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ON THE POLYGONAL FABER-KRAHN INEQUALITY

by Beniamin Bogosel & Dorin Bucur

Abstract. — It has been conjectured by Pólya and Szegö seventy years ago that the planar
set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons
with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result
has only been proved for triangles and quadrilaterals. In this paper we prove that for each
n ⩾ 5 the proof of the conjecture can be reduced to a finite number of certified numerical
computations. Moreover, the local minimality of the regular polygon can be reduced to a single
numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical
approximation by finite elements, up to machine errors.

Résumé (Sur l’inégalité Faber-Krahn polygonale). — Il y a soixante-dix ans, Pólya et Szegö ont
conjecturé que l’ensemble du plan qui minimise la première valeur propre du laplacien avec
conditions de Dirichlet au bord parmi les polygones de n côtés et aire fixée est le polygone
régulier. Malgré sa simplicité apparente, cette conjecture a été démontrée seulement pour les
triangles et les quadrilatères. Dans cet article, nous démontrons que pour chaque n ⩾ 5 la
preuve de la conjecture peut être réduite à un nombre fini de calculs numériques certifiés.
En particulier, la minimalité locale du polygone régulier est réduite à un seul calcul certifié.
Pour n = 5, 6, 7, 8 nous faisons ce calcul et nous certifions l’approximation par éléments finis,
aux erreurs d’arrondi près.
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20 B. Bogosel & D. Bucur

1. Introduction

For every bounded, open set Ω ⊂ R2 we consider the eigenvalue problem for the
Laplace operator with Dirichlet boundary conditions

(1.1)
{−∆u = λu in Ω,

u = 0 on ∂Ω.

The spectrum consists only on eigenvalues, which can be ordered (counting the mul-
tiplicity),

0 < λ1(Ω) ⩽ λ2(Ω) ⩽ · · · ⩽ λk(Ω) · · · −→ +∞.

Lord Rayleigh conjectured in 1877 that the first eigenvalue is minimal on the disc,
among all other planar domains of the same area. The proof was given in 1923 by
Faber in two dimensions and three years later extended by Krahn in any dimension
of the Euclidean space (see [19] for a description of the history of the problem and
[33, 32] for a survey of the topic).

In their book of 1951, Pólya and Szegö have conjectured a polygonal version of
this inequality (see [50, p. 158]). Precisely, denote by Pn the family of simple polygons
with n sides in R2 and for every n ⩾ 3 consider the problem

(1.2) min
P∈Pn,|P |=π

λ1(P ).

Pólya-Szegö Conjecture (1951). — The unique solution to problem (1.2) is the reg-
ular polygon with n sides and area π.

This question, easy to state, has puzzled many mathematicians in the last seventy
years, but no significant progress has been made. The conjecture holds true for n = 3

and n = 4. A proof can be found, for instance, in [32] as a straightforward application
of the Steiner symmetrization principle (the original proof can be found in [50]).
However, Steiner symmetrization techniques do not allow the treatment of the case
n ⩾ 5 since, performing this procedure, the number of vertices could possibly increase.
We are not aware of further results regarding this conjecture. Nevertheless, we mention
a new approach, which applies only to triangles, proposed by Fragalà and Velichkov
in [25], establishing that equilateral triangles are the only critical points for the first
eigenvalue.

A question of the same nature, involving the logarithmic capacity, has been com-
pletely solved by Solynin and Zalgaler [54] in 2004. The proof takes full advantage
from the specific structure of the problem, in particular from harmonicity of the capa-
citary functions; it can not be extended to eigenvalues. Minimization of variational
energies in the class of polygons has been intensively investigated in the recent years
(see the survey by Laugesen and Siudeja [42] or [12] and references therein) but the
very specific polygonal version of the Faber-Krahn inequality remains unanswered.

It is quite straightforward to prove the existence of an optimal n-gon in the closure
of the set of simple n-gons with respect to the Hausdorff distance of the complements,
as shown in [32, Ch. 3]. It has precisely n edges, but it is possibly degenerate in the
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On the polygonal Faber-Krahn inequality 21

sense that a vertex could belong to another edge. However, it is not even known that
this polygon has to be convex! Meanwhile, many numerical experiments have been
performed for small values of n (see for instance [2], [8, Ch. 1], [22]) which all suggest
the validity of the conjecture.

The purpose of this paper is twofold. A first objective is to prove that local minimal-
ity of the regular polygon can be reduced to a single certified numerical computation.
In fact, we prove that the local minimality of the regular polygon is a consequence of
the positivity of the eigenvalues of a (2n− 4)× (2n− 4) matrix related to the shape
Hessian of the scale invariant functional Pn ∋ P 7→ |P |λ1(P ). The dimension 2n − 4

reflects the number of degrees of freedom for n−2 vertices, once two consecutive ones
are fixed. There are two challenges in this question: a theoretical one and a numerical
one. First, one needs to prove that if the matrix is positive definite for the regular
polygon then, for a neighborhood of the regular polygon, the matrix remains positive
definite. This question is itself not trivial and requires to take full advantage from the
uniform H2+s regularity of the eigenfunctions for polygons which are small perturba-
tions of the regular one. Secondly, in the absence of theoretical results concerning the
positivity of the eigenvalues of the Hessian matrix, one has to perform certified com-
putations of the positive eigenvalues of the matrix, i.e., numerical computations with
explicit error bounds that are sufficiently small. In our context the matrix coefficients
depend on solutions of PDEs with singular right hand sides (in H−1+γ) involving the
traces of the gradient of the first eigenfunction on the diameter of the polygon. We
perform these computations for n = 5, 6, 7, 8 and certify the numerical approxima-
tion by finite elements, up to machine errors. In order to support the conjecture, we
provide as well (uncertified) numerical computations for n = 9, . . . , 15.

A second objective of our paper is to prove that for each n ⩾ 5 the complete proof of
the conjecture can formally be reduced to a finite number of numerical computations.
Roughly speaking, first, we analytically find a computable open neighborhood of the
regular polygon where the local minimality occurs. This requires a precise estimate
of the modulus of continuity of the shape Hessian matrix obtained above, for small
perturbations of the regular polygon. This is the most technical part of the paper.
Second, we give a bound for the maximal possible diameter of the optimal polygon
as well as for the minimal length edge and inradius, when its area is fixed. As a
consequence, it remains to prove that all polygons with free vertices in a (computable)
compact set K ⊆ R2n−4 are not optimal. This can be done by performing a finite
number of certified computations of first eigenvalues, areas and perimeters. Indeed,
if a polygon has vertices in the compact set K and is not optimal, then either due to
uniform estimates of the modulus of continuity of the eigenvalue and measure or to
monotonicty of both these quantities to inclusions, non-optimality is certified in an
open neighborhood. A finite number of such (open) neighborhoods will cover K.

Let us detail our strategy.

Step 1. Formal computation of the shape Hessian matrix. — We interpret the first eigen-
value as a function depending on the coordinates of the vertices of the n-gon (obtaining

J.É.P. — M., 2024, tome 11



22 B. Bogosel & D. Bucur

a function defined on a subset of R2n) and choose an appropriate, equivalent scale
invariant formulation for problem (1.2). Once the validity of the first order optimality
condition on the regular polygon is established, we compute the analytic expression of
the shape Hessian. For that purpose, we rely on the computations done by A. Laurain
in [43] for the energy functional (we recall the corresponding result in Remark 7.8) and
perform similar computations for the eigenvalue, following the same method. Taking
perturbations of polygons with n sides in the second shape derivative, we obtain the
Hessian matrix (of size 2n × 2n) for the eigenvalue having the vertex coordinates as
variables.

Step 2. Numerical proof of the positivity of the shape Hessian matrix for the regular poly-
gon, for a given n. — The shape Hessian matrix of the scale invariant functional has
four eigenvalues equal to 0, corresponding to the rigid motions and homotheties of
the polygon. We use interval arithmetics and explicit error estimates for the finite
element approximation to certify the positivity of the other eigenvalues of the shape
Hessian matrix for the regular polygon with n sides. For n = 5, 6, 7, 8 and a suitable
choice of an appropriate discretization, we certify, up to machine errors appearing in
the meshing, the assembly and the resolution of the linear systems in the finite ele-
ment method, that the remaining 2n− 4 of the eigenvalues of the Hessian are strictly
positive.

A fully certified (including machine errors aspects) positivity of the eigenvalues of
the shape Hessian matrix is enough to prove the local minimality of the regular poly-
gon, provided one knows that the coefficients of the matrix are continuous for small
geometric perturbations of the regular polygon. This type of stability result is neces-
sary to establish that the non zero eigenvalues remain positive in small neighborhood
of the regular polygon. This is discussed in Step 3, below. By strict convexity, the
regular polygon will be a minimizer in this neighborhood.

Proof strategies based on hybrid, theoretical-numerical strategies, have already
been employed successfully in articles related to spectral theory. In the paper [47],
Schiffer’s conjecture is proved for the regular pentagon, stating that there exists an
associated Neumann eigenfunction that is positive on the boundary and not identically
constant. In [16] an example of two dimensional domain with 6 holes is given for which
the nodal line of the second Dirichlet eigenfunction is closed and does not touch the
boundary of the domain, giving a counter example to a famous conjecture by Payne.
In [26] the authors find triangles which are not isometric for which the first, second
and fourth eigenvalues coincide, settling a conjecture stated in [2].

Step 3. Quantitative stability of the shape Hessian matrix coefficients. — Our objective is
to identify a computable neighborhood of the regular polygon where the eigenvalues
of a (2n − 4) × (2n − 4) submatrix of the shape Hessian matrix remains positive.
The most technical part is to give analytic, computable, estimates of the variation
of the coefficients of the Hessian matrix, for perturbations of the regular polygon.
The difficulty comes from the fact that the expression of the coefficients involve the
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On the polygonal Faber-Krahn inequality 23

solutions of some (degenerate) elliptic PDEs with data in H−1+γ , depending on traces
of the gradient of the eigenfunctions on segments. The analysis requires quantitative
estimates of the perturbation of the eigenfunction in H2 which relies, via Gagliardo-
Nirenberg interpolation inequalities, on control of their norm inH2+s. These estimates
show that the unique, certified, computation of the Hessian matrix on the regular
polygon is enough to obtain local minimality on a computable neighborhood!

Step 4. Analytic estimates of the maximal and minimal edge lengths of an optimal polygon

We give a computable estimate of the maximal diameter of the optimal polygon,
provided its area is fixed. The estimate is inductively obtained for n ⩾ 5: if the
diameter of an n-gon exceeds some (computable) value, then its eigenvalue is close
to the one associated to a polygon with n − 1 sides, so it can not be optimal in the
class Pn. Here we use surgery techniques inspired from [13], but face the difficulty of
keeping constant the number of sides within the surgery procedure. As well, we give
an analytic estimate for the minimal length of an edge and of the minimal inradius.

Step 5. Formal proof of the conjecture. — We show how to give an inductive formal
proof of the conjecture reducing it to a finite number of (certified) numerical compu-
tations for each value of n. Up to this point we have computed, for the scale invariant
functional, a neighborhood of the regular polygon where its minimality occurs and we
have computed the maximal and minimal lengths of edges of an optimal polygon at
prescribed area. Therefore, we are able to reduce the study of the conjecture to a fam-
ily of polygons with vertices belonging to a compact set. Any certified evaluation of
the eigenvalue/area of such a polygon showing non optimality, would readily produce
a small neighborhood of non optimal polygons, the size of the neighborhood being
uniform and analytically computed. Monotonicity with respect to inclusions of both
the eigenvalue and the area may be very useful from a practical point of view, but not
necessary for a theoretical argument. Finally we get a ball covering of a compact set
which with known diameter, by balls of uniform size. This means that one can prove
the conjecture after a finite number of numerical computations. We shall describe this
procedure in Section 7.

This type of numerical procedure has successfully been used in [11] (to which we
refer for a detailed description), for a different problem involving the same variational
quantities but with only two degrees of freedom. The arguments transfer directly to
our problem.

Although we prove that for a specific n the proof of the conjecture is reduced to a
finite number computations, it is not our purpose to perform these computations, for
two reasons. On the one hand, all constants that we prove to exist should be optimized
and effectively computed. On the other hand, even for n = 5, in our procedure the
number of degrees of freedom for the free vertices is 2n − 4 = 6 (see Section 7). An
estimate on the complexity of this computational task is not available at the moment
since multiple aspects are involved: the dimension of the problem (2n− 4), the theo-
retical estimate of the local minimality neighborhood, the precision of the numerically
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24 B. Bogosel & D. Bucur

validated computations. It is expected that such a task demands important compu-
tational capacities. Before any computational tentative, some further, deep, analysis
should be performed to dramatically reduce the size of the computational tasks.

The structure of the paper is the following. Section 2 is devoted to the computation
of the shape Hessian of the area and first eigenvalue functionals by a distributed for-
mula. In particular, on polygons, we give the expression of the Hessian matrix of the
eigenvalue as function of vertices coordinates. This section is inspired by the recent
work of Laurain [43] for the energy functional. Section 3 contains a quantitative geo-
metric stability result of the coefficients of the Hessian matrix with respect to vertex
perturbations. This part is the key for the proof of the local minimality of the regular
polygon and allows to estimate the size of the neighborhood of the regular polygon
where minimality occurs. Sections 4 and 5 are devoted to the analysis of the shape
Hessian matrix coefficients and to estimates regarding their numerical approximation.
Section 6 contains certified computation of the eigenvalues of the shape Hessian ma-
trix on the regular polygon, justifying, up to machine errors, its local minimality for
n = 5, 6, 7, 8. In Section 7 we give an estimate of the maximal diameter of an optimal
polygon and show how the proof of the conjecture reduces, for every n ∈ N, to a
finite number of numerical computations. As well, we make short comment about the
polygonal Saint-Venant inequality for the torsional rigidity, which can be analyzed in
a similar way.

Acknowledgements. — The first author wishes to thank Pierre Jolivet for valuable
advice regarding the large scale computations in FreeFEM. The second author wishes
to thank M. Van den Berg for useful suggestions concerning the bound of the torsion
function in Theorem 7.1. The parallel computations were performed on the Choleski
server at the IDCS mesocentre within the Institut Polytechnique de Paris.

2. First and second order shape derivatives

In this section we analyze the first and the second order shape derivatives of the first
Dirichlet eigenvalue, for both general domains and for polygons. This section follows
the strategy developed by Laurain in [43] for energy functionals (see Remark 7.8 for a
brief summary of the corresponding results). Many proofs are very similar and we shall
not reproduce them, referring to [43], whenever necessary. Nevertheless, the formulas
for the eigenvalues are different, so that we shall detail them. The ultimate objective
for polygons is to get an expression of the Hessian in distributed form involving sums
over the two dimensional domains and remove any boundary integral expression. This
is somehow contrary to what usually one does in shape optimization, the main mo-
tivation being that the distributed expression of the second shape derivative requires
less regularity hypotheses than the boundary expressions. This is particularly useful
for polygons. Finally, when restricted to the class of polygons with n sides, we shall
describe the shape Hessian of the eigenvalue by a square symmetric matrix of size
2n× 2n.
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On the polygonal Faber-Krahn inequality 25

In the literature one can find detailed descriptions of the shape gradients and shape
Hessians of the eigenvalue on a smooth set (see for instance [34, 35, 41, 18]). The case
of polygons is more delicate, since the boundary expression of the shape Hessian fails
to have sense, due to the lack of regularity of the boundary.

In order to simplify the reading and the interpretation of potential connections
between the results of this section and [43], we use the same notations and, when
the computations are similar, we prefer not to reproduce them and refer precisely to
various sections in [43].

2.1. General domains. — For vectors a, b ∈ Rd and matrices S,T ∈ Rd×d define the
following:

– Id denotes the identity matrix
– a⊗ b is the second order tensor of two vectors (a⊗ b)ij = aibj
– a⊙ b = 1

2 (a⊗ b+ b⊗ a) is the symmetric outer product.
– a · b is the usual scalar product
– S : T =

∑n
i,j=1 SijTij is the matrix dot product.

It is immediate to notice that (a⊗ b)c = (c · b)a and S : (a⊗ b) = a · Sb.
Given a shape functional Ω → J(Ω) and a vector field Θ ∈ W 1,∞(R2,R2) the

shape derivative of J at Ω, denoted by J ′(Ω) ∈ L(W 1,∞(R2,R2),R) is the Fréchet
derivative of the application ζ 7→ J((I + ζ)(Ω)) and verifies

J((I + ζ)(Ω)) = J(Ω) + J ′(Ω)(ζ) + o(∥ζ∥W 1,∞).

As discussed in [43, §9.1], when computing second order shape derivatives, several
approaches are possible. The one detailed in [43] uses the Eulerian derivative in order
to compute the Fréchet derivative. However, the Eulerian derivative requires more
regularity on one of the perturbation fields than W 1,∞(R2,R2), while perturbations
of polygons are precisely in W 1,∞(R2,R2).

For a given vector field ζ ∈W 1,∞(Rd,Rd) consider the domain Ωζ = (I+ζ)(Ω). It is
well known that for ∥ζ∥W 1,∞ < 1 this transformation is an invertible diffeomorphism.
In the following, when dealing with boundary value problems, we use subscripts to
denote functions φζ ∈ H1

0 (Ωζ) and superscripts to denote the functions φζ = φζ ◦
(I + ζ) ∈ H1

0 (Ω).
The objective in the following is to have distributed expressions which require

less regularity than the generally well known boundary expressions for the shape
derivative of the eigenvalue ([35], [34]). Following the strategy of Laurain for the energy
functional, we state below analogue results for the first and second Fréchet shape
derivatives for the simple eigenvalues of the Dirichlet-Laplace problem (1.1). While
some of these facts are standard (for instance the expression of the first derivative),
the expression of the Fréchet second derivative and the matrix representation in the
case of polygons seem to be new.

In the following we suppose ζ is small enough such that λ(Ωζ) is still a simple
eigenvalue. For simplicity, we do not write its index, which remains constant along
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26 B. Bogosel & D. Bucur

the perturbation. Let uζ ∈ H1
0 (Ωζ) be the solution of

(2.1)
∫
Ωζ

∇uζ · ∇vζ dx = λ(Ωζ)

∫
Ωζ

uζvζ dx, ∀vζ ∈ H1
0 (Ωζ)

with the normalization
∫
Ωζ

(uζ)
2 dx = 1. Let uζ = uζ ◦ (I + ζ) ∈ H1

0 (Ω), so that
uζ = uζ ◦ (I + ζ)−1. Then

(2.2) ∇uζ = [(I +DζT )−1∇uζ ] ◦ (I + ζ)−1

and a change of variables leads to∫
Ω

A(ζ)∇uζ · ∇v dx = λ(Ωζ)

∫
Ω

uζv det(I +Dζ) dx, for all v ∈ H1
0 (Ω),(2.3)

with the notation A(ζ) = det(I +Dζ)(I +Dζ)−1(I +DζT )−1.
Following [34, Th. 5.7.4 ], the mapping

ζ ∈W 1,∞ 7−→ (uζ , λk(ζ)) ∈ H1
0 (Ω)× R

is of class C∞ on a neighborhood of 0, without any smoothness requirement for Ω. We
differentiate (2.3) at 0 and denoting u̇(ζ) ∈ H1

0 (Ω) the material derivative, we obtain
for all v ∈ H1

0 (Ω)∫
Ω

A′(0)(ζ)∇u · ∇v dx+

∫
Ω

∇u̇(ζ) · ∇v dx

= λ′(Ω)(ζ)
∫
Ω

uv dx+ λ(Ω)

∫
Ω

[u̇(ζ)v + uv div ζ] dx,

for all v ∈ H1
0 (Ω), where A′(0)(ζ) = div ζ Id−Dζ −DζT . Regrouping terms gives

(2.4)
∫
Ω

(∇u̇(ζ) · ∇v − λ(Ω)u̇(ζ)v) dx

=

∫
Ω

(−A′(0)(ζ)∇u · ∇v + λ′(Ω)(ζ)uv + λ(Ω)uv div ζ) dx,

for every v ∈ H1
0 (Ω). Note that problem (2.4) does not have a unique solution. Indeed,

adding to u̇(ζ) any eigenfunction for problem (1.1) associated to the eigenvalue λ(Ω)
gives another solution. Uniqueness is a consequence of the normalization condition∫
Ω
(uζ)2 det(I +Dζ) dx = 1. The corresponding derivative evaluated at zero is

(2.5)
∫
Ω

2uu̇(ζ) + u2 div ζ dx = 0.

When dealing with a simple eigenvalue, the additional condition (2.5) is sufficient to
uniquely identify u̇(ζ). For multiple eigenvalues, all eigenfunctions in the associated
eigenspace should be used in (2.5).

With these notations we are ready to state the following result.

Theorem 2.1. — Let Ω ⊂ Rd be a bounded Lipschitz domain and Θ, ξ∈W 1,∞(Rd,Rd).
Let λ be a simple eigenvalue of the Dirichlet Laplacian and u an associated
L2-normalized eigenfunction. Then
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On the polygonal Faber-Krahn inequality 27

(i) The distributed shape derivative of λ is given by

λ′(Ω)(ζ) =
∫
Ω

Sλ
1 : Dζ dx

with Sλ
1 = (|∇u|2 − λ(Ω)u2) Id−2∇u ⊗ ∇u. If, in addition, u ∈ H2(Ω), the corre-

sponding boundary expression is

λ′(Ω)(ζ) = −
∫
∂Ω

|∇u|2ζ · n ds.

(ii) The second order distributed Fréchet derivative is given by

λ′′(Ω)(ζ, ξ) =
∫
Ω

Kλ(ζ, ξ)

with

Kλ(ζ, ξ) = −2∇u̇(ζ) · ∇u̇(ξ) + 2λ(Ω)u̇(ζ)u̇(ξ) + Sλ
1 : (Dζ div ξ +Dξ div ζ)

+
(
−|∇u|2 + λu2

)
(div ξ div ζ +DζT : Dξ)

+ 2(DζDξ +DξDζ +DξDζT )∇u · ∇u
−
[
λ′(Ω)(ζ) div ξ + λ′(Ω)(ξ) div ζ

]
u2.

where u̇(ζ) and u̇(ξ) are the material derivatives in directions ζ, ξ, respectively.

The first point is standard and may be found in many classical references, for
instance [34]. Some formulas for the second derivative are also available in the liter-
ature, see [34], [35].The key point is that the distributed expression shown above is
valid for Lipschitz domains and Lipschitz perturbations. Moreover, being written in
symmetric form its expression helps in the computation of the Hessian matrix in the
case of polygons.

Proof of Theorem 2.1. — The first application of formula (2.4) is the expression of the
first shape derivative. This computation is a classical result, but we present it here for
the sake of completeness, since it illustrates well the techniques used when computing
shape derivatives. Take v = u in (2.4) and note that, since u is the eigenfunction
associated to λ(Ω), ∫

Ω

∇u · ∇u̇(ζ) dx = λ(Ω)

∫
Ω

uu̇(ζ) dx.

Using
∫
Ω
u2 dx = 1, we obtain∫
Ω

(
div ζ|∇u|2 − 2∇u⊗∇u : Dζ

)
dx = λ′(Ω)(ζ) +

∫
Ω

λ(Ω)u2 div ζ dx.

A direct computation leads to

(2.6) λ′(Ω)(ζ) =
∫
Ω

[(|∇u|2 − λ(Ω)u2) Id−2∇u⊗∇u] : Dζ dx =

∫
Ω

Sλ
1 : Dζ dx.

Now we choose ξ ∈ W 1,∞ and we redo the same procedure to differentiate the first
shape derivative (2.6). Denote Ωξ = (I+ξ)(Ω) and suppose that ξ is small enough such
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28 B. Bogosel & D. Bucur

that λ(Ωξ) is still a simple eigenvalue. Denote with uξ ∈ H1
0 (Ωξ) the eigenfunction

associated to the simple eigenvalue λ(Ωξ). We have

(2.7) λ′(Ωξ)(ζ) =

∫
Ωξ

[
(|∇uξ|2 − λ(Ωξ)u

2
ξ) Id−2∇uξ ⊗∇uξ

]
: D(ζ ◦ (I + ξ)−1) dx.

We also have the following elementary computation:

D(ζ ◦ (I + ξ)−1) = Dζ ◦ (I + ξ)−1D(I + ξ)−1.

As before, via a change of variables we write λ′(Ωξ)(ζ) as an integral on Ω defining
uξ = uξ ◦(I+ξ) ∈ H1

0 (Ω). Using (2.2) and performing a change of variables, we obtain

λ′(Ωξ)(ζ) =

∫
Ω

[ (
(I +Dξ)−1(I +Dξ)−T∇uξ · ∇uξ − λ(Ωξ)(u

ξ)2
)
Id

− 2(I +Dξ)−T∇uξ ⊗ (I +Dξ)−T∇uξ
]
: DζD(I + ξ)−1 ◦ (I + ξ) det(I +Dξ).

Now we are ready to compute the second Fréchet derivative of λ(Ω) by differentiat-
ing the previous expression w.r.t. ξ at 0 and denoting the derivative of uξ at 0 by u̇(ξ).
We use the product rule, differentiating the first term, the term D(I + ξ)−1 ◦ (I + ξ)

and finally det(I +Dξ). In particular, we have
– (D(I +Θ)−1 ◦ (I +Θ))′Θ(0)(ξ) = −Dξ.
– det(I +DΘ)′Θ(0)(ξ) = div(ξ).
We obtain the following initial formula for the second shape derivative:

λ′′(Ω)(ζ, ξ) =
∫
Ω

Sλ
1 : Dζ div ξ −

∫
Ω

Sλ
1 : DζDξ dx

+

∫
Ω

[(−Dξ −DξT )∇u · ∇u+ 2∇u̇(ξ) · ∇u] div ζ dx

−
∫
Ω

[λ′(Ω)(ξ)u2 + λ(Ω)2uu̇(ξ)] div ζ dx

+

∫
Ω

[4DξT∇u⊙∇u : Dζ − 4∇u̇(ξ)⊙∇u : Dζ] dx.

Following [43, p. 25], we have

−4(∇u̇(ξ)⊙∇u) : Dζ + 2∇u̇(ξ) · ∇udiv ζ = 2A′(0)(ζ)∇u · ∇u̇(ξ)
and the material derivative (2.4) gives

2

∫
Ω

A′(0)(ζ)∇u · ∇u̇(ξ) dx = −2

∫
Ω

∇u̇(ζ) · ∇u̇(ξ) dx+ 2λ′(Ω)(ζ)
∫
Ω

uu̇(ξ) dx

+ 2λ(Ω)

∫
Ω

u̇(ζ)u̇(ξ) dx+ 2λ(Ω)

∫
Ω

uu̇(ξ) div ζ dx.

The derivative of the normalization condition gives∫
Ω

2uu̇(ξ) dx = −
∫
Ω

u2 div ξ dx.

We also have

Sλ
1 : DζDξ = (|∇u|2 − λu2)DζT : Dξ − 2DζDξ∇u · ∇u,
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since tr(DζDξ) = DζT : Dξ. Combining all these expressions we obtain

λ′′(Ω)(ζ, ξ) = −2

∫
Ω

(∇u̇(ζ) · ∇u̇(ξ)− λ(Ω)u̇(ζ)u̇(ξ)) dx+

∫
Ω

Sλ
1 : Dζ div ξdx

−
∫
Ω

2Dξ∇u · ∇udiv ζ dx

+

∫
Ω

4DξT∇u⊙∇u : Dζ dx

−
∫
Ω

[λ′(Ω)(ζ) div ξ + λ′(Ω)(ξ) div ζ]u2 dx

+

∫
Ω

(−|∇u|2 + λu2)DζT : Dξ + 2DζDξ∇u · ∇u dx.

We have
2DξT∇u⊙∇u : Dζ = (DξDζ +DξDζT )∇u · ∇u.

Which gives

λ′′(Ω)(ζ, ξ) = −2

∫
Ω

(∇u̇(ζ) · ∇u̇(ξ)− λ(Ω)u̇(ζ)u̇(ξ)) dx

+

∫
Ω

Sλ
1 : (Dζ div ξ +Dξ div ζ) dx

+

∫
Ω

(−|∇u|2 + λu2)(div ζ div ξ +DζT : Dξ) dx

+ 2

∫
Ω

(DζDξ +DξDζ +DξDζT )∇u · ∇u dx

−
∫
Ω

[λ′(Ω)(ζ) div ξ + λ′(Ω)(ξ) div ζ]u2 dx.

This finishes the proof of the theorem. □

2.2. Polygons. — In order to exploit the expression of Theorem 2.1 in the case
when Ω is a polygon, we follow again the strategy of Laurain [43] to extend a geometric
perturbation of vertices to a global perturbation of the polygon.

Vertex perturbation versus global perturbation. — Suppose Ω is a n-gon. Starting from
a perturbation of the vertices, the perturbation field ζ ∈ W 1,∞(R2) will be built as
follows. Denote the vertices of the polygon by ai ∈ R2, i = 0, . . . , n− 1 and for each
vertex consider the vector perturbation ζi ∈ R2, i = 0, . . . , n−1. Whenever necessary,
we suppose that the indices are considered modulo n. Consider a triangulation T

of Ω such that the edges of the polygon are complete edges of some triangles in this
triangulation. Moreover, consider the following globally Lipschitz functions φi for
0 ⩽ i ⩽ n− 1 that are piecewise affine on each triangle of T and satisfy

(2.8) φi(aj) = δij =

{
1 if i = j,

0 if i ̸= j.
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Several choices are possible, as the two examples of Figure 1 show, their extension
outside the polygon being irrelevant. Then, we build a global perturbation of R2 given
by

(2.9) ζ =

n−1∑
i=0

ζiφi ∈W 1,∞(R2).

a0

a1

a2

a3

a4

a1

a0

a2

a3

a4

a0

a1

a2

a3

a4

1

0

a0

a1

a2

a3

a4

Figure 1. Examples of admissible triangulations used for defining
perturbations on a polygon and graphical view of the function φ1.

Gradient and Hessian of the area functional. — The shape derivatives for the area
functional are classical and are widely studied in the literature (see [34],[43], etc.).
The expression of the shape derivative of the area is

(2.10) |Ω|′(ζ) =
∫
∂Ω

ζ · n.

However, in the particular case of n-gons the situation is much simpler, since explicit
formulas exist in terms of the coordinates of the vertices of the polygon. For a non
degenerate polygon whose coordinates of the vertices are denoted by (xi, yi) and whose
edges are oriented in the counter-clockwise order the area is given by

A(x) =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi).

The coordinates are regrouped in the vector by concatenating the coordinates of the
vertices ai

(2.11) x = (a0,a1, . . . ,an−1) = (x0, y0, . . . , xn−1, yn−1) ∈ R2n,

which will always be the case in the following, when parametrizing polygons. The
gradient of the area in terms of the coordinates verifies:

∂A

∂xi
(x) =

1

2
(yi+1 − yi−1),

∂A

∂yi
(x) =

1

2
(−xi+1 + xi−1).

We denote by Rc,α the rotation around c ∈ R2 with angle α (in the trigonometric
sense), hence the gradient of the area has the geometric expression

(2.12) ∇A(x) =
1

2

(
Rai,−π/2(

−−−−−−→ai−1ai+1)
)
i=0,...,n−1

.
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This is natural, since the area of the polygon when moving a vertex ai only varies
when moving the vertex ai in the normal direction to the closest diagonal.

Another expression of the gradient of the area, using the functions φi defined
earlier, can be found following the results of [43] and is given by

(2.13) ∇A(x) =

(∫
Ω

∇φi

)
i=0,...,n−1

.

Since the expression of the gradient of the area is linear in terms of the coordinates,
the Hessian matrix of the area of the polygon is the constant 2n× 2n block matrix

(2.14) D2A(x) =
(
Bij

)
0⩽i,j⩽n−1

,

where the non-zero 2 × 2 blocks are given by Bij =
( 0 1/2
−1/2 0

)
if j = i + 1 and

Bij =
( 0 −1/2
1/2 0

)
if i = j + 1.

Following the results in [43] we find that the formula for the Hessian of the area in
terms of the functions φi can also be expressed using the following block structure

(2.15) Bij =

∫
Ω

[∇φi ⊗∇φj −∇φj ⊗∇φi].

In particular the Hessian of the area can be written as a tensor product (Kronecker
product) between the matrices

0 1 0 · · · 0 −1

−1 0 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · −1 0

 and
(

0 0.5

−0.5 0

)
.

Therefore, the corresponding eigenvalues and eigenvectors can be found explicitly.

Gradient of the eigenvalue. — Below we compute the gradient of the eigenvalue (1.1)
as function of the vertices, i.e., the partial derivatives of these functionals with respect
to the coordinates of the vertices of the polygons. The expression of these gradients can
be used to prove that the regular polygon is a critical point under an area constraint
and are useful for numerical computations.

The expression of the gradient of the eigenvalue with respect to the coordinates is
a consequence of the shape derivative formulas recalled in the previous section. It is
enough to use the distributed expression of the shape derivative, valid in general,
with the perturbation field ζ introduced in (2.9). An example is given in Figure 2 for
ζ = ζiφi. The proof is similar to the case of the torsion energy [43]. We choose to
detail here only the boundary expression, with a slightly different argument than the
one used in [43].

Theorem 2.2. — The gradient of a simple Dirichlet-Laplace eigenvalue (1.1) when Ω

is a polygon with coordinates x as in (2.11) is given by

∇λ(x) =
(∫

Ω

Sλ
1∇φi dx

)
i=0,...,n−1

= −
(∫

∂Ω

|∇u|2φin ds
)
i=0,...,n−1

,

where n is the outer unit normal vector.
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ai

ai−1 ai+1

ai + θi

ai−1

ai

ai + θi

ai+1

Figure 2. Boundary perturbation induced when perturbing a vertex

Notice that the boundary expression is always valid, even though the eigenfunction
itself does not belong to H2(Ω). This is a consequence of the fact that in an arbitrary
polygon (typically non convex), the eigenfunction enjoys a local H2+δ regularity far
from the corners, while at corners the singular part has a very specific structure,
albeit good enough to make the boundary expression of the gradient valid. We recall
from [9] that

u = ureg + using,

where ureg ∈ H2+δ(Ω) for some δ > 0 and

using =

n−1∑
i=0

Ciψir
π/ωi sin

(
(π/ωi)θ

)
,

where Ci are constants, ωi are the angles, ψi is cutoff function equal to 1 in a neigh-
borhood of the vertex ai and (r, θ) are the polar coordinates around the angle i.

Proof. — The expression ∇λ(x) =
( ∫

Ω
Sλ

1∇φi dx
)
i=0,...,n−1

is valid. It remains to
prove the equality(∫

Ω

Sλ
1∇φi

)
i=0,...,n−1

= −
(∫

∂Ω

|∇u|2φin
)
i=0,...,n−1

.

First, note that the gradient of u is point-wise defined on ∂Ω, except at the vertices,
in a classical way. We fix a vertex i and define

Ωε = Ω∖ (B(ai−1, ε) ∪B(ai, ε) ∪B(ai+1, ε)),

Γε = Ω ∩ (∂B(ai−1, ε) ∪ ∂B(ai, ε) ∪ ∂B(ai+1, ε)).

Since u|Ωε
∈ H2(Ωε), a direct computation shows that divSλ

1 = 0 on Ωε, the diver-
gence being applied on lines. Moreover, since u = 0 on ∂Ω, the gradient ∇u is colinear
with the normal vector n on ∂Ω. In particular, (∇u⊗∇u)n = (n ·∇u)∇u = |∇u|2n.
As a consequence Sλ

1n = −|∇u|2n. Therefore we obtain∫
Ωε

Sλ
1∇φidx = −

∫
Ωε

div(Sλ
1 )φidx+

∫
∂Ωε

Sλ
1nφi

= −
∫
∂Ωε∖Γε

|∇u|2φin+

∫
Γε

Sλ
1nφi.
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We conclude by noticing that∫
Γε

Sλ
1nφi −→ 0, for ε→ 0,

which is a consequence of the decomposition u = ureg + using. We know that ureg ∈
H2+δ(Ω) and H2+δ(Ω) is embedded in W 1,∞(Ω), so that the gradient of ureg is
bounded.

At the same time, |∇using| ⩽ Cr(π/ωi)−1 for some constant C independent on ε.
Both these observations lead to∫

Γε

|∇ureg|2 + |∇using|2 → 0, for ε→ 0.

To conclude notice that(∫
Ω

Sλ
1∇φi

)
i=0,...,n−1

= lim
ε→0

(∫
Ωε

Sλ
1∇φi

)
i=0,...,n−1

= − lim
ε→0

∫
∂Ωε∖Γε

|∇u|2φin = −
∫
∂Ω

|∇u|2φin. □

Remark 2.3. — It is possible to note that the integrals which come into play in the
boundary expression of the gradient only need to be computed on two adjacent sides
to vertex ai, which gives

∇λ(x) =
(
−
∫
aiai−1

|∇u|2φinx −
∫
aiai+1

|∇u|2φinx

−
∫
aiai−1

|∇u|2φiny −
∫
aiai+1

|∇u|2φiny

)
i=0,...,n−1

.

In the following we make the convention that the Jacobian matrix of a vector
function contains gradients of the components on every line.

Hessian matrix of the eigenvalue. — Following the notation of [43], we introduce the
functions U i ∈ H1

0 (Ω,R2), i = 0, . . . , n−1 such that u̇(ζ) =
∑n−1

i=0 ζi ·U i. Using (2.4)
we get the set of two PDEs: U i ∈ H1

0 (Ω,R2),

(2.16)
∫
Ω

(DU i∇v − λ(Ω)U iv) dx =

∫
Ω

[−(∇φi ⊗∇u)∇v + 2(∇u⊙∇v)∇φi] dx

+

∫
Ω

Sλ
1∇φi

∫
Ω

uv dx+ λ(Ω)

∫
Ω

uv∇φi dx,

for every v ∈ H1
0 (Ω). The normalization condition (2.5) gives

(2.17)
∫
Ω

(2uU i + u2∇φi) dx = 0,

so that the system of equations (2.16)–(2.17) has a unique solution U i.
The equation verified by the material derivative (2.4) is well posed and its right

hand side vanishes when evaluated at v = u, the eigenfunction associated to the
simple eigenvalue λ. The same compatibility condition is verified in (2.16). This can
be checked immediately, replacing v = u and using the expression for Sλ

1 stated in
Theorem 2.1.
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Theorem 2.4. — The Hessian matrix Nλ ∈ R2n×2n of a simple Dirichlet-Laplace
eigenvalue (1.1) with respect to the coordinates of the n-gon is given by the following
n× n block matrix

Nλ = (Nλ
ij)0⩽i,j⩽n−1,

where the 2× 2 blocks are given by

Nλ
ij =

∫
Ω

(−2DU iDUT
j + 2λ(Ω)U iU

T
j +∇φi ⊗ Sλ

1∇φj + Sλ
1∇φi ⊗∇φj) dx

+

∫
Ω

(
−|∇u|2 + λ(Ω)u2

)
(2∇φi ⊙∇φj) dx

+ 2

∫
Ω

[
(∇φi · ∇u)(∇φj ⊗∇u) + (∇φj · ∇u)(∇u⊗∇φi)(2.18)

+ (∇φi · ∇φj)(∇u⊗∇u)
]
dx

−
∫
Ω

u2
[
∇φi ⊗

(∫
Ω

Sλ
1∇φj dx

)
+

(∫
Ω

Sλ
1∇φi dx

)
⊗∇φj

]
dx,

where U i ∈ H1(Ω,R2), i = 0, . . . , n− 1 are solutions of (2.16)–(2.17).

Proof of Theorem 2.4. — The proof of this result, is computational in nature and is
inspired by [43, Prop. 14]. To obtain the Hessian matrix we use the formula for Kλ

given in Theorem 2.1 for the Fréchet second shape derivative. There are several terms,
already computed in [43, App. A], which also appear in the formula for the eigenvalue.
We only present in detail the terms which are different. We point out that in order
to obtain directly the Hessian matrix, the 2 × 2 blocks should be multiplied by the
variables ξj below, which gives transposed 2× 2 blocks compared to [43].

The first term is straightforward

− 2

∫
Ω

(∇u̇(ζ) · ∇u̇(ξ)− λ(Ω)u̇(ζ)u̇(ξ)) dx

=

n−1∑
i,j=0

ζi ·
(∫

Ω

−2DU iDUT
j + λ(Ω)U iU

T
j dx

)
ξj .

The second term is treated in [43, term L3, p. 38]:∫
Ω

Sλ
1 : (Dζ div ξ +Dξ div ζ) dx

=

n−1∑
i,j=0

ζi ·
(∫

Ω

(
∇φi ⊗ Sλ

1∇φj + Sλ
1∇φi ⊗∇φj

)
dx

)
ξj .

The third term is similar to the term L4 treated in [43, p. 39]:∫
Ω

(−|∇u|2 + λu2)(div ζ div ξ +DζT : Dξ) dx

=

n−1∑
i,j=0

ζi ·
(∫

Ω

(
−|∇u|2 + λ(Ω)u2

)
(2∇φi ⊙∇φj) dx

)
ξj .
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The fourth term treated in [43, L5 p. 39]:

2

∫
Ω

(DζDξ +DξDζ +DξDζT )∇u · ∇u dx

=

n−1∑
i,j=0

ζi ·
(
2

∫
Ω

[
(∇φj · ∇u)(∇u⊗∇φi)

+ (∇φi · ∇u)(∇φj ⊗∇u) + (∇φi · ∇φj)(∇u⊗∇u)
]
dx

)
ξj .

The fifth term is new and will be computed below. Note that under the conventions
ζ =

∑n−1
i=0 ζiφi and ξ =

∑n−1
i=0 ξiφi (see (2.8)–(2.9) for the definition of φi) we have:

– div ζ =
∑n−1

i=0 ζi · ∇φi

– for a 2× 2 matrix A, A : Dζ =
∑n−1

i=0 ζi ·A∇φi.
Using these relations we have∫

Ω

[λ′(Ω)(ζ) div ξ + λ′(Ω)(ξ) div ζ]u2 dx

=

n−1∑
i,j=0

∫
Ω

u2
[(∫

Ω

ζi · Sλ
1∇φi dx

)
(ξj · ∇φj) +

(∫
Ω

ξj · Sλ
1∇φj dx

)
(ζi · ∇φi)

]
dx

=

n−1∑
i,j=0

ζi ·
(∫

Ω

u2
[
∇φi ⊗

(∫
Ω

Sλ
1∇φj dx

)
+

(∫
Ω

Sλ
1∇φi dx

)
⊗∇φj

]
dx

)
ξj .

Grouping all the above results finishes the proof of the theorem. □

Remark 2.5. — It is worth to notice that the matrix Nλ obtained in Theorem 2.4
and the corresponding matrix obtained by Laurain in [43, Prop. 14] have similar struc-
tures (see Remark 7.8). Moreover, the results resemble the structure of the tensor Sλ

1

corresponding to the first shape derivative in distributed form. The matrix Nλ has
an additional term coming from the fact that the eigenvalue λ(Ω) is already present
in Sλ

1 , and its derivative appears when computing the second shape derivative.

Remark 2.6. — It can be noted that the Hessian matrix found in (2.18) does not
depend on the normalization condition (2.17). It is more convenient in the following
to suppose that the functions U i are normalized with the following condition

(2.19)
∫
Ω

uU i dx = 0,

where u is the eigenfunction associated to the simple eigenvalue λ(Ω) of the Dirichlet-
Laplacian.

General properties of the Hessian matrix. — The formulas for the gradient and the
Hessian matrix obtained previously do not depend on the choice of the perturbation
given in (2.9). As illustrated in Figure 1 multiple choices for the triangulations defining
the functions φi are possible. In particular:
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– when the triangulation contains no inner vertices then
∑n

i=1 φi = 1, which im-
plies that

∑n
i=1 ∇φi = 0.

– for the regular polygon, considering a triangulation with an additional vertex at
the center of the polygon provides additional symmetry properties.

In the following we will switch between the two choices above in order to obtain
further properties of the gradient and the Hessian matrix. In the following, define the
two vectors tx = (1, 0, 1, 0, . . . , 1, 0) and ty = (0, 1, 0, 1, . . . , 0, 1) ∈ R2n.

Proposition 2.7
(1) The sum of the components on of the gradient ∇λ(x) on odd and even positions,

respectively is zero. Equivalently, we have ∇λ(x) · tx = ∇λ(x) · ty = 0.
(2) The vectors tx, ty are eigenvectors of the matrix Nλ defined in (2.18).

Proof. — Let us note that by choosing φi on a triangulation with no interior vertices
we have

∑n−1
i=0 ∇φi = 0. This already gives an answer to the first point above since

n−1∑
i=0

∫
Ω

Sλ
1∇φi dx = 0.

For the second point, let us note that with the same choice of the functions φi the
solutions U i of (2.16) with the normalization condition (2.19) verify

∑n
i=1 U i = 0

since the sum of the right hand sides in (2.16) is equal to zero. It is now straightforward
to see that Nλtx = Nλty = 0 which implies that the vectors tx, ty are eigenvectors
of Nλ corresponding to the zero eigenvalue. □

Formula (2.18) respects the structure of the second shape derivative. It is possible
to simplify the formula using the definition of Sλ

1 and the property (a ⊗ b)(c ⊗ d) =

(b · c)(a⊗ d). Regrouping terms we obtain

Nλ
ij =

∫
Ω

(−2DU iDUT
j + 2λ(Ω)U iU

T
j ) dx

+

∫
Ω

(
|∇u|2 − λ(Ω)u2

)
(∇φi ⊗∇φj −∇φj ⊗∇φi) dx

− 2

∫
Ω

(∇u⊗∇u) (∇φi ⊗∇φj −∇φj ⊗∇φi) dx

− 2

∫
Ω

(∇φi ⊗∇φj −∇φj ⊗∇φi) (∇u⊗∇u) dx+ 2

∫
Ω

(∇φi · ∇φj)(∇u⊗∇u) dx

−
∫
Ω

u2
[
∇φi ⊗

(∫
Ω

Sλ
1∇φj dx

)
+

(∫
Ω

Sλ
1∇φi dx

)
⊗∇φj

]
dx.

It is immediate to see that

(∇u⊗∇u) (∇φi ⊗∇φj −∇φj ⊗∇φi) + (∇φi ⊗∇φj −∇φj ⊗∇φi) (∇u⊗∇u)
= |∇u|2(∇φi ⊗∇φj −∇φj ⊗∇φi).
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Therefore, the expression of the Hessian matrix simplifies to

Nλ
ij =

∫
Ω

(−2DU iDUT
j + 2λ(Ω)U iU

T
j ) dx(2.20)

+

∫
Ω

(
−|∇u|2 − λ(Ω)u2

)
(∇φi ⊗∇φj −∇φj ⊗∇φi) dx

+ 2

∫
Ω

(∇φi · ∇φj)(∇u⊗∇u) dx

−
∫
Ω

u2
[
∇φi ⊗

(∫
Ω

Sλ
1∇φj dx

)
+

(∫
Ω

Sλ
1∇φi dx

)
⊗∇φj

]
dx.

From this point on, in the rest of the paper, we concentrate on the case of the
first eigenvalue of the regular polygon and we further simplify the expression of the
Hessian. By uniqueness arguments the first eigenfunction u of the Dirichlet Laplace
operator on the regular polygon has the same symmetries as the regular polygon.

In the following suppose that φi, 0 ⩽ i ⩽ n − 1 are associated to the particular
triangulation T = (Tk)

n−1
k=0 of the regular polygon made of congruent triangles with

one vertex at the center (see Figure 1). Thus, the triangulation T also respects the
symmetry of the regular polygon. The symmetry of the first eigenfunction implies
that

∫
Tk
(|∇u1|2 − λ1(Ω)u

2
1) dx = 0. Using this relation the gradient of λ1(Ω) on the

regular polygon becomes∫
Ω

Sλ
1∇φi =

∫
Ω

(|∇u1|2−λ1(Ω)u21)∇φi−2(∇u1⊗∇u1)∇φi = −2

∫
Ω

(∇u1⊗∇u1)∇φi.

Using the fact that ∇φi⊗∇φj−∇φj⊗∇φi is piece-wise constant on every triangle
Tk, k = 0, . . . , n− 1, we find that∫

Ω

(
−|∇u1|2 − λ(Ω)u21

)
(∇φi ⊗∇φj −∇φj ⊗∇φi) dx = −2

λ1(Ω)

|Ω| Bij ,

where Bij are the blocks of the Hessian of the area given in (2.15).
Recall that ∇φi is piecewise constant on the triangles Tk and by symmetry we

have
∫
Tk
u21 dx = 1/n for k = 0, . . . , n− 1. Therefore

∫
Tk
u21∇φi dx = 1

|Ω|
∫
Tk

∇φi dx =
1
|Ω|∇A(x), where A(x) is the area of the polygon having vertices at coordinates given
by x, as recalled earlier. Therefore, the last term in Nλ

ij has the form∫
Ω

u21

[
∇φi ⊗

(∫
Ω

Sλ
1∇φj dx

)
+

(∫
Ω

Sλ
1∇φi dx

)
⊗∇φj

]
dx

=
2

|Ω|
(
∇A(x)⊙∇λ1(x)

)
.

Consider now the Hessian of the product λ1(x)A(x) and note that we have

Hess(λ1(x)A(x)) = |Ω|Hessλ1(x) +∇λ1(x)⊗∇A(x)

+∇A(x)⊗∇λ1(x) + λ1(x)HessA(x).

In this formula the last term of the Hessian of λ1(x) simplifies the tensor products
between the gradient of the area and the gradient of the eigenvalue.
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Following the previous computations we arrive at the following significant simpli-
fication for the Hessian of the product of the area and the eigenvalue.

Proposition 2.8. — In the case where Ω is a regular n-gon and the triangulation T

defining φi is symmetric the Hessian matrix of λ1(Ω)|Ω| = A(x)λ1(x) in terms of the
coordinates of the polygon has the 2× 2 blocks Mλ

ij, 0 ⩽ i, j ⩽ n− 1 given by

(2.21) Mλ
ij = |Ω|

∫
Ω

(−2DU iDUT
j + 2λ1(Ω)U iU

T
j )

− λ1(Ω)

∫
Ω

[∇φi ⊗∇φj −∇φj ⊗∇φi] + 2|Ω|
∫
Ω

(∇φi · ∇φj)(∇u1 ⊗∇u1).

The simplified formula (2.21) for the Hessian of the product of the area and the
first eigenvalue has three terms:

– The first one is related to the decomposition U i of the material derivatives given
in (2.16). Furthermore, the terms are related to the bilinear form from the variational
formulations of U i, which will be essential in improving the estimates in the numerical
simulations. This part of the Hessian is negative definite.

– The second term is related to the Hessian of the area given in (2.15). The asso-
ciated blocks are non-zero only when |i − j| = 1 (modulo n). This part has both
positive and negative eigenvalues.

– The third term involves only the first eigenfunction u1 and the functions φi

defined in (2.8). The associated blocks are non-zero only when |i− j| ⩽ 1. This part
of the Hessian is positive definite.

Although the expression of the Hessian given in (2.21) is explicit, its positive defi-
niteness is not obvious. The analysis of the eigenvalues of this matrix is continued in
Section 4.

3. Geometric stability of the shape Hessian matrix

In this section we shall perform both a qualitative and quantitative analysis of
the behavior of the coefficients of the Hessian matrix for local perturbations of the
vertices of the regular polygon Pn inscribed in the unit circle with one vertex at (1, 0).
Some of the results would extend naturally either to perturbations of general convex
polygons or even to more general sets. Nevertheless, we focus on the perturbation of
the regular n-gon and we shall not search generality. The two main technical aspects
of this section are described below.

Continuity of the Hessian matrix coefficients for the geometric perturbation. — We prove
the continuity of the shape Hessian matrix for a perturbation of the regular polygon.
This question is itself non trivial because of the weak regularity of the right hand
sides in the equations satisfied by the solutions U i of (2.16). Stability results for the
eigenfunctions in H2 are required, whereas the classically known stability based on
γ-convergence holds in H1. The continuity of the coefficients will readily give the local
minimality of the regular polygon provided the positive definiteness of the Hessian
matrix is known on the regular polygon only.
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Estimate of the modulus of continuity of the coefficients for the geometric perturbation

This information is crucial to formally reduce the proof of the conjecture to a finite
number of numerical computations. We compute the modulus of continuity of the
coefficients, i.e., we find estimates of the variation of all coefficients of the Hessian
matrix in terms of some power of Hausdorff distance between the perturbed polygon
and the regular polygon. In other words, for every δ > 0 we identify a value ε > 0

such that all the coefficients of the Hessian matrix computed on polygons with n sides
in an ε-neighborhood of Pn stay in a δ-neighborhood of the coefficients of the Hessian
matrix associated to Pn.

We split this section in three subsections, going from basic estimates for the vari-
ations of the eigenvalues and eigenfunctions to the estimates of the variation of the
matrix coefficients. This last point is more delicate as it involves solutions of (2.16)–
(2.19) with variable, singular, right hand sides that are not in L2.

Throughout this section, we denote by C, ϑ two positive constants which may
change from line to line. The tracking of those constants is possible but, since we will
not perform here numerical computations of an effective neighborhood of minimality,
this is not immediately useful. Consequently, in order to avoid heavy calculations we
choose to prove only the existence of those constants. In particular, we are not aimed
here to optimize the constants, which in case of certified numerical computations of
the neighborhood would be a priority.

3.1. Basic quantitative estimates along the perturbation. — Let Ω ⊆ R2 be a
bounded, simply connected, open Lipschitz set and f ∈ H−1(R2). We consider the
problem

(3.1)
{−∆v = f in Ω,

v = 0 on ∂Ω.

In the particular case in which f = 1, we denote wΩ the the solution of (3.1), and
call it torsion function. The torsion function is the unique minimizer of the torsion
energy,

E(Ω) := min
u∈H1

0 (Ω)

1

2

∫
Ω

|∇u(x)|2dx−
∫
Ω

u(x)dx.

Let now Ωα, α ∈ {a, b} be two such domains and denote by vα the solution of (3.1)
on Ωα for the right hand side fα and by u1,α the L2-normalized, non-negative eigen-
functions on Ωα corresponding to the first eigenvalues λ1,α, respectively. We denote
by dH the Hausdorff distance.

In a first step, we seek estimates of the form

∥va − vb∥H1(R2) ⩽ CdϑH(∂Ωa, ∂Ωb)(∥fa∥L2(R2) + ∥fb∥L2(R2))(3.2)
+ C∥fa − fb∥L2(R2),

|λ1,a − λ1,b| ⩽ CdϑH(∂Ωa, ∂Ωb),(3.3)

∥u1,a − u1,b∥H1(R2) ⩽ CdϑH(∂Ωa, ∂Ωb),(3.4)

for some computable C, ϑ > 0.
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Above, all functions u1,α, vα are assumed to be extended by 0 on the complement
of their definition domain, this extension being suitable for H1-estimates. By abuse of
notation, the extensions by 0 are still denoted with the same symbols. The literature
is quite rich for such type of H1-estimates, like (3.2) and (3.4). For instance, Savaré
and Schimperna [53] give estimates for solutions of (3.1) in the class of sets satisfying
a uniform cone condition while Burenkov and Lamberti [5], Feleqi [24] discuss the
eigenfunctions. Concerning (3.3), we refer to [49] (see as well Section 7) for sharp
estimates with power ϑ = 1/2 and controlled constant.

Let us point out a relevant fact, which becomes important as soon as we search
to identify all the constants in (3.2)–(3.4). The results referred above occur in the
class of domains satisfying a uniform cone condition, while our setting is much more
regular: we locally perturb the regular n-gon, always obtaining a convex n-gon. This
regular behavior will be exploited in the next subsection to get estimates in higher
order norm even in the case of singular right hand sides and it dramatically simplifies
the proofs of the H1-estimates.

Below we shall only recall some results without proofs. The interested reader could
easily recover the estimates in our regular setting in a more direct way. Assume that
Ωa,Ωb ⊆ R2 satisfy a uniform (ρ, ε)-cone condition (see [53, Def. 2.6]).

Proposition 3.1 (Savaré-Schimperna [53]). — If fa = fb := f , there exists a constant
depending only on the diameters such that

∥∇va −∇vb∥L2 ⩽ C∥f∥1/2L2 ∥f∥1/2H−1

(dH(Ωa,Ωb)

ρ sin ε

)1/2
,(3.5)

∥va − vb∥L2 ⩽ C∥f∥1/2L2 ∥f∥1/2H−1

dH(Ωa,Ωb)

ρ sin ε
,(3.6)

∥va − vb∥L2 ⩽ C∥f∥H−1

(dH(Ωa,Ωb)

ρ sin ε

)1/2
.(3.7)

Note that the first two inequalities require f ∈ L2(R2). The result recalled in
Proposition 3.1 together with the Poincaré inequality readily gives inequality (3.2).
Note as well that the Poincaré constants on the two domains equal the first Dirichlet
eigenvalues.

For a small perturbation of the regular n-gon, the values of ρ and ϑ can be computed
explicitly. However, in this last case a more direct proof of the inequalities can be
obtained as a consequence of the uniform bound of the H2 norms of the solutions
with an explicit value (maybe not optimal) of the constant C.

Concerning the estimates (3.3) and (3.4), we refer to the papers of Feleqi [24] and
Burenkov and Lamberti [14]. Those estimates being less explicit, we give below a self
contained argument which takes advantage of the convexity of the sets.

For now, assume that Ωa and Ωb are convex, in which case the level sets of the
torsion function and of the first eigenfunctions are convex. Moreover, vα and the
eigenfunction u1,α belong toH2(Ωα) as we shall recall in the next subsection. We recall
a first regularity result in the class of convex sets, due to Grisvard [30, Th. 3.1.2.1].
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Proposition 3.2 (Grisvard). — Assume Ωα is a bounded convex open set and fα ∈
L2(Ωα). Let vα solve (3.1). Then

∥D2vα∥L2(Ωα) ⩽ ∥fα∥L2(Ωα).

For a n-gon which is a small perturbation of the regular n-gon Pn, this inequality
gives uniform bounds for the H2-norms of the normalized eigenfunctions and of some
H2-extensions in R2. The bounds in L∞ are standard and the convexity of the polygon
together with the barrier method provides L∞ estimates for the gradients.

Lemma 3.3. — Assume that fa = fb = f ∈ L∞(R2), f ⩾ 0. Then

(3.8)
∫
R2

|∇va −∇vb|2dx ⩽ dH(∂Ωa, ∂Ωb)∥f∥2∞
(
|Ωa|diam(Ωa) + |Ωb|diam(Ωb)

)
.

Proof. — Let Ω̃ = Ωa ∩ Ωb. Then we have as well dH(∂Ω̃, ∂Ωα) ⩽ dH(∂Ωa, ∂Ωb) and
Ω̃ ⊆ Ωα for α ∈ {a, b}. Denoting ṽ the solution of (3.1) in Ω̃, we have∫

Ωα

|∇ṽ −∇vα|2dx =

∫
Ωα

f(ṽ − vα)dx ⩽ ∥f∥∞|Ωα| max
x∈Ωα

(
vα(x)− ṽ(x)

)
.

We notice that the function vα− ṽ is harmonic on Ω̃, so its maximum on Ω̃ is attained
on ∂Ω̃, where ṽ vanishes. Since ∂Ω̃ lies in a neighborhood of ∂Ωα, denoting ε =

dH(∂Ωa, ∂Ωb) we have

max
x∈Ωα

(
vα(x)− ṽ(x)

)
⩽ max

x∈∂Ωα+Bε

vα(x),

where the addition of sets denotes the usual Minkowski sum. However, for every
x ∈ ∂Ωα + Bε we have vα(x) ⩽ ∥f∥∞wα(x) ⩽ ε∥f∥2∞∥∇wα∥∞, where wα is the
torsion function.

In order to bound ∥∇wα∥∞ we take advantage that the level sets of wα are convex
and so we have a barrier given by the width. Indeed, in every point x of the the level
set, we can find an infinite strip containing the level set and having one boundary
line passing through x. Using the classical barrier method (see [58] for example) gives
|∇wα(x)| ⩽Wx/2, where Wx is the width. This implies∫

Ωα

|∇ṽ −∇vα|2dx ⩽ ε∥f∥2∞|Ωα|
diam(Ωα)

2
.

Adding the estimates for va and vb leads to the conclusion. □

Perturbations of the regular polygon. — For n ⩾ 5 we denote Pn = a∗
0a

∗
1 . . .a

∗
n−1 the

regular polygon with n sides inscribed in the unit circle with a∗0 = (1, 0). We denote
Rn, rn the radii of the circumscribed, inscribed circles for Pn and ℓn the length of
an edge. Denote the area of Pn by An. The angles are equal to (n− 2/n)π. An easy
computation leads to

Rn = 1, rn = cos(π/n), ℓn = 2 sin(π/n), An = n sin(2π/n)/2.
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Let P denote generically a perturbation of Pn, i.e., polygon a0a1 . . .an−1 with n sides
such that for every i = 0, . . . , n− 1 we have |aia

∗
i | ⩽ ε. The critical value of ε where

convexity is lost is ε = sin2(π/n). For instance, if

|aia
∗
i | ⩽

1

4
sin2(π/n) := ε0,

the angles of the perturbed polygon do not exceed

ω0 =
(n− 2)π

n
+ 2arcsin

(
1
4 sin(π/n)

)
< π.

We can represent both the boundaries of Pn and P using the same n charts given
by the graphs of the boundaries ∂Pn, ∂P over the segments

[xiyi], where xi =
3

4
a∗
i +

1

4
a∗
i+1, yi =

3

4
a∗
i+2 +

1

4
a∗
i+1.

In each chart, the function representing the boundary of the polygons is piecewise
affine with two slopes not exceeding tan((π/n) + arctan( 14 sin(π/n))). For n ⩾ 5 an
upper bound for this quantity is 0.73.

We denote λk, λ∗k the k-th eigenvalues and uk and u∗k the corresponding normalized
eigenfunctions on P , Pn, respectively.

Proposition 3.4. — Under the previous hypotheses

(3.9) |λ1 − λ∗1| ⩽
∫
R2

|∇u1 −∇u∗1|2dx ⩽ 2(E1 + E3),

where

E1 = ε(λ∗1)
2∥u∗1∥2∞

(
2π + 2π(1 + ε)3

)
,

E2 =
λ1

λ2 − λ1

(rn + ε)4 − r4n
r4n

+
2λ2

λ2 − λ1

(
E1

λ1(Pn +Bε)

)1/2

,

E3 =
2λ1E2

1 + α1
+ λ∗1

(
1−

( rn
rn + ε

)2)
+ λ∗1

( E1

λ1(Pn +Bε)

)1/2
.

Proof. — The inclusions
rn

rn + ε
P ⊆ Pn ⊆ rn

rn − ε
P

imply (rn + ε

rn

)2
λ1 ⩾ λ∗1 ⩾

(rn − ε

rn

)2
λ1.

We introduce the problem

ψ ∈ H1
0 (P ), −∆ψ = λ∗1u

∗
1 in D′(P ).

Using Lemma 3.3 and the Poincaré inequality we have∫
R2

|∇ψ −∇u∗1|2dx ⩽ E1 and
∫
R2

|ψ − u∗1|2dx ⩽
E1

λ1(Pn +Bε)
.
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Using the orthonormal Hilbert basis of eigenfunctions in H1
0 (P ) we consider the

decomposition ψ =
∑+∞

i=1 αiui which gives∫
R2

|∇ψ|2dx ⩽
∫
R2

|∇u∗1|2dx+ 2

∫
R2

∇ψ(∇ψ−∇u∗1)dx ⩽ λ∗1 + 2∥∇ψ∥2∥∇ψ−∇u∗1∥2.

We have ∫
R2

|∇ψ|2dx = λ∗1

∫
R2

ψu∗ ⩽ λ∗1∥ψ∥2 ⩽
λ∗1

(λ1)1/2
∥∇ψ∥2,

which leads to ∑
i

α2
iλi =

∫
R2

|∇ψ|2dx ⩽
(λ∗1)

2

λ1
.

Consequently, α2
1λ1 + λ2

∑+∞
i=2 α

2
i ⩽ (λ∗1)

2/λ1 ⩽
(
(rn + ε)/rn

)4
λ1, so

α2
1λ1 + λ2

(∫
R2

ψ2dx− α2
1

)
⩽
(rn + ε

rn

)4
λ1.

On the other hand,∫
R2

ψ2dx ⩾
∫
R2

(u∗1)
2dx−2

∫
R2

u∗1(u
∗
1−ψ)dx ⩾ 1−2∥u∗1−ψ∥2 ⩾ 1−2

( E1

λ1(Pn +Bε)

)1/2
,

which, after elementary computations leads to

1− α2
1 ⩽

λ1
λ2 − λ1

(rn + ε)4 − r4n
r4n

+
2λ2

λ2 − λ1

( E1

λ1(Pn +Bε)

)1/2
:= E2.

Finally,∫
R2

|∇ψ −∇u1|2dx = λ∗1

∫
R2

u∗1ψdx− 2λ1

∫
R2

u1ψdx+ λ1

= λ∗1 + λ∗1

∫
R2

u∗1(ψ − u∗1)dx− 2λ1α1 + λ1

= 2λ1(1− α1) + λ∗1 − λ1 + λ∗1∥ψ − u∗1∥2

⩽
2λ1E2

1 + α1
+ λ∗1

(
1−

( rn
rn + ε

)2)
+ λ∗1

( E1

λ1(Pn +Bε)

)1/2
:= E3.

By summation, the inequality follows. □

Remark 3.5. — In order to complete the estimates we recall that in simply connected
domains ∥u1∥∞ ⩽ λ

1/2
1 (see Grebenkov [29, For. (6.22)]). We also recall from [3]

that λ2/λ1 ⩽ j21,1/j
2
0,1, where j0,1, j1,1 denote the first positive zero of the Bessel

functions J0, J1 and that λ2 −λ1 ⩾ 3π2/diam2(P ) from [1]. As well, by inclusion and
homogeneity, λ1(Pn +Bε) ⩾

(
1/(1 + ε)

)2
λ∗1.
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We can also give a direct estimate for ∥ψ − u1∥2. Indeed,∫
R2

(ψ − u1)
2dx = (1− α1)

2 +

+∞∑
i=2

α2
i = (1− α1)

2 +

∫
R2

ψ2dx− α2
1

⩽ (1− α1)
2 + (1 + ∥ψ − u∗1∥2)2 − α2

1

⩽ 2(1− α1) + 2∥ψ − u∗1∥2 + ∥ψ − u∗1∥22

⩽
2

1 + α1
E2 + 2

( E1

λ1(Pn +Bε)

)1/2
+

E1

λ1(Pn +Bε)
:= E4.

Proposition 3.6. — There exists a constant C > 0 such that for all 0 < ε < ε0

∥∇u1∥∞ ⩽ C and ∥u1 − u∗1∥∞ ⩽ C∥u1 − u∗1∥1/3H1 .

Proof. — The first inequality is a consequence of the barrier method. The diameter
and the inner ball control the size of the eigenvalue and of the L∞ norm of the the
eigenfunctions, themselves being controlled by ε0.

The second inequality is a consequence the Gagliardo-Nirenberg inequality (see for
instance [51])

∥u1 − u∗1∥∞ ⩽ C∥∇u1 −∇u∗1∥2/3L3 ∥ u1 − u∗1∥1/3L3 .

Then we use first inequality and the continuous embedding H1(B2) ⊆ L3(B2). □

3.2. Uniform H2+s regularity of the eigenfunctions. — In this section we recall
some finer estimates of the regularity of the solutions vα of (3.1) in polygons which
are small perturbations of the regular polygon. However, we need more regularity
than H2 in order to quantify the variation of the shape Hessian coefficients. These
finer regularity results take full advantage from the very specific convex, polygonal
geometry of the domains, size of angles and number of local charts of the boundary.
We refer the reader to [20] for detailed analysis of the regularity in polygonal domains.

We recall the following regularity result from [9, Th. 9.8] (see also [20]).

Lemma 3.7. — Let P be a perturbation of the regular polygon Pn as above. Let γ be
such that 0 < γ ⩽ π/ω0. Then, for every f ∈ H−1+γ(P ) the solution of (3.1) in P

satisfies
∥v∥H1+γ(P ) ⩽ C∥f∥H−1+γ(P ).

The constant C depends on γ but it is independent on f and P .

Above, the independence on P comes precisely from the very specific perturbation
we consider, which keeps constant the charts and controls the angles. Let us denote
s0 = (π/ω0)− 1 > 0 and let s ∈ [0, s0].

Corollary 3.8. — Under the previous hypotheses and notations we have

u1 ∈ H2+s(P ), ∥u1∥H2+s(P ) ⩽ C,

with C depends on s but is independent on the perturbation.
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Proof. — This is a consequence of Lemma 3.7 and of the fact that the right hand
sides λ1u1 of the equations solved by the eigenfunctions have an H1-norm equal to
λ1(1 + λ1) which is uniformly bounded in the class of perturbations we consider. □

One has to pay particular attention to the extension of u1 on the complement of P .
As far as we are concerned with Lp, H1 properties of the extension, performing an
extension by 0 on R2 ∖P is enough. Nevertheless, such an extension does not belong
to H2, H2+s, so we can not compare the extensions of u1 and u∗1 in those norms.

Two choices can be done in order to compare solutions on different polygons in H2.
Either we extend them in H2 and compare their extensions, or we locally compare on
compact sets included in both domains. Below, we choose to compare their extensions.
The extensions we seek rely on the Stein universal extension operator (see [55] and
[40, 37]). We recall the following from from [55].

Proposition 3.9. — Assuming P is a perturbation of the regular polygon as above,
there exists an extension operator

EP : L1(P ) −→ L1(R2)

such that
∀q ⩾ 0, ∥EP (u)∥Hq(R2) ⩽ C∥u∥Hq(P ),

where the constant C above depends on q but not on P .

Remark 3.10. — We point out that the extension of Stein relies mainly on the con-
struction of a smoothed distance function. The choice of this function is not unique.
Stein proposed a construction based on partition of the complement of P on squares
belonging to the union of latices (2−kZ2)k∈Z. In the sequel we shall use this argument
and the freedom to build the smoothed distance function in order to be able to com-
pare the extension operators on P and Pn. Using a cut off function, we will assume
that all extensions EP (u) vanish outside the ball B2.

We recall now the Gagliardo-Nirenberg inequality from [10].

Proposition 3.11. — There exists C>0, ϑ∈(0, 1) such that, for every u∈H2+s(R2),

∥u∥H2(R2) ⩽ C∥u∥ϑL2(R2)∥u∥1−ϑ
H2+s(R2).

The key use of this result is related to the possible extensions of an eigenfunction
outside P . Indeed, from Proposition 3.4 we control the norm ∥u1−u∗1∥H1(R2). However,
this is true for the extensions by 0 of the eigenfunctions not for the extensions given
by the Stein operator. Proposition 3.11 together with Proposition 3.9 imply that we
can control the norm of the difference in H2 for the Stein extensions provided we
control the norm in L2. This is a consequence of the following Lemma.

Lemma 3.12. — By EPn
we denote a (suitably chosen) Stein extension operator asso-

ciated to Pn. There exists a constant C such that for every perturbation P as above
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there exists a Stein extension operator EP satisfying

(3.10) ∥EP (u1)− EPn(u
∗
1)∥L∞(R2) ⩽ C(∥u1 − u∗1∥L∞(R2) + dH(∂P, ∂Pn)).

Proof. — We rely on the construction of the operator by Stein using the averaging
method (see [55, Th. 5, p. 181]). The difficulty is that we deal with extension operators
corresponding to different domains and applied to different functions. We want to
prove that the extended functions are close in L∞ provided that the non extended
functions are close in L∞. Since each one is extended with its own operator, we have to
detail the construction of the operators in order to be able to perform the comparison.

Step 1. Localization. — Since the boundary of P is described in the same charts
as the boundary of the regular polygon, we use the explicit formula of the extension
operator. We refer the reader to [55, Th. 5, p. 181] (see also [40, 37]), where the explicit
construction is given.

There exists a smooth partition of unity consisting on n+2 functions (ψj)j=0,...,n+1

such that for every vertex aj of Pn there exists one function ψj supported in
B(aj ,

3
4ℓn), one of the functions is supported in Int(Pn) and one is supported in

Int(R2 ∖ Pn). In view of the smallness of the perturbation P of the regular polygon,
we can keep the same n charts to describe the boundary of ∂P and use the same
partition of unity as above, for the regular polygon. The maps of the charts are built
in a uniform way as piecewise affine functions having two controlled slopes.

Moreover, instead of extending u1, u
∗
1 we shall extend each function u1ψj , u

∗
1ψj

relying on the special construction given by Stein in [55, Th. 5, p. 181], which takes
advantage from the specific graph structure of the boundary. Finally, we use the
generic comparison

n−1∑
j=0

∥v1ψj − v2ψj∥∞ ⩽ n∥v1 − v2∥∞ ⩽ n

n−1∑
j=0

∥v1ψj − v2ψj∥∞.

Step 2. Construction of the smoothed distance functions. — The expression of the Stein
extension operator is explicit and relies on regularization of the distance functions
to P,Pn respectively, say ∆P ,∆Pn

. The construction of these functions is quite del-
icate and we refer the reader to [55, Th. 2, p. 171] for all the details. We have ∆P ∈
C∞(R2 ∖ P ), satisfying

c1d(x, P ) ⩽ ∆P (x) ⩽ c2d(x, P ) for every x ∈ P c,(3.11) ∣∣∣ ∂α
∂xα

∆P (x)
∣∣∣ ⩽ Bα(d(x, P ))

1−|α|,(3.12)

and similar inequalities for ∆Pn
. The constants c1, c2, Bα are independent on P .

In its construction, Stein gives a precise formula for ∆P , namely

∆P (x) =
∑
k

diam(Qk)ϕk(x),

where Qk consists in a suitable partition of R2∖P in squares and ϕk are C∞ functions
equal to 1 on Qk and vanishing outside a (9/8)-dilation of Qk by the center of Qk.
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The partition (Qk)k is not arbitrary, the size of the squares being controlled by the
distance of the square to the boundary of P .

Assume now that P is a perturbation of Pn as above such that dH(∂P, ∂Pn) = ε.
Then,

(3.13) ∀x ∈ R2, |d(x, P )− d(x,Pn)| ⩽ ε.

Our aim is to slightly modify the construction of the partition (Qk) for P such that
at distance larger than 16ε from the boundary of P , the partition coincides with the
one associated to Pn. This will entail that if d(x, P ) > 128ε then ∆P (x) = ∆Pn

(x).
This is done as follows.

– We first set the family grids (2−kZ2)k∈Z in R2 and choose a suitable partition
for R2 ∖ Pn.

– We select out from this partition all the squares which intersect the set

Dε
P = {x ∈ R2 : d(x, P ) ⩾ 16ε}.

– We use the Stein’s method to fill the rest of the partition associated to P , namely
to cover the open subset of R2 ∖ P not yet covered by the selected partition.
Finally, the construction of the functions ϕk follows the same procedure as Stein.
The only difference from the original Stein construction is only the alteration of the
partition at distance larger than 16ε. In view of (3.13), properties (3.11)–(3.12) of
∆P are preserved.

The main consequence of this construction is that if d(x, P ) > 128ε then ∆P (x) =

∆Pn(x).

Step 3. Comparison of the extensions. — We recall that u1 and u∗1 are uniformly Lips-
chitz in R2, as a consequence of Proposition 3.6. This plays a crucial role in estimate
(3.10). Let us now recall from [55] how the Stein extension works. We shall simulta-
neously write the extension of u1 with EP and the extension of u∗1 with EPn .

Suppose P,Pn are above the graphs representing their boundaries on a segment
[mj ,Mj ], which we suppose, without loss of generality, is contained in the horizontal
coordinate axis.

Let τ : [1,+∞[ be defined by

τ(s) =
e

πs
Im
[
exp

(
− (s− 1)1/4 exp(−iπ/4)

)]
.

Then ∫ +∞

1

τ(s)ds = 1,∀k = 1, 2, . . . ,

∫ +∞

1

skτ(s)ds = 0, τ(s)
s→+∞
= O(s−k).

Let c > 0 be a constant such that

∀(x, y) ∈ R2 ∖ P, c∆P (x, y) ⩾ ϕj(x)− y,

∀(x, y) ∈ R2 ∖ Pn, c∆Pn(x, y) ⩾ ϕ∗j (x)− y.
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The extension operators are defined for x ∈ [mj ,Mj ] and y < ϕj(x) and y < ϕ∗j (x),
respectively, by

EP (ψju1)(x, y) =

∫ +∞

1

ψj(x, y + 2cs∆P (x, y))u1(x, y + 2cs∆P (x, y))τ(s)ds,

EPn(ψju
∗
1)(x, y) =

∫ +∞

1

ψj(x, y + 2cs∆Pn(x, y))u
∗
1(x, b+ ycs∆Pn(x, y))τ(s)ds,

respectively.
Take a point (x, y) such that x ∈ [mj ,Mj ] and d((x, y), ∂P ) ⩾ 128ε. Since

∆P (x, y) = ∆Pn
(x, y) and ∥ψj∥∞ ⩽ 1, we get by direct computation

|EP (ψju1)(x, y)− EPn
(ψju

∗
1)(x, y)| ⩽ ∥u1 − u∗1∥L∞(R2)

∫ +∞

1

|τ(s)|ds

= C∥u1 − u∗1∥L∞(R2).

To complete the estimate, we evaluate both EP (u1)(x, y) and EPn(u
∗
1)(x, y)| for (x, y)

lying at distance not larger than 130ε from the boundary of Pn. Here we take advan-
tage from the fact that there exists C, independent on P (see [55, Th. 5, p. 181]) such
that

∥EP (u1)∥W 1,∞(R2) ⩽ C∥u1∥W 1,∞(P ), ∥EPn
(u∗1)∥W 1,∞(R2) ⩽ C∥u∗1∥W 1,∞(Pn).

Since u1, u∗1 vanish on ∂P, ∂Pn, respectively, we get that for (x, y) as above we have

EP (u1)(a, b) ⩽ 130εC∥u1∥W 1,∞(P ), EPn
(u∗1)(x, y) ⩽ 130εC∥u∗1∥W 1,∞(Pn).

This last inequality concludes the proof. □

As a consequence of the Proposition 3.11 and Lemma 3.12, together with the
uniform boundedness of the support of the extended functions, we get the following.

Corollary 3.13. — There exist constants C and ϑ ∈ (0, 1) independent on the per-
turbation, such that

∥EP (u1)− EPn
(u∗1)∥H2(R2) ⩽ C(∥u1 − u∗1∥L∞(R2) + dH(∂P, ∂Pn))

ϑ.

3.3. Estimates of the Hessian coefficients along the perturbation. — In the se-
quel we collect some L∞-estimates, necessary for estimates of the coefficients of the
Hessian matrix. Let φ∗ : T ∗ → R, φ : T → R be the functions defined in (2.8) (the
second kind, in Figure 1). We assume that ∀i = 0, . . . , n−1 |aia

∗
i | ⩽ ε (which implies

dH(∂P, ∂Pn) ⩽ ε). Then

∥φ∗∥∞ ⩽ 1, ∥φ∥∞ ⩽ 1, ∥∇φ∗∥∞ ⩽
1

2 sin(2π/n)
, ∥∇φ∥∞ ⩽

1

2 sin(2π/n)− 2ε
,

∀x ∈ T ∗ ∪ T, |φ∗(x)− φ(x)| ⩽ 1T∗∆T +
ε

2 sin(2π/n)
1T∗∩T ,

∀x ∈ T ∗∪T, |∇φ(x)−∇φε(x)|⩽
2

2 sin(2π/n)−2ε
1T∗∆T +

2ε

(2 sin(2π/n)−2ε)2
1T∗∩T ,

∥u∗1∥∞ ⩽ (λ∗1)
1/2, ∥u1∥∞ ⩽ (λ1)

1/2, ∥∇u∗1∥∞ ⩽ (λ∗1)
3/2, ∥∇u1∥∞ ⩽ (λ1)

3/2(1 + ε).
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The last inequality takes advantage from the previous one and from the fact that the
level sets are convex, via the barrier method.

Lemma 3.14. — Let g ∈ H1
0 (B2) and S ⊆ B1 a segment. We denote Φ ∈ H−1(R2)

defined by

H1(R2) ∋ φ 7−→ Φ(φ) =

∫
S

gφds.

Then, for every s ∈ (0, 1/2] there exists a constant Cs depending only on s, such that

∥Φ∥H−(1/2)−s(R2) ⩽ Cs∥g∥H1
0 (B2).

Proof. — Indeed, we have

|Φ(φ)| =
∣∣∣∣∫

S

gφds

∣∣∣∣ ⩽ ∥g∥L2(S)∥φ∥L2(S) ⩽ Cs∥g∥H1
0 (B2)∥φ∥H(1/2)+s(R2).

In the last inequality, we used the classical trace inequality in H1(R2) and the frac-
tional trace inequality in H(1/2)+s(R2) (see [56, Lem. 16.1]) together with the contin-
uous embedding of Hs(−1, 1) ⊆ L2(−1, 1). □

Lemma 3.15. — Let S1 = [0, 1] × {0} and S2 = [A1A2] be two segments of R2 such
that dH(S1, S2) ⩽ ε. Let s0 ⩾ s > 0 and g ∈ H1+s(R2) with bounded support. There
exists a constant C > 0 such that

∀φ ∈ H1(R2),

∣∣∣∣∫
S1

gφds−
∫
S2

gφds

∣∣∣∣ ⩽ εs/2C∥φ∥H1(R2).

Proof. — We shall make an explicit computation. Let S̃2 = [B1B2] be the segment
on the same line as S2 such that its vertical projection on the horizontal axis is
precisely S1. The ∥A1B1∥ ⩽ ε and ∥A2B2∥ ⩽ ε. We have the following estimates.∣∣∣∣∫

S2

gφds−
∫
S̃2

gφds

∣∣∣∣ ⩽ ∫
[A1B1]

|gφ|dσ +

∫
[A2B2]

|gφ|dσ

⩽ ∥g∥∞ε1/2(∥φ∥L2([A1B1]) + ∥φ∥L2([A2B2])) ⩽ Cε1/2∥φ∥H1(R2).

Let us introduce the projector Π1 : S̃2 ∋ (x, y) 7→ (x, 0) ∈ S1. Then,∣∣∣∣∫
S̃2

gφds−
∫
S̃2

g ◦Π1φds

∣∣∣∣ ⩽ ∥g∥W s/2,∞(R2)(2ε)
s/2

∫
S̃2

|φ|ds.
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Moreover,∣∣∣∣∫
S̃2

g ◦Π1φds−
∫
S1

gφds

∣∣∣∣
⩽ |(|S̃2| − 1)|

∫ 1

0

|g(x, 0)φ(Π−1(x, 0))|dx+

∫ 1

0

|g(x, 0)|
∣∣φ(Π−1(x, 0))− φ(x, 0)

∣∣dx
⩽ 2ε∥g∥∞∥φ∥L1(S̃2)

+

∫ 1

0

|g(x, 0)|
∫ Π−1(x,0)

0

∣∣∣∂φ
∂y

(x, y)
∣∣∣dxdy

⩽ 2ε∥g∥∞∥φ∥L1(S̃2)
+ ∥g∥L2(S1)

[ ∫ 1

0

(∫ Π−1(x,0)

0

∣∣∣∂φ
∂y

(x, y)
∣∣∣dy)2dx]1/2

⩽ 2ε∥g∥∞∥φ∥L1(S̃2)
+ ∥g∥L2(S1)

[
2ε

∫ 1

0

∫ 1

0

(∂φ
∂y

(x, y)
)2
dxdy

]1/2
= 2ε∥g∥∞∥φ∥L1(S̃2)

+ ∥g∥L2(S1)(2ε)
1/2∥φ∥H1 .

Adding all the previous estimates, we conclude the lemma. □

We turn our attention to U i, the solution of (2.16) - (2.19) in P . Recall that the
expression of the coefficients of N ij in (2.18) does not change when a multiple of
the eigenfunction u1 is added to U i. In the following, whenever working with vector
quantities, estimates are understood component by component.

We drop the index i and we formally write

(3.14)


−∆U − λU = f in P,

U = 0 on ∂P,∫
P
u1Udx = 0.

Here f ∈ H−1(P,R2) is defined in (2.16) and involves the following type of terms
(possibly multiplied by geometric quantities)

λ1u11T∇φ,φD2u,∇φD2u,
∂φ

∂n
∇uH1⌊S, (∇φ∇u)nH1⌊S,

where S is an edge of T , n is the normal and H1⌊S is the one dimensional Hausdorff
measure restricted to the one dimensional set S. Note that u1 ∈ H2+s(P ) and all these
quantities are controlled for our perturbation, in a norm which is at least H−1+s.

Lemma 3.16. — For every s ∈
[
0, 12 ∧ ( π

ω0
− 1)

)
, there exists a constant Cs > 0 not

depending on P , such that
∥U∥H1+s(P ) ⩽ Cs.

Proof. — One readily gets(
1− λ1

λ2

)∫
P

|∇U |2dx ⩽ ∥f∥H−1(P )∥U∥H1
0 (P ),

which gives, using the Poincaré inequality in the orthogonal of u1,

∥U∥H1
0 (P ) ⩽

λ2 + 1

λ2 − λ1
∥f∥H−1(P ).
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Taking into account the Andrews-Clutterbuck result [1] and the structure of f ,
Lemma 3.7 gives the conclusion. □

In order to estimate ∫
R2

|∇U∗ −∇U |2dx
we rely on the stability estimates for simultaneous domain and right hand side per-
turbations. Moreover, in view of the definitions of U∗,U , we have to work in the
orthogonal on u, u∗, and use a correction term built by projection.

We have the following.

Lemma 3.17. — There exist positive constants C, ϑ > 0, such that for every admissible
perturbation

∥U −U∗∥H1
0 (B2,R2) ⩽ Cεϑ.

Proof. — Without restricting the generality we can assume that P ⊆ Pn. Indeed,
if this is not the case, we compare both U and U∗ with the solution U on the regular
polygon (1 + ε)Pn, which contains both P and Pn.

We introduce the following auxiliary problem

(3.15)
{−∆V = λ∗U∗ + f∗ in P,

V = 0 on ∂P,

which has a classical weak solution. In view of the result of Savaré-Schimperna [53,
Th. 8.5]

(3.16) ∥V −U∗∥L2 ⩽ C∥λ∗U∗ + f∗∥H−1(B2)ε
1/2.

In the same time, both V and U∗ belong to H1+s with controlled norm, so in particu-
lar they belong to W s/2,∞ with controlled norm. Using again the Gagliardo-Nirenberg
inequality for the Stein extension of V , we get

∥EP (V )−U∗∥H1(Pn) ⩽ Cεϑ.

Note that U∗∈H1+s(Pn) and thatH1+s(Pn) continuously embeds inW 1+s/2,2+s(Pn).
Consequently, from Hölder inequality∫

Pn∖P

|∇U∗|2dx ⩽

(∫
Pn∖P

|∇U∗|2+sdx

)2/(2+s)

|Pn ∖ P |s/(2+s) ⩽ Cεs/(2+s).

Finally,
∥V −U∗∥H1(Pn) ⩽ Cεϑ.

Let us now introduce the function Ṽ = V − (
∫
P
V u1dx)u1 ∈ H1

0 (P ). Then

∥V − Ṽ ∥H1
0 (P ) = ∥u1∥H1

0 (P )

∫
P

V u1dx

= ∥u1∥H1
0 (P )

[∫
Pn

(V −U∗)u∗1dx+

∫
Pn

V (u1 − u∗1)dx

]
⩽ Cεϑ.

At the same time,

−∆Ṽ − λṼ = λ∗1U
∗ + f∗ − λV := f in D′(P )
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and by straightforward computation∫
P

|∇U −∇Ṽ |2 − λ1(U − Ṽ )2dx = (f − f,U − Ṽ )H−1×H1
0
.

Since both U , Ṽ are L2-orthogonal on u1, we get

∥U − Ṽ ∥H1
0 (P ) ⩽

λ2
λ2 − λ1

∥f − f∥H−1 .

It remains to estimate ∥f − f∥H−1 . Since

f − f = f − f∗ + λV − λ∗U∗,

we can use the stability result (3.16) to conclude that ∥f − f∥H−1 ⩽ Cεϑ. □

We can now conclude with the following.

Theorem 3.18. — There exists C, ϑ > 0 such that for every polygon P ∈ Pn satisfying
∀i = 0, . . . , n− 1, |aia

∗
i | ⩽ ε ⩽ ε0 we have

∥Nλ
ij − (Nλ

ij)
∗∥∞ ⩽ Cεϑ,

∀k = 1, . . . , 2n, |λk(Nλ)− λk((N
λ)∗)| ⩽ Cεϑ.

Proof. — The first inequality is a direct consequence of Lemma 3.17. The second one
is a further consequence of the Weyl inequality on the stability of eigenvalues for
perturbations of a symmetric matrix and on the equivalence of all norms over a finite
dimensional space. □

Remark 3.19. — The Hessian matrix of the area of the polygon is constant. As a
direct consequence, a similar estimate holds for the Hessian matrix Mλ of the scale
invariant functional P 7→ |P |λ1(P ).

4. Eigenvalues of the Hessian matrix for the regular polygon

We denote again Pn = [a0a1 . . .an−1] the regular polygon with n-sides, centered
at the origin, with the vertex a0 at the point (1, 0). As well, λ1 := λ1(Pn) denotes
its first eigenvalue and u1 := u1(Pn) a positive, L2-normalized eigenfunction. We also
use the notation θ = 2π/n.

As a consequence of the homogeneity of the eigenvalue to rescalings

λ1(tP ) =
1

t2
λ1(P ),

the proposition below establishes the equivalence between the original problem (1.2)
and some unconstrained versions. Its proof is standard and will not be recalled.

Proposition 4.1. — Let c > 0. The three problems below

(4.1) (L1) : min
|P |=|Pn|
P∈Pn

λ1(P ), (L2) : min
P∈Pn

|P |λ1(P ), (L3) : min
P∈Pn

(
λ1(P ) + c|P |

)
have the same solutions, up to rescalings.

For the convenience of the reader, we also collect below some well known facts.
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Proposition 4.2. — Let n ⩾ 3. Then
(1) The first eigenfunction on Pn has the symmetry of the n-gon.
(2) – Pn is a critical point for problem (L1) above;

– any regular n-gon is a critical point for problem (L2) above (see Theo-
rem 4.14);

– the regular n-gon
(
λ1(Pn)/|Pn|c

)1/4Pn is critical for problem (L3) above.
(3) If moreover any of the regular n-gons above is a local minima for its own

problem, then all the others are local minima for their own problems.

Remark 4.3 (Symmetry of the first eigenfunction). — On Pn, the first eigenfunction
enjoys the symmetry of the polygon. In particular on all triangles ∆Oaiai+1 the
eigenfunction has the same geometry, symmetric with respect to the bisector of the
angle ̂aiOai+1. As well, the normal derivative of the eigenfunction vanishes on the
segments [Oai], [Oai+1].

Remark 4.4 (Optimality conditions). — The existence of other critical polygons than
the regular polygon is an open question for n ⩾ 4. In the case of triangles, results
in [25] show that the equilateral one is the only possible critical point for the two
functionals (first eigenvalue and torsional rigidity) studied here.

Proposition 4.5. — Let Pn be the regular polygon defined above. If the Hessian matrix
Mλ of P 7→ |P |λ1(P ) evaluated at Pn, given in (2.21), has 2n − 4 eigenvalues that
are strictly positive then Pn is a local minimum.

Proof. — In the previous section in Theorem 3.18 it is shown that the coefficients of
Hessian matrix are continuous for a local perturbation of the free vertices. Therefore,
it would be enough to prove that the Hessian matrix associated to the free variables
is positive definite. Fix the two consecutive vertices an−2,an−1 and consider the
associated matrix M̃ which is the (2n − 4) × (2n − 4) principal submatrix of Mλ

obtained by removing the last four lines and columns. Then M̃ is the Hessian matrix
of the same functional, with the last four variables removed.

First of all, we observe that Mλ has 4 zero eigenvalues which correspond to trans-
lations, scalings and rotations which leave the objective function invariant. In Propo-
sitions 4.6, 4.12 direct proofs are given showing that

(4.2) tx =



1

0

1

0

. . .

0


, ty =



0

1

0

1

. . .

1


, s =



1

0

cos 2π
n

sin 2π
n

. . .

sin 2(n−1)π
n


, r =



0

−1

sin 2π
n

− cos 2π
n

. . .

− cos 2(n−1)π
n


.

are indeed eigenvectors of Mλ associated to the zero eigenvalue.
Suppose that Mλ has 2n− 4 strictly positive eigenvalues (in addition to the four

zero eigenvalues described above). The result stated in [38, Th. 4.3.28] shows that
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the eigenvalues of M̃ have lower bounds given by those of Mλ, therefore they are
non-negative. Suppose that M̃ has a zero eigenvalues with an eigenvector ξ ∈ R2n−4.
Completing ξ with zeros would give an eigenvector of Mλ associated to the zero
eigenvalue. This is impossible since taking the last four components of the eigenvectors
in (4.2) gives four independent vectors in R4. Therefore M̃ is positive definite implying
that Pn is indeed a local minimum for the functional P 7→ λ1(P )|P |. □

The remaining part of this section is dedicated to the computation of the eigen-
values of Mλ. In particular, we show that the eigenvalues of Mλ can be computed
in terms of the first eigenfunction u1 and the solutions (U1

0 , U
2
0 ) of (2.16) with the

normalization condition
∫
Pn
U i
0u1 = 0, i = 1, 2. A numerical approach for proving

that the matrix Mλ has 2n − 4 eigenvalues that are strictly positive is provided in
the next section.

Proposition 4.6. — The vectors tx = (1, 0, . . . , 1, 0) ∈ R2n, ty = (0, 1, . . . , 0, 1) ∈ R2n

are eigenvectors of Mλ associated to the zero eigenvalue.

Proof. — The proof is immediate, following the expression of Mλ given in (2.21).
Proposition 2.7 shows that tx and ty are in the kernel of the Hessian of the eigenvalue
and are orthogonal to both the gradients of the eigenvalue and of the area. Moreover,
they are also in the kernel of the area Hessian (2.14). Combining all these aspects
finishes the proof. □

The following result recalls the symmetry properties of u and U1
0 , U

2
0 . For simplicity,

we use the notation a(u, v) =
∫
Pn

∇u · ∇v − λ
∫
Pn
uv.

Proposition 4.7. — The following holds.
(1) The functions ∂xu1, ∂xφ0, ∂xU

1
0 , ∂yU

2
0 are even with respect to y and the func-

tions ∂yu1, ∂yφ0, ∂yU1
0 , ∂xU2

0 are odd with respect to y.
(2) The quantities

j 7−→ a(U1
0 , U

1
j ), j 7−→ a(U2

0 , U
2
j )

are even with respect to j (modulo n) and the quantities

j 7−→ a(U1
0 , U

2
j ), j 7−→ a(U2

0 , U
1
j )

are odd with respect to j (modulo n).

The proof is straightforward from the definitions.

Change of basis. — In order to deduce more information about the structure of the
Hessian matrix it is useful to perform a change of basis so that for each vertex the
basis directions correspond to the radial and tangential directions (see Figure 3).
The Hessian matrix in the new basis is given by the formula Hλ = P TMλP where
P = (P ij)1⩽i,j⩽n is a 2×2 block matrix with P jj =

( cos(j−1)θ − sin(j−1)θ
sin(j−1)θ cos(j−1)θ

)
. Of course,

Mλ and Hλ have the same eigenvalues.
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Moreover, the Hessian matrix Hλ in this particular basis has an additional prop-
erty. Indeed, it can be seen that in this basis the matrix does not change when a
circular perturbation is applied to the vertices. Therefore the resulting Hessian ma-
trix Hλ is circulant with respect to its 2× 2 blocks:

(4.3) Hλ =


H0 H1 · · · Hn−1

Hn−1 H0 · · · Hn−2

...
...

. . .
...

H1 H2 · · · H0

 .

The spectrum of this block circulant matrix is made of the union of the spectra of
the following n matrices of size 2× 2

(4.4) Bρk
= H0 + ρkH1 + ρ2kH2 + · · ·+ ρn−1

k Hn−1,

where ρk = exp(ikθ), k = 0, . . . , n− 1. Fore more details the reader can refer to [57]
and the references therein. One may note that the symmetry of Hλ implies that
Hn−k = HT

k . Moreover, the 2× 2 matrices described in (4.4) are all Hermitian (and
therefore have real eigenvalues).

Euclidean basis

Radial-tangential basis
a0

a1

a2

a3

a4

T0 = T+

T1

T2

T3

T4 = T−

a1

a2

a3

a4

a0

Figure 3. Change of basis to radial and tangential components (left).
An example of symmetric triangulation defining φj for the regular
polygon (right).

.

In the following we assume that the triangulation defining the functions φj in (2.8)
is symmetric and is made of the triangles Tj having vertices (0, 0), (cos jθ, sin jθ),
(cos(j + 1)θ, sin(j + 1)θ), 0 ⩽ j ⩽ n − 1. For convenience we may use the notation
T+ = T0, T− = Tn−1 (see Figure 3). With these notations it can be seen that for
0 ⩽ j ⩽ n− 1 we have

(4.5) ∇φj =
1

sin θ

[(
sin(j + 1)θ

− cos(j + 1)θ

)
1Tj

+

(− sin(j − 1)θ

cos(j − 1)θ

)
1Tj−1

]
.

Furthermore, in view of the symmetry of the eigenfunction, a simple integration by
parts shows that

(4.6)
∫
Tj

∇u1 · ∇v = λ1

∫
Tj

u1v, ∀v ∈ H1
0 (Pn).
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Denoting with M0,M1, . . . ,Mn−1 the blocks of the first line in Mλ, it is imme-
diate that M0,M1(ρkRθ), . . . ,Mn−1(ρkRθ)

n−1 are the blocks on the first line of
Hλ = P TMλP . Therefore, in view of (4.4), we have

Bρk
= M0 +M1(ρkRθ) + · · ·+Mn−1(ρkRθ)

n−1,

where Rτ =
(
cos τ − sin τ
sin τ cos τ

)
denotes the rotation matrix around the origin with the angle

τ in the trigonometric sense. By abuse of notation we will use the same notation for
the rotation of angle τ around the origin. Recalling the formula (2.21) we decompose
each one of the blocks M j = M1

j +M2
j +M3

j with

M1
j = −2|Pn|

(
a(U1

0 , U
1
j ) a(U

1
0 , U

2
j )

a(U2
0 , U

1
j ) a(U

2
0 , U

2
j )

)
,

M2
j = −λ1

∫
Pn

[∇φ0 ⊗∇φj −∇φj ⊗∇φ0],

M3
j = 2|Pn|

∫
Pn

(∇φ0 · ∇φj)(∇u1 ⊗∇u1).

In the following, we compute separately the matrices Bℓ
ρk

=
∑n−1

j=0 ρ
j
kM

ℓ
jRjθ, for

ℓ = 1, 2, 3. We denote by Id the identity matrix and J =
(
0 −1
1 0

)
. The area of Pn is

|Pn| = 0.5n sin θ.
Note that the matrices M2

j come from the Hessian of the area. Using straightfor-
ward computations we have M2

1 = −λ1
(

0 0.5
−0.5 0

)
= 0.5λ1Rπ/2, M2

n−1 = −M2
1 and

M2
j = 0 for j /∈ {1, n− 1}. Therefore

n−1∑
j=0

ρjkM
2
jRjθ =

λ1
2
(ρkRπ/2+θ + ρkR−π/2−θ)

= λ1(− cos(kθ) sin θ Id+i sin(kθ) cos θJ).

Furthermore, let Axx =
∫
T+

(∂xu1)
2, Ayy =

∫
T+

(∂yu1)
2, Axy =

∫
T+
∂xu1∂yu1. Then

we have by the symmetry of the eigenfunction that Axx +Ayy = λ1/n. The fact that
the gradients undergo a rotation when transferred from T− to T+ implies the matrix
equality

(4.7) Rθ

(
Axx −Axy

−Axy Byy

)
RT

θ =

(
Axx Axy

Axy Ayy

)
.

We find that −Axx sin θ + Ayy sin θ + 2Axy cos θ = 0. With the notations above we
have

M3
0 = 4|Pn||∇φ0|2

(
Axx 0

0 Ayy

)
,

M3
1 = 2|Pn|(∇φ0 · ∇φ1)T+

(
Axx Axy

Axy Ayy

)
,

M3
n−1 = 2|Pn|(∇φ0 · ∇φn−1)T−

(
Axx −Axy

−Axy Ayy

)
.
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It is immediate to see that (∇φ0 · ∇φ1)T+
= (∇φ0 · ∇φn−1)T− = − cos θ|∇φ0|2.

Keeping in mind that |Pn| = 0.5n sin θ and |∇φ0|T± = 1/ sin θ we get

M3
0 =

2n

sin θ

(
Axx 0

0 Axy

)
,

M3
1 = −n cos θ

sin θ

(
Axx Axy

Axy Ayy

)
,

M3
n−1 = −n cos θ

sin θ

(
Axx −Axy

−Axy Ayy

)
.

Of course, the other blocks on the first line of Mλ are all equal to zero. Therefore we
obtain
n−1∑
j=0

ρjkM
3
jRjθ = M3

0 + ρkM
3
1Rθ + ρkM

3
n−1R

T
θ =

2n

sin θ

(
Axx 0

0 Ayy

)
− 2n cos(kθ)

sin θ

(
Axx cos

2 θ +Axy cos θ sin θ 0

0 Ayy cos
2 θ −Axy cos θ sin θ

)
− i

2n sin(kθ)

sin θ

(
0 −Axx cos θ sin θ +Axy cos

2 θ

Ayy cos θ sin θ +Axy cos
2 θ 0

)
.

Since Axx + Ayy = λ1/n and −Axx sin θ + Ayy sin θ + 2Axy cos θ = 0 we deduce
that
(4.8) λ1 = 2n

(
Axy −

cos θ

sin θ
Axy

)
.

Using these relations and the computations above we find that
n−1∑
j=0

ρjk(M
2
j +M3

j )Rjθ =
2n(1− cos(kθ))

sin(θ)

(
Axx 0

0 Ayy

)
.

It remains to compute the contribution of the terms M1
j . Let us recall that due to

the symmetry of the triangulation defining φi we have, denoting U j = (U1
j , U

2
j ) the

solutions of (2.16) with the normalization (2.19), that

U j(x) = RjθU0(R
T
jθx).

Note that this implies that RT
jθU j = U0 ◦RT

jθ. For 0 ⩽ j ⩽ n− 1 we have

M1
jRjθ =

(
a(U1

0 , U
1
j ) a(U1

0 , U
2
j )

a(U2
0 , U

1
j ) a(U2

0 , U
2
j )

)(
cos(jθ) − sin(jθ)

sin(jθ) cos(jθ)

)
=

(
a(U1

0 , cos(jθ)U
1
j + sin(jθ)U2

j ) a(U1
0 ,− sin(jθ)U1

j + cos(jθ)U2
j )

a(U2
0 , cos(jθ)U

1
j + sin(jθ)U2

j ) a(U2
0 ,− sin(jθ)U1

j + cos(jθ)U2
j )

)
=

(
a(U1

0 , U
1
0 ◦RT

jθ) a(U1
0 , U

2
0 ◦RT

jθ)

a(U2
0 , U

1
0 ◦RT

jθ) a(U2
0 , U

2
0 ◦RT

jθ)

)
.

Remark 4.8. — For 0 ⩽ j ⩽ n − 1 the sum of the elements which are not on the
diagonal of M1

jRjθ is zero. This is a consequence of the fact that a(U1
0 , U

2
0 ◦RT

kθ) =

−a(U2
0 , U

1
0 ◦ RT

kθ) which simply comes from the change of variables y = RT
kθx and
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the fact that U2
0 is odd with respect to y and U1

0 is even with respect to y (see
Proposition 4.7).

The next result shows that the eigenvalues of Bρk
, and as a consequence those

of Mλ, can be expressed in terms of u1, U1
0 , U

2
0 .

Theorem 4.9. — For 0 ⩽ k ⩽ n− 1 we have Bρk
=
( αk iγk

−iγk βk

)
with

αk = qk

∫
T0

(∂xu1)
2 − 2|Pn|a(U1

0 ,

n−1∑
j=0

cos(jkθ)(cos(jθ)U1
j + sin(jθ)U2

j )),

βk = qk

∫
T0

(∂yu1)
2 − 2|Pn|a(U2

0 ,

n−1∑
j=0

cos(jkθ)(− sin(jθ)U1
j + cos(jθ)U2

j )),

γk = −2|Pn|a(U1
0 ,

n−1∑
j=0

sin(jkθ)(− sin(jθ)U1
j + cos(jθ)U2

j ))

= 2|Pn|a(U2
0 ,

n−1∑
j=0

sin(jkθ)(cos(jθ)U1
j + sin(jθ)U2

j )),

where qk = 2n(1− cos(kθ))/sin θ.
Moreover, the eigenvalues of Bρk

are given by

µ2k = 0.5(αk+βk−
√
(αk − βk)2 + 4γ2k), µ2k+1 = 0.5(αk+βk+

√
(αk − βk)2 + 4γ2k).

As a consequence, the eigenvalues of the Hessian matrix Mλ given in (2.21) are
exactly µj, j = 0, . . . , 2n− 1.

Proof. — In view of the previous computations we have

Bρk =
2n(1− cos(kθ))

sin θ

(
Axx 0

0 Ayy

)

−2|Pn|
n−1∑
j=0

cos(jkθ)

(
a(U1

0 , (cos(jθ)U
1
j + sin(jθ)U2

j )) a(U1
0 , (− sin(jθ)U1

j + cos(jθ)U2
j ))

a(U2
0 , (cos(jθ)U

1
j + sin(jθ)U2

j )) a(U2
0 , (− sin(jθ)U1

j + cos(jθ)U2
j ))

)

−2i|Pn|
n−1∑
j=0

sin(jkθ)

(
a(U1

0 , (cos(jθ)U
1
j + sin(jθ)U2

j )) a(U1
0 , (− sin(jθ)U1

j + cos(jθ)U2
j ))

a(U2
0 , (cos(jθ)U

1
j + sin(jθ)U2

j )) a(U2
0 , (− sin(jθ)U1

j + cos(jθ)U2
j ))

)
.

The formulas follow directly from Proposition 4.7 and Remark 4.8. □

In the following, we continue the computation further by using the variational
formulations for (U1

j , U
2
j ), j = 0, . . . , n− 1. Recall that RT

jθU j = U0 ◦RT
jθ. We only

develop the expressions that are non-zero from the above matrices.
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Proposition 4.10. — We have the following equalities:

a
(
U1
0 ,

n−1∑
j=0

cos(jkθ)U1
0 ◦RT

jθ

)
=

n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)

∫
Tj

∇u1 · ∇U1
0

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U1

0 ,

a
(
U2
0 ,

n−1∑
j=0

cos(jkθ)U2
0 ◦RT

jθ

)
=

cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)

∫
Tj

∇u1 · ∇U2
0

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U2

0 ,

a
(
U1
0 ,

n−1∑
j=0

sin(jkθ)U2
0 ◦RT

jθ

)
=

cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)

∫
Tj

∇u1 · ∇U1
0

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U1

0 ,

a
(
U2
0 ,

n−1∑
j=0

sin(jkθ)U1
0 ◦RT

jθ

)
=

n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)

∫
Tj

∇u1 · ∇U2
0

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U2

0 .

The proof is computational in nature and is detailed in the appendix.

Remark 4.11. — A direct consequence of Theorem 4.9 and Proposition 4.10 is the
fact that the eigenvalues of the Hessian matrix Mλ of λ1(x)A(x) can be expressed
explicitly in terms of the first eigenfunction u1 and the couple (U1

0 , U
2
0 ).

The previous results allow us to give more details in the particular cases k ∈
{0, 1, n− 1}

Proposition 4.12. — If k = 0 then Bρ0
= 0 with associated eigenvalues µ0 = µ1 = 0.

This implies that the vectors s, r ∈ R2n defined in (4.2) are eigenvectors of Mλ.
– For k=1 we have α1=β1=γ1 and Bρ1

=α1

(
1 i
−i 1

)
. In particular µ2=0, µ3=α1.

– For k = n − 1 we have αn−1 = βn−1 = −γn−1 and Bρ1 = αn−1

(
1 −i
i 1

)
. In par-

ticular µ2n−2 = 0, µ2n−1 = αn−1 = α1.

Proof. — When k = 0 the computations in Proposition 4.10 and the fact that∫
Ω
∇U1,2

0 · ∇u1 = λ
∫
Ω
U1,2
0 u1 = 0 imply that Bρ0

= 0.
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As a consequence if v ∈ R2 then (v,Rθv, . . . ,R(n−1)θv) ∈ R2n is an eigenvector of
Mλ associated to the zero eigenvalue. Taking v = (1, 0) gives s and taking v = (0,−1)

gives r.
When k = 1 let us evaluate

a
(
U1
0 ,

n−1∑
j=0

(
cos(jθ)(cos(jθ)U1

j + sin(jθ)U2
j )− sin(jθ)(− sin(jθ)U1

j + cos(jθ)U2
j )
))

=

n−1∑
j=0

a(U1
0 , U

1
j ).

On the other hand, Proposition 4.6 shows that tx = (1, 0, . . . , 1, 0) is an eigenvector
of Mλ given in 2.21 for a zero eigenvalue. Therefore, the scalar product of the first
line of Mλ with tx is zero and we obtain

−2|Ω|
n−1∑
j=0

a(U1
0 , U

1
j ) +

2n(1− cos θ)

sin θ
Axx = 0.

Using the relations computed above we find that αk − γk = 0. Using the second
formula for γk in Theorem 4.9 and the fact that ty = (0, 1, . . . , 0, 1) is an eigenvector
of Mλ from Proposition 4.6 we find that βk = γk. The case k = n − 1 follows from
Bρn−1

= Bρ1
. □

Corollary 4.13. — We have Bρk
= Bρn−k

(with indices modulo n). Therefore:
(1) Bρk

and Bρn−k
have the same eigenvalues.

(2) If n is odd then the spectrum of Mλ consists of 4 zero eigenvalues and n − 2

double eigenvalues.
(3) If n is even then Bρn/2

is diagonal and the spectrum of Mλ consists of 4 zero
eigenvalues, n− 4 double eigenvalues and another two eigenvalues that can be found
on the diagonal of Bρn/2

.

For the sake of completeness, in the following we give a short proof that the regular
polygon is a critical point for P 7→ |P |λ1(P ). This result is known and can be recov-
ered, for instance, using ideas from [25] or [8, Ch. 1]. The proof given below relies on
the representation formulas for the gradient given in Theorem 2.2.

Theorem 4.14. — The regular polygon is a critical point for x 7→ A(x)λ1(x).

Proof. — Fix the regular polygon Pn inscribed in the unit circle with a0 = (1, 0)

and denote by λ1 its first eigenvalue. Consider the functions φi, i = 0, n − 1 defined
in (2.8) and suppose they are symmetric like in the right picture in Figure 1. For
i ∈ {0, . . . , n− 1}, the components 2i, 2i+ 1 of the gradient of the objective function
are given by

λ1

∫
Pn

∇φi + |Pn|
∫
Pn

Sλ
1∇φi.

In view of the symmetry of the polygon and of the first eigenfunction, it is enough to
perform the computations for i = 0.
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We have φ0 = (1,−1/ tan θ)1T+
+ (1, 1/ tan θ)1T− . This already shows that

(4.9) λ1

∫
Pn

∇φ0 =
2λ1
n

|Pn|
(
1

0

)
.

Using the expression of ∇λ1(x) and (4.6) we find that

|Pn|
∫
Pn

Sλ
1∇φ0 = |Pn|

∫
Pn

−2(∇u1 ⊗∇u1)∇φ0

= −4|Pn|
(∫

T+
[(∂xu1)

2 − 1
tan θ∂xu1∂yu1]

0

)
.

Using (4.8) we simplify the above expression to

(4.10) |Pn|
∫
Pn

Sλ
1∇φ0 = −2λ1

n
|Pn|

(
1

0

)
.

Adding (4.9) and (4.10) we find that the first two components of the gradient of
x 7→ A(x)λ1(x) are zero. By symmetry, all the other components are zero and Pn is
indeed a critical point. □

5. A priori error estimates for the coefficients of the Hessian matrix

The eigenvalues of Mλ are described analytically in the previous section, but the
formulas do not allow us to prove that these eigenvalues are non-negative. In view
of Proposition 4.5 proving that Mλ has 2n− 4 eigenvalues that are strictly positive
is enough to infer the local minimality of the regular polygon. In this section we
describe how we can certify numerically this fact. In order to achieve this we provide
a priori error estimates concerning numerical approximations based on finite elements
for αk, βk, γk given in Theorem 4.9.

First we refer to classical certified estimates for the approximation of the first eigen-
pair and of the second eigenvalue on the regular polygon Pn using P 1 finite elements.
In a second step, we get certified estimates for the finite element approximation of the
function U i. In the last step we get certified approximation results for the coefficients
of the Hessian matrix.

5.1. Step 1. Certified approximation of the first eigenpair and of the second
eigenvalue. — In the literature one can find certified approximation for the first
eigenvalue in regular polygons (see for instance [39]). We shortly recall of the results
of [44, Th. 4.3].

Let us consider a triangulation Th of Pn. In each triangle Ti ∈ Th, the ratio between
the smallest edge and the middle one Li is denoted αi and the angle between these
two edges is τi. Then, we denote

C(Ti) := 0.493Li
1 + α2

i +
√

1 + 2α2
i cos(2τi) + α4

i√
2
(
1 + α2

i −
√
1 + 2α2

i cos(2τi) + α4
i

) .
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Following [44, §2], we introduce the constant

(5.1) C1 = sup
h

C(Ti)

h
,

where the parameter h dictating the size of the mesh is the size of the median edge. Let
us denote Vh the finite element space associated to Th with P 1 finite elements. Denote
by λk,h, uk,h the k-th eigenvalue of Pn and its associated eigenfunction approximated
in Vh, solving

(5.2) uk,h ∈ Vh,

∫
Pn

∇uk,h · ∇vh = λk,h

∫
Pn

uk,hvh, ∀vh ∈ Vh.

Results of [44] show that

∀k ⩾ 1, λk,h > λk >
λk,h

1 + C2
1h

2λ2k,h
.

As a direct consequence we have

(5.3) |λk − λk,h| ⩽ λ3k,hC
2
1/(1 + C2

1h
2λ2k,h) h

2.

Denoting Π1,h the Lagrange interpolation operator on the vertices of triangles
of Th, for functions u ∈ H2(Pn) we have

∥∇u−∇Π1,h(u))∥L2 ⩽ C1h∥D2u∥L2 .

For each u ∈ H1
0 (Pn) let us denote Ph(u) the projection of u onto the finite element

space Vh, namely the solution of

(5.4) Ph(u) ∈ Vh,

∫
Pn

(∇u−∇Ph(u),∇vh)dx = 0, ∀vh ∈ Vh.

Then

(5.5) ∥∇u−∇Ph(u)∥L2 ⩽ C1h∥D2u∥L2 and ∥u−Ph(u)∥L2 ⩽ C1h∥∇u−∇Phu∥L2 .

In particular, for u = u1 ∈ H2, using ∥D2u∥L2 = ∥∆u∥L2 ([30, Th. 4.3.1.4]), we get

(5.6) ∥∇u1−∇Ph(u1))∥L2 ⩽ C1h∥D2u1∥L2 = C1hλ1, ∥u1−Ph(u1)∥L2 ⩽ C2
1h

2λ1.

In order to estimate the error for the eigenfunction, let u1,h be an L2-normalized,
finite element approximation of the first eigenfunction given by (5.2).

Let us denote by p = Ph(u1) and decompose p = αu1,h+p, where
∫
Pn
pu1,hdx = 0,

α ∈ R. Note that changing the sign of u1,h still gives an L2-normalized solution,
therefore we may assume α > 0 in the previous decomposition.

As we know that∫
Pn

∇p · ∇vh =

∫
Pn

∇u1 · ∇vh = λ1

∫
Pn

u1vh, ∀vh ∈ Vh,

we get ∫
Pn

∇p · ∇vh − λ1,h

∫
Pn

pvh =

∫
Pn

(λ1u1 − λ1,hp)vh, ∀Vh.
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Using the Poincaré inequality on the orthogonal of u1,h in Vh, we get

λ2,h − λ1,h
λ2,h

∫
Pn

|∇p|2dx ⩽ ∥λ1u1 − λ1,hp∥L2

1√
λ2,h

∥∇p∥L2dx,

or

(5.7) λ
1/2
2,h ∥p∥L2 ⩽ ∥∇p∥L2 ⩽

λ
1/2
2,h

(λ2,h − λ1,h)

(
|λ1 − λ1,h|+ λ1,h∥u1 − p∥L2

)
.

We obtain the error estimate

(5.8) ∥∇u1 −∇u1,h∥L2 ⩽ ∥∇u1 −∇p∥L2 +
|1− α|
|α| ∥∇p∥L2 +

1

α
∥∇p∥L2 .

We compute the following bounds for ∥p∥L2 , ∥∇p∥L2 , which are immediate from
the definition of p and the projection operator Ph:

∥∇p∥2L2
=

∫
Pn

∇u1 · ∇p = λ1

∫
Pn

u1p ⩽ λ1∥p∥L2 ⩽ λ1(∥u1∥L2 + ∥p− u1∥L2).

In order to conclude we need bounds for α. We have
∫
Pn
p2 = α2 +

∫
Pn
p2, which

shows that

|1− α| ⩽ |1− α2| ⩽
∫
Pn

p2 +

∫
Pn

(u21 − p2) ⩽
∫
Pn

p2 + ∥u1 − p∥L2(2 + ∥u1 − p∥L2).

This estimate can be written in a quantitative form using (5.7) and (5.6). Since α > 0,
for h small enough, an explicit lower bound for α can also be found.

In the same way we obtain the L2 error estimate for the first eigenfunction

(5.9) ∥u1 − u1,h∥L2 ⩽ ∥u1 − p∥L2 +
|1− α|
|α| ∥p∥L2 +

1

α
∥p∥L2 .

It can be noted that the optimal rates of convergence are obtained in (5.8) and (5.9).
Moreover, the term of order O(h) in (5.8), which dominates the estimates comes from
the interpolation error bound for ∥∇u1 − ∇p∥L2 while the remaining terms are of
higher order O(h2).

5.2. Step 2. Certified approximation of U j . — We begin with some generic approx-
imation results for solutions of the Laplace equation with Dirichlet boundary condi-
tions with singular right hand sides.

Lemma 5.1. — Let γ ∈ (0, 1/2) and let v be the solution of (3.1) on Pn with f ∈
H−(1/2)−γ(R2). Then

(5.10) ∥∇v −∇Ph(v)∥L2 ⩽ ∥f∥H−(1/2)−γ(R2)(C1h)
(1/2)−γ

(
1 +

1

λ1

)(1/2)+γ

.

and

(5.11) ∥v − Ph(v)∥L2 ⩽ ∥f∥H−(1/2)−γ(R2)(C1h)
(3/2)−γ

(
1 +

1

λ1

)(1/2)+γ

.
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Proof. — By the Aubin-Nitsche lemma [15, p. 136] we get

∥v − Ph(v)∥L2 ⩽ C1h∥∇v −∇Ph(v)∥L2 .

To prove the estimate above, it is enough to introduce

ξ ∈ H1
0 (Pn), −∆ξ = v − Ph(v) in H1

0 (Pn).

Then ξ ∈ H2(Pn) and using [30, Th. 4.3.1.4] we get

∥D2ξ∥L2 = ∥∆ξ∥L2 = ∥v − Ph(v)∥L2 ,

so that

∥v − Ph(v)∥2L2 =

∫
Pn

∇ξ · ∇(v − Ph(v))dx =

∫
Pn

∇(ξ −Π1,hξ) · ∇(v − Ph(v))dx

⩽ C1h∥D2ξ∥L2∥∇v −∇Ph(v)∥L2 ⩽ C1h∥v − Ph(v)∥L2∥∇v −∇Ph(v)∥L2 .

Since f ∈ H−(1/2)−γ(R2) then

∥∇v−∇Ph(v)∥2L2 = (f, v−Ph(v))H−1×H1
0
⩽ ∥f∥H−(1/2)−γ(R2)∥v−Ph(v)∥H(1/2)+γ(R2).

From the Gagliardo-Nirenberg interpolation inequality (all norms in R2 are taken to
be the Fourier transform ones), we get

∥∇v −∇Ph(v)∥2L2 ⩽ ∥f∥H−(1/2)−γ(R2)∥v − Ph(v)∥(1/2)−γ
L2 ∥v − Ph(v)∥(1/2)+γ

H1(R2)

⩽ ∥f∥H−(1/2)−γ(R2)(C1h)
(1/2)−γ

(
1 +

1

λ1

)(1/2)+γ

∥∇v −∇Ph(v)∥L2 .

Finally, we get the conclusion. □

Theorem 5.2. — Let U ∈ H1
0 (Pn) be the solution of

(5.12)


−∆U − λ1U = f in Pn,

U = 0 on ∂Pn,∫
Pn
u1Udx = 0.

where (f, u1)H−1,H1
0

= 0, f = freg + fsing with freg ∈ L2(Pn) and fsing ∈
H−(1/2)−γ(Pn), where γ ∈ (0, 1/2). Assume fh is a numerical approximation in
H−1 of f which satisfies (fh, u1,h)H−1,H1

0
= 0 and (u1,h, λ1,h) a numerical approxi-

mation of (u1, λ1) in H1
0 (Pn) × R. Denote by Uh the finite element solution in Vh

for

∀v ∈ Vh,

∫
Pn

(∇Uh · ∇v − λ1,hUhv) dx = (fh, v)H−1×H1
0

(5.13)

together with the normalization

(5.14)
∫
Pn

u1,hUh dx = 0.
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Then, denoting by V the solution of −∆V = λ1U + f in Vh, we have

∥∇U −∇Uh∥L2

⩽ C1h∥λ1U + freg∥L2 + ∥fsing∥H−(1/2)−γ (C1h)
(1/2)−γ

(
1 +

1

λ1

)(1/2)+γ

+ λ
(1/2)
1,h

(
(C1h)

2∥λ1U + freg∥L2 + ∥fsing∥H−(1/2)−γ(R2)(C1h)
(3/2)−γ

(
1 +

1

λ1

)(1/2)+γ

+ ∥V ∥L2∥u1,h − u∥L2

)
+

λ
1/2
2,h

λ2,h − λ1,h

(
|λ1,h − λ1|∥U∥L2 + λ1,h∥U − Ph(U)∥L2 + (1 + λ2,h)

1/2∥f − fh∥H−1

)
.

Proof. — We denote Ureg, Using the solutions of

Ureg ∈ H1
0 (Pn), −∆Ureg = λ1U + freg, Using ∈ H1

0 (Pn), −∆Using = fsing,

so that U = Ureg + Using. We introduce the auxiliary functions Vreg, Vsing ∈ Vh,
Vreg = Ph(Ureg), Vsing = Ph(Using) the finite element solutions of

Vreg ∈ Vh, −∆Vreg = λ1U + freg Vsing ∈ Vh, −∆Vsing = fsing.

For Vsing, the estimate (5.10) from Lemma 5.1 holds, and gives

∥∇Using −∇Vsing∥L2 ⩽ ∥fsing∥H−(1/2)−γ (C1h)
(1/2)−γ

(
1 +

1

λ1

)(1/2)+γ

,

while for Vreg the estimate from (5.6) gives

∥∇Ureg −∇Vreg∥L2 ⩽ C1h∥λ1U + freg∥L2 .

Let us denote V = Vreg +Vsing and define Ṽ = V − (
∫
Pn
V u1,hdx)u1,h. Then we have

(5.15) ∥∇Ṽ −∇V ∥L2 = λ
1/2
1,h

∣∣∣∣∫
Pn

(V u1,h − Uu1)

∣∣∣∣
⩽ λ

1/2
1,h (∥U − V ∥L2 + ∥V ∥L2∥u1,h − u∥L2).

We have that Ṽ is the finite element solution of

Ṽ ∈ Vh, −∆Ṽ − λ1,hṼ = λ1U + f − λ1,hV,

which gives∫
Pn

|∇Ṽ −∇Uh|2dx−λ1,h
∫
Pn

|Ṽ −Uh|2dx = (λ1U + f −λ1,hV − fh, Ṽ −Uh)H−1×H1
0
.

By the Poincaré inequality in the orthogonal of u1,h we get(
1− λ1,h

λ2,h

)∫
Pn

|∇Ṽ −∇Uh|2dx

⩽ ∥λ1U − λ1,hV ∥L2∥Ṽ − Uh∥L2 + ∥f − fh∥H−1∥Ṽ − Uh∥H1

⩽ ∥λ1U−λ1,hV ∥L2λ
−1/2
2,h ∥∇Ṽ −∇Uh∥L2 +∥f−fh∥H−1

(
1+

1

λ2,h

)1/2
∥∇Ṽ −∇Uh∥L2 .
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Finally,
(5.16) ∥∇Ṽ −∇Uh∥L2(Pn)

⩽
λ
1/2
2,h

λ2,h − λ1,h

(
|λ1,h − λ1|∥U∥L2 + λ1,h∥U − V ∥L2 + (1 + λ2,h)

1/2∥f − fh∥H−1

)
. □

Theorem 5.3. — With the notations of Theorem 5.2, the following estimate holds

∥U − Uh∥L2 ⩽ 2C1h∥∇U −∇V ∥L2 + ∥V ∥L2∥u1 − u1,h∥L2 + λ
−1/2
2,h ∥∇Ṽ −∇Uh∥L2 .

Proof. — First, by the Aubin-Nitsche trick, we have ∥U−V ∥L2 ⩽ C1h∥∇U−∇V ∥L2 .
Using the definition of Ṽ we have

∥Ṽ − V ∥L2(Pn) =

∣∣∣∣∫
Pn

V u1,hdx

∣∣∣∣ = ∣∣∣∣∫
Pn

V u1,h − Uu1dx

∣∣∣∣
⩽ ∥U − V ∥L2 + ∥V ∥L2∥u1 − u1,h∥L2 .

Finally, we have

∥Ṽ − Uh∥L2(Pn) ⩽ λ
−1/2
2,h ∥∇Ṽ −∇Uh∥L2(Pn) ⩽

1

λ2,h − λ1,h

(
|λ1,h − λ1|∥U∥L2(Pn)

+ λ1,h∥U − V ∥L2(Pn) + (1 + λ2,h)
1/2∥f − fh∥H−1(Pn)

)
. □

Remark 5.4. — It can be seen that the estimates from Theorems 5.2, 5.3 become ex-
plicit as soon as ∥f∥H−1 , ∥freg∥L2 , ∥fsing∥H−(1/2)−γ , ∥f−fh∥H−1 are known. We present
below some inequalities that help obtain upper bounds for all other quantities pre-
sented here.

Using the fact that U is orthogonal on the first eigenfunction u1 we find√
λ2∥U∥L2 ⩽ ∥∇U∥L2 ⩽

√
λ2(λ2 + 1)

λ2 − λ1
∥f∥H−1 .

Since V is the projection of U on Vh we have ∥∇V ∥L2 ⩽ ∥∇U∥L2 . Secondly we
have ∥V ∥L2 ⩽ 1√

λ1
∥∇V ∥H1 . Since Ṽ is the projection of V on the orthogonal of u1,h

in Vh we immediately have ∥Ṽ ∥L2 ⩽ ∥V ∥L2 and ∥∇Ṽ ∥L2 ⩽ ∥∇V ∥L2 .
We obtain the following estimates for Uh:

∥∇Uh∥2L2 − λ1,h∥Uh∥2L2 ⩽ ∥fh∥H−1∥Uh∥H1 .

Since Uh is orthogonal on u1,h the first eigenfunction associated to λ1,h we have
∥∇Uh∥2L2 ⩾ λ2,h∥Uh∥2L2 which implies that(

1− λ1,h
λ2,h

)
∥∇Uh∥2L2 ⩽ ∥fh∥H−1

√
1 +

1

λ2,h
∥∇Uh∥L2 .

This implies √
λ2,h∥Uh∥L2 ⩽ ∥∇Uh∥L2 ⩽

√
λ2,h(1 + λ2,h)

λ2,h − λ1,h
∥fh∥H−1 .
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Remark 5.5. — In practice, the singular right hand side that we consider is of the
following type. Let S = [0, 1]× {0} and g = ∂u1/∂x. We define fsing ∈ H−1(R2) by

∀φ ∈ H1(R2), (fsing, φ)H−1×H1 =

∫
S

gφ ds.

Then for every γ ∈ (0, 1/2) we have

fsing ∈ H−(1/2)−γ(R2), ∥fsing∥H−(1/2)−γ(R2) ⩽
( Γ(γ)

2π1/2Γ(1/2 + γ)

)1/2
∥g∥L2(S).

Indeed, for every φ ∈ H(1/2)+γ(R2)

(fsing, φ)H−(1/2)−γ×H(1/2)+γ ⩽ ∥g∥L2(S)∥φ∥L2(S),

and use the trace theorem for φ from H(1/2)+γ(R2) onto L2(R × {0}) with constant
Cγ :=

( Γ(γ)
2π1/2Γ(1/2+γ)

)1/2 (see Pak and Park [48]).

Practical estimate. — In order to estimate ∥g∥L2(S) above, we notice that∫
S

g2dx = −
∫
S

u1
∂2u1
∂x2

dx ⩽ −
∫
S

u1∆u1dx = λ1

∫
S

u21dx.

Here, we have used that ∂u1/∂x ∈ H1
0 (S) for symmetry reasons and angular behavior,

together with ∂2u1/∂y
2 ⩽ 0, from symmetry and convexity of the level lines of u1.

In order to estimate
∫
S
u21dx, we can use the following

∥u1∥L2(S) ⩽ ∥u1,h∥L2(S) + ∥u1 − u1,h∥L2(S)

⩽ ∥u1,h∥L2(S) +

[∫ 1

0

∫ 1

0

(∂u1
∂y

− ∂u1,h
∂y

)2
dxdy

]1/2
.

If the approximation by finite elements has the symmetry of the n-gon, then∫ 1

0

∫ 1

0

(∂u1
∂y

− ∂u1,h
∂y

)2
dxdy ⩽ ⌊(n+ 1)/2⌋ 1

2n

∫
Pn

|∇u1 −∇u1,h|2.

Analysis of the function U0 = (U1
0 , U

2
0 ). — As we have seen in Section 4, it is enough

to concentrate on the function U0 defined in (2.16) with the normalization condition
(2.19). Recall the definition of φi is given in in (2.8) (see also Figure 1).

Denote by f0 ∈ H−1(Pn,R2) the right hand side from (2.16) for j = 0. Since the
index 0 is fixed, we shall drop it from U0, its right hand side f0 and φ0. We denote
by T+ = T0 and T− = Tn−1 the upper and lower triangles of the support of φ. Then

∇φ = 1T+

(
1,− 1

tan θ

)
+ 1T−

(
1,

1

tan θ

)
and ∀x ∈ Pn, ∥∇φ(x)∥ =

1

sin θ
1T+∪T−(x).

The right hand side f ∈ H−1(Pn,R2) is the distribution given by

∀v ∈ C∞
c (Pn), (f , v)H−1×H1 =

∫
Pn

−(∇φ⊗∇u1)∇v + 2(∇u1 ⊙∇v)∇φdx

+

∫
Pn

Sλ
1∇φ

∫
Pn

u1v dx+ λ1

∫
Pn

u1v∇φdx.
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Recall that Sλ
1 = (|∇u1|2−λ1u21) Id−2∇u1⊗∇u1. Using integration by parts, we no-

tice that ∫
Pn

−(∇φ⊗∇u1)∇vdx+ λ1

∫
Pn

u1v∇φdx = 0.

We observe that in the expression of
∫
Pn

Sλ
1∇φ the first term cancels for symmetry

reasons. We may also use the fact that the regular polygon is critical for λ1(Pn)|Pn|
so that ∫

Pn

Sλ
1∇φ =

∫
Pn

−2(∇u1 ⊗∇u1)∇φ = − λ1
|Pn|

∫
Pn

∇φ =

(−2λ1/n

0

)
.

Moreover∫
Pn

−2(∇u1 ⊗∇u1)∇φdx = −4

∫
T+

(∂xu1)
2 − 1

tan θ
(∂xu1)(∂yu1)dx

0

 :=

(
sλ1
0

)
.

Therefore sλ1 = −2λ1/n.
On the other hand, if Q(v) = v −

(∫
Pn
u1v
)
u1 is the L2-projection of v on the

orthogonal of u1, we may note that

(f , v)H−1×H1 =

∫
Pn

2(∇u1 ⊙∇v)∇φdx− 2

∫
Pn

(∇u1 ⊗∇u1)∇φdx(5.17)

= 2

∫
Pn

(∇u1 ⊙∇Q(v))∇φdx.

Working with a symmetric triangulation for φj (Figure 3) and a mesh that is exact
on Tj and respects the symmetries of the regular polygon (Figure 4) the uniqueness of
the first discrete eigenfunction u1,h implies that (4.7) holds also for the discrete quan-
tities. In particular

∫
T+

(∂xu1,h)
2 +

∫
T+

(∂yu1,h)
2 = λ1,h/n and − sin θ

∫
T+

(∂xu1,h)
2 +

sin θ
∫
T+

(∂yu1,h)
2 + 2 cos θ

∫
T+
∂xu1,h∂yu1,h = 0. We denote by(

sλ1,h
0

)
= −4

∫
T+

(∂u1,h
∂x

)2
− 1

tan θ

∂u1,h
∂x

∂u1,h
∂y

dx

0


and using the previous relations we find that sλ1,h = −2λ1,h/n. Therefore |sλ1 −sλ1,h| =
(2/n)|λ1 − λ1,h|.

Let fh be the distribution given by: ∀v ∈ C∞
c (R2)

(fh, v)H−1×H1 =

∫
Pn

(∇v⊗∇u1,h)∇φdx+
∫
Pn

(∇u1,h⊗∇v)∇φdx+sλ1,h
∫
Pn

u1,hv dx.

Proposition 5.6. — The following inequality occurs

∥f−fh∥H−1 ⩽
2
√
2√

n sin θ
∥∇u1,h−∇u1∥L2 +

1√
1 + λ1

(
|sλ1 −sλ1,h|+ |sλ1 |∥u1−u1,h∥L2

)
.

Proof. — The proof is straight forward by direct computation, taking into account
the vector norm inequality ∥(a⊗ b)c∥ ⩽ ∥a∥∥b∥∥c∥ and the Poincaré inequality

∥v∥L2 ⩽
1√

1 + λ1
∥v∥H1

0
.
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We also used the symmetry of the mesh, which gives

∥∇u1,h −∇u1∥L2(T+∪T−) =

√
2

n
∥∇u1,h −∇u1∥L2(Pn). □

Practical estimate. — We estimate below the quantities needed for the estimates in
Theorem 5.2. In order to estimate ∥f i∥H−1 , ∥f ireg∥L2 and ∥f ising∥H−(1/2)−γ we use the
following notations:

(f , v)H−1,H1
0
=

(
(f1, v)H−1×H1

0

(f2, v)H−1×H1
0

)
=

∫
Pn

2(∇u1 ⊙∇v)∇φdx+

∫
Pn

u1v dx

(
sλ1
0

)
=

∫
Pn

(∇φ · ∇Q(v))∇u1 +
∫
Pn

(∇φ · ∇u1)∇Q(v)

=

∫
Pn

(∇φ · ∇v)∇u1 dx+

∫
Pn

(∇φ · ∇u1)∇v dx+

∫
Pn

u1v dx

(
sλ1
0

)
:=

(
A1

A2

)
+

(
B1

B2

)
+

(
C1

C2

)
.

Since Q(v) is the projection of v on the orthogonal of u1, ∥∇Q(v)∥L2 ⩽ ∥∇v∥L2 and
∥Q(v)∥L2 ⩽ ∥v∥L2 .

For the H−1 estimate we work with the formula involving Q(v) and we have

(f1, v)H−1,H1 =

∫
T+∪T−

(
2∂xu1∂xQ(v) + ∂yφ(∂xu1∂yQ(v) + ∂yu1∂xQ(v))

)
,

which implies that

∥f1∥H−1 ⩽ 2
√
2

(∫
T+

(∂xu1)
2

)1/2

+
1

tan θ

√
2λ1
n
.

A similar computation for f2 leads to

∥f2∥H−1 ⩽
2
√
2

tan θ

(∫
T+

(∂yu1)
2

)1/2

+

√
2λ1
n
.

Let us denote S+, S0, S− the segments [0, exp(iθ)], [0, 1], [0, exp(−iθ)] in the com-
plex plane, and n = (nx, ny) the outside normal of a domain. We have(

(A1, v)

(A2, v)

)
=

(− ∫
T+∪T−

v∇φ · ∇∂u1

∂x +
∫
∂T+

v∇φ · n∂u1

∂x +
∫
∂T−

v∇φ · n∂u1

∂x

−
∫
T+∪T−

v∇φ · ∇∂u1

∂y +
∫
∂T+

v∇φ · n∂u1

∂y +
∫
∂T−

v∇φ · n∂u1

∂y

)
.

We decompose each term in Ai = Ai
reg + Ai

sing, the regular part given by the first
integral over T+ ∪ T− and the singular part given by the sum of the last two in-
tegrals over the boundaries of ∂T+ and ∂T−. Following [30, Lem. 3.4.1.2-3] we find
that ∥∇(∂xu1)∥L2(Tj) =

√
λ1 ∥∂xu1∥L2(Tj) and ∥∇(∂yu1)∥L2(Tj) =

√
λ1 ∥∂yu1∥L2(Tj).

Therefore, for the regular parts we have

∥A1
reg∥L2 ⩽

√
2λ1

sin θ
∥∂xu1∥L2(T+) ∥A2

reg∥L2 ⩽

√
2λ1

sin θ
∥∂yu1∥L2(T+).
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We compute explicitly ∇φ · n on S0, S+, S− and we obtain(
(A1

sing, v)

(A2
sing, v)

)
=

−
∫
S+

1
sin θv

∂u1

∂x + 2
∫
S0

1
tan θv

∂u1

∂x −
∫
S−

1
sin θv

∂u1

∂x

−
∫
S+

1
sin θv

∂u1

∂y −
∫
S−

1
sin θv

∂u1

∂y

 .

We have ∥∂xu1∥L2(S±) = cos θ∥∂xu1∥L2(S0) and ∥∂yu1∥L2(S±) = sin θ∥∂xu1∥L2(S0)

since the normal component of the gradient of u1 is zero on these segments. Therefore,
using Remark 5.5 we obtain

∥A1
sing∥H−(1/2)−γ ⩽ 2

1 + cos θ

sin θ

√
λ1 ∥u1∥L2(S0)Cγ ,

∥A2
sing∥H−(1/2)−γ ⩽ 2

√
λ1 ∥u1∥L2(S0)Cγ .

A similar computation leads to(
(B1, v)

(B2, v)

)
=

(− ∫
T+∪T−

v∇φ · ∇∂u1

∂x +
∫
∂T+

v∇φ · ∇u1nx +
∫
∂T−

v∇φ · ∇u1nx
−
∫
T+∪T−

v∇φ · ∇∂u1

∂y +
∫
∂T+

v∇φ · ∇u1ny +
∫
∂T−

v∇φ · ∇u1ny

)
,

and we observe that the boundary integrals vanish. For the regular parts we have the
same estimates as before

∥B1
reg∥L2 ⩽

√
2λ1

sin θ
∥∂xu1∥L2(T+), ∥B2

reg∥L2 ⩽

√
2λ1

sin θ
∥∂yu1∥L2(T+).

It is straightforward to see that C1, C2 are L2 distributions, C2 = 0 and ∥C1∥L2 =

|sλ1 | = 2λ1/n.
Finally, we get

∥f1reg∥L2 ⩽ 2

√
2λ1

sin θ
∥∂xu1∥L2(T+) +

2λ1
n
,

∥f2reg∥L2 ⩽ 2

√
2λ1

sin θ
∥∂yu1∥L2(T+),

∥f1sing∥H−(1/2)−γ ⩽ 2
1 + cos θ

sin θ

√
λ1 ∥u1∥L2(S0)Cγ ,

∥f2sing∥H−(1/2)−γ ⩽ 2
√
λ1 ∥u1∥L2(S0)Cγ .

Using the fact that ∥∂xu1∥2T+
+∥∂yu1∥2T+

= λ1/n we may also use the slightly weaker,
but simpler bounds below:

∥f i∥H−1 ⩽
2

sin θ

√
2λ1
n
, ∥f1reg∥L2 ⩽

2λ1
sin θ

√
2

n
+

2λ1
n
, ∥f2reg∥L2 ⩽

2λ1
sin θ

√
2

n
.

5.3. Step 3. Estimates for the eigenvalues of Mλ. — As shown in Theorem 4.9
and Proposition 4.10 the eigenvalues of Mλ can be expressed in terms of u1 and
(U1

0 , U
2
0 ). As we saw in the previous sections, the terms containing derivatives of u1

can be well approximated using P 1 finite elements using an estimate of order O(h)

with explicit constants.
Results of the previous section show that the estimate of the computation error

for U behaves like h(1/2)−γ . Trying to bound directly the error for the eigenvalues
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of Mλ will give estimates of the same order, which in practice are not fine enough to
provide bounds that allow to certify that the non-zero eigenvalues of Mλ are positive.

However, it turns out that the estimate of the coefficients of the shape Hessian
matrix of the eigenvalue is better, namely in h1−2γ , as a consequence of the particular
structure of the coefficients. As shown in [28, §5] defining and solving an auxiliary
problem using the same bilinear form can double the speed of the convergence.

We use the notations of Theorem 5.2 for two generic problems with solutions Ua, U b

corresponding to the right hand sides fa, f b (not necessarily those made explicit in
the previous section). As well, we use the associated notations V a, V b, Ṽ a, Ṽ b, Ua

h , U
b
h,

fah , f
b
h. We denote the bilinear forms

a : H1
0 (Pn)×H1

0 (Pn) −→ R, a(u, v) =

∫
∇u · ∇v − λ1

∫
uv,

ah : Vh × Vh −→ R, ah(u, v) =

∫
∇u · ∇v − λ1,h

∫
uv.

Our objective is to estimate error terms of the type

|a(Ua, U b)− ah(U
a
h , U

b
h)|,

in order to get an estimate of order h1−2γ for αk, βk, γk in Theorem 4.9. We have

(5.18) |a(Ua, U b)− ah(U
a
h , U

b
h)| ⩽ |a(Ua, U b)− a(V a, V b)|

+ |a(V a, V b)− ah(Ṽ
a, Ṽ b)|+ |ah(Ṽ a, Ṽ b)− ah(U

a
h , U

b
h)|.

We estimate each term of the right hand side, separately, the most delicate being the
first one.

First term:

a(Ua, U b)− a(V a, V b) =

∫
Pn

∇(Ua − V a) · ∇(U b − V b)

− λ1

∫
Pn

(Ua − V a)V b − λ1

∫
Pn

(U b − V b)Ua,

so that

|a(Ua, U b)− a(V a, V b)| ⩽ ∥∇(Ua − V a)∥L2∥∇(U b − V b)∥L2

+ λ1∥V b∥L2∥V a − Ua∥L2 + λ1∥Ua∥L2∥V b − U b∥L2 .

As a consequence of Lemma 5.1 applied for the L2-norms of both the functions and
their gradients we get a control in h1−2γ .

Second term:

|a(V a, V b)− ah(Ṽ
a, Ṽ b)| ⩽ ∥∇V a∥L2∥∇V b −∇Ṽ b∥L2 + ∥∇Ṽ b∥L2∥∇V a −∇Ṽ a∥L2

+ |λ1,h − λ1|∥Ṽ a∥L2∥Ṽ b∥L2 + λ1∥Ṽ b∥L2∥V a − Ṽ a∥L2 + λ1∥V a∥L2∥V b − Ṽ b∥L2 ,

which, in view of inequality (5.15), leads to an approximation of order h.
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Third term:

|ah(Ṽ a, Ṽ b)− ah(U
a
h , U

b
h)| ⩽ |ah(Ṽ a, Ṽ b − U b

h)|+ |ah(Ṽ a − Ua
h , U

b
h)|

⩽ ∥∇Ṽ a∥L2∥∇Ṽ b −∇U b
h∥L2 + ∥∇U b

h∥L2∥∇Ṽ a −∇Ua
h∥L2 .

The last inequality is a consequence of the fact that ah(·, ·) is a scalar product on
{u1,h}⊥ in Vh and of the Cauchy-Schwarz inequality together with the observation
that ah(v, v) ⩽

∫
|∇v|2. Using inequality (5.16) we get an approximation of order h.

Remark 5.7. — The problematic term in the previous estimates can be simplified
when the two distributions and associated solutions have opposite parity properties.
Indeed, suppose that f1 = fareg + fasing with fareg ∈ L2, fasing ∈ H−(1/2)−γ such that
(fasing, U

b − V b)H−(1/2)−γ ,H(1/2)+γ = 0. Then we have∫
Pn

∇(Ua − V a) · ∇(U b − V b) =

∫
Pn

∇Ua · ∇(U b − V b)

= (λ1U
a + fareg + fasing, U

b − V b)H−1,H1 = ((λ1U
a + fareg, U

b − V b)L2,L2 ,

leading to an estimate of order h3/2−γ , for γ ∈ (0, 0.5).

Below we show how to choose the functions in the above estimates in order to
obtain the desired bounds for the quantities described in Theorem 4.9. Since in the
case k = 0 we have α0 = β0 = γ0 = 0 we focus only on the cases 1 ⩽ k ⩽ n− 1.

Remark 5.8. — It can be noted that the error estimates above can already be applied
for terms of the type a(U1,2

j , U1,2
ℓ ) that appear in the expressions of Mλ and αk, βk, γk.

However, if multiple such terms are present in some expression, a direct error estimate
will accumulate the errors and the final results will be unusable for reasonably large
h. It is best to choose properly the functions Ua, U b beforehand and apply the error
estimate only once.

The term αk. — Set

Wαk =

n−1∑
j=0

cos(jkθ)U1
0 ◦RT

jθ,

so that a(U1
0 ,W

αk) allows us to express αk (see Proposition 4.10). The orthogonality
of U1

0 on u1 implies that
∫
Pn
Wαku1 = 0. Denote fαk ∈ H−1 the distribution

(fαk , v)H−1,H1
0
=

n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)λ1

∫
Tj

u1v

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇v.

Multiplying a vector with the matrix
(− sin(2j+1)θ cos(2j+1)θ

cos(2j+1)θ sin(2j+1)θ

)
preserves its length and

reflects it about the line through the origin making an angle (j + 1/2)θ + π/4. The
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symmetry of the first eigenfunction u1 implies that (fαk , u1) = 0. These observations
imply that Wαk is the unique solution of the problem

a(W, v) = (fαk , v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn

Wu1 = 0.

Elementary computations show that

(5.19)

n−1∑
j=0

(cos jkθ + cos(j + 1)kθ))2 = n+ n cos(kθ),

n−1∑
j=0

(cos jkθ − cos(j + 1)kθ))2 = n− n cos(kθ),

n−1∑
j=0

(sin jkθ + sin(j + 1)kθ))2 = n+ n cos(kθ),

n−1∑
j=0

(sin jkθ − sin(j + 1)kθ))2 = n− n cos(kθ).

Therefore, a straightforward estimate using (5.19), the symmetry of the eigenfunction
u1 and ∥v∥L2 ⩽ 1√

1+λ1
∥v∥H1 shows that

∥fαk∥H−1 ⩽ λ1

√
1 + cos(kθ)

1 + λ1
+

√
λ1(1− cos(kθ))

sin θ
.

Setting

Kαk
j =

cos(j + 1)kθ − cos jkθ

sin θ

(− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
,

we have

n−1∑
j=0

∫
Tj

Kαk
j ∇u1 · ∇v =

n−1∑
j=0

∫
Tj

−div(Kαk
j ∇u1)v +

n−1∑
j=1

∫
∂Tj

(Kαk
j ∇u1 · n)v.

Since u1 ∈ H2(Pn) the first term is regular. Let us investigate the second term.
Denote with Sj , Sj+1 the two rays associated to the triangle Tj , j = 0, . . . , n − 1

(with notation modulo n). Denote with Nj =
(− sin jθ

cos jθ

)
the normal to Sj in the

trigonometric sense. The symmetry of the eigenfunction (see Remark 4.3) implies
that (∇u1)Sj

= ∂ru1
( cos jθ
sin jθ

)
, which implies

(− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
∇u ·Nj = ∂ru1 cos θ.
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We obtain for v ∈ H1
0 (Pn)

n−1∑
j=0

∫
∂Tj

(Kαk
j ∇u1 · n)v =

n−1∑
j=0

(
−
∫
Sj

(Kαk
j ∇u1 ·Nj)v +

∫
Sj+1

(Kαk
j ∇u1 ·Nj+1)v

)

=

n−1∑
j=0

∫
Sj

((Kαk
j−1 −Kαk

j )∇u1 ·Nj)v

= −
n−1∑
j=0

∫
Sj

cos θ

sin θ
(cos(j + 1)kθ + cos(j − 1)kθ − 2 cos jkθ)∂ru1v

= −
n−1∑
j=0

∫
Sj

cos θ

sin θ
2 cos jkθ(1− cos kθ)∂ru1v.

Finally

(fαk
sing, v)H−1×H1

0
= −

n−1∑
j=0

∫
Sj

cos θ

sin θ
2 cos jkθ(1− cos kθ)∂ru1v,

which, using Remark 5.5, gives

∥fαk
sing∥H−(1/2)−γ ⩽ 2

n−1∑
j=0

cos θ

sin θ
| cos jkθ(1− cos kθ)|

√
λ1 ∥u1∥L2(S0)Cγ .

For the regular part, we have

(fαk
reg, v)H−1×H1

0
=

n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ∂2xxu1

+ 2 cos(2j + 1)θ∂2xyu1 + sin(2j + 1)θ∂2yyu1

)
v,

and using the fact that ∥D2u1∥L2 = λ1 we obtain

∥fαk
reg∥L2 ⩽

√
1 + cos(kθ)λ1 +

√
2

sin θ

√
1− cos(kθ)λ1.

Remark 5.9. — Let us introduce the vectors

vj = (cos((j + 1/2)θ), sin((j + 1/2)θ)), vj = (− sin((j + 1/2)θ), cos((j + 1/2)θ)).

Expressing the derivatives of u1 in the (vj , vj) basis, by direct computation one gets

(fαk
reg, v)H−1×H1

0
=

n−1∑
j=0

(
cos(j + 1)kθ + cos jkθ

)
λ1

∫
Tj

u1v

− 2
cos(j + 1)kθ − cos jkθ

sin θ

n−1∑
j=0

∫
Tj

∂2vjvj
u1v.
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Consider now the discrete version of fαk , replacing u1 and λ1 by their discrete
approximations

(fαk

h , v)H−1,H1
0
=

n−1∑
j=0

(
cos(j + 1)kθ + cos jkθ

)
λ1,h

∫
Tj

u1,hv

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
∇u1,h · ∇v.

Working under the hypothesis that the mesh Th has the symmetries of the regular
polygon and that the triangles Tj are meshed exactly, we have (fαk

h , u1,h)H−1,H1
0
= 0.

By direct computation we obtain

(fαk − fαk

h , v) =

n−1∑
j=0

(cos(j + 1)kθ + cos jkθ)

∫
Tj

(λ1u1 − λ1,hu1,h)v

+

n−1∑
j=0

∫
Tj

Kαk
j (∇u−∇uh) · ∇v,

which implies

∥fαk − fαk

h ∥H−1 ⩽

√
1 + cos kθ

1 + λ1

(
|λ1 − λ1,h|+ λ1,h∥u1 − u1,h∥L2

)
+

√
1− cos kθ

sin θ
∥∇u−∇uh∥L2 .

The term βk. — Let us set

W βk =

n−1∑
j=0

cos(jkθ)U2
0 ◦RT

jθ,

so that a(U2
0 ,W

βk) allows us to express βk (see Proposition 4.10). The orthogonality
of U2

0 on u1 implies that
∫
Pn
W βku1 = 0. Denote fβk ∈ H−1 the distribution

(fβk , v)H−1,H1
0
=

cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)λ1

∫
Tj

u1v

+
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇v.

Same as before, the symmetry of the first eigenfunction u1 implies that (fβk , u1) = 0.
These observations imply that W βk is the unique solution of the problem

a(W, v) = (fβk , v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn

Wu1 = 0.

A straightforward estimate shows that

∥fβk∥H−1 ⩽ λ1
cos θ

sin θ

√
1− cos(kθ)

1 + λ1
+

√
λ1(1− cos(kθ))

sin θ
.
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Similar computations as before give

(fβk

sing, v)H−1×H1
0
=

n−1∑
j=0

∫
Sj

2 cos jkθ(1− cos kθ)∂ru1v,

which, using Remark 5.5, gives

∥fβk

sing∥H−(1/2)−γ ⩽ 2

n−1∑
j=0

| cos jkθ(1− cos kθ)|
√
λ1 ∥u1∥L2(S0)Cγ .

For the regular part, we have

(fβk
reg, v)H−1×H1

0
=

cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ∂2xxu1

− 2 sin(2j + 1)θ∂2xyu1 + cos(2j + 1)θ∂2yyu1

)
v,

and using the fact that ∥D2u1∥L2 = λ1 we obtain

∥fβk
reg∥L2 ⩽

cos θ

sin θ

√
1− cos(kθ)λ1 +

√
2

sin θ

√
1− cos(kθ)λ1.

Consider now the discrete version of fβk , replacing u1 and λ1 by their discrete
approximations

(fβk

h , v)H−1,H1
0
=

cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)λ1,h

∫
Tj

u1,hv

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1,h · ∇v.

Working under the hypothesis that the mesh Th has the symmetries of the regular
polygon and that the triangles Tj are meshed exactly, we have (fβk

h , u1,h)H−1,H1
0
= 0.

Below we use the notation

Kβk

j =
cos(j + 1)kθ − cos jkθ

sin θ

(− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
.

By direct computation we obtain

(fβk − fβk

h , v) =
cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)

∫
Tj

(λ1u1 − λ1,hu1,h)v

+

n−1∑
j=0

∫
Tj

Kβk

j (∇u−∇uh) · ∇v,
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which implies

∥fβk − fβk

h ∥H−1 ⩽
cos θ

sin θ

√
1− cos kθ

1 + λ1
(|λ1 − λ1,h|+ λ1,h∥u1 − u1,h∥L2)

+

√
1− cos kθ

sin θ
∥∇u−∇uh∥L2 .

The term γk. — In this case we have two possible formulas. We provide the details
for both of them. Denote by

W γk,1 =

n−1∑
j=0

sin(jkθ)U2
0 ◦RT

jθ,

so that a(U1
0 ,W

γk,1) allows us to express γk (see Proposition 4.10). The orthogonality
of U2

0 on u1 implies that
∫
Pn
W γk,1u1 = 0. Denote fγk,1 ∈ H−1 the distribution

(fγk,1, v)H−1,H1
0
=

cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)λ1

∫
Tj

u1v

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇v.

Same as before, the symmetry of the first eigenfunction u1 implies that (fγk,1, u1) = 0.
These observations imply that W γk,1 is the unique solution of the problem

a(W, v) = (fγk,1, v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn

Wu1 = 0.

A straightforward estimate shows that

∥fγk,1∥H−1 ⩽ λ1
cos θ

sin θ

√
1− cos(kθ)

1 + λ1
+

√
λ1(1− cos(kθ))

sin θ
.

Similar computations as before give

(fγk,1
sing , v)H−1×H1

0
= −

n−1∑
j=0

∫
Sj

2 sin jkθ(1− cos kθ)∂ru1v,

which, using Remark 5.5, gives

∥fγk,1
sing ∥H−(1/2)−γ ⩽ 2

n−1∑
j=0

| sin jkθ(1− cos kθ)|
√
λ1 ∥u1∥L2(S0)Cγ .

For the regular part, we have

(fγk,1
reg , v)H−1×H1

0
=

cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ∂2xxu1

− 2 sin(2j + 1)θ∂2xyu1 + cos(2j + 1)θ∂2yyu1

)
v,

J.É.P. — M., 2024, tome 11



78 B. Bogosel & D. Bucur

and using the fact that ∥D2u1∥L2 = λ1 we obtain

∥fγk,1
reg ∥L2 ⩽

cos θ

sin θ

√
1− cos(kθ)λ1 +

√
2

sin θ

√
1− cos(kθ)λ1.

Consider now the discrete version of fγk,1, replacing u1 and λ1 by their discrete
approximations

(fγk,1
h , v)H−1,H1

0
=

cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)λ1,h

∫
Tj

u1,hv

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1,h · ∇v.

Working under the hypothesis that the mesh Th has the symmetries of the regular
polygon and that the triangles Tj are meshed exactly, we have (fγk,1

h , u1,h)H−1,H1
0
= 0.

Using the notation

Kγk,1
j =

sin(j + 1)kθ − sin jkθ

sin θ

(− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
,

we obtain

(fγk,1 − fγk,1
h , v) =

cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)

∫
Tj

(λ1u1 − λ1,hu1,h)v

+

n−1∑
j=0

∫
Tj

Kγk,1
j (∇u−∇uh) · ∇v,

which implies

∥fγk,1 − fγk,1
h ∥H−1 ⩽

cos θ

sin θ

√
1− cos kθ

1 + λ1
(|λ1 − λ1,h|+ λ1,h∥u1 − u1,h∥L2)

+

√
1− cos kθ

sin θ
∥∇u−∇uh∥L2 .

For the second formula for γk, denote by

W γk,2 =

n−1∑
j=0

sin(jkθ)U1
0 ◦RT

jθ,

so that a(U2
0 ,W

γk,2) allows us to express γk (see Proposition 4.10). The orthogonality
of U1

0 on u1 implies that
∫
Pn
W γk,2u1 = 0. Denote fγk,2 ∈ H−1 the distribution

(fγk,2, v)H−1,H1
0
=

n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)λ1

∫
Tj

u1v

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇v.
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Same as before, the symmetry of the first eigenfunction u1 implies that (fγk,2, u1) = 0.
These observations imply that W γk,2 is the unique solution of the problem

a(W, v) = (fγk,2, v)H−1,H1
0
, ∀v ∈ H1

0 (Pn),

∫
Pn

Wu1 = 0.

A straightforward estimate shows that

∥fγk,2∥H−1 ⩽ λ1

√
1 + cos(kθ)

1 + λ1
+

√
λ1(1− cos(kθ))

sin θ
.

Similar computations as before give

(fγk,2
sing , v)H−1×H1

0
= −cos θ

sin θ

n−1∑
j=0

∫
Sj

2 sin jkθ(1− cos kθ)∂ru1v,

which, using Remark 5.5, gives

∥fγk,2
sing ∥H−(1/2)−γ ⩽ 2

cos θ

sin θ

n−1∑
j=0

| sin jkθ(1− cos kθ)|
√
λ1 ∥u1∥L2(S0)Cγ .

For the regular part, we have

(fγk,2
reg , v)H−1×H1

0
=

n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)λ1

∫
Tj

u1v

−
n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ∂2xxu1

+ 2 cos(2j + 1)θ∂2xyu1 + sin(2j + 1)θ∂2yyu1
)
v,

and using the fact that ∥D2u1∥L2 = λ1 we obtain

∥fγk,2
reg ∥L2 ⩽

√
1 + cos(kθ)λ1 +

√
2

sin θ

√
1− cos(kθ)λ1.

Consider now the discrete version of fγk,2, replacing u1 and λ1 by their discrete
approximations

(fγk,2
h , v)H−1,H1

0
=

n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)λ1,h

∫
Tj

u1,hv

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
∇u1,h · ∇v.

Working under the hypothesis that the mesh Th has the symmetries of the regular
polygon and that the triangles Tj are meshed exactly, we have (fγk,2

h , u1,h)H−1,H1
0
= 0.

Using the notation

Kγk,2
j =

sin(j + 1)kθ − sin jkθ

sin θ

(− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
,
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we obtain

(fγk,2 − fγk,2
h , v) =

n−1∑
j=0

(sin(j + 1)kθ + sin jkθ)

∫
Tj

(λ1u1 − λ1,hu1,h)v

+

n−1∑
j=0

∫
Tj

Kγk,2
j (∇u−∇uh) · ∇v,

which implies

∥fγk,2 − fγk,2
h ∥H−1 ⩽

√
1 + cos kθ

1 + λ1
(|λ1 − λ1,h|+ λ1,h∥u1 − u1,h∥L2)

+

√
1− cos kθ

sin θ
∥∇u−∇uh∥L2 .

We conclude this section with the following result summarizing the error estimates
obtained.

Theorem 5.10. — The terms αk, βk, γk in Theorem 4.9 admit an explicit error esti-
mate of order O(h1−2γ) for every γ ∈ (0, 1/2) when the first eigenfunction u1 and the
function U0 = (U1

0 , U
2
0 ) are approximated using P 1 finite elements.

Proof
Recall that the estimates given in Section 5.1 allow us to obtain explicit bounds

for
∫
T0
(∂xu1)

2 and
∫
T0
(∂yu1)

2 of order O(h). Denoting qk = 2n(1− cos(kθ))/sin θ,
we have the following.

– For αk = qk
∫
T0
(∂xu1)

2 − 2|Pn|a(U1
0 ,W

αk) we apply (5.18) with Ua = U1
0 , U

b =

Wαk .
– For βk = qk

∫
T0
(∂yu1)

2 − 2|Pn|a(U2
0 ,W

βk) we apply (5.18) with Ua = U2
0 , U

b =

W βk . We note that (fβk

sing, v)H−1,H1
0
= 0 for every function v that is odd with respect

to y. Since U1
0 and its numerical approximation verify this hypothesis as soon as Th is

symmetric with respect to the x axis we may apply Remark 5.7 and obtain a better
error estimate.

– For γk = −2|Pn|a(U1
0 ,W

γk,1) we apply (5.18) with Ua = U1
0 , U

b = W γk,1.
We note that (fγk,1

sing , v)H−1,H1
0
= 0 for every function v that is even with respect to y.

Since U1
0 and its numerical approximation verify this hypothesis as soon as Th is

symmetric with respect to the x axis we may apply Remark 5.7 and obtain a better
error estimate.

– For γk = 2|Pn|a(U2
0 ,W

γk,2) we apply (5.18) with Ua = U2
0 , U

b =W γk,2.
In conclusion, the terms αk, βk, γk admit quantified approximations of order O(h1−2γ)

for every γ ∈ (0, 1/2). □

Remark 5.11. — We summarize rapidly the results leading to Theorem 5.10, show-
ing that the estimates are explicit and indicating how to compute the estimates in
practice. Recall that we work with P 1 finite elements on meshes made of congruent
triangles (see Figure 4), meshing exactly the symmetric triangulation defining the
functions φi (see the symmetric case in Figure 1).
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(1) The constant C1 defined in (5.1) is explicit in terms of n and h since all triangles
in our meshes are congruent.

(2) Explicit estimates for |λ1−λ1,h|, ∥u1−u1,h∥L2(Pn), ∥∇u1−∇u1,h∥L2(Pn) based
on [44] are given in Section 5.1.

(3) Explicit estimates for quantities involving U1
0 , U2

0 are based on Theorem 5.2.
These estimates depend, in particular, on ∥freg∥L2 , ∥fsing∥H−(1/2)−γ , ∥f − fh∥H−1 , for
particular choices of the distribution f . The details concerning U1

0 and U2
0 are given

in Section 5.2.
(4) In view of Theorem 4.9, explicit estimates for eigenvalues of Mλ depend on

the estimates ∥∇u1 − ∇u1,h∥L2(Pn) and those for particular linear combinations of
functions (U1,2

j )n−1
j=0 . Section 5.3 shows in detail how these estimates are obtained.

The main ingredient is again Theorem 5.2.

6. Numerical simulations

6.1. Local minimality. — Given the regular polygon Pn with n sides inscribed in
the unit circle with a vertex at (1, 0), we divide it into n equal slices used in the
definition of φi, like in Figure 3. Then we give an integer m ⩾ 1 and for each one
of the triangles Tj , j = 0, . . . , n − 1 we construct a mesh Th consisting of congruent
triangles similar to 1

mTj . In this way we obtain a mesh with median length h = 1/m.
Examples are given in Figure 4. The procedure described in the following only applies

Figure 4. Examples of symmetric meshes for regular polygons used
in the computations.

for small values of n ⩾ 5. For n → ∞, triangles in the mesh become flat and the
proposed mesh is not appropriate anymore.

With this definition of mesh Th all triangles in the mesh are similar and the con-
stant C1 defined in the beginning of Section 5.1 can be explicitly identified in terms
of n. Given the mesh Th we compute using P 1 finite elements:

– the first two eigenvalues λ1,h, λ2,h and the first eigenfunction u1,h of the discrete
Dirichlet-Laplace eigenproblem (5.2).
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– the solutions U j
h = (U1

j,h, U
2
j,h) of∫

Pn

DUh∇v − λ1,h

∫
Pn

Uhv = (fh, v)H−1,H1
0

for the discrete distributions f j
h, j = 0, . . . , n− 1 given by

(f j
h, v)H−1,H1 =

∫
Pn

(∇φj · ∇u1,h)∇v +
∫
Pn

(∇φj · ∇v)∇u1,h + sλ1,h

∫
Pn

u1,hv.

using the normalization
∫
Pn

U j
hu1,h = 0.

– for 1 ⩽ k ⩽ n − 1 approximations of Wαk ,W βk ,W γk,1,W γk,2 are constructed
from (U1

j,h, U
2
j,h). Therefore we obtain the approximations of αk, βk, γk from Theo-

rem 4.9 that are of order O(h1−2γ) for γ ∈ (0, 1/2), with explicit error bounds given
in the previous section.
The procedure described above provides for each k = 1, . . . , n−1 intervals Iαk

, Iβk
, Iγk

for which we have the guarantee that αk ∈ Iαk
, βk ∈ Iβk

, γk ∈ Iγk
. Using the interval

arithmetic toolbox Intlab [52] we find intervals Ij(h, γ) containing the eigenvalues µj ,
0 ⩽ j ⩽ 2n−1 of Mλ described in Theorem 4.9. Given a value of h and the associated
numerical approximations we obtain a whole range of intervals Ij(h, γ) for γ ∈ (0, 0.5).
Note that changing γ at fixed h is not a difficulty since this parameter appears only
in the choice of constants and exponents. When γ is close to zero we obtain a weak
estimate in Theorem 5.2 while for γ close to 0.5 the constants in the estimates from
Remark 5.5 become very large. An appropriate choice for γ is made using a simple
grid search. If among the intervals Ij(h, γ) we obtain only two that contain zero then
we conclude, based on Proposition 4.5, that the regular polygon Pn is a local minimum
for P 7→ |P |λ1(P ). If this is not the case we decrease h and we repeat the procedure.

Remark 6.1. — Numerical algorithms employed in scientific computing use floating
point arithmetic. As a consequence there is a difference between the exact discrete
solution of the finite element problem and the one given by the numerical algorithm.
The sources of error are as follows:

– the numerical mesh is a slight perturbation of the exact mesh, leading to pertur-
bations in the mass and rigidity matrices.

– the linear systems are solved using iterative methods with a stopping criterion
related to the residual vector.
In general, it is admitted that errors coming from the above considerations are smaller
than the theoretical error estimates shown in Theorem 5.10. The condition number of
the linear systems involved is of order O(h−2), therefore, we expect that for h ⩾ 10−4

the machine errors do not dominate in the estimation of λ1. Moreover, for the gradient
terms and for U0, which have an even weaker convergence rate, the discretization
error is expected to dominate machine errors. We also make this assumption in the
following.

The results shown in this section prove the local minimality of the regular polygon
when neglecting errors coming from floating point computations. Most algorithms are
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designed such that these errors are minimized and therefore it is generally agreed
that these errors are smaller than the errors between the continuous solution and
the exact discrete one. However, guaranteeing that the floating point errors are small
enough it is a non-trivial matter that needs to be addressed in future works. Ideally,
the whole computation of the finite element problems should be handled using an
interval arithmetic library like Intlab [52], which is a non-trivial task in view of the
minimal size of the problems listed in Table 3.

Remark 6.2. — Before going further, let us justify our choice to work with finite
elements. There exist precise numerical methods that compute eigenvalues and eigen-
functions for the Laplace operator smooth domains or on polygons. Among these we
mention [17] where particular solutions are used coupled with interval arithmetic to
get guaranteed enclosures for the Laplace eigenvalues. These techniques were used
in [16] to answer a question of Payne regarding the nodal line of the first eigenfunc-
tion on a domain with holes. In [6] the authors give tight inclusions for the Neumann
eigenvalues and in [27] a fast numerical method is used for solving Laplace problems.

While the methods enumerated above can give precise approximation for the eigen-
values and eigenfunctions, this is no longer the case when approximating material
derivatives (2.16). Two non-trivial differences, compared to the case of the Laplace
operator treated in the references above, appear in our case: the operator in equations
(7.12) is −∆ − λ1(Pn)I and solutions (U1,2

j )n−1
j=0 are not in H2(Pn). As we discussed

previously, these functions have discontinuous normal derivatives across segments in-
side the regular polygon Pn. Adapting methods enumerated above to this case is not
straightforward.

Formulas given in Theorem 4.9 and Proposition 4.10 allow us to compute the
eigenvalues of the Hessian matrix in knowing the first eigenfunction u1 on Pn and
the pair (U1

0 , U
2
0 ) solution of (2.16). Using P 1 finite elements it is straightforward to

approximate the first eigenpair. Given a mesh Th with Nv vertices, and denoting by
(ϕi)

Nv
i=1 the P 1 basis functions, the rigidity and mass matrices are defined by

A =

(∫
Pn

∇ϕi · ∇ϕj
)

1⩽i,j⩽n

, B =

(∫
Pn

ϕiϕj

)
1⩽i,j⩽n

.

The first eigenpair and the second eigenvalue are approximated by solving the gen-
eralized eigenvalue problem Ax = λBx. Denote by x1 the eigenvector associated to
the first eigenvalue. Then (5.13) is solved by considering embedding the orthogonality
on u1,h in the linear system:(

A− λ1,hB c

cT 0

)(
x

ℓ

)
=

(
f

0

)
.

The constraint vector c is given by c = xT
1 B and the right hand side f is computed

by evaluating (f1,20 , ϕi)H−1,H1 for every ϕi in the finite element basis.
In order to have an error estimate small enough such that the interval around

the eigenvalue does not contain zero rather small values of h need to be considered,
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Table 1. Size of the computational problems for the finite element computations.

h d.o.f.
Pentagon 10−4 250 025 001
Hexagon 10−4 300 030 001
Heptagon 10−4 350 035 001
Octagon 10−4 400 040 001

Table 2. Numerical approximations of the 2n−4 non-zero eigenvalues
of the Hessian matrix for n ∈ {5, 6, 7, 8} together with intervals given
by the error estimate in Theorem 5.10

Pentagon
Eig. l.b. u.b. mult.

2.568803 2.359297 2.784816 2
8.015038 7.558395 8.460722 2
13.458443 13.012758 13.915086 2

Hexagon
Eig. l.b. u.b. mult.

1.323826 1.040291 1.629895 2
3.916803 3.112218 4.719205 2
12.990672 12.188270 13.795257 2
7.566593 6.326083 8.803012 1
11.540733 10.304314 12.781243 1

Heptagon
Eig. l.b. u.b. mult.

0.747352 0.446026 1.096876 2
2.056766 0.963449 3.148214 2
4.655979 3.078862 6.228621 2
12.292485 10.719843 13.869602 2
12.582047 11.490599 13.675364 2

Octagon
Eig. l.b. u.b. mult.

0.452095 0.182855 0.774247 2
1.171933 0.309482 2.034382 2
2.772135 1.273803 4.268064 2
12.049631 11.187182 12.912082 2
13.037208 11.541279 14.535540 2
3.999568 1.460555 6.536411 1
11.740713 9.203870 14.279726 1

leading to large computational problems. The value of h and the number of degrees
of freedom (d.o.f) for the computational problems are listed in Table 1. Therefore,
in order to be able to solve these problems the software FreeFEM [31] is used in
its parallel version together with the libraries PETSc [4], SLEPc [36], Hypre [23].
The computations use 200 processors and are run on the cluster Cholesky from the
IDCS Mesocenter at École Polytechnique. The error estimates allow us to obtain
sufficiently small intervals for h = 10−4 for n ∈ {5, 6, 7, 8}. The resulting eigenvalues
and quantities needed are given to the interval arithmetic library Intlab [52]. The
library is then used to compute the interval enclosures for the eigenvalues. The non-
zero eigenvalues and the corresponding enclosures are given in Table 2. The results
shown in Table 2 indicate that the regular polygon is a local minimizer for problem
(1.2) for n ∈ {5, 6, 7, 8}.

In Table 3 we estimate the largest mesh size h for which the certified numerical
computations validate the local minimality of the corresponding regular polygon.
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Exploiting the symmetry of the eigenfunction and of the functions U1
0 , U

2
0 the size of

the problems can be further reduced in half. The estimates presented in Table 3 are
not explicit and can only be checked after the numerical computations are finished.
The optimal mesh size depends, in particular, on the smallest non-zero eigenvalue of
the Hessian matrix, which is not known a priori and seems to decrease as n increases.

Table 3. Approximately optimal mesh sizes and number of degrees of
freedom for which currently known a priori estimates allow to certify
the local minimality.

Mesh size deg. freedom
Pentagon 9.8e-4 ≈ 2.6 million
Hexagon 4.2e-4 ≈ 17 million
Heptagon 1.9e-4 ≈ 97 million
Octagon 1.35e-4 ≈ 220 million

It is possible to compute the eigenvalues of the Hessian matrix for higher n, without
guarantee that the numerical eigenvalues are precise enough. Nevertheless, it is well
established that a priori estimates are rather pessimistic and the following results
might precise enough. In Table 4 we present the non-zero eigenvalues of the Hessian
matrix for h = 10−3 for 9 ⩽ n ⩽ 15. These eigenvalues are positive, suggesting that
the regular polygon is still a local minimizer in these cases.

6.2. General gradient descent simulations. — The gradient of the first eigenvalue
with respect to the coordinates of the vertices is given in Theorem 2.2. Using these
formulas is straightforward to implement a gradient descent algorithm starting from
random initial polygons.

Simulations were performed for the minimization of the first eigenvalue for n ∈
[5, 15] and in every case the result of the optimization was a polygon very close to
being regular. In order to see how close to being regular is the polygon ωn given by
the simulation the following information is given in Table 5: the optimal numerical
first eigenvalue, the difference between the maximal and minimal edge lengths, the
difference between the maximal and minimal angles (in radians), the difference be-
tween the optimal numerical eigenvalue and the precise first eigenvalue of the regular
polygons ω∗

n given on the following web page: https://www.hbelabs.com (based on
the article [39]). Repeating the simulation starting from random initial polygon al-
ways gives similar results. The results shown in Table 5 indicate that the optimal
numerical polygons ωn found by the numerical algorithm are close to being regular.
Furthermore, the value of the objective function is as close to the precise value given
for the actual regular polygon ω∗

n, as the precision of the numerical computations
allows. These computations further suggest that the regular polygon is indeed the
global minimizer for (1.2).
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Table 4. Numerically computed non-zero eigenvalues of the Hessian
matrix for larger 9 ⩽ n ⩽ 15 on meshes of size h = 10−3.

n = 9 mult.
0.2888 2
0.7145 2
1.7104 2
2.8667 2
11.4506 2
12.1695 2
13.4392 2

n = 10 mult.
0.1927 2
0.4601 2
1.1017 2
1.9625 2
2.4640 1
10.8361 2
11.9253 1
12.7814 2
13.5487 2

n = 11 mult.
0.1334 2
0.3096 2
0.7386 2
1.3501 2
1.9129 2
10.2373 2
12.1968 2
13.2741 2
13.4475 2

n = 12 mult.
0.0952 2
0.2160 2
0.5128 2
0.9473 2
1.4287 2
1.6659 1
9.6701 2
12.0620 1
12.6398 2
13.2059 2
13.5861 2

n = 13 mult.
0.0697 2
0.1554 2
0.3669 2
0.6801 2
1.0598 2
1.3586 2
9.1413 2
12.2461 2
12.8768 2
13.0664 2
13.7288 2

n = 14 mult.
0.0521 2
0.1146 2
0.2694 2
0.4994 2
0.7918 2
1.0742 2
1.1995 1
8.6527 2
12.1611 1
12.4975 2
12.5693 2
13.4024 2
13.7331 2

n = 15 mult.
0.0397 2
0.0864 2
0.2022 2
0.3744 2
0.5989 2
0.8406 2
1.0115 2
8.2033 2
12.0933 2
12.2933 2
12.9147 2
13.6292 2
13.6320 2

7. Reduction of the proof of the conjecture to a finite number of
numerical computations

In this section we provide a strategy for proving the conjecture using a finite number
of computations for a given number of sides. We denote by Pn the closure of the class
of simple polygons with at most n edges in the topology associated to the Hausdorff
distance between the complements. A polygon belonging to Pn may be degenerate in
the sense that one vertex can belong to a different edge. This degenerate situation
may be of different types, in particular it may lead to a disconnection, i.e., to a union
of two polygons, situation which can not occur for an optimal polygon.

Let us denote for every n ⩾ 3 the minimal value for the scale invariant formula-
tion by

ℓ∗n = min{|P |λ1(P ) : P ∈ Pn}.
It is known that ℓ∗n < ℓ∗n−1 (see [32, §3.3]).
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Table 5. Results of the gradient descent optimization algorithm with
random initial polygons.

n J(ωn) diff. sides diff. angles J(ωn)− J(ω∗
n)

5 18.919104 1.3e-5 2.3e-5 3.4e-9
6 18.590116 5.1e-5 7.7e-5 3.2e-8
7 18.429994 8.4e-5 1.8.1e-4 1.1e-7
8 18.342161 9.2e-5 2.1e-4 1.6e-7
9 18.289808 3.8e-4 3.7e-4 2.6e-7
10 18.256613 3.1e-4 6.1e-4 5e-7
11 18.234528 3.3e-4 4.1e-4 3.3e-7
12 18.219257 3.3e-4 5e-4 2.9e-7
13 18.208358 6.5e-4 1.3e-3 4.8e-7
14 18.200368 7.5e-4 2.1e-3 6.6e-7
15 18.194378 1.5e-3 3.1e-3 1.7e-6

The proof strategy is summarized as follows. First, theoretical and numerical results
in Sections 3–6 are applied to identify a quantified local minimality neighborhood
around the regular n-gon. Secondly, the objective function for the remaining polygons
should be investigated using a finite number of numerical computations. Multiple
aspects regarding this are established in this section:

– Fixing a value for the area, there exists an upper bound for the diameter of an
optimal polygon. This result is proved in Theorem 7.1 and establishes that the study
of the space of admissible n-gons can be reduced to a compact region.

– In Theorem 7.3 it is proved that polygons with fixed area verifying the diameter
bound found in Theorem 7.1 have a lower bound for the shortest edge.

– Given P ∈ Pn a numerically certified computation of |P |λ1(P ) ∈ [ℓn − ε, ℓn + ε]

may lead to the following outcomes:
(i) ℓn − ε > ℓ∗n: then P is not optimal and an open neighborhood around P

will be identified where the inequality λ1(P )|P | > ℓ∗n still holds. See Lemma 7.4.
(ii) ℓn + ε < ℓ∗n: a counterexample is found, showing the conjecture is false.
(iii) For any precision ε, using the available computing power, we have ℓ∗n ∈

[ℓn − ε, ℓn + ε]. In this case no conclusion can be drawn. Assuming that compu-
tations can be made arbitrarily precise, such a situation indicates that a non-
regular n-gon P exists such that λ1(P )|P | = ℓ∗n, indicating that the conjecture
is not valid.

Therefore, the proposed strategy can always be implemented, arriving at one of
the following outcomes:

(a) After a finite number of computations one proves the conjecture is true. The
compact space outside the local minimality neighborhood around the regular n-gon
is finitely covered.
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(b) After a finite number of computations one identifies a polygon with a lower
objective function than the one for the regular polygon - in this case the conjecture
is false.

(c) There exists a non-regular n-gon having exactly the same eigenvalue as the
regular one. The proof strategy will converge to such a polygon without being able
to reach it in a finite number of steps.

In order to justify that for every n the conjecture can be reduced to a finite number
of numerical computations, we begin with some theoretical analysis. Assuming the
area of a polygon with n sides is fixed (say π), we shall find a value Dmax such that
if the diameter of the polygon exceeds Dmax then the polygon cannot be optimal for
(1.2). As well, we shall find a minimal value for the length of the edges emin and for the
inradius rmin of an optimal polygon. All these results (which depend on n), produce a
compact set of polygons (seen as subset of R2n−4) outside which any polygon cannot
be optimal for |P |λ1(P ).

Theorem 7.1. — Let n ⩾ 3. There exists a value Dmax > 0 such that if P ∈ Pn,
|P | = π and diam(P ) > Dmax then

πλ1(P ) > ℓ∗n.

In other words, when searching the minimizer in the class of n-gons of area π,
it is enough to restrict to polygons with diameter less than or equal to Dmax. This
information is crucial in order to limit the number of numerical computation and
leads to the possibility of a formal, inductive, proof of the conjecture. The value of
Dmax can be computed and depends on ℓ∗n−1 and λ1(Pn).

Proof. — The proof is inspired by the surgery argument of [13], where the authors
propose a precise way to estimate the diameter of an optimal set in relationship with
the first eigenvalue. The key idea is that if the diameter of an optimal set is too large,
one can cut the set with a strip of positive width in order to produce a better one.
The main difficulty in our case is that cutting a polygon having n edges with a strip
may produce a union of polygons, some of which may potentially have more than n

edges, making them non-admissible. In order to handle this situation, further analysis
is necessary.

Setting the constants. — Denoting Λ = ℓ∗n/π
2, we consider the unconstrained problem

(7.1) min{λ1(P ) + Λ|P | : P ∈ Pn}.

Then, the solution of this problem is the same as the solution of the constrained
problem with area π set in (1.2). Let us denote by Qn an optimal polygon, having
area π. Let K ⩾ ℓ∗n/π be fixed. For instance, K may be obtained using a numerical
approximation from above of λ1(Pn).
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Surgery. — In order to get the bound on the diameter, we shall use the surgery
results of [13]. A series of technical constants are introduced in [13] with the following
purpose: given a bounded open set Ω, look at the maximum of the torsion function in
the intersection of Ω with some strip. If this maximum is less than a technical constant,
then after removing the strip (and so disconnecting the set or not) one of the connected
components has smaller first eigenvalue than the original set, after rescaling. The
technical procedure developed in [13] applies to any open set, in particular to polygons.
However, extra care is needed in our case because the procedure may increase the
number of the sides of the polygon. The technical constants from [13] are denoted
below c, C0 and r0. We refer to [13] for all details. In this paper we keep track of the
constants in order to leave the path open for effective future computations.

We set
c =

1

2π(8 + 12 log 2)e1/4πK2
,

value which plays the crucial role in [13, Lem. 3.1]. We can use [13, Lem. 4.2] with
the constant c from above, which (in the notations of [13, Lem. 4.2]) leads to suitable
values (r0, C0). For instance, we can choose C0(C0 + 1) ⩽ c and r0 = C0. Roughly
speaking, if the torsion function of a bounded open set Ω of measure 1 is below C0r

in some infinite strip Sr of width r < r0, then one of the connected components of
Ω∖ Sr has lower first eigenvalue than Ω, after rescaling.

Step 1. Use of [13, Lem. 3.1]. — In view of the choice of c, the polygon Qn is a subso-
lution for the torsion energy

P 7−→ E(P ) + c|P |,
in the class Pn, i.e., for every P ∈ Pn such that P ⊆ Qn we have

E(Qn) + c|Qn| ⩽ E(P ) + c|P |,
where the torsion energy of P is defined by

E(P ) = min
u∈H1

0 (P )

1

2

∫
P

|∇u|2dx−
∫
P

udx.

Indeed, if for some P ∈ Pn, P ⊆ Qn we would have the opposite inequality

E(P ) + c|P | < E(Qn) + c|Qn|,
then from [13, Lem. 3.1]) we would get

|P |λ1(P ) < |Qn|λ1(Qn),

in contradiction with the optimality of Qn.

Step 2. Use of [13, Cor. 4.3]. — Let w be the torsion function of Qn. Assume a ∈ R
and denote by

Sr(a) = {(x, y) : r − a < x < r + a}
an open strip in R2. Assume that the interior of the strip intersects Qn and does not
contain any vertex. In this case, the intersection of the strip with Qn is a union of

J.É.P. — M., 2024, tome 11



90 B. Bogosel & D. Bucur

trapezoids {Tj}j∈J (see Figure 5). When removing any of these trapezoids, one splits
the polygon Qn in two (or more, if a vertex is on the boundary of the strip) polygons.

Qn

{Tj}

Figure 5. Intersecting Qn with a strip not containing a vertex gives
a union of trapezes Tj .

Following [13, Cor. 4.3], using the constants (r0, C0) defined above, we know that
if maxS2r(a) w < C2

0 then

(7.2) E(Qn ∖ Sr(a)) + c|Qn ∖ Sr(a)| < E(Qn) + c|Qn|.
In fact, taking a closer look to the argument of [13, Cor. 4.3], leads as well to

(7.3) E(Qn ∖ T j) + c|Qn ∖ T j | < E(Qn) + c|Qn|.
As a consequence of [13, Lem. 3.1] this implies

|Qn ∖ T j |λ1(Qn ∖ T j) < |Qn|λ1(Qn) for every j ∈ J.

This last inequality leads to a contradiction of the optimality of Qn only if the open
set Qn ∖ T j consists in a union of polygons, each one with at most n edges. In this
case, it is enough to pick the one with minimal first eigenvalue and contradict the
optimality of Qn. Of course, it may happen that one of the connected components of
Qn∖T j is a polygon with more than n edges, as new edges could be produced by the
surgery procedure. We shall prove that if the diameter is larger than some computable
constant, then there exists some suitable strip Sr(a) and a suitable trapezoid Tj such
that each connected component of Qn ∖ T j is a polygon with at most n edges. This
contradicts the optimality of Qn.

Step 3. Preparatory facts. — We know from the Saint-Venant inequality [46] that∫
Qn

wdx ⩽
π

8
.

The following results is, for instance, contained in [13, Lem. 2.2]:

if w(x0) ⩾ η > 0, then
∫
Bδ(x0)

wdx ⩾
ηπ

2
δ2,

where δ = 2
√
η.
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Consequently, if we consider a strip S2r0(a) such that

max
S2r0 (a)

w > C2
0 ,

then, recalling that C0 = r0, ∫
B2C0

(x0)

wdx ⩾ 2πC4
0 ,

where x0 is a maximum point of w in S2r0(a). In particular∫
S4r0 (a)

wdx ⩾ 2πC4
0 .

Let us introduce the natural number (⌊·⌋ denotes the integer part)

k =

⌊
π/8

2πC4
0

⌋
+ 1 =

⌊
1

16C4
0

⌋
+ 1.

Clearly, if the diameter of Qn is larger than 8C0k, then taking the x-axis along the
diameter, there will be at least one strip of width 4C0 where the mass of w is less
than C2

0 .
We recall now the following inequality, for which we refer to [7]. Let Ω be a bounded,

open simply connected set in R2. Let wΩ be the torsion function in Ω. We have
wΩ(x) =

∫
Ω
GΩ(x, y)dy, whereGΩ(x, y) is the Green function for the Dirichlet-Laplace

operator on Ω. From the Cauchy-Schwarz inequality we have

|wΩ(x)| ⩽ |Ω|1/2
(∫

Ω

GΩ(x, y)
2dy

)1/2

.

In [7, Proof of Th. 1.5, Ineq. (5.16)] it is shown that if πR2
0 = |Ω| then∫

Ω

G2
Ω(x, y)dy ⩽

8d(x)R0

π
,

where d(x) is the distance from x to ∂Ω. This leads to the estimate

(7.4) |wΩ(x)| ⩽ |Ω|3/4 8
1/2d(x)1/2

π3/4
.

We use this inequality for Ω = Qn, so that |Qn| = π, getting the bound wQn
(x) ⩽

2
√
2d(x)1/2.
We introduce now e∗, d∗ such that

(7.5) 2
√
2(e∗)1/2 < C2

0 and d∗ =
π

e∗
.

Lemma 7.2. — The diameter of Qn can not be larger than 2d∗ + (k + n− 2)8C0.

Proof. — Assume for contradiction that there are two vertices a0, am such that
the diameter of Qn is the segment [a0,am] and that its length is larger than 2d∗ +
(k + n− 2)8C0. Around the midpoint of [a0am] we build k + n − 2 adjacent strips
of width 8C0. Outside the strips there are two sub-segments of [a0am], each having
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length at least d∗ (see Figure 6). We remove at most n− 2 strips having a vertex in
their interior and among the remaining k strips there is one, say S4C0(a) such that

max
S2C0

(a)
w < C2

0 .

From the choice of the strip, the set SC0
(a) does not contain any vertex of the poly-

gon Qn, so that an edge either crosses the strip from one side to the other, or it
stays on the same side. In particular, this implies that Qn ∩SC0(a) is a union of open
trapezoids {Tj}j . Moreover, we get for each such trapezoid

|Qn ∖ T j |λ1(Qn ∖ T j) < |Qn|λ1(Qn).

Assume we remove one trapezoid, say Tj , from Qn ∩ SC0
(a) and get two polygons

P l
Tj

and P r
Tj

, which together have n+ 4 edges. There are two possibilities.

(1) Both polygons P l
Tj

and P r
Tj

have no more than n edges. This situation contra-
dicts the optimality of Qn.

(2) One of P l
Tj

and P r
Tj

has n+ 1 edges and the other one has 3 edges.
In the following, we suppose that the second situation above occurs for each trape-
zoid Tj , otherwise we contradict optimality. We claim that on one side of the strip
there are only triangles.

If there is only one trapezoid, there is nothing to prove. Assume for contradiction
that there are two trapezoids, which when removed generate triangles on both sides of
the strip. From simple connectedness, there is a continuous curve contained inside the
polygon, joining the interiors of the two triangles. See Figure 6(a). This curve crosses
the strip at least one more time, implying the presence of at least another trapezoid,
which cannot leave a triangle on either side when removed without disconnecting the
polygon. Therefore, removing this trapezoid, we split the polygon in two polygons
with less than n edges contradicting optimality.

In conclusion, removing any one of the trapezoids Tj generates triangles, all situated
on one side of the strip. Assume this occurs on the left. Now, we choose the triangle
containing the vertex a0 on the left, which is at distance at least d∗ from the strip and
the trapezoid which isolates it in a triangle. We continuously move the strip SC0

(a)

to the right (and the trapezoid with it) up to the moment when the strip touches a
first vertex. This vertex can be a neighbor of a0 (Figure 6(a)) or a different vertex ak

(Figure 6(c)). In any case, the trapezoid will split the polygon in either two or three
polygons and the number of edges for each polygon is at most n.

Moreover, one polygon is the triangle with a vertex in a0. The area of this triangle
together with the trapezoid is at least d∗e/2, where e is the length of the longest
vertical edge of the trapezoid, on the right side of the strip. This set is fully contained
in the polygon, so has area at most π, meaning that e/2 ⩽ e∗. Using inequalities
(7.4)–(7.5) we get that the maximum of wQn

on the trapezoid is below C2
0 . This

contradicts the optimality of the polygon. □

This concludes the proof of Th. 7.1. □
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SC0(a)
SC0

(a)

k + n − 2 strips

a0 am

a1

an−1

d∗ ea0

an−1

am

a1

SC0
(a)

k + n − 2 strips

a0 am

a1

an−1

d∗ e

akak

a0

a1

am

an−1

(a) (b) (c)

Figure 6. (a) Continuous curve linking two triangles on opposite
sides of the strip. Moving the trapezoids in the proof of Lemma 7.2:
the trapezoid meets a neighbor of a0 (b) or another vertex ak (c).

Theorem 7.3. — Assume P = [a0 . . .an−1] ∈ Pn is such that |P | = π, diam(P ) ⩽
Dmax. There exists δ0 > 0 such that if |a0a1| ⩽ δ ⩽ δ0 then

(7.6) πλ1(P ) ⩾ ℓ∗n−1 − Cδ1/2,

where C depends only on n.

In other words, an optimal polygon of area π in Pn can not have an edge smaller
than a certain threshold. To observe this fact, it is enough to choose δ0 such that

(7.7) ℓ∗n−1 − Cδ
1/2
0 > ℓ∗n.

The following type of result has been proved by Davies in [21] and refined by Pang in
[49]. We give a short proof below, based on the comparison with the torsion function.

Lemma 7.4. — Assume P = [a0 . . .an−1] ∈ Pn is such that |P | = π, diam(P ) ⩽ Dmax.
Let Q ∈ Pn, Q = [b0 . . . bn−1] such that for every i = 0, . . . , n− 1, |aibi| ⩽ δ. Then

|λ1(Q)− λ1(P )| ⩽ 4
√
2πe1/4π(max{λ1(P ), λ1(Q)})2λ1(P ∩Q)δ1/2.

Proof. — Assume in a first step that Q ⊆ P and denote wQ, wP the associated torsion
functions. The inequality is a consequence of [13, Ineq. (2.6)] which gives

0 ⩽ λ1(Q)− λ1(P ) ⩽ 2e1/4πλ1(P )
2λ1(Q)

∫
P

(wP − wQ)dx

and of the estimate ∫
P

(wP − wQ)dx ⩽ 2
√
2πδ1/2,

which is a consequence of (7.4) applied to wP and of the harmonicity of wP − wQ

on Q.
In general, if Q ̸⊆ P , we use the previous argument and compare both λ1(P ), λ1(Q)

with λ1(P ∩Q). □

Remark 7.5. — The statement of Lemma 7.4 can be easily extended to the case where
|P | has lower and upper bounds of the form 0 < m < |P | < M . The corresponding
constants can be made explicit in terms of m and M .
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Proof of of Theorem 7.3. — Consider P = [a0 . . .an−1] ∈ Pn is such that |P | = π,
diam(P ) ⩽ Dmax and |a0a1| ⩽ δ. If πλ1(P ) ⩾ ℓ∗n−1, inequality (7.6) is proved.
Assume that πλ1(P ) < ℓ∗n−1. We shall build a polygon Q ∈ Pn−1 having almost the
same eigenvalue and area.

Assume at least one of the angles â0, â1 is convex, for example â0. Then we move
the point a0 towards a1 continuously, denoting it at

0 = (1− t)a0+ ta1. If the segment
[an−1a

t
0] does not meet any other vertex of the polygon for any t ∈ (0, 1), then we

denote Q the new polygon obtained for t = 1. Clearly, Q ∈ Pn−1 and Lemma 7.4 can
be applied to get

λ1(Q)− λ1(P ) ⩽ 4
√
2πe1/4πλ1(Q)3δ1/2.

From Makai’s inequality [45] we know that λ1(P ) ⩾ 1/4ρ2P , where ρP is the inradius.
Since πλ1(P ) < ℓ∗n−1, we get

π

4ℓ∗n−1

< ρ2P .

On the other hand, ρQ ⩾ ρP − δ, hence

λ1(Q) ⩽
1

ρ2Q
λ1(B1) ⩽

1(
π/(4ℓ∗n−1)

)1/2 − 2δ
λ1(B1).

Finally we get
ℓ∗n−1

π −Dmaxδ
− λ1(P ) ⩽

ℓ∗n−1

|Q| − λ1(P ) ⩽ λ1(Q)− λ1(P )

⩽ 4
√
2πe1/4π

( 1(
π/(4ℓ∗n−1)

)1/2 − 2δ
λ1(B1)

)3
δ1/2,

and we conclude this case.
If for some t ∈ (0, 1) the edge [an−1a

t
0] meets a vertex. Then the inequality above

is still true, and the polygon P t is split in two polygons, each one with at most n− 1

edges. See Figure 7 (left). We choose the one which has the lowest eigenvalue and
repeat the previous argument.

If both angles â0, â1 are concave, we consider the same type of movement at
0 =

(1−t)a0+ta1. If the segment [an−1a
t
0] does not meet any other vertex of the polygon

for any t ∈ (0, 1), then we denote Q the new polygon obtained for t = 1 and follow the
previous argument. The difference occurs if [an−1a

t
0] meets a vertex, say ak. In this

case the angle âk is convex. However, there is no splitting in this case. We continue
the movement, moving at the same time ak parallel to [an−1a0], denoted as

k See
Figure 7 (right). If the movement finishes at t = 1, we apply previous argument.
If the movement blocks because the segments [ak−1a

s
k], [as

k,ak+1] touch another
vertex then the polygon splits, since we move a convex angle towards the interior of
the polygon, and we stop following the same argument as in the previous case. If it
blocks because [an−1a

t
0] meets another vertex, we treat it the same way as ak and

continue the movement. The blocking can occur at most n− 3 times. □
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a0 a1

an−1

ak

at0
a0 at

0
a1

ak

an−1 a0 a1

an−1

ak

ak−1

ak+1

at0

an−2

ask

a2

ak

a0 at
0 a1

an−2 ak−1

a2

ak+1

as
k

a −1n

Figure 7. Modification of the polygon for removing a small edge: the
case of a convex angle â0 (left), the case of two concave angles â0, â1

(right)

Below, based on previous results obtained in this section, we present a strategy
which may lead to the proof of the conjecture after a finite number of numerical
computations.

Strategy for the proof of the conjecture. — For every n ⩾ 5, one of the following issues
occurs: either after a finite number of computations the conjecture can be proved or
disproved, or the proposed algorithm does not converge in a finite number of steps
due to the presence of a non-regular polygon having the same objective function.

Theorem 7.6. — For n ⩾ 5 we have the following alternative:
(a) The validity of the conjecture can be established using a finite number of certified

numerical computations.
(b) There exists a non-regular n-gon Qn ∈ Pn for which |Qn|λ1(Qn) = ℓ∗n.

Proof. — Assume (b) does not hold. Then an optimal n-gon Qn (which exists) is
either the regular n-gon, or a general n-gon verifying |Qn|λ1(Qn) < ℓ∗n.

We know the inequality is true for n = 4. Assume now that the inequality is true
for polygons having up to n−1 edges. Then, recalling the notation Pn = [a∗

0 . . .a
∗
n−1]

for the regular polygon inscribed in the unit circle with one vertex at a∗
0 = (1, 0),

we have ℓ∗n−1 = λ1(Pn−1)|Pn−1|. We have a certified estimate from above and from
below for this value. In order to prove the conjecture for n edges, we shall analyze
problem (7.1) in the following steps.

Step 1. — Compute a certified approximation of the first eigenpair (λ1, u1) on Pn.
The certified approximation of the eigenfunction u1 holds in H1

0 (Pn).

Step 2. — For the regular polygon Pn inscribed in the unit circle, having the vertex
a0 = (1, 0) we compute the spectrum of the shape Hessian of λ1(Pn)|Pn| and we
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certify the positivity for 2n − 4 of its eigenvalues using results from Sections 4, 5.3.
This concludes that the regular polygon is a local minimum.

From now on, we identify polygons P = [a0a1 . . .an−1], with ai = (xi, yi), by a
point in R2n−4 having coordinates (x2, y2, . . . , xn−1, yn−1). We consider the first two
points fixed: a0 = a∗

0,a1 = a∗
1. Without restricting generality, we can assume that

the edge [a0a1] is the longest edge in the polygon P . Let us denote P the family of
such polygons of Pn, identified as a compact subset in R2n−4.

Step 3. — Compute, using Theorem 3.18, a neighborhood of Pn in R2n−4, where

|P |λ1(P ) ⩾ |Pn|λ1(Pn).

More precisely, for a value ε0 > 0 we have |P |λ1(P ) ⩾ |Pn|λ1(Pn) for every P =

[a0 . . .an−1], with a0 = a∗
0, a1 = a∗

1, such that for all i = 2, . . . , n−1, |aia
∗
i | ⩽ ε0. Of

course, in order to obtain ε0, the availability of the constants C and ϑ in Theorem 3.18
is assumed. Let us denote by Ln this neighborhood, which is a closed set.

Step 4. — Using Theorem 7.1 find an estimate for the minimal measure of an optimal
polygon in the class P. Here we use the fact that the maximal length of an edge is
precisely |a0a1| = |a∗

0a
∗
1|. Then, we get√

|Pn|
|P | |a∗

0a
∗
1| ⩽ Dmax.

Using Makai’s inequality we get a lower bound for the inradius of an optimal n-gon
(called ρmin in the sequel), since

1

4ρ2P
|P | ⩽ |P |λ1(P ).

In particular, if 4ρ2P < |P |/ℓ∗n then P cannot be optimal. Using Theorem 7.3, we
obtain a lower bound on the shortest edge, emin.

All these three geometric constraints: measure, inradius and shortest edge generate
a smaller compact set P′, defined by purely geometric constraints, such that P′ ⊆ P

in R2n−4. In particular, the lower bound on the inradii of such polygons, makes that
the inequality in Lemma 7.4 becomes uniform. Below we work with δ ⩽ ρmin/4 < 1.
Indeed, for every P,Q in the class P′ the value λ1(Bρmin−δ) is an upper bound for
λ1(P ), λ1(Q), λ1(P ∩ Q): for P,Q ∈ P′, there exists a universal constant K (with
explicit value, issued from Lemma 7.4) such that if the distance between the respective
vertices is at most δ then |λ1(P )− λ1(Q)| ⩽ Kδ1/2.

The variation of the area ||P | − |Q|| is also controlled by a term of the form K ′δ,
with K ′ = nDmax + nπ. There exist universal upper bounds for the first eigenvalue
and for the area in P′. Therefore, there exists an explicit constant K ′′ such that if the
distance between the respective vertices of P,Q ∈ P′ is at most δ then

(7.8) |λ1(P )|P | − λ1(Q)|Q|| ⩽ |P |(λ1(P )− λ1(Q)) + λ1(Q)||P | − |Q|| ⩽ K ′′δ1/2.
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Step 5. — Consider ε1 > 0 and δ > 0 such that K ′′(2δ)1/2 < ε1/4, with K ′′ from
(7.8). Moreover, suppose that 2δ ⩽ δ0 with δ0 from (7.7). We cover the bounded
set P′ ∖ Ln (admissible n-gons which are not in the local minimality neighborhood)
with at most c2n−4(Dmax/δ)

2n−4 balls (Bj)j∈J of radius δ, where c2n−4 is a dimen-
sional constant. Several estimates of c2n−4 are available, a non optimal one being
(
√
2n− 4Dmax/2δ)

2n−4.
Choose one of the balls Bj enumerated above. Take an admissible polygon P ∈

P′ ∖ Ln having coordinates (x2, y2, . . . , xn−1, yn−1) in the ball Bj . If such a polygon
does not exist, there is nothing to be done and we move to the next ball. We evaluate
|P |λ1(P ) numerically, obtaining a certified estimate interval of length at most ε1/4.
If this certified computation gives

(7.9) |P |λ1(P ) ⩾ ℓ∗n +
ε1
2
,

then P is not optimal and, in view of the choice of the constant δ, no other optimal
polygon exists having coordinates in the same ball. If (7.9) holds for every ball Bj

containing an admissible polygon then the conjecture is solved. If for some polygon
the inequality fails, we divide ε1 by 2 and restart the computation.

The procedure can have the following outcomes:
– For some ε1 > 0 small enough inequality (7.9) holds for all the balls covering

P′ ∖ Ln. In this case, the conjecture is proved in a finite number of steps.
– The previous outcome never occurs. Therefore, there exists a sequence of

n-gons Qk outside Ln such that lim infk→∞ |Qk|λ1(Qk) ⩽ ℓ∗n. This sequence will have
a converging subsequence having a limit Q ∈ Pn. Since we supposed that option (b)
does not hold, the polygon Q will be a counterexample for the conjecture, i.e.,
|Q|λ1(Q) < ℓ∗n. Therefore, after a finite number of computations it will be possible
to check that for a given k we have |Qk|λ1(Qk) < ℓ∗n, disproving the conjecture. □

Remark 7.7. — From practical point of view, this procedure is rather inefficient and
abstract, but it shows that the proof strategy can succeed provided enough comput-
ing power is available. The strategy above could definitely be improved by taking
advantage of particular features of the problem: monotonicity of eigenvalues for in-
clusions, monotonicity of the area for inclusions, easy computation of the first order
shape derivatives, lower bounds by geometric features like the inradius or the distance
function to boundary, etc. It is expected that the confidence neighborhood is larger
for polygons which are far away from the regular one.

Remark 7.8 (Polygonal Saint-Venant inequality). — Another variational energy of
interest is torsional rigidity. It is denoted by

(7.10) T (Ω) =

∫
Ω

wdx, where w verifies
{−∆w = 1 in Ω,

w = 0 on ∂Ω,

and the problem to consider

(7.11) max
P∈Pn,|Ω|=π

T (P ).
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The Saint-Venant inequality states that the maximum of the torsional rigidity among
all sets of area π is achieved on the disc. Pólya and Szegö have also conjectured in
1951 (see [50, p. 158]) the following.

Conjecture. — The unique solution to problem (7.11) is the regular polygon with n

sides and area π.

All the results we have obtained for the eigenvalue transfer similarly to the con-
jecture above. However, this conjecture is computationally less challenging than the
eigenvalue. In particular, there is no additional normalization and orthogonality con-
straints for w and for the associated material derivatives. The proof of the local
maximality goes through the computation of the Hessian matrix of (7.10) on the
regular polygon. The expression of its coefficients was obtained by Laurain in [43].
Recalling that the functions φi are constructed in (2.8), one introduces the functions
U i ∈ H1

0 (P,R2), i = 0, . . . , n− 1

(7.12)
∫
P

DU i∇v =

∫
P

−(∇φi ⊗∇w)∇v
+ 2(∇w ⊙∇v)∇φi +

∫
P

v∇φi, for every v ∈ H1
0 (P ).

The following result is proved by Laurain in [43, Prop. 14]: the Hessian matrix T ∈
R2n×2n of the torsional rigidity (7.10) with respect to the coordinates of the n-gon is
given by the following n× n block matrix

T = (T ij)0⩽i,j⩽n−1,

where the 2× 2 blocks are given by

(7.13)

T ij =

∫
P

DU iDUT
j +∇φi ⊗ SD

1 ∇φj + SD
1 ∇φi ⊗∇φj

+

∫
P

(1
2
|∇w|2 − w

)
(2∇φi ⊙∇φj)

+

∫
P

−(∇φi · ∇w)(∇φj ⊗∇w)− (∇φj · ∇w)(∇w ⊗∇φi)

−
∫
P

(∇φi · ∇φj)(∇w ⊗∇w),

where U i, i = 0, . . . , n− 1 are solutions of (7.12) and

SD
1 = (−1/2|∇w|2 + w) Id+∇w ⊗∇w.

Appendix. Proof of Proposition 4.10

Recall that functions φj are associated to a symmetric triangulation Tj , 0 ⩽ j ⩽
n− 1. The gradients of φj are expressed in (4.5).
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First diagonal term from the real part:

a
(
U1

0 ,

n−1∑
j=0

cos(jkθ)U1
0 ◦RT

jθ

)
=

∫
Ω

n−1∑
j=0

cos(jkθ)(∇φj · ∇U1
0 )(cos(jθ)∂xu1 + sin(jθ)∂yu1)

+

∫
Ω

n−1∑
j=0

cos(jkθ)(∇φj · ∇u1)(cos(jθ)∂xU
1
0 + sin(jθ)∂yU

1
0 )

=

∫
Ω

n−1∑
j=0

(2 cos(jkθ) cos(jθ)∂xφj)∂xu1∂xU
1
0

+

∫
Ω

n−1∑
j=0

(2 cos(jkθ) sin(jθ)∂yφj)∂yu1∂yU
1
0

+

∫
Ω

n−1∑
j=0

(cos(jkθ) cos(jθ)∂yφj + cos(jkθ) sin(jθ)∂xφj)∂yu1∂xU
1
0

+

∫
Ω

n−1∑
j=0

(cos(jkθ) cos(jθ)∂yφj + cos(jkθ) sin(jθ)∂xφj)∂xu1∂yU
1
0

=
1

sin θ

n−1∑
j=0

2(cos jkθ cos jθ sin(j + 1)θ − cos(j + 1)kθ cos(j + 1)θ sin jθ)

∫
Tj

∂xu1∂xU
1
0

+
1

sin θ

n−1∑
j=0

2(cos(j + 1)kθ sin(j + 1)θ cos jθ − cos jkθ sin jθ cos(j + 1)θ)

∫
Tj

∂yu1∂yU
1
0

+
1

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ) cos(2j + 1)θ

∫
Tj

(∂xu1∂yU
1
0 + ∂yu1∂xU

1
0 )

=
2

sin θ

n−1∑
j=0

1

2

(
sin(2j + 1)θ(cos jkθ − cos(j + 1)kθ)

+ sin θ(cos jkθ + cos(j + 1)kθ)
) ∫

Tj

∂xu1∂xU
1
0

+
2

sin θ

n−1∑
j=0

1

2

(
sin(2j + 1)θ(cos(j + 1)kθ − cos jkθ)

+ sin θ(cos jkθ + cos(j + 1)kθ)
) ∫

Tj

∂yu1∂yU
1
0

+
1

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ) cos(2j + 1)θ

∫
Tj

(∂xu1∂yU
1
0 + ∂yu1∂xU

1
0 )

=

n−1∑
j=0

(cos jkθ + cos(j + 1)kθ)

∫
Tj

∇u1 · ∇U1
0

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U1

0 .
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Second diagonal term from the real part:

a
(
U2

0 ,

n−1∑
j=0

cos(jkθ)U2
0 ◦RT

jθ

)

=

∫
Ω

n−1∑
j=0

cos(jkθ)(∇φj · ∇U2
0 )(− sin(jθ)∂xu1 + cos(jθ)∂yu1)

+

∫
Ω

n−1∑
j=0

cos(jkθ)(∇φj · ∇u1)(− sin(jθ)∂xU
2
0 + cos(jθ)∂yU

2
0 )

=

∫
Ω

n−1∑
j=0

(−2 cos(jkθ) sin(jθ)∂xφj)∂xu1∂xU
2
0

+

∫
Ω

n−1∑
j=0

(2 cos(jkθ) cos(jθ)∂yφj)∂yu1∂yU
2
0

+

∫
Ω

n−1∑
j=0

(− cos(jkθ) sin(jθ)∂yφj + cos(jkθ) cos(jθ)∂xφj)∂yu1∂xU
2
0

+

∫
Ω

n−1∑
j=0

(− cos(jkθ) sin(jθ)∂yφj + cos(jkθ) cos(jθ)∂xφj)∂xu1∂yU
2
0

=
1

sin θ

n−1∑
j=0

2(cos(j + 1)kθ − cos jkθ) sin(j + 1)θ sin jθ

∫
Tj

∂xu1∂xU
2
0

+
1

sin θ

n−1∑
j=0

2(cos(j + 1)kθ − cos jkθ) cos jθ cos(j + 1)θ

∫
Tj

∂yu1∂yU
2
0

− 1

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ) sin(2j + 1)θ

∫
Tj

(∂xu1∂yU
2
0 + ∂yu1∂xU

2
0 )

=
2

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)
cos θ − cos(2j + 1)θ

2

∫
Tj

∂xu1∂xU
2
0

+
2

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)
cos θ + cos(2j + 1)θ

2

∫
Tj

∂yu∂yU
2
0

− 1

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ) sin(2j + 1)θ

∫
Tj

(∂xu1∂yU
2
0 + ∂yu∂xU

2
0 )

=
cos θ

sin θ

n−1∑
j=0

(cos(j + 1)kθ − cos jkθ)

∫
Tj

∇u1 · ∇U2
0

+

n−1∑
j=0

cos(j + 1)kθ − cos jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U2

0 .
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Term on position (1, 2) from the imaginary part:

a
(
U1

0 ,

n−1∑
j=0

sin(jkθ)U2
0 ◦RT

jθ

)

=

∫
Ω

n−1∑
j=0

sin(jkθ)(∇φj · ∇U1
0 )(− sin(jθ)∂xu1 + cos(jθ)∂yu1)

+

∫
Ω

n−1∑
j=0

sin(jkθ)(∇φj · ∇u1)(− sin(jθ)∂xU
1
0 + cos(jθ)∂yU

1
1 )

=

∫
Ω

n−1∑
j=0

(−2 sin(jkθ) sin(jθ)∂xφj)∂xu1∂xU
1
0

+

∫
Ω

n−1∑
j=0

(2 sin(jkθ) cos(jθ)∂yφj)∂yu1∂yU
1
0

+

∫
Ω

n−1∑
j=0

(− sin(jkθ) sin(jθ)∂yφj + sin(jkθ) cos(jθ)∂xφj)∂yu1∂xU
1
0

+

∫
Ω

n−1∑
j=0

(− sin(jkθ) sin(jθ)∂yφj + sin(jkθ) cos(jθ)∂xφj)∂xu1∂yU
1
0

=
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ − sin jkθ) sin(j + 1)θ sin jθ

∫
Tj

∂xu1∂xU
1
0

+
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ − sin jkθ) cos jθ cos(j + 1)θ

∫
Tj

∂yu1∂yU
1
0

− 1

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ) sin(2j + 1)θ

∫
Tj

(∂xu1∂yU
1
0 + ∂yu1∂xU

1
0 )

=
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ − sin jkθ)
cos θ − cos(2j + 1)θ

2

∫
Tj

∂xu1∂xU
1
0

+
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ − sin jkθ)
cos θ + cos(2j + 1)θ

2

∫
Tj

∂yu1∂yU
1
0

− 1

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ) sin(2j + 1)θ

∫
Tj

(∂xu1∂yU
1
1 + ∂yu1∂xU

1
0 )

=
cos θ

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ)

∫
Tj

∇u1∇U1
0

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− cos(2j + 1)θ − sin(2j + 1)θ

− sin(2j + 1)θ cos(2j + 1)θ

)
∇u1 · ∇U1

0 .
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Term on position (2, 1) from the imaginary part:

a
(
U2

0 ,

n−1∑
j=0

sin(jkθ)U1
0 ◦RT

jθ

)

=

∫
Ω

n−1∑
j=0

sin(jkθ)(∇φj · ∇U2
0 )(cos(jθ)∂xu1 + sin(jθ)∂yu1)

+

∫
Ω

n−1∑
j=0

sin(jkθ)(∇φj · ∇u)(cos(jθ)∂xU
2
0 + sin(jθ)∂yU

2
0 )

=

∫
Ω

n−1∑
j=0

(2 sin(jkθ) cos(jθ)∂xφj)∂xu1∂xU
2
0

+

∫
Ω

n−1∑
j=0

(2 sin(jkθ) sin(jθ)∂yφj)∂yu1∂yU
2
0

+

∫
Ω

n−1∑
j=0

(sin(jkθ) cos(jθ)∂yφj + sin(jkθ) sin(jθ)∂xφj)∂yu1∂xU
2
0

+

∫
Ω

n−1∑
j=0

(sin(jkθ) cos(jθ)∂yφj + sin(jkθ) sin(jθ)∂xφj)∂xu1∂yU
2
0

=
1

sin θ

n−1∑
j=0

2(sin jkθ cos jθ sin(j + 1)θ − sin(j + 1)kθ cos(j + 1)θ sin jθ)

∫
Tj

∂xu1∂xU
2
0

+
1

sin θ

n−1∑
j=0

2(sin(j + 1)kθ sin(j + 1)θ cos jθ − sin jkθ sin jθ cos(j + 1)θ)

∫
Tj

∂yu1∂yU
2
0

+
1

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ) cos(2j + 1)θ

∫
Tj

(∂xu1∂yU
2
0 + ∂yu1∂xU

2
0 )

=
1

sin θ

n−1∑
j=0

[(sin jkθ + sin(j + 1)kθ) sin θ

+ sin(2j + 1)θ(sin jkθ − sin(j + 1)kθ)]

∫
Tj

∂xu1∂xU
2
0

+
1

sin θ

n−1∑
j=0

[(sin jkθ + sin(j + 1)kθ) sin θ

+ sin(2j + 1)θ(− sin jkθ + sin(j + 1)kθ)]

∫
Tj

∂yu1∂yU
2
0

+
1

sin θ

n−1∑
j=0

(sin(j + 1)kθ − sin jkθ) cos(2j + 1)θ

∫
Tj

(∂xu1∂yU
2
0 + ∂yu1∂xU

2
0 )

=

n−1∑
j=0

(sin jkθ + sin(j + 1)kθ)

∫
Tj

∇u1∇U2
0

+

n−1∑
j=0

sin(j + 1)kθ − sin jkθ

sin θ

∫
Tj

(
− sin(2j + 1)θ cos(2j + 1)θ

cos(2j + 1)θ sin(2j + 1)θ

)
∇u1 · ∇U2

0 .
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