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Abstract

This paper presents the theory and key experimental findings for an investigation into the
generation of bimodal resonance (frequency splitting) phenomena in mutually over-coupled induc-
tive sensors, and its exploitation to evaluate relative separation and angular displacement between
coils. This innovative measurement technique explores the bimodal resonant phenomena observed
between two coil designs - solenoid and planar coil geometries. The proposed sensors are evaluated
against first-order analytical functions and finite element models, before experimentally validating
the predicted phenomenon for the different sensor configurations. The simulated and experimental
results show excellent agreement and first-order best-fit functions are employed to predict displace-
ment variables experimentally. Co-planar separation and angular displacement are shown to be
experimentally predictable to within ±1mm and ±1o using this approach. This study validates
the first-order physics-based models employed, and demonstrates the first proof-of-principle for
using resonant phenomena in inductive array sensors for evaluating relative displacement between
array elements.

1 Introduction

Magnetic sensors are regularly used in a range of different non-contact displacement measurement
applications, including in robotics [1] and have been used to measure both strain [2] and relative
displacement [3]. Existing technologies measure angles and displacement either by evaluating the
magnetic field changes of permanent magnets using Hall-effect sensors [4, 5], or the electrical prop-
erties of inductive coils [6, 7]. Real-time evaluation of surface geometries, such as local curvature,
is highly desirable in many applications including structural engineering [8], medical treatment [9],
robotics and human-computer interaction [10, 11], as well as metrology [12] and non-destructive testing
(NDT) of complex geometries [13]. Typical methods for evaluating surface curvature include the use of
electrical resistance of materials, as demonstrated by Majidi et al. [10], where the bending curvature
is determined by measuring the change of the electrical resistance of an embedded microchannel of
conductive liquid.

Different approaches to non-contact measurements include the use of wireless passive LC sensors.
Strongly coupled LC resonators present a frequency-splitting phenomenon - studied by Zhang et al.
[14] in power transfer applications, where the maximum efficiency is typically at the resonant frequency
of the resonators. When similar resonators are positioned in close proximity, the mutual inductance
between them increases significantly, resulting in a split in the resonance frequency and a decrease in
the efficiency of power transfer. However, the phenomenon of frequency splitting is not limited solely
to power transfer applications.

The frequency splitting phenomenon has been extensively studied in microwave antenna theory,
particularly in the context of analysing displacement in microwave sensors through frequency re-
sponse [15, 16]. The use of the frequency splitting phenomenon is present in different radio-frequency
research studies conducted by Babu and George, they have illustrated a linear and highly sensitive
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a) b) c)

Figure 1: Equivalent circuit modelled results of a two-coil over-coupled inductor system, showing; a)
the equivalent circuit diagram, b) the circuit model predicted bimodal resonance phenomenon
exhibited in the electrical impedance magnitude spectra as a function of the coupling coeffi-
cient, k, (from equation 8), and c) impedance magnitude heat map showing the trajectories
of resonant peaks as a function of k. Circuit component values used are R1 = R2 = 100Ω,
C1 = C2 = 1nF , and inductance of L1 = L2 = 160µH.

displacement measurement system for wireless passive LC sensors [17, 18]. The frequency splitting
phenomenon manifests when inductors exhibit a substantial mutual inductance, a property deter-
mined by the magnetic coupling coefficient, k, and depends on the amount of flux sharing between
inductors. A such the frequency splitting phenomena is highly dependent on distance and alignment
of inductors. The resonant frequency splitting phenomenon has therefore been effectively applied to
measure displacements in such sensors [19] and used across a range of different applications. Among
these applications is the measurement of fluid levels inside a tank, where a passive resonator coil floats
at the liquid’s surface and the frequency splitting effect is measured in an external coil [19].

The use of magnetic coupling for evaluating displacement is not limited to the use of two LC
resonators. Dian Jiao et al. [20] explored the mutual inductance between an LC resonator and con-
ductive material, using this mutual inductance to calculate the separation and displacement between
a resonator and the material.

To date, the evaluation of displacement in inductive resonant sensors has primarily focused on
coaxial air-core coils. This paper seeks to extend the principles of resonant frequency splitting to over-
coupled inductors in planar array configurations to evaluate relative displacement (separation and
angular) in adjacent coils. Here we exploit the magnetic coupling enhancing effects of ferrite cores and
employ simple approximations to link the frequency splitting to the relevant displacement variables
via the coupling coefficient.

The proof-of-principle is demonstrated in a two-coil configuration, where the evaluation of the
coupling coefficient is made by monitoring the frequency spectra response in the active branch of LC
sensors. The wireless and single-branch measurement allows the application of the sensors in different
technologies, yet to be explored. The different coil configuration extremes demonstrated in this paper
highlight the accuracy and versatility of the modelling for designing displacement sensors.

2 Theory

Inductive array sensors operate on the principle of electromagnetic induction, where alternating cur-
rents generate changing magnetic fields via Ampere’s law. These changing magnetic fields generated
by a transmitter coil generate current in neighbouring elements [21]. For closely spaced coils, this effect
generates mutual coupling between them. This paper focuses on the prediction, measurement, and
characterization of coupling between identical resonant inductors for the evaluation of displacement in
inductive sensors. This exploits a phenomenon of bimodal resonance observed by Zhang et al. [22, 17]
and Hughes et al. [23] in closely packed inductors. The following subsections outline the principles
behind mutual coupling and resonance in two-coil probes.
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2.1 Self-Resonance Equivalent Circuit Model

Inductive sensors can be modelled as a parallel LC equivalent circuit (see Figure 1.a), with the inductor,
L1, and the capacitor, C1, representing the energy stored in the electrical field within the sensor
respectively [23]. Typically C1 is the lumped combination of capacitive effects between coil windings
as well as any cabling or capacitive loads applied to the sensor. The resonant frequency, f0, can be
defined for a single inductor circuit as,

ω0 = 2πf0 =
1√
LC

, (1)

where ω0 is the angular resonant frequency. At this natural resonance the magnitude of the
impedance, |Z|, of the sensor is a maximum, and the voltage, V , and current, I, within the circuit are
in phase (zero phase lag).

Operating inductive sensors at or near resonance have been shown by many authors to improve
measurement sensitivity and maximise the mutual inductance between array elements [24, 25, 26],
however, the resonant measurement techniques in array sensors have yet to be explored in detail.

2.2 Two-Coil Mutual Resonance Model

When close to another comparable coil, the primary coil will inductively couple to the secondary coil
(see Figure 1.a). The secondary coil can be modelled as an inductor, L2, in series with a resistor, R2,
and a capacitor, C2. This coupling, parameterized by the coupling coefficient, k, (see equation (10))
will alter the effective inductance and resistance (L′

1 and R′
1, respectively) of the primary measurement

circuit and will distort the measured impedance, Z ′
m, given as [24],

Z ′
m =

R′
1 + iωL′

1

1 + iωR′
1C1 − ω2L′

1C1
. (2)

Here, L′
1 and R′

1 are given by,

L′
1 = L1

[
1− α2L2

L1

(
1− ω2

2

ω2

)]
, (3)

R′
1 = R1

[
1 + α2R2

R1

]
, (4)

where α2 is defined as,

α2 =
ω2M2

R2
2 + ω2L2

2

(
1− ω2

2

ω2

)2 , (5)

where M = k
√
L1L2 is the mutual inductance between coils. The resonant frequencies of the

two-coil system can be determined from equations (2)-(5). The resulting expression takes the form,

ω′
± =

√√√√1

2

ω2
1

[1− k2]

[
1 +

ω2
2

ω2
1

(
1± ω1

ω2

√
ω2
2

ω2
1

+
ω2
1

ω2
2

+ 4k2 − 2

)]
, (6)

where ωn =
√

1/LnCn is the uncoupled resonant frequency of coil n. Equation (6) predicts two
distinct resonant frequencies of the two-coil system. These can be determined for a given value of k
by knowing the natural resonant frequency of each coil in their uncoupled (k = 0) state.

For the special case of identical coils where L1 = L2 and C1 = C2, or more specifically when their
resonant frequencies are matched ω1 = ω2, equation (6) simplifies to give the formula for the coupled
resonant frequencies ω′

± of,

ω′
± ≈

√
1

C1L1 [1± k]
= ω1

√
1

1± k
. (7)
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Figure 2: Diagram of coupled 2D ferrite cored solenoid coils, where the yellow blocks represent the
cross-section of the coil, and grey cores represent ferrite. Showing; a) angular separation
θ between the centre of magnetism, h, of each coil, and b) a zoomed-in diagram of the
trigonometric relationship between the distance from the line of symmetry (r = 0) and the
distance from the centre of the B-field source (r′ = 0), showing; separation, a, from the
centre-point (r = 0), and angular displacement ϕ = π − θ. Adapted from [27].

Equation (7) can be used to predict the change in the resonant frequencies as a function of k [17].
Figure 1.b shows how the magnetic coupling k affects the resonant frequency and how it produces the
resonant splitting frequency phenomenon that separates the resonant peaks, shown as white dashed
lines in Figure 1.c, as a function of the coupling coefficient. The system can be thought of as exhibiting
independent vibrational modes. Figure 1.c also shows a red dotted line representing the dispersion
separation threshold - the coupling coefficient of this system above which resonant peaks can be resolved
as distinct peaks. This threshold is dependent on the quality factor of the systems and as such lower
resistance systems exhibit sharper, more easily resolvable curves at lower coupling coefficients. There
is also a practical upper threshold to the coupling coefficient of a realistic inductively coupled system
which is dependent on the geometry of the system and the permeability of the cores used within the
coils.

From equation (7), an expression for the coupling coefficient, k, between identical coils can be
derived as a function of the measurable resonant frequencies observed in the spectra,

k ≈
f2
− − f2

+

f2
− + f2

+

≈
γ2
± − 1

γ2
± + 1

(8)

where γ± = f−/f+ is the bimodal resonant frequency ratio. Equation (8) matches the generalised
Cohn-Matthaei formula for coupled resonators derived by Tyurnev 2007 [28]. Comparable formulas are
regularly applied in the modelling of microwave bandpass networks [29] and meta-material design [30],
but the features and properties of coupled resonators are yet to be explored in inductive measurement
applications. Rearranging equation (7) gives an expression for the bimodal frequency ratio, γ±, between
split resonant frequencies, as a function of k, for an identical coil configuration,

γ± =
f−
f+

≈
√

1 + k

1− k
. (9)

2.3 Coupling Coefficients

Using the centre of magnetism (CoMag) approach detailed in [27], a 2D approximation for the coupling
coefficient, k, between neighbouring coils can be expressed as,

k =
Φ2

Φ1
≈ 1

4π

∫ r′2b

r′2a

1

r′
dr′ ≈ 1

4π
ln

[
r′2b
r′2a

]
, (10)

where Φn is the magnetic flux through coil n, and r′2a and r′2b are defined for a coil radius, r2,
height, h, coil separation a, and relative angle θ ∈ [π/2, π] (θ = π − ϕ) as,
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r′2a = r2Λ
√
2 (1− cos θ), (11)

r′2b = r2
√
2 [2 + 2Λ (1− cos θ) + Λ2 (1− cos θ)], (12)

where,

Λ = ζ + η tan
ϕ

2
, (13)

ζ = a/r2 is the separation ratio, and η = h/r2 is the aspect ratio of the coil. Substituting the
above expressions into equation (10) allows us to calculate k as a function of the separation, a, or
relative angle θ. There are three specific cases that can be considered; co-planar separation (θ = π),
the angular displacement of planar coils (h ≪ r2), and angular displacement of solenoid coils (h ≫ r2).

2.3.1 Co-planar Separation

When identical coils are coplanar (θ = π), Λ = ζ, and equations (11)-(12) can be simplified to r′2a = 2a
and r′2b = 2r2(ζ +1). We can therefore define the coupling coefficient from equation (10) as a function
of the dimensionless separation ratio, ζ,

k ≈ 1

4π
ln

(
ζ + 1

ζ

)
≡ 1

4π
ln
(
1 +

r2
a

)
. (14)

Equation (14) is valid for all coil aspect ratios. Equation 14 can be rearranged to arrive at a generalised
linear function of the form y = p1x+ p2,

e4πk ≈ p1
1

a
+ p2, (15)

where p1 and p2 are unknown coefficients of the first order polynomial, and can be fitted to experimental
data to enable displacement prediction [27].

2.3.2 Angular Displacement - Planar coils

Consider two planar coils with a varying angle as is shown in Figure 2, with h ≪ r2 such that the coil
aspect ratio can be considered negligible (η ≪ ζ) coils are planar. In this case for an angle ϕ away from
co-planar (i.e. θ < π), Λ ≈ ζ such that equations (11)-(12) can be simplified to express the coupling
coefficient as follows [27],

k ≈ 1

8π
ln

[
1 +

2

ζ
+

4

ζ2 (4− ϕ2)

]
, (16)

where ϕ is given in radians. Equation 16 can be simplified into a generalised linear function for the
angular displacement, ϕ, for filament coils,

e8πk ≈ p1
1

(4− ϕ2)
+ p2, (17)

where again p1 and p2 are the unknown coefficients of a first order polynomial, which can be found by
fitting to experimental data [27].

2.3.3 Angular Displacement - Solenoid coils

For the case when a ≪ h, ζ ≪ η, a first-order approximation can be derived for k as [27],

k ≈ 1

4π
ln

[
1 +

2

ηϕ

]
. (18)

As before, a generalised linear function for ϕ can be defined as,

ηe4πk ≈ p1
1

ϕ
+ p2. (19)
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Figure 3: Coil design and experimental setup for coplanar separation and angular displacement studies.
Showing a) Solenoid ferrite cored coil top-down design, along with b) cross-sectional coplanar
separation, a, and c) angular displacement, ϕ, testing configurations. d) PCB-type (planar)
coil top-down design and e) angular displacement, experimental configuration.

Equations (14) and (18) provide simple functions with which to predict ϕ between coils when k is
experimentally measurable. While the extreme approximations used to arrive at these functions means
they may not provide accurate absolute values, their generalised functions given in equations (17) and
(19) can be used to fit experimental data [27].

3 Materials & Methods

Finite element modelling (FEM) and experimental tests were conducted to validate and characterise
the bimodal resonance behaviour predicted by the circuit theory (Section 2.2). Complete details of
the modelling and experimental methods are detailed in the following subsections.

3.1 Sensor Designs

To test the equations previously defined two different extremes of coils were developed, with two
different studies: co-planar separation and angular displacement.

For construction simplicity, the solenoid coil was designed with a single layer of forty turns with a
wire diameter of 0.56 mm, and the planar coil was a double-layer printed circuit board (PCB) with
a rectangular shape (see Figure 3.d). The electrical and geometrical parameters of the solenoid and
planar coils are shown in Table 1. Experimental coil dimensions are given with an error of ±0.5 mm,
and experimental circuit parameters are given with tolerances of ±5%.

Table 1: Experimental (Exp.) and simulated sensor coil dimensions and electrical circuit parameters
for solenoid (Sol.) and planar (Plan.) coils in experimental tests, as well as 2D and 3D finite
element simulations

.

Coil Dimensions(mm)
Coil Type l hc hw din dout
Sol 43 40 25 8 11
Plan. 20 1.5 1.0 5 12

Circuit Parameters
Coil Type Turns L (µH) C (nF ) R (kΩ) I (mA)
Sol. (2D) 40 708 0.2 0.1 10
Sol. (3D) 40 170 1 1 10
Sol. (exp.) 40 166 1 1 10
Plan. (2D) 28 7.9 0.9 0.01 1
Plan. (3D) 28 7.5 1 0.01 1
Plan. (exp.) 28 6.7 1 0.01 1
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Figure 4: Finitie element simulation of the magnetic flux density, B, in a bimodal resonant system in
relation to the electrical impedance magnitude |Z| as a function of frequency, f . The spatial
distribution of the in-plane B-field is shown at; i) 225 kHz, ii) 350 kHz (first resonant peak,
f+), iii) 450 kHz (second resonant peak, f−), and iv) 590 kHz.

The inductance of the coil was obtained using an impedance analyser TREWMAC TE3001 (Trew-
Mac Sys-tems, Australia). For the 2D model and 3D model, geometry coil analysis module in COM-
SOL was used to obtain the values of the inductances, the capacitor and resistor used the experimental
values obtained previously.

The coils are connected to a resonant tank circuit [31]; commonly used for radio frequency and also
in signal filtering applications. The solenoid coils were fabricated in-house, while the planar coils were
manufactured by PCBway, China.

3.2 Finite Element Modelling

Parameterised finite element models (FEM) were created in COMSOL 6.1 using the AC/DC module.
While this paper is not focused on the optimization of the magnetic field in inductors, the magnetic
coupling of the inductors is directly related to the generation of the bimodal phenomenon. Models were
developed using Magnetic Fields and Electrical Circuit studies to simulate the bimodal phenomenon.
These are compared to experimental measurements of two extreme coil geometries, planar and solenoid
coils.

The parameters used for the modelled bimodal sensors are shown in Table 1. Figure 4 shows an
example simulated frequency spectrum and how the magnetic flux density, B, changes within an over-
coupled two-coil system as a function of frequency, f . It is evident that at the first resonant peak
(f = f+) the magnetic flux is predominantly emitted from the driver coil (Figure 4.ii), while when
f = f−, the flux is emitted predominantly from the passive coil (Figure 4.iii).

The magnetic flux density shown in Figure 4.ii is maximum at the first resonance peak, which
corresponds to a maximum B-field in both the driver and passive coil, generating maximum power
transfer. This effect of maximum power transfer has already been explored by Zhang et al. [32].

Figure 4.i shows how the B-field is concentrated around the driver coil (left) for f < f+ of the coils.
Figure 4.ii shows that at f = f+, B increases significantly for both coils but the spatial distribution
remains comparable. Figure 4.iii shows that B is concentrated in the passive coil at f = f−, and
Figure 4.iv shows how B is distributed evenly at higher frequencies beyond the resonant peaks.

3.3 Experimental Measurements

The two sensor configurations defined in Table 1 had their bimodal impedance spectra evaluated exper-
imentally as a function of their coplanar separation, a, and angular displacement, ϕ. The equipment
and methods used are summarised below.
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Figure 5: Comparison between simulated and experimental electrical resonant impedance spectra in an
over-coupled driver coil. Graphs compare experimental results to 2D and 3D finite element
modelled results (blue and red dashed curves respectively) for a) solenoid coils, and b) planar
coils.

3.3.1 Data Acquisition

A TREWMAC TE3001 (TrewMac Systems, Australia) impedance analyser was used to measure the
impedance across the driver coil. The impedance analyzer took a total of 1024 points in a frequency
sweep between 0.3-0.5 MHz for the solenoid coils and between 1.7-2.2 MHz for the planar coils. This
data was recorded and, using an automated peak detection process, the frequencies of the bimodal
resonant peals were determined. For each angle, a frequency sweep is recorded using the impedance
analyzer, and the relative differences between the bimodal resonance peaks are determined. As shown
in Figure 3.b, the coils are contained in a plastic fixture of a wall thickness of 1.5 mm which generates
an initial separation between the coils.

3.3.2 Co-planar Separation, a

An X-LSM200A-E03 (Zaber, Canada) linear stage was attached to the passive sensor (see Figure 3.b),
and moved in increments of 10 mm, between a coil centre-to-centre distance range of 15 − 75 mm
(beyond which the coupling is too low for the resonance frequency to be observed in the resonance
frequency sweep). A second measurement study was conducted with separation increments of 1 mm
to provide a higher resolution dataset used to predict the separation between the sensors.

3.3.3 Angular Displacement, ϕ

An X-RSB120AU rotational stage (Zaber, Canada) was used to incrementally rotate a passive resonator
coil relative to a fixed driver coil, with the centre of rotation at the vertex of the shared corner as
shown in Figure 3.c for solenoid coils and in Figure 3.e for planar coils. Two sets of measurements were
conducted: firstly ϕ, was varied between 0− 70o in 10o increments, the resonant frequencies recorded
and a best-fit function (derived from the formula in section 2.3) applied to the data. The resonant
frequencies were measured again, this time for ϕ in increments of 1o, and the best-fit functions (see
section 2.3) used to invert ϕ.

4 Results and discussion

Experimental and FE results are compared directly for each of the studies, exploring co-planar sepa-
ration, a, and angular displacement, ϕ. The results show findings varying the coplanar separation, a,
for solenoid coils, and ϕ for both solenoid and planar coil configurations. The results are compared to
best-fit functions defined in section 2.
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Figure 6: Bimodal resonant frequencies as a function of coplanar separation, a, showing: a) 2D finite
element modelled magnetic flux density and field lines between bimodal sensor elements
for a separation of a = 60 mm in solenoid coils. b) Bimodal resonant frequencies, f− (lower
curves) and f+ (upper curves), of the system as a function of angular displacement, comparing
experimental (black circles) to 2D (blue dashed) and 3D (red dashed) finite element simulated
results. iii) The coupling coefficient, k, calculated using measurements of f− and f+ from
equation (8), where the green dashed line represents the experimental best fit function, as
defined by equation (15) in section (2.3).

The experimental impedance spectra of the bimodal sensors for those two coil geometries are
compared to the FE models in Figure 5. The relationship between bimodal resonant frequencies and
displacements a and ϕ is then explored.

Equation (8) is used to calculate k from measurable resonant frequencies, f− and f+, and then the
first-order approximations (section 2.3) can be used to estimate displacement variables.

4.1 FE Model Validation

The experimental impedance spectra results were compared to FE simulations in 2D and 3D and show
differences in the values of capacitance as shown in Table 1, due to the separation of the wire in the
hand-wound coils. These changes in capacitance lead to a different resonant frequency. To match the
resonant frequencies, it is necessary to introduce a calibration value of capacitance for the resonators.
This allows the simulated system to resonate at the same frequencies as the experiment.

For the solenoid and planar coils, the resonant frequencies for the three different results are ap-
proximately matched in frequency value. The magnitude depends on the impedance of the system,
for the solenoid coil, there is a better approximation of magnitude than for the planar coil. Figure
5.a, shows the frequency spectrum for the solenoid coils with an initial centre-to-centre separation of
1.5 mm; this separation a represents the separation between the edges of the windings in the coils (see
Figure 2).

For an initial separation of a = 3 mm between the solenoid windings due to the plastic case, the
solenoid coils produce the initial bimodal resonance frequency spectrum shown in Figure 5.a. Planar
PCB coils, with an initial separation of a = 2 mm, produce the bimodal frequency spectrum shown
in Figure 5.b. When the coil decreases in size, the number of turns reduces, making it harder to
match the finite element simulation with the experimental data due to the homogeneous multiturn
approximation. Despite the differences in the impedance frequency spectrum, the resonant frequencies
exhibit similar trends as a function of changes in coupling as shown in Figure 6.c.

4.2 Co-planar Separation, a

The bimodal resonant frequencies f− and f+ were used to determine k from equation (8) as a function
of a. As a increases, k decreases causing f− and f+ to converge in the frequency spectrum until they
merge, as demonstrated in Figure 1.b.

For the 2D and 3D FE, the bimodal frequency spectrum merges into a single frequency at separa-
tions greater than 12.5 mm and 17.5 mm respectively, where the passive coil has minimal interaction
with the driver coil. This phenomenon has been explored by Zhang et al. [14] for wireless power
transfer applications.
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Figure 7: Bimodal resonant frequencies as a function of angular displacement, ϕ, in a) solenoid and
b) planar coils, showing; i) 2D finite element modelled magnetic flux density and field lines
between bimodal sensor elements for a separation of ϕ = 60o in solenoid coils. ii) Bimodal
resonant frequencies, f+ (lower curves) and f− (upper curves), of the system as a function
of angular displacement, comparing experimental (black circles) to 2D (blue dashed) and 3D
(red dashed) finite element simulated results. iii) The coupling coefficient, k, calculated using
measurements of f− and f+ from equation (8), where the green dashed lines represents the
experimental best fit function, as defined by equations (19) and (17) in section 2.3.

4.3 Angular Displacement, ϕ

The results in Figure 7.a.ii show how the resonant frequencies f+ and f− get closer together as a
function of ϕ for the solenoid coils, showing comparable results to the evaluation of coplanar separation,
a. In this case, k decreases as ϕ increases. Figure 7.b shows f+ and f−, as a function of ϕ for the
planar coils. In this case, k increases as ϕ increases.

The k between the solenoid coils varies between 0.15 − 0.35 as shown in Figure 7.a.iii. This is
relatively high for non-coaxial coils, where a typical value is k < 0.1 [33]. These high k values are
due to the large ferrite cores and the significant magnetic bridging it causes between the coils. The
planar coils exhibit more modest values of k, between 0.9 − 0.14. As k between the planar sensors is
relatively low compared to the solenoid coils (see Figure 7.b.iii), the matching between the FE models
and experiment becomes more challenging, leading to an offset between results for k of the planar coil
geometry.

The angular separation of the ferrites cores in solenoid coils increases the distance between the
centres of magnetism of the cores (see section 2.3), decreasing k. Conversely, the distance between the
centres of magnetism for the planar coils reduces as ϕ increases, causing an increase in k. These trends
are clearly shown in Figure 7.a.iii and b.iii. Figure 7 therefore shows excellent agreement between the
experimental and FE simulations, with f+ and f− changing as predicted in section 2.3.

4.4 Displacement Prediction

The experimental displacement measurements shown in Figures 6 and 7 for coplanar separations, a,
and angular displacements, ϕ, with increments of ∆a = 10 mm and ∆ϕ = 10o respectively, were used
to fit the first-order functions defined in section 2.3.

From the values of k calculated using equation (8), linear functions of the form y = p1x + p2
were plotted based on equations (15), (17) and (19), as defined in Table 2 and [27]. Linear regression
was then used to calculate the coefficients p1 and p2 shown in Table 2. Note that the factor of 4
in equation (15) was omitted as this gave rise to a stronger linear correlation as found by [27]. This
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a) b)
i) ii) i) ii)

Figure 8: Displacement predictions of bimodal sensors, for a) coplanar separation, a, and b) angular
displacement, ϕ, between sensor coils. Graphs i) plot the predicted displacement (calculated
from experimental measurements and using the fitted functions in Table 2) against the known
displacement values. Black dashed lines represent ideal prediction. Graphs ii) show the
accuracy of the predictions by plotting the absolute error |σ| between predicted and known
values as a function of displacement.

disparity is likely due to the simplicity of the assumptions employed in the derivations of the first-order
functions derived in [27].

The best-fit functions defined by Table 2 were rearranged to produce the best-fit curves (green
dashed) for k as a function of the displacement variables as shown in Figures 6.c and 7.iii. The
best-fit curves based on these first-order approximate functions exhibit excellent agreement with the
experimental data over a wide range of displacements in all cases. The only exception occurring
when ϕ < 10o in the solenoid coils, where the assumptions and simplifications of the first-order model
break down. Studies were conducted to evaluate the effectiveness of using these functions to predict
the physical displacement between sensors based on the experimental measurements of the bimodal
resonant frequencies (f−, f+).

4.4.1 Evaluating Separation, a

Experimental measurements, made every ∆a = 1 mm, were used and f+ and f− were recorded and
used to calculate the a using equation (8) and the best-fit function defined in Table 2. The prediction
of a has a limit of a = 25 mm beyond which k becomes negligible and f+ and f− are no longer
detectable, as demonstrated in Figure 1.b & c.

4.4.2 Evaluating Angle, ϕ

The f+ and f− peaks were recorded for variations in ϕ in both solenoid and planar coil sensors every
∆ϕ = 1o, and the best-fit functions (Table 2) were used to predict ϕ, the results are shown in Fig 8.b.i.

Table 2: Linear regression of the function y = p1x + p2 for the displacement of the coils as shown in
Figure (6) and (7)

Displacement y x p1 p2
a eπk 1/a 0.39 -0.025

ϕ (sol.) e8πk 1/ϕ 3.98 3.75

ϕ (plan.) e4πk 1/(4− ϕ2) 81.83 -9.40

4.4.3 Prediction Error, |σ|

Figure 8.a.i compares the predicted coil separation, a, using the fitted function in Table 2 compared
to that recorded experimentally from the linear translation stage. The absolute error, |σ|, between the
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known and predicted values of a is shown in Figure 8.a.ii. The results show that the measurement is
accurate to within ±1 mm over the full range of distances measured.

For both solenoid and planar coils, the predictions are more accurate for ϕ > 10o. At low angles
(ϕ < 10o), the planar sensors do not experience a significant change in k (see Figure 7.b.iii). Hence
the error in the prediction of ϕ is larger for small angles. Conversely, k changes significantly at low
angles for the solenoid coils, however, the function employed to fit the solenoid angular displacement
has low accuracy at low angles due to the assumptions employed. As such the predictions based on
this function are also less accurate when ϕ < 10o.

As shown in Figure 8.b.ii, the absolute error in angle for planar sensors decreases to less than ±1o

for angles ϕ > 10o. Despite the coil unoptimised design, the planar coils exhibit excellent prediction
capability up between 10o − 70o.

5 Conclusions

Pairs of over-coupled inductive coils were used to produce bimodal resonance (frequency splitting)
spectra, and resonant frequency tracking was used to evaluate the separation and angular displacement
between the coils. The study demonstrated the displacement dependent bimodal phenomenon in two
coil designs experimentally, and highlighted the validity of a ”centre-of-magnetism” method for defining
first-order analytical functions of the coupling interactions between coils. 2D and 3D FE simulations
were evaluated, showing excellent agreement in with experimental results, and direct inversion of
displacement variables showed the technique was able to resolve separations and angles to within
±1 mm and ±1o.

While these resolutions are an order of magnitude larger than hall-effect techniques, the proof-of-
principle in these unoptimised sensor designs demonstrates significant potential for further development
of this novel sensing approach. The bimodal resonance tracking method proposed, has the potential
to be made real-time, deployed directly onto flexible substrates, and expanded to higher degrees-of-
freedom making it valuable in applications such as robotics, human-computer interaction, and non-
destructive testing.
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