8.
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162 M.-C. Arnaud & J. Fejoz

and such that the entropy of f|N is smaller than ℓ | log a|, N is isotropic. In particular,
if an invariant submanifold carries a minimal dynamics (every orbit is dense) with
zero entropy, it is isotropic (Corollary 2).

This new result assumes less regularity than the former one (C3 instead of smooth
in Proposition 4) but requires that the symplectic form restricted to the submanifold
has constant rank.

A related result is [2, 2.2.1], where the authors prove that if a C1 conformal dy-
namics has a C1 invariant torus on which the dynamics is C1 conjugate to a rigid
rotation, then this torus is isotropic. This results is a direct consequence of Propo-
sition 4. Corollary 2 of section 3 doesn’t imply this result because our result require
more regularity, and on the other hand our result applies when a C3 dynamics is C0

conjugated to a transitive rotation.
Second, we examine the question of exactness. In this purpose, in section 4 we as-

sume that pM, ω “ ´dλq is exact. Define the Liouville class of an isotropic embedding
in M as the cohomology class of the form induced by λ. The embedding is called
exact when this class vanishes. The action of conformal symplectic diffeomorphisms
on Liouville classes depends on a notion of exactness for the diffeomorphisms them-
selves. Let f : M ý be a conformal symplectic diffeomorphism of conformality ratio
a. The form f˚λ´ aλ is closed.

Definition 2. — The diffeomorphism f is λ conformal exact symplectic (CES) if
f˚λ´ aλ is exact.

It is Hamiltonian if f is the time-one map of the flow of a non autonomous con-
formal Hamiltonian vector field Xt (meaning that iXtω “ αt λ` dHt for all t).

These definitions depend of the chosen primitive of the symplectic form. We prove
in appendix B that there is always a choice of primitive for which f is exact. Alter-
natively, we also show that f is symplectically conjugate to a diffeomorphism which
is exact with respect to the initial λ (see appendix B). Hence we state our results
for exact conformal symplectic dynamics (see section 4 for more comprehensive state-
ments).

Our main result here is that if f is an exact conformal symplectic diffeomorphism
and if S is a strongly f -invariant submanifold (in the sense that j ˝ fpSq “ jpSq and f
acts trivially on H1pjpSq,Rq), j is exact.

When L is a Lagrangian submanifold that is H-isotopic(5) to a graph in M “ T˚Q

and f is CS isotopic(6) to IdM, we obtain the same conclusion when assuming only
that the orbit of L is bounded. For example, the submanifolds that are H-isotopic to
the zero section and contained in an attractor satisfy this hypothesis.

Question. — Is it possible to obtain similar results without assuming that the
Lagrangian submanifold is H-isotopic to a graph? On other manifolds?

(5)By H-isotopic, we mean isotopic among Hamiltonian diffeomorphisms.
(6)By CS isotopic, we mean isotopic among conformal symplectic diffeomorphisms.
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Third, in section 6, we raise the question of the uniqueness of a invariant Lagrangian
submanifolds in a cotangent bundle pT˚Q,´dλq. Indeed, let f : T˚Q ý be a CES
diffeomorphism that is CH isotopic(7) to IdT˚Q. We show that there exists at most
one submanifold of T˚Q that is H-isotopic to the zero section and invariant by f . Key
to the proof is the Viterbo distance of Lagrangian submanifolds which are H-isotopic
to the zero section, and the fact that this distance is monotonic with respect to the
action of f .

A recent result of Shelukhin even allows us to show the following. Let f : T˚Tn ý

be a CES diffeomorphism that is CH-isotopic to IdT˚Tn . Then there exists at most
one submanifold L which is H-isotopic to the zero section and such that⋃

kPZ
fkpLq is relatively compact.

Hence when it exists, L is invariant by f .
For discounted Tonelli flows, it was known that there is at most one invariant exact

Lagrangian graph because this corresponds to the unique weak KAM solution [11].
But we give in Section 7 an example of such a dynamics with an invariant H-isotopic
to a graph submanifold that is not a graph, hence even in this case our uniqueness
result is new.

2. Isotropy

The so-called Mañé example [10] (see section 7.1) shows that any flow defined on a
closed manifold Q can be achieved as the restriction of a Tonelli conformal Hamiltonian
flow to the zero section of T˚Q. In this case, the zero section is an invariant Lagrangian
submanifold.

The following example, which is very similar to an example of [4], is key to this
section. It shows that a closed submanifold which is invariant by a conformal sym-
plectic dynamics may be non ω-isotropic. In the remaining of the section, we will give
some general conditions under which the submanifold must be ω-isotropic.

Proposition 1. — There exists a conformal symplectic vector field X on a 4-dimen-
sional symplectic manifold pM, ωq, with a 3-dimensional invariant submanifold L

(hence L is not isotropic).
Moreover, the submanifold L is the global attractor for the flow pφtq of X, pφt|Lq is

conjugate to the suspension of an Anosov automorphism of T2 with 2-dimensional sta-
ble and unstable foliations, and pφt|Lq is transitive with entropy equal to |α|, where α
is the conformality rate of X.

Remarks 3
(1) In our example, L is coisotropic, but it is easy to extend this example to an

invariant submanifold which is neither isotropic nor coisotropic. Indeed, let Y be a
conformal symplectic vector field on a symplectic manifold pN, ω1q with a periodic

(7)By CH-isotopic, we naturally mean isotopic among conformally Hamiltonian diffeomorphisms.

J.É.P. — M., 2024, tome 11



164 M.-C. Arnaud & J. Fejoz

orbit γ. Then the sum X‘Y admits Lˆγ as an invariant submanifold that is neither
isotropic nor coisotropic in M ˆ N if dimN ě 4.

(2) The submanifold L is the maximal (among compact subsets) attractor of the
dynamics.

(3) Replacing the vector field X by bX for b P R, we can achieve any positive value
for the entropy.

Questions. — We don’t know if it is possible to build a non-isotropic example on
a cotangent bundle endowed with its usual symplectic form or, even stronger, if a
similar example exists on such a manifold among Tonelli flows.

Proof of Proposition 1. — We consider an Anosov automorphism A : T2 ý induced by
a matrix

`

a b
c d

˘

P SLp2,Zq with eigenvalues 0 ă λ´ ă 1 ă λ` “ 1{λ´ and eigenvectors
v˘. An example of such an automorphism is Apx, yq “ p2x`y, x`yq, with eigenvalues
λ´ “ p3 ´

?
5q{2 ă 1 and λ` “ p3 `

?
5q{2 ą 1.

Following [1], we define a suspension T of the diffeomorphism by using the following
relation on T2 ˆ R (writing ξ “ px, yq):

@pξ, zq P T2 ˆ R, pξ, zq „ F pξ, zq :“ pAξ, z ´ 1q.

Denote by α˘ the linear forms on R2 such that α˘pv˘q “ 1 and α˘pv¯q “ 0. Observe
that α˘ ˝ A “ λ˘α˘. Rescale the forms α˘ in the z-direction in order to get F -in-
variant forms on T2 ˆ R: define

β˘pξ, zq “
`

λ˘

˘z
α˘pξq,

so that
F˚β˘ “

`

λ˘

˘z´1
α˘ ˝A “

`

λ˘

˘z
α˘ “ β˘.

Hence β˘ is F -invariant and defines a 1-form on the quotient manifold N“pT2ˆRq{„.
We use the same notation for these 1-forms. Then

(2.1) dβ˘ “ lnλ˘ dz ^ β˘.

We consider the vector field X“p0, 0, 1q on N. The lift of its flow to T2 R̂ is defined by
ĂΦtpξ, zq “ pξ, z ` tq,

hence the first return map to tz “ 0u is Φ1pξ, 0q “ pAξ, 0q and is conjugate to A. The
flow pΦtq is a suspension of A and has the same Lyapunov exponents as A.

We endow the manifold M “ N ˆ R with the 1-form

Λ “ β´ ` sβ`,

where s is the R-coordinate. We define Ω “ dΛ. By (2.1), we have

Ω “ dβ´ ` ds^ β` ` sdβ` “ dz ^ plnλ´β´ ` s lnλ`β`q ` ds^ β`.

Thus Ω^2 “ 2 lnλ´dz ^ β` ^ ds^ β` ­“ 0 and Ω is a symplectic form.
We define on M the vector field Y “ X ` 2 lnλ´Bs. Its flow is

ψtpξ, z, sq “ pΦtpξ, zq,
`

λ´

˘2t
sq.

J.É.P. — M., 2024, tome 11



Conformal symplectic dynamics 165

Hence N ˆ t0u is the global attractor for pψtq. We have

ψ˚
t Ω “ dz ^

´

lnλ´ ¨ pλ´qtβ´ `
`

pλ´q2t ¨ s
˘

lnλ` ¨ pλ`qtβ`

¯

` pλ´q2tds^ pλ`qtβ`.

As λ´λ` “ 1, we finally obtain
ψ˚
t Ω “ λt´Ω. □

There are also examples of conformal symplectic diffeomorphisms on a non-exact
symplectic manifold that have a non-isotropic invariant submanifold on which the
restricted dynamics is Anosov.

Proposition 2. — There exists a conformal symplectic diffeomorphism f on a 6-di-
mensional symplectic manifold pM, ωq,with a 4-dimensional invariant submanifold L

(so L is not isotropic).
Moreover, the submanifold L is the global attractor for f , f|L is conjugated to

a hyperbolic automorphism of T4 with 2-dimensional stable and unstable foliations,
and f|L is transitive with entropy equal to ´ log a, where a is the conformality ratio
of f .

Question. — In our example we have a “
`

p3 ´
?
5q{2

˘2. In fact we can replace
this number by the square of the largest eigenvalue of any Anosov automorphism
of T2. We do not know if we can achieve other constants by a conformal symplectic
diffeomorphisms of the same symplectic manifold.

Proof. — We consider the hyperbolic toral automorphism T : T2 Ñ T2 that is defined
by T pθ1, θ2q “ p2θ1 ` θ2, θ1 ` θ2q. The associated linear map has eigenvalues λ “

p3 ´
?
5q{2 ă 1 and λ´1 “ p3 `

?
5q{2 ą 1. Let p “ p

?
5 ´ 1q{2. The unstable

direction is spanned by p1, pq and the stable one by p1,´1{pq. The topological entropy
is ´ log λ (see [7]).

Then the product map F “ pT, T q : pθ1, θ2, θ3, θ4q P T2ˆT2 ÞÑ pT pθ1, θ2q, T pθ3, θ4qq

has topological entropy equal to ´2 log λ. We endow T4 with the closed 2-form Ω that
is defined by

Ω “ pdθ2 ´ p dθ1q ^ pdθ4 ´ p dθ3q.

Observe that the kernel of Ω is the direction of the unstable foliation. Obviously,
F˚Ω “ λ2 Ω. Now, we consider the subbundle

M “
␣

pθ, rq P T4 ˆ R4; r2 “ pr1 and r4 “ pr3
(

of T4 ˆ R4. This bundle corresponds to the tangent bundle to the unstable foliation
in the identification of TT4 with T4 ˆ R4.

We denote by Ω1 the closed 2-form on M that is equal to π˚Ω where π : pθ, rq P

M ÞÑ θ P T4 and by Ω2 the restriction of the usual symplectic form dθ ^ dr of T˚T4

to M:
#

Ω1 “ pdθ2 ´ p dθ1q ^ pdθ4 ´ p dθ3q,

Ω2 “ 1
5 pdθ2 ` 1

pdθ1q ^ pdr2 ` 1
pdr1q ` 1

5 pdθ4 ` 1
pdθ3q ^ pdr4 ` 1

pdr3q.

Let then ω “ Ω1 ` Ω2 be the chosen symplectic form on M.

J.É.P. — M., 2024, tome 11
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If we define f : M Ñ M by fpθ, rq “ pT pθq,
`

p3 ´
?
5q{2

˘3
rq, then we have

#

f˚Ω1 “ π˚F˚Ω “ λ2Ω1,

f˚Ω2 “ pλ3{λqΩ2 “ λ2Ω2.

So finally f : M Ñ M is a conformal symplectic diffeomorphism such that f˚ω “ λ2ω

and f˚pT4 ˆ t0uq “ T4 ˆ t0u, where T4 ˆ t0u is not isotropic and the topological
entropy of f|T4ˆt0u is ´2 log λ. □

Let us come back to the general case of a C1 conformal symplectic diffeomorphism f

of a symplectic manifold pM, ωq, of conformality ratio a ‰ 1.

Proposition 3. — A C1 closed submanifold L of even dimension which is invariant
by f is nowhere symplectic. In particular, if L is a surface, it is isotropic.

Proof. — Assume the conformality ratio a of f is ‰ 1 and an f -invariant subman-
ifold L has dimension 2ℓ. Let Ω “ ωℓ, so that f˚Ω “ aℓ Ω. Choose a finite atlas
A “ tpUi,Φiqu1ďiďN of L, endow L with a Riemannian metric and define

$

’

’

’

&

’

’

’

%

}Ω}L,8 “ sup
xPL,u1,...,uℓPTxLzt0u

|Ωpu1, . . . , uℓq|

}u1} ¨ ¨ ¨ }uℓ}

}DΦ´1
i }L,8 “ sup

uPTLzt0u

}DΦ´1
i puq}

}u}
.

Then,
ş

U
Ω is bounded over open subsets U of L:

(2.2)
ˇ

ˇ

ˇ

ˇ

ż

U

ω

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

i“1

ż

ΦipUiq

}ω}L,8 }DΦ´1
i }ℓL,8 dLeb.

Now, let U be any open set of L. For n P Z, fnU is an open subset of L and
ż

fnU

Ω “ an
ż

U

Ω.

Since a is assumed ‰ 1,
ş

U
Ω must thus be zero. Hence the 2ℓ-form induced by Ω

vanishes identically, whence the conclusion. □

If L has any dimension, the same conclusion holds provided some constraint on the
topological entropy entpf|Lq of the dynamics carried by L. Define the spectral radius
of a self-map g as

radpDgq “ lim sup
nÑ`8

}Dgn}
1{n
8 .

Proposition 4. — Let f be a conformal diffeomorphism of pM, ωq, i.e., such that
f˚ω “ aω with a P s0, 1r. Let L be an invariant closed submanifold. Assume one of
the following hypothesis.

(1) The diffeomorphism f is smooth, L is smooth and
entpf|Lq ă ´ logpaq;

(2) The diffeomorphism f and L are Cr for some r ě 1 and
entpf|Lq ` log`

`

RadpDf´1
|L

q2{r
˘

ă ´ logpaq.

Then L is ω-isotropic.
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Conformal symplectic dynamics 167

Proof. — We assume that L is invariant and not isotropic. There exists a constant
k ą 0 such that on L, we have |ω| ď k|vol| where vol is the 2-dimensional volume
form induced by the Riemannian metric. We choose in L a small piece S of symplectic
surface (whose tangent space intersects the characteristic bundle of L only in 0). Then
ωpf´npSqq “ a´nωpSq ­“ 0 and then

lim sup
nÑ8

1

n
log

ˇ

ˇ

ˇ
volpf´npSq

ˇ

ˇ

ˇ
ě lim

nÑ8

1

n

`

log |ωpf´npSqq| ´ log k
˘

“ ´ logpaq.

The conclusion follows from Yomdin’s inequality, which we have recalled in appen-
dix A. □

Remark 4. — This statement implies in particular that if L is an invariant subman-
ifold by a conformal flow pφtq then

– if L and pφtq are C1 and if φt|L is C1 conjugate to a rotation on a torus for some
t ­“ 0, then L is isotropic; indeed, in this case, the entropy vanishes and the spectral
radius of Df is 1. A simpler proof of this statement is given in [2].

– if L and pφtq are smooth and if φt|L is C0 conjugate to a rotation on a torus for
some t ­“ 0, then L is isotropic; indeed, in this case, the entropy vanishes.

3. Entropy

The purpose of this section is to improve regularity in Proposition 4. We will start
by giving an abstract result on a manifold endowed with a form with constant rank
and then we will give an application to invariant submanifolds of conformal symplectic
dynamics.

Let
– Npnq be a compact Riemannian C2 manifold and d its distance
– F be a C2 foliation induced by a subbundle F of TN of rank pď n´ 1

– Ω be an pn ´ pq-form on N which induces a volume on submanifolds transverse
to F

– f be a C1-diffeomorphism of N preserving F and such that

f˚Ω “ bΩ

for some b ą 1.

Theorem 5. — The topological entropy of f satisfies

ent f ě ln b.

Proof. — Key to the proof is the refined distance dF on N defined by

dFpx, yq “

#

8 if x and y are not on the same leaf,
distance from x to y along their common leaf, otherwise.

Lemma 1. — There exist ε ą 0 and K ą 0 such that for every x, y P N

(3.1) dFpx, yq ă ε ùñ dFpx, yq ď Kdpx, yq.
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Replacing the Riemannian metric d by p1{εqd, we will assume that ε “ 1.

Proof of Lemma 1. — We choose ε ą 0 that is strictly less than the radius of injectivity
of the metric d restricted to every leaf and introduce

D “ tpx, yq P N ˆ N; dFpx, yq ď εu.

This set is closed and due to our choice of ε, dF is continuous on D. If we use the
notation

∆ “ tpx, xq; x P Nu,

then the continuous function dF{d is bounded on the complement of every neighbour-
hood of ∆ in D.

The exponential maps for the Riemannian form g and for the Riemannian form gF
restricted to the leaves are tangent along the tangent bundle to the leaves, hence

lim
px,yqÑ∆

dFpx, yq

dpx, yq
“ 1. □

For every x P N, let U
pn´pq
x be a submanifold through x of dimension n ´ p,

transverse to F and homeomorphic to a ball, such that its normal bundle is trivial.
Let Vx be a tubular neighborhood of Ux, of the form

Vx “
⋃

yPUx

tz P N; dFpy, zq ă εxu.

We choose Ux and εx ă 1 small enough so that Vx has a product structure. Further-
more, let

Wx “
⋃

yPUx

tz P N; dFpy, zq ă εx{2u.

Let FWx
be the foliation induced on Wx by F. (Due to the product structure, leaves

of FWx
are of the form Wx X Lx, where Lx is the leaf through x of the foliation

induced on Vx.) The neighborhood Wx has the property that for any two points y
and z of Wx, if dFpy, zq ă εx{2 then y and z must belong to the same leaf of FWx ;
indeed, if y and z do not lie on the same leaf of FWx

, their distance must be ě εx
since any path from y to z along a leaf of F runs twice across VxzWx.

Let Wx1 ,. . . , WxI
be a finite subcovering of N. Denote Wxi by Wi, and let ε “

mini εxi{2. So, the following property holds:
p˚q For every i “ 1, . . . , I and y, z P Wi such that dFpy, zq ă ε, y and z belong to

the same leaf of the foliation FWi induced by F on Wi.
Moreover, since f´1 and F are continuous and f preserves F, there exists η ă ε

such that
p˚˚q For every x, y P N such that dFpx, yq ă η, dFpf´1x, f´1yq ă ε.
According to Lebesgue covering lemma, there exists θ ă η{K such that every ball

of radius θ is inside at least one of the Wi’s.
Let pQjq1ďjďJ be a decomposition of N into cubes (or compact submanifolds with

boundaries) such that each cube is contained in a ball of radius ă θ.

J.É.P. — M., 2024, tome 11



Conformal symplectic dynamics 169

Ux

Fx

Fy “ Fz

x

y

z

Wx Vx

Figure 3.1. Construction of the finite covering of N

Let S be a submanifold of N of dimension n ´ p, included into some cube Qj and
transverse to F. S must lie into some Wi. For any Wi containing S, S meets each leaf
of FWi at isolated points. By narrowing S, we may assume that S meets each leaf of
FWi

at one point at most.
We claim that
p˚˚˚q For every k and j1, . . . , jk P t1, . . . , Ju,

fkpSq X fk´1pQj1q X ¨ ¨ ¨ XQjk

meets each leaf of any Wi containing Qjk at one point at most.
Let j P t1, . . . , Ju. Then S1 “ fpSq X Qj is also transverse to the foliation. Let

x, y P S1 be on a common leaf of FWi
, with Qj Ă Wi0 . Since such leaves have a

diameter ă 1 (due to our choice εx ă 1), using (3.1)(8), we see that

dFpx, yq ď Kdpx, yq ď KdiamQj ď Kθ ď η.

Using p˚˚q, dFpf´1x, f´1yq ă ε. But using p˚q, f´1x and f´1y belong to the same
leaf of FWi0

. So, by the constructing property of Wi0 , f´1x “ f´1y and x “ y.
By induction, p˚˚˚q holds.

If S Ă Wi, we have
ˇ

ˇΩ
`

fkpSq X fk´1pQj1q X ¨ ¨ ¨ XQjk

˘ˇ

ˇ ď maxt|ΩpU1q|, . . . , |ΩpUIq|u “ M,

uniformly with respect to k. Let

Nk “ 7
␣

pj1, . . . , jkq, fkpSq X fk´1pQj1q X ...XQjk ‰ H
(

.

Then
bk |ΩpSq| ď NkM,

(8)Recall the metric was changed in order to have ε “ 1 in (3.1).
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hence
1

k
lnNk ě

1

k
ln

|ΩpSq|

M
` ln b,

hence the wanted inequality. □

Now assume that ω is a presymplectic form(9) of N of (even) rank 2ℓ ě 2 and

f˚ω “ aω, a ą 1.

The kernel of ω is a uniquely integrable subbundle F of corank 2ℓ. Setting Ω “ ωℓ

and b “ aℓ brings us back to the prior setting.

Corollary 1. — The topological entropy of f : N ý satisfies

ent f ě
rankpωq

2
ln a.

Let us now return to our usual setting, where pM, ωq is a symplectic manifold.

Corollary 2. — Let f : M ý be a C3 conformal symplectic diffeomorphism such
that f˚ω “ aω with a ą 1. Suppose that N is an invariant C3 submanifold such that
the induced form ω|N on N has constant rank. Then

ent f|N ě
rankpω|Nq

2
ln a;

in particular, if the entropy of f|N vanishes, N is isotropic.

Note that if N is a compact submanifold such that f|N is minimal,(10) ω|N has
constant rank and so the corollary applies.

Proof. — As N is C3, its tangent bundle is C2. Then Frobenius Theorem applies to
F “ kerω|N

(11) and the characteristic foliation F exists. □

4. Liouville class of invariant submanifolds

In this section we assume that pM, ω “ ´dλq is an exact symplectic manifold. The
goal is to prove that, given a conformal dynamics, there is only one Liouville class
that an isotropic invariant submanifold may have.

(9)A presymplectic form is a a closed 2-form with constant rank.
(10)By definition, it is minimal if every orbit is dense.
(11)The infinitesimal integrability condition is well known: if X,Y are sections of F and Z is a

section of TN, 0 “ dωpX,Y, Zq “ ´ωprX,Y s, Zq, which shows that rX,Y s itself is a section of F .
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4.1. Action of conformal dynamics on Liouville classes

Definition 6. — Let j : S ãÑ M be an isotropic embedding.
– Its Liouville class rjs P H1pS,Rq is the cohomology class of the induced form j˚λ.
– It is exact if its Liouville class vanishes.

So, the notion of exactness is independent of the embedding with a given image.
When M “ T˚Q is the cotangent bundle of a closed manifold endowed with its
tautological 1-form λ and L is a Lagrangian submanifold of T˚Q that is homotopic
to the zero section Z, the restriction to L of the canonical projection π : T˚Q Ñ Q

is a homotopy equivalence between L and Q and induces an isomorphism between
H1pL,Rq and H1pQ,Rq. Denoting by jL : L ãÑ T˚Q the canonical injection defined
by jLpxq “ x, the Liouville class of the submanifold L is the cohomological class

rLs “

”

`

π|L

˘

˚

`

j˚
Lλ

˘

ı

P H1pQ,Rq.

In this case, we may thus update the definition of Liouville classes.

Definition 7. — Let L be a Lagrangian submanifold of T˚Q that is homotopic to
the zero section, the Liouville class rLs of L is the cohomology class on Q whose pull
back by π|L is the cohomology class of λ|TL.

The following straightforward proposition explains that the group of conformal dy-
namics acts on the set of Liouville classes of isotropic embeddings that are homotopic
to a given isotropic embedding of a given manifold S by homotheties (translations
when the dynamics is symplectic).

Proposition 5. — Let f : M ý be a conformal diffeomorphism with conformality
ratio a. Then η “ f˚λ´ aλ is a closed 1-form.

Let j0 : S ãÑ M be an isotropic embedding. For every isotropic embedding j : S ãÑ M

that is homotopic to j0, the Liouville class of the isotropic embedding f ˝ j : S ãÑ M

is
rf ˝ js “ arjs ` rj˚

0 ηs.

Proof. — We have dη “ ´f˚ω ` af˚ω “ 0 and η is closed. For γ : T ãÑ M, let us
compute

rf ˝ jsrγs “

ż

γ

pf ˝ jq˚λ “

ż

γ

j˚pf˚λq “

ż

γ

j˚pη ` aλq

“

ż

γ

j˚η ` a

ż

j˝γ

λ “ arjsrγs ` rηsrj ˝ γs

“ arjsrγs ` rηsrj0 ˝ γs “ arjsrγs ` rj˚ηsrγs. □

Definition 8. — A diffeomorphism f : M ý is λ conformal Hamiltonian (CH) if
there exists an isotopy pftqtPr0,1s such that f0 “ IdM, f1 “ f and two functions
H : r0, 1s ˆ M Ñ R and α : r0, 1s Ñ R such that

@pt, xq P r0, 1s ˆ M, i 9ftpxq
ω “ αptqλ` BxHpt, xq.
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Remark 9. — A diffeomorphism f : M ý is conformal Hamiltonian if and only if
there exists an isotopy pftqtPr0,1s of CES diffeomorphisms such that f0 “ IdM and
f1 “ f .

Definition 10. — The flow pφtq associated to the vector field X on M is λ conformal
Hamiltonian if there exists α P R and H : M Ñ R such that iXω “ αλ` dH.

Remark 11. — A flow is a flow of λ conformal exact symplectic diffeomorphisms if
and only if it is λ conformal Hamiltonian.

To describe the behavior of Lagrangian submanifolds of T˚Q that are H-isotopic
to a graph, we first need the following invariance result.

Proposition 6. — Let pLtq be an isotopy of Lagrangian submanifolds of T˚Q such
that L0 “ Z. Then L1 is H-isotopic to a graph.

Corollary 3. — Let pgtqtPr0,1s be an isotopy of conformal symplectic diffeomorphisms
such that g0 “ IdT˚Q. Let L be a Lagrangian submanifold of T˚Q that is H-isotopic
to a graph. Then g1pLq is H-isotopic to a graph. If moreover L is H-isotopic to the
zero-section and the isotopy is conformal Hamiltonian, then g1pLq is H-isotopic to the
zero-section.

Proof of Proposition 6. — We will prove

Lemma 2. — Assume that L is H-isotopic to the zero section and that pLtqtPr´ε,εs is
an isotopy of exact Lagrangian submanifolds such that L0 “ L. Then there exists a
neighbourhood N of 0 in r´ε, εs such that for every t P N, Lt is H-isotopic to the zero
section.

Proof of Lemma 2. — We use Weinstein tubular neighbourhood Theorem, [19]. Let T

be a symplectic tubular of L, i.e., there exists a neighbourhood U of the zero section
in T˚L and a symplectic embedding ϕ : U ãÑ T˚Q with image T that is IdL on L.
As Φ maps the exact Lagrangian submanifold L of T˚L onto the exact Lagrangian
submanifold L of T˚Q, then Φ is exact symplectic.

This implies that every submanifold ϕ´1pLtq is exact Lagrangian. Moreover, there
exists a neighbourhood N of 0 in r´ε, εs such that for every t P N, ϕ´1pLtq is a graph.
Hence this is the graph of an exact 1-form dut. Then ϕ´1pLtq is the image by the
time-1 Hamiltonian flow of H “ ´dut

dt ˝ π. Using a bump function, we can assume
that H has support in U, and then the time-1 map of the Hamiltonian H ˝ ϕ maps L

onto Lt. □

We now prove Proposition 6. Let us firstly deal with the case when all the Lts are
exact. We introduce

tt P r0, 1s;@s P r0, ts, gspLq is H ´ isotopic to the zero sectionu.

Lemma 2 and the transitivity of the relation of H-isotopy imply that this set is closed
and open in r0, 1s, hence equal to r0, 1s.
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Now we just assume that pLtq is an isotopy of Lagrangian submanifolds of T˚Q

such that L0 “ Z. We choose an arc pηtqtPr0,1s of closed 1-forms on Q whose coho-
mology class rηts “ rLts is the Liouville class of Lt. We denote by Tt : T˚Q ý the
symplectic diffeomorphisms such that Ttppq “ p ` ηt ˝ πppq. Then L˚

t “ T´tpLtq de-
fines a homotopy of exact Lagrangian submanifolds of T˚Q. A result of the first part
of the proof is that L˚

t is H-isotopic to the zero section, i.e., there exists a H-isotopy
pϕtqtPr0,1s such that ϕ0 “ Id and ϕ1pZq “ L˚

1 . Hence L1 “ T1pL˚
1 q is H isotopic to

the graph of η1 via the H-isotopy

pψtqtPr0,1s “ pT1 ˝ ϕt ˝ T´1
1 qtPr0,1s. □

Proof of Corollary 3. — We assume that pgtqtPr0,1s is an isotopy of conformal symplec-
tic diffeomorphisms such that g0 “ IdT˚Q and that L is a Lagrangian submanifold
of T˚Q that is H-isotopic to a graph. Then there exist a closed 1-form η on Q and a
H-isotopy phtqtPr0,1s such that h0 “ IdT˚Q and L “ h1pgraphpηqq. We introduce the
symplectic diffeomorphisms pTtqtPr0,1s of T˚Q that are defined by Ttppq “ p`tη˝πpqq.
Then

pLtqtPr0,1s “ pgt ˝ ht ˝ TtpZqqtPr0,1s

is a isotopy of Lagrangian submanifolds such that L0 “ Z and L1 “ g1pLq. A result
of Proposition 6 is that g1pLq is H-isotopic to a graph.

If moreover L is H-isotopic to the zero-section and the isotopy is conformal Hamil-
tonian, then all the maps gt ˝ ht ˝ Tt are conformal Hamiltonian and thus every
manifold Lt is exact Lagrangian. The conclusion is a result of the second part of
Corollary 3. □

4.2. Liouville classes of invariant submanifolds. — Let j0 : S ãÑ M be an isotropic
embedding. We denote by Jpj0q the set of isotropic embeddings j : S ãÑ M that are
homotopic to j0.

A consequence of Proposition 5 is:

Proposition 7. — Let f : M ý be a conformal diffeomorphism. Let j P Jpj0q be an
isotropic embedding which is strongly f -invariant in the sense that

– jpSq “ f ˝ jpSq,
– f acts trivially on H1pjpSq,Rq.

Then j may have only one Liouville class, that we denote by rℓf pJpj0qqs. In particular,
when f is CES, then rℓf pJpj0qqs “ 0 and j has to be exact.

Proof. — Let j : S ãÑ M be such an embedding. With the notations of Proposition 5,
we have

rf ˝ js “ arjs ` rj˚
0 ηs.

Let us denote by i : jpSq ãÑ M the canonical injection. As f acts trivially on on
H1pjpSq,Rq, we have

rf ˝ js “
“

pi ˝ f ˝ jq˚λ
‰

“ j˚
“

f˚pi˚λq
‰

“ rj˚λs “ rjs

J.É.P. — M., 2024, tome 11



174 M.-C. Arnaud & J. Fejoz

and finally rjs has to be the only fixed point of the homothety that maps rjs on
arjs ` rj˚

0 ηs. □

As a consequence:

Proposition 8. — Let f : M ý be a λ CES diffeomorphism. Then every invariant
isotropic submanifold S such that f|S acts trivially on H1pSq is exact.

Corollary 4. — Let X be a CS vector field on M with flow pφtq. Let j0 : S ãÑ M be
an isotropic embedding. We denote by Jpj0q the set of isotropic embeddings j : S ãÑ M

that are homotopic to j0. Then there is only one Liouville class that we denote by
rℓXpJqs, that an isotropic embedding j P Jpj0q such that

@t P R, φtpjpSqq “ jpSq

may have. In particular, when X is CH, then rℓXpJqs “ 0.

Corollary 5. — Let f : T˚Q ý be a CS-diffeomorphism that is homotopic to IdT˚Q.
Then there is only one Liouville class that we denote by rℓf s, that a homotopic to the
zero section and f -invariant submanifold may have.

Proof of Corollary 5. — Let j0 : Q ãÑ T˚Q be the canonical injection onto the zero-
section. We assume that L is an f -invariant submanifold that is isotopic to the zero
section. Because

– π|L defines an homotopy equivalence between L and Q;
– π defines an homotopy equivalence between T˚Q and Q;
– f is homotopic to IdT˚Q,

then f acts trivially on H1pL,Rq. Let pψtq be an isotopy of diffeomorphisms of T˚Q

such that ψ0 “ IdT˚Q and ψ1pZq “ L. Then ψ1˝j0 P Jpj0q and a result of Proposition 7
is that rψ1 ˝ j0s “ rℓf pJpj0qqs. Moreover, if iL : L ãÑ T˚Q is the canonical injection,
we have

rψ1 ˝ j0s “ riL ˝ ψ1 ˝ j0s “ rpψ1 ˝ j0q˚pi˚Lλqs.

Observe that ψ1 ˝ j0 : Q Ñ L is an homotopy equivalence such that and π ˝ pφ1 ˝ j0q

acts trivially on H1pQ,Rq. We deduce that

rψ1 ˝ j0s “ rpψ1 ˝ j0q˚pi˚Lλqs “ rπ˚pi˚Lλqs “ rLs.

and then rLs “ rℓf pJpj0qqs. □

5. Liouville class of Lagrangian submanifolds of T ˚Q with compact orbits

The goal of this section is to prove that, given a conformal dynamics on T˚Q, there
is only one Liouville class that a Lagrangian submanifold with compact orbit may
have.

We assume that M “ T˚Q and that f : M ý is CS-isotopic to IdM.
We suppose that j : Q ãÑ M is a Lagrangian embedding such that jpQq “ L

is H-isotopic to a graph and has compact orbit (for example is contained in some
compact attracting set).
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Theorem 12. — Let f : M ý be a diffeomorphism that is CS-isotopic to IdM and let L
be a Lagrangian submanifold that is isotopic to the zero section among Lagrangian
submanifolds and such that

⋃
kPZ f

kpLq is relatively compact, then rLs “ ℓf .

Corollary 6. — Let pφtq be the flow of the conformal symplectic vector field X and let
L be a Lagrangian submanifold that is isotopic to the zero section among the Lagran-
gian submanifolds of T˚Q such that

⋃
tPR φtpLq is relatively compact, then rLs “ ℓX .

Remark 13. — We give a proof of Theorem 12 that uses the notion of graph selector.
If Q (as Tn) satisfies that every element of H1pQ,Rqzt0u contains a non-vanishing
1-form, we can give a simpler proof. Indeed, in the proof, we are reduced to prove
that if we have a sequence pLnq of Lagrangian submanifolds such that

rLns “ anprL0s ´ ℓf q ` ℓf

tends to infinity as n Ñ 8, then
⋃

nPN Ln is not relatively compact. If η “ f˚λ ´ λ

and the 1-form ν1 on Q is non-vanishing and represents rL0s ´ ℓf , then Ln and the
graph of 1

1´a η ` anν1 intersect. As ν1 doesn’t vanish, we can conclude.

Proof of Theorem 12. — We endow Q with a Riemannian metric and denote by }.}

the norm on TQ. Changing f into f´1, we can assume that a ą 1. As f is CS, then
f˚λ´aλ “ η is closed, We deduce from the proof of Proposition 7 that ℓf “ 1

1´a rj˚ηs

where j is the canonical injection from Q in T˚Q “ M on the zero section. Then fk

is also CS with

pfkq˚λ´ akλ “

k´1
ÿ

j“0

ak´j´1pf jq˚pf˚λ´ aλq “

k´1
ÿ

j“0

ak´j´1pf jq˚η.

Suppose ad absurdum that rLs is not ℓf . Let ν be a closed 1-form on Q such that
ℓf ` rνs “ rLs. There is a loop γ : T Ñ Q such that

ş

γ
ν ­“ 0.

As f is CS-isotopic to IdM and by transitivity of the relation of CS-isotopy, fk is
also CS-isotopic to IdM. Hence by Corollary 3, fkpLq is H-isotopic to a Lagrangian
graph. The submanifold L is H-isotopic to the graph of 1

1´a j
˚η ` ν. A result of

Proposition 5 is that fkpLq is H-isotopic to the graph of

ak
´ 1

1 ´ a
j˚η ` ν

¯

`

k´1
ÿ

j“0

ak´j´1j˚η “ akν `
1

1 ´ a
j˚η.

If we denote by τk : M ý the symplectic diffeomorphisms τkppq “ p ` akνpπppqq `
1

1´a ηpjpπppqqq, then τ´1
k ˝ fkpLq is H-isotopic to the zero section and then admits

a generating function and a graph selector that is (see e.g. [14] p 98 and references
herein) a Lipschitz function uk : Q Ñ R that is C1 on an open subset Uk of Q with
full Lebesgue measure such that

@q P Uk, dukpqq P τ´1
k ˝ fkpLq.

Using Fubini theorem, we find a loop γk that is C1 close to γ and such that
– γk is smooth and isotopic to γ;
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– for Lebesgue almost s P T, we have γkpsq P Uk.
As uk ˝ γk is Lipschitz and then absolutely continuous, we have

0 “

ż

T

dpuk ˝ γkq

ds
psqds.

Because γkpsq P U0 for almost every s, we deduce

0 “

ż

T
dukpγkpsqq ¨ γ1

kpsqds

and because γk is homotopic to γ and akν ` 1
1´a j

˚η is closed,
ż

T

´

akνpγkpsqq `
1

1 ´ a
ηpjpγkpsqqq ` dukpγkpsqq

¯

¨ γ1
kpsqds “ ak

ż

γ

ν `
1

1 ´ a

ż

γ

j˚η.

As the loops γk are C1-close to γ, there exists a constant K that is a upper bound
for all the }γ1

kpsq}. Hence there is a subset Ek with non-zero Lebesgue measure of T
such that for every s P Ek, we have

(5.1)
›

›

›
akνpγkpsqq `

1

1 ´ a
ηpjpγkpsqqq ` dukpγkpsqq

›

›

›
ě

ak

2K

ˇ

ˇ

ˇ

ż

γ

ν
ˇ

ˇ

ˇ
´

1

p1 ´ aqK

ˇ

ˇ

ˇ

ż

γ

η
ˇ

ˇ

ˇ
.

Moreover, for almost every s P T, we have

dukpγkpsqq P τ´1
k ˝ fkpLq,

i.e.,

(5.2) akνpγkpsqq `
1

1 ´ a
ηpjpγkpsqqq ` dukpγkpsqq P fkpLq.

We deduce from (5.1) and (5.2) that there is p P fkpLq such that

}p} ě
ak

2K

ˇ

ˇ

ˇ

ż

γ

ν
ˇ

ˇ

ˇ
´

1

p1 ´ aqK

ˇ

ˇ

ˇ

ż

γ

η
ˇ

ˇ

ˇ
. □

Question. — Is the hypothesis on H-isotopy to the zero section necessary?

6. Uniqueness

We work on the cotangent bundle pT˚Q,´dλq of a closed orientable manifold.
Viterbo introduced in the seminal paper [16], see also [18], the spectral distance γ
that is defined on the set of H-isotopic to the zero-section Lagrangian submanifolds.
We will recall the main results of this theory and apply this to prove that if two
submanifolds L, L1 are H-isotopic to the zero section and if pφtq is a CH flow of T˚Q,
then

either γpφtpLq, φtpL
1qq

tÑ`8
ÝÝÝÝÑ `8, or γpφtpLq, φtpL

1qq
tÑ´8

ÝÝÝÝÑ `8.

Using a recent result due to Shelukhin, [13], we will deduce that for certain mani-
folds Q, e.g. tori Tn, there is at most one H-isotopic to the zero section submanifold
whose orbit is compact and when it exists, this submanifold is in fact invariant.
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6.1. On Viterbo spectral distance γ. — If L, L1 are H-isotopic to the zero sec-
tion submanifolds of T˚Q, they have quadratic at infinity generating functions
S : Q ˆ Rk Ñ R and S1 : Q ˆ Rk1

Ñ R.
We recall that a generating function S for L is such that
– if we use the notation pq, ξq P QˆRk, on ΣS “ pBS{Bξq´1p0q, BS{Bξ has maximal

rank;
– the map jS : ΣS ãÑ T˚Q defined by jSpq, ξq “ BS{Bqpq, ξq is an embedding and

its image is L.
The generating function is quadratic at infinity is there exists a non-degenerate qua-
dratic form Q : Rk Ñ R such that outside a compact subset of Q ˆ Rk, we have
Spq, ξq “ Qpξq.

The function S a S1 :M ˆ Rk ˆ Rk1

Ñ R is defined by

pS a S1qpq, ξ, χq “ Spq, ξq ´ S1pq, χq.

Observe that

L X L1 “

!

BS

Bq
pq, ξq; dpS a S1qpq, ξ, χq “ 0

)

“

!

BS1

Bq
pq, χq; dpS a S1qpq, ξ, χq “ 0

)

.

The function S a S1 is not quadratic at infinity, but it satisfies conditions of [17,
Prop. 1.6.] that ensure that it can be replaced by such a function, which we also
denote by S a S1. There exists a compact set K Ă Q ˆ Rk ˆ Rk1 such that

@pq, ξ, χq R K, pS a S1qpq, ξ, χq “ Qpξ, χq,

where Q is a non degenerate quadratic form on Rk ˆ Rk1 . We denote by m its index.
Moreover, there exist a, b P R such that

K X

´

tpS a S1q ě bu Y tpS a S1q ď au

¯

“ H.

For c P R, we denote by Ec and Fc the sublevels

Ec “ tpq, ξ, χq; pS a S1qpq, ξ, χq ď cu and Fc “ tpξ, χq;Qpξ, χq ď cu.

As (S a S1qpq, ξ, χq and Qpξ, χq are equal on Ea and outside Eb, we have

@c R sa, br, Ec “ Q ˆ Fc.

Hence, by Kunneth theorem [5], there is an isomorphism

K : HpFb,Faq bHpQq ÝÑ HpEb,Eaq.

As Q is a non-degenerate quadratic form with index m, we have HppFb,Faq “ t0u

for p ­“ m and HmpFb,Faq “ RC is one dimensional. We deduce an isomorphism

T : RC bH˚pQq ÝÑ H˚`mpEb,Eaq.

Then, if α P H˚pQq is non-zero,

cpα, S a S1q “ inftt P ra, bs, j˚
t pC b αq ­“ 0u,

where jt : pEt,Eaq Ñ pEb,Eaq is the inclusion. The number cpα, S a S1q is then a
critical value of S a S1 that continuously depend on S and S1 for the uniform C0
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distance. Viterbo proved that cpα, S a S1q depends only on L and L1 and not on the
choice of generating functions. It is then denoted by cpα,L,L1q.

If µ is the orientation class of Q, the distance γpL,L1q is defined by

γpL,L1q “ cpµ,L,L1q ´ cp1,L,L1q.

Theorem 14. — Let f : M ý be a CES diffeomorphism that is CH-isotopic to IdT˚Q.
Let L, L1 be two distinct submanifolds of T˚Q which are H-isotopic to the zero section,
then

either γpfnpLq, fnpL1qq
nÑ`8

ÝÝÝÝÝÑ `8,

or γpf´npLq, f´npL1qq
nÑ`8

ÝÝÝÝÝÑ `8.

Corollary 7. — Let f : M ý be a CES diffeomorphism that is CH-isotopic to IdT˚Q.
Then there exists at most one H-isotopic to the zero section submanifold of T˚Q that
is invariant by f .

Proof of Theorem 14. — This is direct application of the following result of which we
provide a proof. □

Lemma 3. — Let L, L1 be two H-isotopic to the zero section submanifolds of T˚Q.
Let pϕtq be an isotopy of exact conformal symplectic diffeomorphisms of T˚Q such
that ϕ0 “ IdT˚Q and ϕ˚

t ω “ aptqω. Then

γpϕtpLq, ϕtpL
1qq “ aptqγpL,L1q.

Proof. — As the distance γ continuously depends on the generating functions, we only
need to prove the results for submanifolds L and L1 whose intersections are all trans-
verse. In this case, there is only a finite number of critical points and critical values for
SaS1. If x, y P LXL1, we denote by ∆px, y,L,L1q the difference of the corresponding
critical values of S a S1, i.e.,

∆px, y,L,L1q “

´

S ˝ j´1
S pyq ´ S1 ˝ j´1

S1 pyq

¯

´

´

S ˝ j´1
S pxq ´ S1 ˝ j´1

S1 pxq

¯

.

Then if η1 is a path in L joining x to y and η2 a path in L1 joining y to x, the difference
of the two corresponding critical values of S a S1 is

∆px, y,L,L1q “

ż

η1_η2

λ.

We can always choose η1 and η2 that are homotopic with fixed ends. Then, if D is a
disc with boundary η1 _ η2, we have

∆px, y,L,L1q “

ż

D

ω.

The intersection points of ϕtpLq and ϕtpL
1q are the points ϕtpxq with x P L X L1.

For x, y in L X L1, we have

∆pϕtpxq, ϕtpyq, ϕtpLq, ϕtpL
1qq “

ż

ΦtpDq

ω “ aptq

ż

D

ω “ aptq∆px, y,L,L1q.
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Hence t ÞÑ p1{aptqq
`

cpµ, ϕtpLq, ϕtpL
1qq ´ cp1, ϕtpLq, ϕtpL

1qq
˘

is a continuous map that
takes its values in a fixed finite set, it has to be constant. □

6.2. An application of a result of Shelukhin

Theorem 15. — Let f : T˚Tn ý be a CES diffeomorphism that is CH-isotopic to
IdT˚Tn . Then there exists at most one H-isotopic to the zero section submanifold L

such that ⋃
kPZ

fkpLq is relatively compact.

Hence when it exists, L is invariant by the f .

Proof. — In [13], Shelukhin defines a notion of string-point invertible manifold. The
tori Tn are examples of such manifolds. His result implies

Theorem (Shelukhin, [13]). — Let g be a Riemannian metric on Tn. Then there exists
a constant Cpgq such that for all exact Lagrangian submanifolds L0, L1 contained in
the unit codisk bundle D˚pgq Ă T˚Tn, we have γpL0,L1q ď Cpgq.

The Liouville vector field Zλ that is defined by iZλ
ω “ λ satisfies

LZλ
ω “ dλ “ ´ω.

Hence its flow pφλ
t q is conformal symplectic with pφλ

t q˚ω “ e´tω and even exact
conformal symplectic because it preserves the zero section (and then the zero Liouville
class). We have seen in Lemma 3 that φλ

t alters the distance γ up to the scaling
factor e´t.

Observe also that this flow is a homothety the fiber direction: φλ
t ppq “ e´tp. Hence

the image of the unit codisk bundle D˚pgq by φt is the codisk bundle D˚
e´tpgq with

radius e´t.
Let us introduce the following notation for K Ă T˚Tn.

δgpKq “ mintr ě 0;K Ă D˚
r pqqu.

Finally, we have that for every H-isotopic to the zero section submanifolds L, L1 of
T˚Tn,

(6.1) γpL,L1q ď 2CpgqmaxtδgpLq, δgpL1qu.

If now L and L1 are two distinct H-isotopic to the zero section submanifolds of T˚Tn

and f : T˚Tn ý is a CES diffeomorphism that is CH isotopic to IdT˚Tn , we deduce
from Theorem 14 that

either γpfnpLq, fnpL1qq
nÑ`8

ÝÝÝÝÝÑ `8,

or γpf´npLq, f´npL1qq
nÑ`8

ÝÝÝÝÝÑ `8.

By (6.1), one of the two sets ⋃
kPZ

fkpLq;
⋃
kPZ

fkpL1q,
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is not relatively compact. We deduce that there is at most one L H-isotopic to the
zero section such that ⋃

kPZ
fkpLq is relatively compact.

When L is H-isotopic to the zero-section, fpLq is also H-isotopic to the zero-section
because f is CH-isotopic to IdT˚Tn , see Corollary 3. Moreover, the orbits of L and
fpLq coincide. This implies that L “ fpLq. □

7. Examples

7.1. Mañé example. — This example was introduced by Mañé in the Hamiltonian
setting, [10]. It can be extended to the conformal symplectic setting. For every vector
field X of a closed manifold Q, it provides a conformal Hamiltonian Tonelli flow of
T˚Q such that the zero section is invariant and the flow restricted to this zero section
is conjugated to the flow of X.

Let Q be a closed manifold endowed with a Riemannian metric, T˚Q is endowed
with its tautological 1-form λ and the symplectic form ω “ ´dλ. We denote by }.}

the norm on the fibers of T˚Q that is dual to the Riemannian norm of Q and by pq a
point of T˚Q above q P Q.

If X is a vector field on Q, we denote by pX the 1-form on Q that is dual to X via
the Riemannian scalar product. We define the Hamiltonian

HXppqq “
1

2
}pq ` pXpqq}2 ´

1

2
}pXpqq}2.

Since the zero-section Z “ tp “ 0u is contained in the zero-energy level and is
Lagrangian, Z is invariant by the Hamiltonian flow of HX . The restriction to Z of the
vector field is dual via ω to the derivative of H in the fiber direction, so if we denote
by 7 : T˚

q M Ñ TqM the duality that is defined by the Riemannian metric, we have

9q|Z “ 7
`

p` pXpqq
˘

|Z
“ 7pXpqq “ Xpqq.

Hence on the zero-section, the vector field is X.
In the conformal Hamiltonian setting, we add α times the Liouville vector field to

the Hamiltonian vector field XH of H, for some α P R. Since the Liouville vector field
vanishes on Z, the dynamics remains conjugate to X.

Remark 16. — The global attractor may differ from the zero section. For example,
X may have an attractive fixed point whose unstable manifold is not contained in the
Z, in which case the global attractor is not a submanifold either.

7.2. An example of a Tonelli Hamiltonian that has an invariant Lagrangian sub-
manifold that is not a graph. — The example we are about to describe is inspired
by an example of Le Calvez [8].

Let β ą 0 be a positive number and let α P pβ, 2βq. On T˚R “ R2, let H be the
quadratic Tonelli Hamiltonian

Hpx, yq “ y2 ´ βxy.
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Consider the sum of the Hamiltonian vector field of H and of α times the Liouville
vector field ´y By:

(7.1)
#

9x “ ´βx` 2y,

9y “ pβ ´ αqy.

The matrix of this linear system is
`

´β 2
0 β´α

˘

. Hence
`

1
0

˘

is an eigenvector for the
eigenvalue ´β and

`

1
β´α{2

˘

is an eigenvector for the eigenvalue β´α. As α P pβ, 2βq,
p0, 0q is an attracting fixed point and the line R

`

1
0

˘

is the strong stable eigenspace.
Every solution that is not contained in an eigenspace is contained in a curve whose
equation is

x “
2

2β ´ α
y `K|y|β{pα´βq,

where K ­“ 0, and then is not a graph if xp0q ¨ yp0q ą 0.

x

y

Let us choose two large real numbers B ą A ą 0 and let V : R Ñ r´1, 0s be a
function with support in r´B,Bs such that V|r´A,As “ ´1, Vr´B,´As is non-increasing
and V|rA,Bs is non-decreasing. Then we add V pxq to Hpx, yq and the equations become

(7.2)
#

9x “ ´βx` 2y,

9y “ ´V 1pxq ` pβ ´ αqy.

As the support of V 1 is in r´B,´As Y rA,Bs, the two vector fields are equal in the
complement of pr´B,´As Y rA,Bsq ˆR. As V 1

|r´B,´As
ď 0, the orbit on the x-axis for

x ď ´B is pushed to the half plane y ą 0 and then coincides with an orbit of (7.1)
which tends to p0, 0q. In the same way, the orbit that coincides with the x-axis for
x ě B tends to p0, 0q at `8 with an incursion into the half-plane y ă 0. Hence the
union of these two orbits and tp0, 0qu is an invariant curve Γ for (7.2) that is not a
graph.

Now, let us choose D ą C ą B. Let X : R Ñ R be a vector field such that
– @x P r´D`C

2 ,´Bs Y rB, C`D
2 s, Xpxq “ ´βx;

– Xp´Dq “ XpDq “ 0 and all the derivatives of X are the same at ´D and D;
– p´D,´Bs (resp. rB,Dq) is a piece of unstable manifold of the equilibrium ´D

(resp. D).
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Then X defines also a vector field on the circle CD “ r´D,Ds{D „ ´D. Let HX be
the Hamiltonian that is associated to X on T˚R “ R2 via the Mañé construction

HXpx, yq “
1

2
ypy ` 2Xpxqq.

Let us eventually define

Kpx, yq “ p1 ´ ηpxqqHXpx, yq ` ηpxq
`

Hpx, yq ` V pxq
˘

“
1 ´ ηpxq

2
ypy ` 2Xpxqq ` ηpxq

`

y2 ´ βxy ` V pxq
˘

,

where η : R Ñ r0, 1s is a bump function with support in r´C,Cs that is equal to 1 on
r´B,Bs. The function K is also Hamiltonian on the annulus CD ˆ R and, since

B2K

By2
px, yq “ p1 ´ ηpxqq ` 2ηpxq ě 1,

hence K is Tonelli.
Note the following:
– pr´D,´Bs Y rB,Dsq ˆ t0u is in the zero level of K and then is locally inva-

riant by the Hamiltonian flow of K and also by the conformal Hamiltonian flow
pBK{By,´BK{Bx´ αyq;

– K|r´B,BsˆR “ pH ` V q|r´B,BsˆR.
Finally, the vector field pBK{By,´BK{Bx ´ αyq has an invariant curve that is not a
graph, which is the union of pr´D,´Bs Y rB,Dsq ˆ t0u and the part of Γ that is
between x “ ´B and x “ B.

Appendix A. Yomdin’s inequality

Let L be a a compact Riemannian Cr manifold, S Ă L be a compact Cr subman-
ifold of dimension s and f : L ý be a Cr-diffeomorphism (r ě 1). (The general
statement does not require f to be invertible.)

Define the logarithmic volume growth of f|S as

logvolpf|Sq “ lim sup
nÑ`8

1

n
log | volpfnpSq|,

where vol is the s-dimensional Riemannian volume, and

radpDfq “ lim sup
nÑ`8

}Dfn}
1{n
8 , }Df}8 “ sup

x
}Dfx}.

Theorem 17 (Yomdin [20], Gromov [6])
logvolpf|Sq ď entpfq ` log`

`

radpDfqs{r
˘

(where log` t “ maxp0, log tq). In particular, if L and f are smooth,

logvolpf|Sq ď entpf|Sq ď ent f.
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Appendix B. Conformal Dynamics are exact

We assume that pM, ω “ ´dλq is an exact symplectic manifold. We prove that
every conformal dynamics is symplectically conjugate to a CES dynamics.

Our first result explains that every conformal dynamics on an exact symplectic
manifold is exact conformal with respect to some primitive of the symplectic form.

Proposition 9. — Let f : M ý be a (CS) diffeomorphism that is homotopic to IdM
and such that f˚ω “ aω. Then there exists a primitive λ1 of ´ω, namely

λ1 “
1

1 ´ a
pλ´ f˚λq

such that f is λ1 CES. Hence is j : S ãÑ M is an isotropic embedding such that jpSq

is f invariant, jpSq is λ1 exact.

Proof of Proposition 9. — We denote η “ f˚λ ´ aλ. Then dη “ ´f˚ω ` aω “ 0 and
so η is closed. Observe that

λ´
1

1 ´ a
η “

1

1 ´ a

`

λ´ f˚λq “ λ1,

so λ1 is a primitive of ´ω. We have

f˚λ1 ´ aλ1 “ η ´
1

1 ´ a

`

f˚η ´ aη
˘

.

Because f is homotopic to IdM, f˚η ´ η is exact and

f˚λ1 ´ aλ1 “
1

1 ´ a

`

η ´ f˚η
˘

.

is exact. The conclusion comes from Proposition 8 for the 1-form λ1 instead of λ. □

Proposition 10. — Let f : M ý be a conformal symplectic diffeomorphism that is
homotopic to IdM and such that f˚ω “ aω with a ą 0 and a ­“ 1. Then η “ f˚λ´aλ

is a closed 1-form that is dual to a symplectic vector field Y such that iY ω “ η.

When Y is complete, there exists a symplectically isotopic to IdM diffeomorphism
g : M ý such that g˚λ´ λ` 1

1´a η is exact and then g ˝ f ˝ g´1 is λ CES.

Proof. — We denote η “ f˚λ ´ aλ. Then dη “ ´f˚ω ` aω “ 0 and so η is closed.
We denote by λ1 the primitive of ω that was defined in Proposition 9.

Lemma 4. — There exists a symplectic vector field X with flow pgtq such that g˚
1λ´λ1

is exact.

Proof. — We consider the vector field X that is defined by iXω “ 1
1´a η. As η is

closed, X is symplectic. As Y is assumed to be complete and X “ 1
1´a Y , the vector

field X is also complete and defines a flow pgtq. Then we have

LXλ “ ´iXω ` d
`

iXλ
˘

“ ´
1

1 ´ a
η ` d

`

iXλ
˘

.

If we denote by r.s the cohomology class, this gives

rLXλs “ ´
1

1 ´ a
rηs, i.e., drg˚

t λ´ λs

dt
“ ´

1

1 ´ a
rg˚

t ηs.
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We deduce that for all t we have g˚
t λ´ λ` t

1´a η is exact. In particular, g˚
1λ´ λ1 is

exact. □

We now consider F “ g1 ˝ f ˝ g´1
1 . We have

F˚λ “
`

g´1
1

˘˚
˝ f˚ ˝ g˚

1 pλq “
`

g´1
1

˘˚
˝ f˚

`

λ1 ` ν1
˘

,

where ν1 is exact by lemma 4. By Proposition 9, ν2 “ f˚λ1 ´ aλ1 is exact and we
have

F˚λ “
`

g´1
1

˘˚`

aλ1 ` ν2 ` f˚ν1
˘

“ aλ`
`

g´1
1

˘˚`

´ aν1 ` ν2 ` f˚ν1
˘

. □

Proposition 11. — Let X be a conformal symplectic vector field on M such that
LXω “ αω with α P R˚. The 1-form ξ “ iXω ` αλ is closed and the vector field X1

defined by iX1
ω “ ξ is symplectic. When X1 is complete, there exists a symplectically

isotopic to IdM diffeomorphism g : M ý such that g˚λ ´ λ ` p1{αqξ is exact. Then
g˚X is λ conformal Hamiltonian.

Proof. — We have dξ “ LXω ´ αω hence ξ is closed.

Lemma 5. — There exists a primitive λ1 of ´ω, namely

λ1 “ λ´
1

α
ξ “ ´

1

α
iXω,

such that X is λ1 Hamiltonian.

Proof. — The 1-form
iXω ` αλ1 “ iXω ` αλ´ ξ “ 0

is exact. □

Lemma 6. — There exists a symplectic vector field Y with flow pψtq such that ψ˚
1λ´λ1

is exact.

Proof. — We consider the vector field Y that is defined by iY ω “ p1{αqξ. As ξ is
closed, Y is symplectic. As X1 is complete and Y “ p1{αqX1, Y is also complete and
defines a flow. Then we have

LY λ “ ´iY ω ` d
`

iY λ
˘

“ ´
1

α
ξ ` d

`

iY λ
˘

.

We deduce that the flow pψtq of Y satisfies
d

dt
rψ˚

t λ´ λs “ ´
1

α
rξs.

Hence ψ˚
1λ´ λ1 “ ψ˚

1λ´ λ` p1{αqξ is exact. □

We denote g “ ψ1. Let us prove that g˚X is λ conformal Hamiltonian. Because g
is symplectic, we have

ig˚Xω “ g˚

`

iXω
˘

“ g˚pξ ´ αλq.

Because g˚λ´ λ1 is exact, g˚

`

ξ ´ αλ
˘

` αλ is exact and ig˚Xω ` αλ is exact and
so g˚X is conformal Hamiltonian. □
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