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Abstract. A semianalytical method is derived for finding the existence and stability of single-impact periodic4
orbits born in a boundary equilibrium bifurcation in a general n-dimensional impacting hybrid5
system. Known results are reproduced for planar systems and general formulae derived for three-6
dimensional (3D) systems. A numerical implementation of the method is illustrated for several 3D7
examples and for an 8D wing-flap model that shows coexistence of attractors. It is shown how the8
method can easily be embedded within numerical continuation, and some remarks are made about9
necessary and sufficient conditions in arbitrary dimensional systems.10

Key words. impact, boundary equilibrium bifurcation, hybrid system, periodic orbit11

MSC codes. 37G05, 37G35, 37M2, 70G60, 70K42, 93B1812

DOI. 10.1137/23M155229213

1. Introduction. Differential equations with nonsmooth components occur in various situ-14

ations. They arise in mechanical systems with scenarios of dry friction [9], impact [12, 20], and15

freeplay due to abrasion [9]; they also arise in electronic circuits, biological systems, and control16

engineering (see, e.g., [7, 18]). A general framework for piecewise-smooth dynamical systems17

was introduced in the book [7], in which phase space is partitioned into regions of smooth dy-18

namics separated by codimension-one switching manifolds. The degree of smoothness across19

each such boundary determines a class of dynamical systems---for example, piecewise-smooth20

continuous systems Filippov systems and impacting hybrid systems---which in turn lead to21

unique kinds of discontinuity-induced bifurcations (DIBs). See [2, 14] for an overview of recent22

developments. In this paper we shall focus on hybrid systems for which in the overall system AQ123
there is a discrete reset map applied at each boundary.24

The simplest kind of DIB corresponds to a so-called boundary equilibrium bifurcation25

(BEB), where, under variation of a parameter, an equilibrium of one of the smooth com-26

ponents of phase spaces approaches a switching manifold. At nearby parameter values, we27

may find a pseudoequilibrium, which is not an equilibrium of the free dynamics, but of the28

flow constrained to the boundary. Much progress on analysis of BEBs has been made in29

two-dimensional systems [8, 23, 24]. In the case of planar (Filippov) piecewise-linear sys-30

tems, significant recent progress has been made by Carmona and collaborators [3, 4, 5] on the31
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Figure 1. Sketch of airfoil model; see the text for details.

number of limit cycles that can coexist. A strict upper bound of 8 was found, which reduces32

to 1 in the absence of sliding. The particular unresolved question that we address in this33

paper regards BEBs in higher-dimensional systems. As we shall see, this is a difficult ques-34

tion in general, not least because there is no known general dimension-reduction method for35

piecewise-smooth systems [15]. Instead, we shall seek a semianalytic method that can trace36

curves of LCOs bifurcating at a BEB. Our work is motivated by the following example, which37

arose in our recent work on an eight-dimensional aircraft wing-flap model.38

1.1. Motivating example. Some recent numerical results for a simplified airfoil model39

[27] are illustrated in Figure 1. Due to the rotary freeplay in the hinge between the flap and40

main body, such a system can be modelled as an impacting hybrid system, where a reset map41

is applied when the flap hits the stop. The equations of motion can be written in the form42

\Biggl\{ 
\.x=A\mathrm{a}\mathrm{f}( \=U)x+G( \=U) for | x3| < \delta ,

x=R(x) for | x3| = \delta ,
(1.1)

where x = [\zeta ,\alpha ,\beta , \.\zeta , \.\alpha , \.\beta ,w1,w2]
\top , among which \alpha and \beta measure the rotary pitch and flap43

motion, respectively, and \zeta is the dimensionless heave motion. The parameter \=U is the dimen-44

sionless air velocity, and \delta characterizes the amount of flap freeplay. The variables w1 and w245

are augmented variables that capture the so-called Theodorsen aerodynamic interactions [28].46

The matrix A\mathrm{a}\mathrm{f} specifies the dynamics of the airfoil when the flap is in freeplay. The reset map47

R(x) is an affine map that maps the \{ | x - 3 | = \delta , sign(x - 3 ) \.x
 - 
3 > 0\} into \{ | x+3 | = \delta , sign(x+3 ) \.x

+
3 < 0\} 48

with a corresponding coefficient of restitution 0< r < 1 when projected onto the x3 degree of49

freedom, \.x+3 =  - r \.x - 3 . Full details of the model, including the coefficients of the matrix A\mathrm{a}\mathrm{f},50

vector G, and map R are given in Appendix A.51

Figure 2(a) depicts a brute-force bifurcation diagram of stable limit states of (1.1) against52

flow velocity \=U for \delta = 0.01 rad and r = 0.72. Here we find that a stable equilibrium branch53

approaches the freeplay boundary at the critical value \=U = 0.64833 and various attractors54

appear in sequence as \=U is increased further. Specifically, we find an initial BEB, where55

a stable LCO is born, which coexists with a stable pseudoequilibria branch, as shown in56

the zoomed-in Figure 2(b). Note how the amplitude of the LCO increases linearly with the57
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Figure 2. Brute force bifurcation diagram of the airfoil model (1.1). (a) The full bifurcation diagram
capturing various dynamics. (b) The zoomed-in part of the first bifurcation from the boxed region in (a):
PE---pseudoequilibria; AE---admissible equilibria. Full equations and parameter definitions are given in ??. AQ2

variation of bifurcation parameter, as shown in Figure 3, which can be explained by existing58

theory [7, 8, 23, 24]. But what cannot be explained by the theory is how this table LCO59

coexists with a stable pseudoequilibrium. Thus, we require a genuinely multidimensional60

analysis.61

1.2. Outline. The rest of the paper is organized as follows. Section 2 recalls how to62

construct a normal form at a BEB for an impacting hybrid system and summarizes what63

is known about classification of such bifurcations. In section 3 we derive a semianalytic64

method for constructing single-impact LCOs arising in such normal forms. Section 4 presents65

results from implementation of this algorithm; to reproduce (and extend) known examples66

in two dimensions, to attempt a general framework in three dimensions, and to explain the67

numerical observations in the wing-flap model. Some further analytical considerations are68

made in section 5, and a conclusion is drawn. AQ369

2. Preliminaries.70

2.1. Impacting dynamical systems. Hybrid systems are characterized by the existence71

of both continuous and discrete dynamics. A parameter dependent piecewise-smooth hybrid72

system [7] is smooth in all regions, say, Si, in phase space \BbbR n that is partitioned by countably73

many codimension one manifolds \Sigma ij , which can be defined as follows.74

Definition 2.1. [7] A piecewise-smooth hybrid system is composed of a set of ODEs75

\.x= Fi(x, \mu ) for x\in Si,

plus a set of reset maps76

\.x \mapsto \rightarrow Rij(x, \mu ) for x\in \Sigma ij := Si \cap Sj ,

where x \in \BbbR n and \mu \in \BbbR m. Especially, an impacting hybrid system possesses Rij(x, \mu ) :77

\Sigma ij\rightarrow \Sigma ij, and the flow is constrained locally to one side of the boundary.78
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Figure 3. More details of the LCOs from Figure 2 at the points labelled A, B, and C; here H(\beta ) is a function
(see Definition 2.1 and Theorem 2.4) to measure the state's distance from the impacting surface \beta = - 0.01.

Whenever the meaning is clear, we shall suppress the system's dependence on the parameter.79

Because we are interested in DIBs involving a single-impact surface, it is worth simplifying80

notation by considering a local description in terms of a single-impacting surface \Sigma defined81

by a smooth function H(x) = 0:82

\Sigma = \{ x | H(x) = 0\} , and the region governed by flow, S+ = \{ x | H(x)> 0\} .

Within this local description, we suppose that the dynamics is given by83

\Biggl\{ 
\.x=F (x, \mu ) forH(x)> 0,

x+=R(x - ) forH(x) = 0,
(2.1)

and we define an equilibrium of flow F (x, \mu ) as x0 = x0(\mu ).84

Within this context, it is also helpful to introduce some key concepts defined in [7, 21].85

First, we let v(x) and a(x) be the normal velocity and acceleration, respectively, relative to86

the discontinuity surface, which can be defined using Lie derivatives:87
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Figure 4. An impacting hybrid system with a simple impact surface \Sigma .

v(x) =\scrL F (H)(x) =
dH

dx
\.x=HxF,

a(x) =\scrL 2F (H)(x) =HxxF +HxFxF.

(2.2)

The surface \Sigma can be partitioned depending on the sign of v: the incoming set \Sigma  - = \{ x \in 88

\Sigma : v(x) < 0\} , the grazing set \Sigma 0 = \{ x \in \Sigma : v(x) = 0\} , and the outgoing set \Sigma + = \{ x \in \Sigma :89

v(x)> 0\} . To define a well-posed impact law in the absence of friction, we need that it maps90

a grazing trajectory (where v(x) = 0, a(x)> 0) back to itself. Following [7], we can write the91

reset map in terms of a smooth function n-dimensional function W (x), as follows:92

x+ =R(x - ) = x - +W (x - )v(x - ).(2.3)

Then we have93

v+ := v(x+) = (HxF )xR(x+) = [1 + (HxF )xW (x)] v(x - ).

Furthermore, upon defining94

r(x) = - (1 + (HxF )xW (x),(2.4)

then r is an effective coefficient of restitution, and there is a physical constraint that r > 095

and r < 1 in order for the surface \Sigma 0 to be attracting.96

If 0 < r < 1 a trajectory v+ will eventually become constrained to sticking (or sliding)97

on \Sigma 0, via chattering, an accumulation of impacts in finite time; see Figure 5. The sticking98

subset is defined as determined by99

\Sigma 0
 - = \{ x\in \Sigma 0 : a(x)< 0\} ,

the stability of which is guaranteed if 0< r < 1 [8].100
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Figure 5. Trajectory captured by \Sigma via chattering sequence.

Theorem 2.2. The stability of a sticking set is guaranteed if 0< r < 1 and a(x)< 0.101

The dynamics in the sticking region can be defined by thinking of the impacting law as102

providing a normal force that keeps the motion on \Sigma . The dynamics within \Sigma 0
 - is determined103

by the sticking vector field [21], defined as104

\.x= Fs = F (x) - \lambda (x)W (x), \lambda (x)> 0,(2.5)

for a scalar \lambda (x) which is defined as105

H(x(t))\equiv 0,(2.6a)

v(x(t))\equiv 0,(2.6b)

\lambda (x) =
\scrL 2F (H)(x)

\scrL W\scrL F (H)(x)
=
\scrL 2F (H)(x)

vxW (x)
=
 - a(x)
1 + r(x)

.

Note that \lambda (x)> 0 if 0< r < 1 and a(x)< 0. An explicit expression for sticking dynamics can106

then be obtained by eliminating \lambda in (2.5):107

Fs = F  - (HxxF +HxFx)F

(HxxF +HxFx)W
W.(2.7)

Following [7], we classify several different types of equilibria in (2.1).108

Definition 2.3. We call x0 satisfying F (x0, \mu ) = 0 a nominal equilibrium, and further x0 is109

an admissible equilibrium of (2.1) if H(x0) > 0, a boundary equilibrium if H(x0) = 0, or a110

virtual equilibrium if H(x0)< 0.111
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Moreover, x0 is defined as a pseudoequilibrium (or a sliding equilibrium) if it is an equi-112

librium of the sticking vector field (2.5) for which113

F (x0) - \lambda W (x0) = 0, H(x0) = 0.

Such pseudoequilibria are called virtual when \lambda < 0 and admissible when \lambda > 0.114

2.2. Normal form for boundary equilibrium bifurcation. For simplicity, let us assume115

a system of the form (2.1) is dependent just on a single distinguished parameter \mu , which AQ4116
is true when m = 1 or in a codimension-one analysis though m \geq 2. Motivated by the117

example in Figures 2 and 3, we are interested in the situation where a stable hyperbolic118

admissible equilibrium x\ast reaches the boundary H(x) = 0 at some critical parameter value \mu \ast .119

Then, provided the matrix A= Fx(x
\ast ) is nonsingular and obeys other similar nondegeneracy120

conditions, it is argued in [8], by appealing to the Hartman--Grobman theorem, that the AQ5121
dynamics of the system (2.1) sufficiently close to a BEB can be replaced by the following122

linearization at x\ast , \mu \ast :123

F (x, \mu )\approx \~F (x, \mu ) =A(x - x\ast ) +M(\mu  - \mu \ast ),

H(x, \mu )\approx \~H(x, \mu ) =C(x - x\ast ) +N(\mu  - \mu \ast ),

W (x, \mu )\approx \~W (x\ast , \mu \ast ) = - B,

H(x\ast ) = 0.

(2.8)

Moreover, the condition \scrL W (H)(x) = 0 can be rewritten as124

CB= 0,(2.9)

where we emphasize that neither B nor C is zero vector, and the sliding vector field can be125

written locally as126

Fs =

\biggl( 
I - BCA

CAB

\biggr) 
(A(x - x\ast ) +M(\mu  - \mu \ast )).

Thus, the Jacobian of the sliding flow at point x\ast is127

As =

\biggl( 
I - BCA

CAB

\biggr) 
A,(2.10)

and with (2.4) the efficient restitution coefficient is rewritten as r=CAB - 1. In particular,128

in what follows we shall assume the following nondegeneracy conditions:129

det(A) \not = 0, N - CA - 1M \not = 0, CA - 1B \not = 0.(2.11)

In order to find the dynamics of (2.8)--(2.10), following [8], we can make further coordinate130

transformations to move the equilibrium to the origin and put any system undergoing a BEB131

into a normal form. For convenience, we collect together these transformations in the form of132

the following result, for which we give a constructive proof in Appendix B.133
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Theorem 2.4 (see [8]). The linearized system (2.8) is scaling invariant, which means the134

same results will be obtained if x - x\ast and \mu  - \mu \ast are multiplied by a positive scalar. Then,135

obeying the nondegeneracy condition (2.11), to find the limit sets of (2.1) around \mu \ast is equiv-136

alent to finding these in the canonical linearized system137

\left\{ 
  
  

\.y = \^Ay for H(y, \^\mu )> 0 or y \in \Sigma + \cup \Sigma 0
+,

\.y = \^Asy for y \in \Sigma 0
 - ,

y \mapsto \rightarrow Py for y \in \Sigma  - ,

(2.12)

where, referring to the notation in (2.8), we define y= \Delta \bfx +\bfA  - 1\bfM \mu 
| \mu | (\bfC \bfA  - 1\bfM  - \bfN ) and138

\^\mu =
\mu 

| \mu | , H(y, \^\mu ) = \^Cy - \^\mu = 0, \^C= e\top 1 , P= I - \^B\^C\^A,(2.13)

and matrices \^A, \^As, and \^B are related to the original A, As, and B, respectively, by a C-139

dependent coordinate transformation (see Appendix B). Moreover, the values of \^\mu \in \{  - 1,0,1\} 140

are corresponding to pre-bifurcation, critical, and post-bifurcation values of the original bifur-141

cation parameter \mu .142

Note that within this normal form, a nominal equilibrium y0 = 0 of the flow in (2.12) is143

admissible if \^\mu = - 1 withH(y0)> 0, a boundary equilibrium if \^\mu = 0with and H(y0) = 0, or a144

virtual equilibrium if \^\mu = 1withH(y0)< 0. Moreover, to distinguish from y0, we denote \^y0 a145

pseudoequilibrium (sliding equilibrium) if satisfying F (\^y0) - \~\lambda W (\^y0) = 0, H(\^y0) = 0, and it is146

virtual when \~\lambda < 0 and admissible when \~\lambda > 0. For the case of a pseudoequilibrium we have147

\left[ 
 

\^C
\^C\^A
\^As

\right] 
 \^y0 =

\left[ 
 

1
0

0n\times 1

\right] 
 ,(2.14)

which is formally well-posed because \^As has rank n - 2.148

2.3. Equilibrium transitions at a BEB. We focus on what will happen if we set either149

\^\mu = \pm 1 in (2.12). According to [7], classification of these simplest BEB transitions can be150

made as follows:151

Persistence (or border-crossing). At the bifurcation point, an admissible equilibrium ly-152

ing in the region S+ becomes a boundary equilibrium and turns into a virtual equilibrium.153

Simultaneously, a virtual pseudoequilibrium becomes admissible. Thus, there is one admissi-154

ble equilibrium on either side of the bifurcation, which is why this is termed persistence (see155

Figure 6(a)).156

Nonsmooth fold. At the bifurcation point, the collision of two branches of admissible157

equilibria (one of which is pseudoequilibrium) is observed at the boundary equilibrium, before158

turning into two branches of virtual equilibria past the bifurcation point (see Figure 6(b)).159

Theorem 2.5 (see [8]). (Equilibrium transitions around a boundary equilibrium). For160

system (2.1) with (2.8) under (2.11),161162

1. persistence is observed at BEB if CA - 1B< 0;163

2. a nonsmooth fold is observed if CA - 1B> 0.164
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Figure 6. Two typical BEB. (a): fold; (b): persistence. ( admissible equilibria, pseudo equilibria
and for virtual equilibria. )

and the latter calculated from the eigenvalues of \^As defined by (2.10). There is a 2-by-2 Jordan
block corresponding to eigenvalue 0 with left eigenvector \^C\^A and generalized eigenvector \^C.
The other eigenvalues of \^As determine the stability within the sliding flow, and for stability
should have negative real part.

Example 2.6. For a 3-D system defined by (2.12), we define the Jacobian \^A in a generalized
Li\'enard's form [6,25] as

\^A =

\left[ 
 
t 1 0
m 0 1
d 0 0

\right] 
 ,

and \^C\top = e1, \^B = [0, b2, b3]
\top , \^C\^A\^B = b2, \^C\^A - \bfone \^B =

b3
d
. See full derivation in Appendix B.

Further, the sticking set is explicitly derived as \{ y | y1 = 1, y2 =  - t, y3 <  - m\} . To better
understand the previous analysis framework and condition, two particular numerical cases are
given.

1. When [t,m, d, b2, b3] is selected as [ - 0.7, - 0.15, - 0.025, 2.5, 0.625]. The admissible
equilibrium is stable, and persistence occurs according to Theorem 2.5. The location
of pseudo equilibrium for \^\mu = +1 is given as \^y0 = [1, 0.7, 0.05]\top and the eigenvalues
of \^As are 0, 0, - 0.25, while \^C\^A\^B > 2 from which we conclude the pseudo equilibrium
is unstable.

2. When [t,m, d, b2, b3] is selected as [ - 0.7, - 0.15, - 0.025, 1.8, 1.6]. The admissible equi-
librium is stable, and persistence occurs according to Theorem 2.5. The location of
pseudo equilibrium for \^\mu = +1 is given as \^y0 = [1, 0.7, 0.1219]\top and the eigenvalues of
\^As re 0, 0, - 0.8889, while \^C\^A\^B < 2 from which we conclude the pseudo equilibrium
is stable.

Later, in Section 4, we will show both of these two cases possess LCOs.

admissible equilibria,
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equilibrium is stable, and persistence occurs according to Theorem 2.5. The location
of pseudo equilibrium for \^\mu = +1 is given as \^y0 = [1, 0.7, 0.05]\top and the eigenvalues
of \^As are 0, 0, - 0.25, while \^C\^A\^B > 2 from which we conclude the pseudo equilibrium
is unstable.

2. When [t,m, d, b2, b3] is selected as [ - 0.7, - 0.15, - 0.025, 1.8, 1.6]. The admissible equi-
librium is stable, and persistence occurs according to Theorem 2.5. The location of
pseudo equilibrium for \^\mu = +1 is given as \^y0 = [1, 0.7, 0.1219]\top and the eigenvalues of
\^As re 0, 0, - 0.8889, while \^C\^A\^B < 2 from which we conclude the pseudo equilibrium
is stable.

Later, in Section 4, we will show both of these two cases possess LCOs.

virtual equilibria.)

It is straightforward to find an explicit expression for the location and the stability of the165

pseudoequilibrium of the system (2.12) by direct calculation (2.14). Specifically, [8] argued166

that the stability of a pseudoequilibrium depends on the stability of the sticking set and the167

stability of the sliding vector field (2.5). Recalling the definition of the coefficient of restitution168

r and the condition that 0< r < 1 for the sticking set be stable, we find that the former can169

be guaranteed by170

1< \^C\^A\^B< 2 and a(y) = \^C\^A
2
y< 0,(2.15)

and the latter calculated from the eigenvalues of \^As defined by (2.10). There is a 2-by-2 Jordan171

block corresponding to eigenvalue 0 with left eigenvector \^C\^A and generalized eigenvector \^C.172

The other eigenvalues of \^As determine the stability within the sliding flow and for stability173

should have negative real part.174

Example 2.6. For a three-dimensional system defined by (2.12), we define the Jacobian \^A175

in a generalized Li\'enard's form [6, 25] as176

\^A=

\left[ 
 
t 1 0
m 0 1
d 0 0

\right] 
 ,

and \^C\top = e1, \^B = [0, b2, b3]
\top , \^C\^A\^B = b2, \^C\^A - \bfone \^B = b3

d . See the full derivation in177

Appendix B.178

Further, the sticking set is explicitly derived as \{ y | y1 = 1, y2 = - t, y3 < - m\} . To better179

understand the previous analysis framework and condition, two particular numerical cases are180

given:181182

1. When [t,m,d, b2, b3] is selected as [ - 0.7, - 0.15, - 0.025,2.5,0.625]. The admissible183

equilibrium is stable, and persistence occurs according to Theorem 2.5. The location of184

pseudoequilibrium for \^\mu =+1 is given as \^y0 = [1,0.7,0.05]\top and the eigenvalues of \^As185
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are 0,0, - 0.25, while \^C\^A\^B > 2, from which we conclude that the pseudoequilibrium186

is unstable.187

2. When [t,m,d, b2, b3] is selected as [ - 0.7, - 0.15, - 0.025,1.8,1.6]. The admissible equi-188

librium is stable, and persistence occurs according to Theorem 2.5. The location of189

the pseudoequilibrium for \^\mu =+1 is given as \^y0 = [1,0.7,0.1219]\top and the eigenvalues190

of \^As re 0,0, - 0.8889, while \^C\^A\^B< 2, from which we conclude that the pseudoequi- AQ6191
librium is stable.192

Later, in section 4, we will show both of these two cases possess LCOs.193

2.4. Bifurcation and stability of limit cycles. Under certain additional conditions, in194

addition to the transition from equilibria to pseudoequilibria, there can be a Hopf-like birth195

of an LCO at a BEB; see, e.g., [8, 11, 23, 24]. In accordance with the scale invariance of196

the normal form (2.12), the amplitudes of such limit cycles scale linearly with the bifurcation197

parameter and so can be studied just by setting \^\mu =\pm 1 in the normal form. Specifically, in the198

two-dimensional case, equilibria and LCOs are the only possible attractors, there can be at199

most one limit cycle, and a stable limit cycle cannot coexist with a stable pseudoequilibrium.200

In higher dimensions, very little is known. In three dimensions, Carmona et al. [6] give the201

notion of invariant cones to add more information, but in general n dimensions the number of202

cases (at least 2n independent parameters [25]) that need to be considered seems to prohibit203

a general classification.204

To consider the stability of limit cycles, one also has to be careful to construct the correct205

Poincar\'e map, because the pure monodromy matrix is not capable of giving us right conclu-206

sions. Instead, as introduced by Nordmark and collaborators (e.g., [10]), a correction called207

a discontinuity mapping is required whenever the trajectory interacts with a discontinuity208

boundary. The linearization of such mappings are known as a Saltation matrix; see [7] for a209

derivation. Specifically, for impacting systems with a single-impact boundary like (2.12), the210

saltation matrix for a point y - \in \Sigma is given by211

Qy(y
 - ) =Ry(y

 - ) +
[F (R(y - )) - Ry(y

 - )F (y - )]Hy(y
 - )

Hy(y - )F (y - )

=P+
[A - P\^AP - 1]\^yC

C\^AP - 1\^y
.

(2.16)

For a such system, \Sigma is a natural choice of the Poincar\'e section. Then we can construct a AQ7212
returning map as a composition of two parts \phi + and \phi  - to map \Sigma back to itself. Specifically,213

\phi + is via evolution under flow (2.12) after some time \tau (y) back to \Sigma , and \phi  - = R is the214

impact reset map in an impacting hybrid system. For a general orbit crossing the discontinuity215

manifold with p\in \BbbZ + intersections, we can derive the full returning map as216

\Phi (y) := (\phi  - \circ \phi +)
p \cdot y.(2.17)

3. Finding single-impact limit cycles. According to (2.17), a periodic orbit with p impacts217

per period, or simply a period-p orbit, with initial condition \^y \in \Sigma , should satisfy218

\Phi (\^y) = (R \circ \phi +)
p \cdot \^y= \^y.(3.1)
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In this paper we consider only the case of p= 1, for which219

\phi +(\^y)=y - 

R(y - )= \^y

\Biggr\} 
\rightarrow R(\phi +(\^y) = \^y.(3.2)

In particular we require220

H(\^y) = 0, \^v :=HyF = \^C\^A\^y> 0.(3.3)

According to (2.12), we can write \phi + =\varphi (\^y, \^T ), where \varphi (y, t) is the flow explicitly defined221

as e
\^\bfA \^T \^y, and \^T = \tau (\^y) is the first positive returning time, with initial condition \^y, given by222

H(\varphi (\^y, \^T )) = \^Ce
\^\bfA \^T \^y - \^\mu = 0.(3.4)

Thus (3.2) can be explicitly expressed as223

Pe
\^\bfA \^T \^y= \^y.(3.5)

Then (3.3) and (3.5) form a valid set of defining equations for a single-impact LCO of (2.12).224

3.1. Formulation as a fixed-point problem. Looking at (3.5), we see that the composed225

map (3.2) is effectively an eigenproblem. Finding the existence of an LCO can be simple if AQ8226

there is such a \^y on a chosen Poincar\'e section that is an eigenvector of the matrix Pe
\^\bfA \^T cor-227

responding to the unit eigenvalue, where the \^T is determined by the condition (3.4). Thinking228

of (3.5) as a shooting problem, we seek a state \^y and a time \^T > 0 to hit H(y) = 0 again. All229

such \^y must lie on an n - 2 dimensional Euclidean subspace \Xi on the codimension-one surface230

on the switching set (2.13), which can be explicitly written as231

\Xi := \{ \^y | \^C\^y - \^\mu = 0, \^Ce
\^\bfA \^T \^y - \^\mu = 0\} .(3.6)

Note that \^T \rightarrow \^y \in \Xi is a multivalued mapping, which is only locally invertible. Alternatively,232

we can view (3.5) as n equations in n unknown variables: \^yi, i= 2, . . . , n and \^T .233

Summarizing, we have the following.234

Proposition 3.1. For system (2.12), if there exists \^y given by (3.3), and the induced \^T > 0235

by (3.4) such that Pe
\^\bfA \^T has a unit eigenvalue, with corresponding eigenvector \^y, then an LCO236

must exist in this system with the period \^T .237

Note that the proposition only provides a nominal limit cycle; in order to be a true limit238

cycle, we need an extra admissibility condition, that the trajectory should not contact \Sigma 239

during t\in (0, \^T ). Such a condition is known as a viability condition [12].240

Definition 3.2. If the LCO determined by \^y and \^T satisfies the following viability condition,241

H(\^Ce
\^\bfA t\^y)\geq 0 for 0< t< \^T ,

we call it an admissible LCO. Otherwise, it is termed a virtual LCO.242

Note that the viability condition is hard to check a priori but can easily be tested numerically243

once a nominal LCO has been found.244
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We now consider how to solve the shooting problem. Given the form of vector \^C = e\top 1245

and (3.3), the initial condition \^y should be246

\^y= [\^\mu , \^y2, . . . , \^yn]
\top ,(3.7a)

which would give an n-dimensional search space. However, exploiting the eigenvalue problem,247

we note that the condition condition (3.5) can be reduced to finding a unit eigenvalue, which248

can be reduced to a a one-parameter line search for the scalar function249

p( \^T ) = det(Pe
\^\bfA \^T  - I) = 0.(3.7b)

Once we find such a \^T , then \^y can be easily reproduced as the nonzero eigenvector of \lambda = 1250

satisfying (3.3), then the pair of \^y and \^T represent initial conditions and period for a nominal251

LCO's initial condition, and all that is required is to check the viability condition through252

numerical evaluation of the matrix exponential in Definition 3.2 for all t\in (0, \^T ).253

Corollary 3.3. For system (2.12), if there exists \^T > 0 such that (3.7b) is valid, and254

Pe
\^\bfA \^T 's corresponding eigenvector \^y admits \^C\^y \not = 0, then the sign of the first component \^y255

will be determined by (3.3), with specific \^CA\=\^y > 0. We can then normalize this eigenvector so256

that the first coefficient is \^\mu =\pm 1, which will determines the direction of bifurcation of LCO,257

and we call it258259

1. subcritical (surrounding an admissible equilibrium) LCO if \^\mu = - 1;260

2. supercritical (surrounding a pseudoequilibrium) LCO if \^\mu = 1.261

Proof. For an LCO with initial condition \^y with corresponding period \^T , from (3.7a),262

Figure 7, and Theorem 2.4's convention, we know263264

1. \^\mu = - 1 if C\^y= - 1, and H(y0) = 1> 0 means the nominal equilibrium is an admissible265

equilibrium, which is surrounded by the found LCO;266

2. \^\mu = 1 if C\^y = 1, and H(y0) =  - 1 < 0 means the nominal equilibrium is a virtual267

equilibrium, and only pseudotype equilibrium may exist, which is surrounded by the268

found LCO.269

Combining the Corollary 3.3 and Definition 3.2, we now formulate a way to find meaningful270

(admissible) LCOs.271

3.2. Stability of the LCO. LCOs satisfying (3.3) and (3.7) around BEB, as illustrated272

by Figure 7 and (3.2), are not guaranteed to be stable. Starting from a general case, to prove273

the stability of such an LCO, we need to find the Jacobian J around the fixed point \^y using274

a chain rule,275

J=Qy(y
 - ) \phi +

y (\^y,
\^T ),

where the Qy is the saltation matrix (2.16) and \phi +
y = e

\^\bfA \^T .276

Given the \^T and \^y, then y - can be found via (B.3). Thus, we have can write the Jacobian277

derivative of the full hybrid system evaluated at the fixed point \^y as278

J(\^y, \^T ) =

\Biggl( 
P+

[\^A - P\^AP - 1]\^yC

C\^AP - 1\^y

\Biggr) 
e
\^\bfA \^T .(3.8)
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Reset map

varying

Figure 7. Poincar\'e map of an LCO and the location of nominal equilibrium y0. Starting at y+, the tra-
jectory arrives at the impacting surface again at y - after evolution time \tau (\^y), and then via the zero-time reset
map back to y+ to complete a periodic orbit.

The following theorem regarding the stability of a periodic orbit can be found in noted dy-279

namics books like [7, 17].280

Theorem 3.4. For an LCO, defined by (3.3) and (3.7), of system (2.12), the corresponding281

Floquet multipliers are given by the n eigenvalues of J defined by (3.8), which are 1, \lambda 2, . . . , \lambda n.282

If no Floquet multiplier \lambda i(i = 2 \cdot \cdot \cdot n) is outside the unit circle, the LCO is stable; otherwise283

it is unstable.284

3.3. Analytic formulae for three-dimensional examples. Now that we have conditions285

for the existence and stability of LCOs in the BEB normal form, it is instructive to try to286

seek explicit analytical formulae. We treat here the case n = 3. Using Theorem 2.4 and287

some further scaling of the matrices \^A, \^B, and \^C, we can in principle derive a closed-form288

expression for p(T ) in (3.7b) in terms of a minimal number of parameters. Starting from289

unscaled matrices A, B, and C, there are two general nondegenerate cases, which can be290

distinguished by the eigenvalues of \^A:291292

Case I three real eigenvalues \lambda 1, \lambda 2, \lambda 3;293

Case II a pair of conjugate complex eigenvalues ( - \alpha \pm \beta i) and a real one \lambda 3.294

Without loss of generality, suppose that A is written in Jordan canonical form, and vectors295

B,C are written in the corresponding basis. Specifically,296

A=

\left[ 
 
\lambda 1 0 0
0 \lambda 2 0
0 0 \lambda 3

\right] 
 for Case I, andA=

\left[ 
 

\alpha \beta 0
 - \beta \alpha 0
0 0 \lambda 3

\right] 
 for Case II,(3.9)
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and297

C\top =

\left[ 
 
cos\theta sin\varphi 
sin\theta sin\varphi 
cos\varphi 

\right] 
 .(3.10)

Furthermore, we write298

B= b2e
2
\mathrm{k} + b3e

3
\mathrm{k}

and define a transformation matrix299

T= [C\top ,e2\mathrm{k},e
3
\mathrm{k}],(3.11)

where300

e2\mathrm{k} =

\left[ 
 
cos\theta cos\varphi 
sin\theta cos\varphi 
 - sin\varphi 

\right] 
 , e3\mathrm{k} =

\left[ 
 
 - sin\theta 
cos\theta 
0

\right] 
 .

Then, we can derive explicit expressions for the matrices \^A, \^A, and \^C. The results are given301

in Appendix B. Under the assumption that \lambda 3 \not = 0, we can further reduce parameters by using302

| \lambda 3| to rescale time, so that the set of values of \lambda 3 is reduced to two cases, s=\pm 1.303

Thus, the parameter space \Lambda required to define all possible nondegenerate cases of a BEB304

for a general three-dimensional impacting hybrid system is305

\{ \lambda 1, \lambda 2, \lambda 3 =\pm 1, b2, b3, \theta ,\varphi \} ,

which is seven-dimensional.306

Remark 3.5. Another commonly chosen form of the Jacobian in the system (2.12) is the307

Li\'enard form [25], which is indeed covered by our general formulation. Note that Example308

2.6 can be established with a special form of Jacobian along with \varphi = \pi /2, \theta = 0, which has309

two fewer parameters. For the general case, there is a simple transformation that can take310

the Jordan form definition into the Li\'enard form.311

Thus, given the form (3.9) we can perform the necessary steps to compute the matrices312
\^A, \^B, and \^C. Then, by solving the linear differential equations explicitly, we can write down313

a closed-form expression for (3.7b) in terms of exponential and sinusoidal functions. The314

particular expressions for p(T,\Lambda ) are cumbersome; the respective formulae for Cases I and II315

are presented in (C.3) and (C.6) within Appendix B. Further, we can derive explicit expressions316

for \^v(\Lambda , T ), the velocity of the initial condition of LCO, which determines the direction of317

bifurcation (\^\mu =+1 or \^\mu = - 1); see (C.4) and (C.7). Moreover, given the explicit expression318

for any nominal LCO, we can check the viability condition, up to a solution of transcendental319

equations, and also determine the stability by computing the eigenvalues of (3.8).320

Unfortunately, even restricting to three-dimensional cases we have to solve transcendental321

equations depending on seven parameters, and a complete classification of all possible cases322

seems to be a thankless task. Thus, we next seek numerical implementation of the conditions323

derived in this section.324
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4. Numerical examples. The conditions in Corollary 3.3 and Theorem 3.4 are not explicit. AQ9325
To analytically check their validity in a general n-dimensional system is tedious (see Appendix326

D and section 5 for some special cases). Therefore, we present a robust numerical algorithm.327

Suppose that \^A, \^B, \^C, etc., in canonical form of the system (2.12), are dependent on a set of328

parameters \Lambda . We also let \Omega be the principal submatrix of (Pe
\^\bfA T  - I) composed of all but329

the first row and column. Then we have330

Pe
\^\bfA T  - I :=

\biggl[ 
\kappa u\top 

v \Omega 

\biggr] 
,

where u,v \in \BbbR (n - 1)\times 1, and can write down the determinant monitoring function as331

p(t;\Lambda ) =

\left\{ 
 
 
(\kappa  - u\top \Omega  - 1v)det(\Omega ) if det(\Omega ) \not = 0,

\kappa det(\Omega ) - u\top adj(\Omega )v for anydet(\Omega ).
(4.1)

Once a root of p(t) = 0 is found, the candidate initial condition on \Sigma is given as332

\^y= \^\mu [1; - \Omega  - 1v], provided det(\Omega ) \not = 0.(4.2)

Finally Corollary 3.3 and Definition 3.2 are used to distinguish the type of LCO. The general333

algorithm is given in section 4, which we have implemented in MATLAB.334

In the formulation of the algorithm, some details should be noticed:335336

1. Actually by substitution of (4.2) into (3.7), \kappa  - u\top \Omega  - 1v= 0 is the first component of337

the equation, which is the returning condition (3.4).338

2. When the \Omega is close to singular at some time tc, the value of \^y will be stretched and AQ10339
this shows tc is a potential lower/upper limit for \^T , the period of a limit cycle.340

3. Note that the roots of (3.7b) will not necessarily satisfy the viability condition, so a341

postprocessing set is required to integrate from the initial condition \^y to check whether342

this is an admissible limit cycle or not.343

We now provide some examples to show how the algorithm works in practice.344

4.1. Planar examples. For a general planar system of the form (2.12), without loss of345

generality, we can write346

\^A=

\biggl[ 
0 1
b a

\biggr] 
, P=

\biggl[ 
1 0
0  - r

\biggr] 
.(4.3)

Then we have347

trace(\^A) = a, det(\^A) = - b, \Delta = trace2(\^A) - 4det(\^A)

with348

C\^A - 1B= [1,0]

\left[ 
  - 

a

b

1

b

1 0

\right] 
 [0, (1 + r)]\top =

1+ r

b

and349

\lambda 1,2 =
trace(\^A)

2
\pm 
\surd 
\Delta 

2
.
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Algorithm 4.1: LCO detection algorithm.
Data: Matrix A, reset map matrix P, searching region [0, tend], stepsize Δt,

tolerance [tol].
Result: N , the number of LCOs found; { i, Ti,Mi,Si}, (i = 1, · · · ,N ) for each

LCO, with initial condition i, corresponding period Ti, the corresponding
biggest Floquet multiplier Mi, and the value of μ̂ as Si.

/* Initialization */

1 τ 0, i 0 ;
2 N 0, ŷ [ ], T [ ], M [ ], S [ ], P [ ], t [ ];

/* /*egnarnevignihcraesnigeB

3 P [1] = 0, t[1] = 0 ;
4 Function Det(A, P, τ):
5 K eAτ ;
6 Π (PK− I), Ω Π(2 : n, 2 : n);

7 κ Π(1, 1), u Π(1, 2 : n), v Π(2 : n, 1);

8 p κ det(Ω)− u adj(Ω)v ;
9 return p, Ω, v;

10 ;
11 Function IC(Ω, v, A):

/* /*yticolevfongisdnanoitidnoclaitinilairtehtetupmoC

12 ζ −Ω−1v, yi [1; ζ], μ̂ sign(e1Ayi), yi μ̂yi;
/* Find eigenvalue of J given by (3.8) with largest 2 /*mron-

13 λ eig(J(yi)), m max(||λi||2);
14 return yi, μ̂, m;

15 ;
16 Function store(τ , T, yi, , μ̂, S, N):

/* /*snoitulosehttcelloc

17 if CeAtyi − μ̂ ≥ 0 for t ∈ (0, τ) /* */ noitidnocytilibaivkcehC

18 then
19 ŷ [ŷ,yi];
20 T [T, τ ], M [M,m],S [S, s], N N + 1 ;

21 return T, , S, N ;

22 ;
23 while τ ≤ tend do
24 τ τ +Δt;
25 i i+ 1
26 p,Ω,v Det(A,P, τ);
27 if |p| < tol & det(Ω) = 0 then
28 yi, s,m IC(Ω,v,A);
29 T, ,S,N store(τ,T,yi, , μ̂,S,N ) ;

30 else if p · P [i− 1] < 0 then
/* /*etamixorppaotnoitalopretnI

31 τ pt[i−1]−τP [i−1]
p−P [i] ;

32 p,Ω,v Det(A,P, τ);
33 yi, s,m IC(Ω,v,A);
34 T, ,S,N store(τ,T,yi, , μ̂,S,N ) ;

35 t[i] = τ ;
36 P [i] = p ;

ŷ
ŷ

ŷ

ŷ

ŷŷ

ˆˆ yy
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Table 1
Illustration of the results for the cases of planar BEB in the persistence and focus-focus transition case

with \Delta < 0. (AE: Admissible Equilibrium; PE: Pseudo Equilibrium; U: Unstable; S: Stable; null: not given.
For conditions in [8], trace(A) < 0 indicates stable equilibrium and re

\alpha 
\omega 
\pi < 1 implies stable LCO, and vice

versa.)

Case 1 2 3 4

\{ a,b,r\}  - 1,  - 1, 1.5  - 1, - 1,7.0 0.5, - 1,0.5 0.5, - 1,0.4

Graph Figure 9 Figure 10 Figure 11 Figure 12

trace(A) < 0 < 0 > 0 > 0

re
\alpha 
\omega 
\pi 0.2446 1.1412 1.1235 0.9002

Classification by results in [8] AE S S U U
PE null null null null

LCO type S U U S

AE S S U U
PE U U S S

Classification by Algorithm 4.1 \scrN 1 1 1 1
\scrM =1 > 1 > 1 = 1
\^\mu 1  - 1 1  - 1

LCO type SSuper USub USuper SSub

Then, according to Theorem 2.5 and the further results in [8], we have350351

1. b > 0 leads to a nonsmooth fold for which the admissible equilibrium is a saddle, with352

one positive and one negative eigenvalue;353

2. b < 0 corresponds to persistence with two subcases depending on the sign of \Delta :354355

(a) \Delta > 0 implies the admissible equilibrium is a node, being stable when trace(\^A)< 0356

and unstable when trace(\^A)> 0;357

(b) \Delta < 0 implies the admissible equilibrium is focus, being stable when trace(\^A)< 0 AQ11358
and unstable with trace(\^A)> 0.359

Let us consider item 2(b). The results of applying Algorithm 4.1 and the theorems in [8] are360

summarized in Table 1, and the resulting phase portraits are illustrated in Figures 9 to 12, in361

which the results show good agreement between the two methods. Note, however, that the362

case shown in Figure 12, for which there is the subcritical existence of a stable LCO, is not363

treated explicitly in [8].364

We next present a particular two-dimensional example that illustrates the importance of365

the viability condition.366

Example 4.1. Let us pick a specific example of the form (4.3), when we set367

a= - 0.2; b= - 1.01; r= 3.0796.

The results are shown in Figure 8 and some virtual LCOs are found by the algorithm.368

4.2. Three-dimensional examples. First, let us revisit Example 2.6, for which there is a369

transition from a stable focus for \^\mu = - 1. The first subcase has an unstable pseudoequilibrium,370

and the other case possesses a stable one for \^\mu =+1. Apart from the transition of equilibria,371

whether any LCO is born was previously unknown.372
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Figure 8. The function p(t) for Example 4.1. Note that the first root leads to an admissible LCO whereas
the next two are virtual.
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Figure 9. Illustration of the phase portrait before and after bifurcation for Case 1 in Table 1 (

18 HONG TANG AND ALAN CHAMPNEYS

0 2 4 6 8 10
/

-3

-2

-1

0

1

2
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Figure 9. Illustration of the phase portrait before and after bifurcation for the case 1 in Table 1 (
represents stable LCO; represents unstable LCO; stands for stable equilibrium; stands for unstable
equilibrium; is the switching surface.)

While a complete classification in 3D seems complex, we can use the analytic calculations
in subsection 3.3 to find certain degenerate cases, variation across which causes a change in
the criticality of the bifurcation.
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is the switching surface.)

Example 4.2. (Example 2.6 continued.) To look for possible LCOs, we can turn to the373

condition (3.7b) and Algorithm 4.1. Table 2 gives us the answer: both subcases possess374

supercritical LCOs. Specifically, we find the coexistence of a stable pseudoequilibrium and375

a stable LCO, which also happened in the motivating example in subsection 1.1. Such a376

phenomenon is impossible in a planar system, but clearly can be found in three dimensions.377

While a complete classification in three dimensions seems complex, we can use the analytic378

calculations in subsection 3.3 to find certain degenerate cases, variation across which causes379

a change in the criticality of the bifurcation.380
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Figure 10. Similar to Figure 9, but for Case 2 in Table 1.
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Figure 11. Similar to Figure 9, but for Case 3 in Table 1.

For example, from the general expressions in (C.4) and (C.7), the velocity v will be zero381

when \lambda 1,2,3 = 0 for Case I and \lambda 3 = 0 for Case II. These conditions lead to a singular Jacobian,382

which gives conditions for changes of criticality. If v and p(t) are both smoothly defined383

around \lambda i = 0 and \partial v
\partial \lambda i
\not = 0, then according to the implicit function theorem, the sign change384

of \lambda i around 0 will change the sign of v. Following Algorithm 4.1, the change of velocity sign385

indicates the change of the LCO type by Corollary 3.3, thus switching the BEB bifurcation386

between supercritical and subcritical.387

Example 4.3. (Switch of bifurcation type). For Case I, we design two models which differ388

only in the sign of \lambda 2, and for Case II, we design two models which differ only in the sign of389

\lambda 3. Specific parameter values are390
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Figure 12. Similar to Figure 9, but for Case 4 in Table 1.

Table 2
Further analysis of the two three-dimensional cases with persistence in Example 2.6, where LCOs emerge

due to focus transition (from Algorithm 4.1). The parameter [t,m,d] is selected as [ - 0.7, - 0.15, - 0.025]. (AE:
Admissible Equilibrium; PE: Pseudo Equilibrium; U: Unstable; S: Stable.)

Graph b2, b3 AE PE \scrN \scrM \^\mu 

Figure 13a and Figure 13b b2 = 2.5, b3 = 0.625 S U 1 =1 1
Figure 13c and Figure 13d b2 = 1.8, b3 = 1.600 S S 2 > 1, =1 1

Table 3
Two subcases with persistence and LCO type change (from Algorithm 4.1). (AE: Admissible Equilibrium;

PE: Pseudo Equilibrium; U: Ustable; S: Stable.)

parameters \^\Lambda AE PE \scrN \scrM \^\mu Diagram p(t)

Case I (i) US US 1 =1 -1 Figure 14a Figure 15b
(ii) S US 1 =1 1 Figure 14b

Case II (i) US US 1 =1 -1 Figure 14a Figure 15c
(ii) S US 1 =1 1 Figure 14b

391

Case I: \lambda 1 = - 1, \lambda 3 = - 1, b2 = 129.3652, b3 = 15.4041, \phi = 0.8761, \theta = 0.0083;392

and (i): \lambda 2 = 0.01, (ii): \lambda 2 = - 0.01;393

Case II: \lambda 1 =  - 10 + 10i, \lambda 2 =  - 10  - 10i, \lambda 3 = 1, b2 = 0.2332, b3 = 0.2251, \phi = 1.5002,394

\theta = 2.3562;395

and (i): \lambda 3 = 1, (ii) \lambda 3 = - 1.396

The results are summarized in Table 3 and depicted in Figure 14. In both cases, the switch397

of bifurcation from subcritical to supercritical can be clearly seen. The corresponding graphs398

of p(t) are shown in Figure 15(a).399
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Figure 13. LCOs in Example 2.6 using Algorithm 4.1. We find for \^\mu = 1, subcase 1 in the first row of Table
2---(a), (b): a stable LCO exists, surrounding an unstable pseudoequilibrium; subcase 2 in the second row of
Table 2---(c), (d): two LCOs with different stability exist surrounding a stable pseudoequilibrium.

4.3. Airfoil model in \BbbR 8. We now return to the motivating example from the beginning400

of the paper, the airfoil model. Set \=U = 0.64833 in (1.1) and we use Algorithm 4.1 to explain401

the BEB result computed by brute force. The results of applying Algorithm 4.1 are depicted402

in Figure 16. This reveals that actually two LCOs bifurcate, the one observed in Figure 2(b)403

and Figure 3 and a another smaller-amplitude one. As part of the algorithm, we compute404

the largest Floquet multipliers using (3.8) to determine stability, which shows the smaller405

limit cycle has a multiplier outside the unit circle, which confirms its instability whereas the406

larger-amplitude LCO is stable. A comparison is made between the stable LCO found in407

direct numerical simulation and the one found by our method as shown in Figure 17.408

5. Discussion. We already showed in subsection 3.3 that even for three-dimensional ex-409

amples, a complete classification of bifurcation outcomes from a BEB is problematic, owing to410

the curse of dimensionality and the lack of a center-manifold-like result for impacting hybrid411

systems. Thus, a complete unfolding of BEBs for n-dimensional cases is clearly not feasible.412

Instead, in this section we focus on a few additional analytical considerations that are in the413
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numerical continuation [1, 22]. Thus, we can easily extend ?? 1 in order to track solutions
in parameter space. We have extended our Matlab implementation by coding up a bespoke
version of pseudo-arclength continuation. We illustrate the method by applying it to the
wing-flap model (1.1). We choose the coefficient of restitution r and damping ratio \xi as our
two bifurcation parameters, as both are known to play a crucial role within mechanically
vibrating systems. Figure 18a shows the results for the bifurcation diagram of period T \ast 

against r. Here we see that the two limit cycles merge and disappear in a (smooth) cyclic
fold for r\mathrm{c}\mathrm{r} \approx 0.6292. This gives rise to the birth of two limit cycles of opposite stability,
explaining our earlier numerical results for r = 0.72 in Figure 17. Figure 18b shows the result
of variation of \xi ; we note that values of the damping coefficient that are either two high or

stable admissible equilibrium;
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direction of establishing more general conditions for the bifurcation of LCOs at a BEB, with414

more precise details left for future work.415

First, we illustrate in subsection 5.1 how Algorithm 4.1 is well suited for numerical contin-416

uation. Then, in subsection 5.2 we return to three dimensions and attempt to gain geometrical417

insight into what conditions can lead to the coexistence of a stable limit cycle and a stable418

pseudoequilibrium. Finally, in subsection 5.3 we we look at the behavior of p(t) as an analytic419

function of t and attempt to establish a sufficient condition for the bifurcation of LCO. Finally,420

we draw conclusions in subsection 5.4.421

5.1. Numerical continuation. The condition (3.7b) leads to a smoothly defined scalar422

function p(\Lambda , t), albeit one that can develop isolated singularities. Hence, it is well set up for423
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Figure 16. (a) LCO searching for the airfoil example (1.1) by Algorithm 4.1. Two LCOs with opposite
stability are found after the BEB when \^\mu = 1. (b) Zoomed-in close to the first two zeros of p(t).
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Figure 17. [\Delta \=U = 1\times 10 - 3]. Phase portrait of the two LCOs for wing-flap example (1.1) (a) phase portrait of
\zeta ,\alpha ,H(\beta ), where H(\beta ) measure the state \beta 's distance to the impacting surface (see Definition 2.1 and Theorem
2.4); (b) phase portrait of flap degree \beta , with
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Figure 17. [\Delta \=U = 1 \times 10 - 3]. Phase portrait of the two LCOs for wing flap example (1.1) (a) phase
portrait of \zeta , \alpha ,H(\beta ), where H(\beta ) measure the state \beta 's distance to the impacting surface (see Definition 2.1
and Theorem 2.4); (b) phase portrait of flap degree \beta , with for the LCO A in Figure 3a scaled by 1.41\times 105

according to scaling (B.2) in Theorem 2.4, and stands for the stable LCO found by our algorithm. The
good match shows they are the same LCO of the wing flap system.

too low will destroy the LCOs. For example, there is no stable LCO when the damping ratio
is below a critical value \xi \approx 1.29\%.

5.2. Geometrical interpretation of the reset map in 3D. From the point of view of an
impacting mechanical system, it is interesting to ponder how a stable limit cycle can coexist
with a stable pseudo equilibrium for 0 < r < 1. This behaviour we observed in the motivating
wing-flap example seems counter-intuitive. Intuitively, we would need a mechanism to add
additional energy to the system from the amount of energy required to sustain the stable
pseudo equilibrium. Yet if 0 < r < 1, each impact removes energy (at least from the degree
of freedom normal to the rigid surface). The resolution of this apparent paradox comes about

for the LCO A in Figure 3(a) scaled by 1.41\times 105 according
to scaling (B.2) in Theorem 2.4, and
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Figure 16. (a) LCO searching for the airfoil example (1.1) by ?? 1. Two LCOs with opposite stability are
found after the BEB when \^\mu = 1; (b) Zoomed-in close to the first two zeros of p(t).
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portrait of \zeta , \alpha ,H(\beta ), where H(\beta ) measure the state \beta 's distance to the impacting surface (see Definition 2.1
and Theorem 2.4); (b) phase portrait of flap degree \beta , with for the LCO A in Figure 3a scaled by 1.41\times 105

according to scaling (B.2) in Theorem 2.4, and stands for the stable LCO found by our algorithm. The
good match shows they are the same LCO of the wing flap system.

too low will destroy the LCOs. For example, there is no stable LCO when the damping ratio
is below a critical value \xi \approx 1.29\%.

5.2. Geometrical interpretation of the reset map in 3D. From the point of view of an
impacting mechanical system, it is interesting to ponder how a stable limit cycle can coexist
with a stable pseudo equilibrium for 0 < r < 1. This behaviour we observed in the motivating
wing-flap example seems counter-intuitive. Intuitively, we would need a mechanism to add
additional energy to the system from the amount of energy required to sustain the stable
pseudo equilibrium. Yet if 0 < r < 1, each impact removes energy (at least from the degree
of freedom normal to the rigid surface). The resolution of this apparent paradox comes about

stands for the stable LCO found by our algorithm. The good match
shows they are the same LCO of the wing flap system.

numerical continuation [1, 22]. Thus, we can easily extend Algorithm 4.1 in order to track424

solutions in parameter space. We have extended our MATLAB implementation by coding up425

a bespoke version of pseudoarclength continuation. We illustrate the method by applying it426

to the wing-flap model (1.1). We choose the coefficient of restitution r and damping ratio \xi as427

our two bifurcation parameters, as both are known to play a crucial role within mechanically428

vibrating systems. Figure 18(a) shows the results for the bifurcation diagram of period T \ast 429

against r. Here we see that the two limit cycles merge and disappear in a (smooth) cyclic fold430

for r\mathrm{c}\mathrm{r} \approx 0.6292. This gives rise to the birth of two limit cycles of opposite stability, explaining431

our earlier numerical results for r = 0.72 in Figure 17. Figure 18(b) shows the result of a432

variation of \xi ; we note that values of the damping coefficient that are either two high or too AQ12433
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Figure 18. Parametric analysis via numerical continuation. (a) -- current point with r = 0.72; -- the
folding point r = 0.6292; (b) -- critical point \xi = 1.29\%, where one Floquet multiplier cross the unit circle via
negative half axis; -- current point with \xi = 2\% ; -- \xi = 2.556\%

due to the reset map transferring energy into directions other than that normal to \Sigma . It would
seem in (1.1) that it is the non-conservative aerodynamic forces that enable this energy transfer
to happen. But that model has an 8-dimensional phase space, so for ease of understanding we
consider the situation for 3D models, for which in subsection 3.3 we have complete analytic
information.

Note from (2.12) the reset map is affine to leading order. In 3D, the grazing set \Sigma 0 is a
line \ell := \{ y | H(y) = 0,CAy = 0\} , which we depict Figure 19. Then the reset map defines a
degree of stretch in both the lateral and perpendicular directions, namely

R \circ 

\left[ 
 

0
y - 1
y - 3

\right] 
 =

\left[ 
 

0
y - 2
y - 3

\right] 
 + z+(\rho  - , z - )e\mathrm{z} + \rho +(\rho  - , z - )e\rho 

here e\rho =

\Biggl[ 
0,

a12\sqrt{} 
a212 + a213

,
a13\sqrt{} 

a212 + a213

\Biggr] \top 
and ez =

\Biggl[ 
0,

a13\sqrt{} 
a212 + a213

,
 - a12\sqrt{} 
a212 + a213

\Biggr] \top 
are the

unit directional vector along and orthogonal to \ell respectively. Specifically, we have \rho =
1\sqrt{} 

a212 + a213
CAy =

1\sqrt{} 
a212 + a213

v.

Bearing in mind the definition (2.4), we can write \rho + =  - (1 + r)\rho  - , where r(\rho  - , z - ) > 0
is the effective restitution coefficient. Furthermore, let us write z+ = Rz(\rho 

 - , z - )\rho  - . For a
given set of parameters in (C.2) and (C.5), the stretching coefficients r, and Rz can be written

current point with r = 0.72;
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due to the reset map transferring energy into directions other than that normal to \Sigma . It would
seem in (1.1) that it is the non-conservative aerodynamic forces that enable this energy transfer
to happen. But that model has an 8-dimensional phase space, so for ease of understanding we
consider the situation for 3D models, for which in subsection 3.3 we have complete analytic
information.

Note from (2.12) the reset map is affine to leading order. In 3D, the grazing set \Sigma 0 is a
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due to the reset map transferring energy into directions other than that normal to \Sigma . It would
seem in (1.1) that it is the non-conservative aerodynamic forces that enable this energy transfer
to happen. But that model has an 8-dimensional phase space, so for ease of understanding we
consider the situation for 3D models, for which in subsection 3.3 we have complete analytic
information.

Note from (2.12) the reset map is affine to leading order. In 3D, the grazing set \Sigma 0 is a
line \ell := \{ y | H(y) = 0,CAy = 0\} , which we depict Figure 19. Then the reset map defines a
degree of stretch in both the lateral and perpendicular directions, namely
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due to the reset map transferring energy into directions other than that normal to \Sigma . It would
seem in (1.1) that it is the non-conservative aerodynamic forces that enable this energy transfer
to happen. But that model has an 8-dimensional phase space, so for ease of understanding we
consider the situation for 3D models, for which in subsection 3.3 we have complete analytic
information.

Note from (2.12) the reset map is affine to leading order. In 3D, the grazing set \Sigma 0 is a
line \ell := \{ y | H(y) = 0,CAy = 0\} , which we depict Figure 19. Then the reset map defines a
degree of stretch in both the lateral and perpendicular directions, namely
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Bearing in mind the definition (2.4), we can write \rho + =  - (1 + r)\rho  - , where r(\rho  - , z - ) > 0
is the effective restitution coefficient. Furthermore, let us write z+ = Rz(\rho 

 - , z - )\rho  - . For a
given set of parameters in (C.2) and (C.5), the stretching coefficients r, and Rz can be written
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low will destroy the LCOs. For example, there is no stable LCO when the damping ratio is434

below a critical value \xi \approx 1.29\%.435

5.2. Geometrical interpretation of the reset map in three dimensions. From the point436

of view of an impacting mechanical system, it is interesting to ponder how a stable limit437

cycle can coexist with a stable pseudoequilibrium for 0 < r < 1. This behavior we observed438

in the motivating wing-flap example seems counterintuitive. Intuitively, we would need a439

mechanism to add additional energy to the system from the amount of energy required to440

sustain the stable pseudoequilibrium. Yet if 0< r < 1, each impact removes energy (at least441

from the degree of freedom normal to the rigid surface). The resolution of this apparent442

paradox comes about due to the reset map transferring energy into directions other than that443

normal to \Sigma . It would seem in (1.1) that it is the nonconservative aerodynamic forces that444

enable this energy transfer to happen. But that model has an eight-dimensional phase space,445

so for ease of understanding we consider the situation for three-dimensional models, for which446

in subsection 3.3 we have complete analytic information.447

Note from (2.12) the reset map is affine to leading order. In three dimensions, the grazing448

set \Sigma 0 is a line \ell := \{ y | H(y) = 0,CAy= 0\} , which we depict Figure 19. Then the reset map449

defines a degree of stretch in both the lateral and perpendicular directions, namely,450

R \circ 

\left[ 
 

0
y - 1
y - 3

\right] 
 =

\left[ 
 

0
y - 2
y - 3

\right] 
 + z+(\rho  - , z - )e\mathrm{z} + \rho +(\rho  - , z - )e\rho ,

and here \bfe \rho =[0,
a12\surd 

a2
12

+a2
13

,
a13\surd 

a2
12

+a2
13

]\top and \bfe z=[0,
a13\surd 

a2
12

+a2
13

,
 - a12\surd 
a2
12

+a2
13

]\top are the unit directional vector451

along and orthogonal to \ell , respectively. Specifically, we have \rho = 1\surd 
a2
12

+a2
13

\bfC \bfA \bfy = 1\surd 
a2
12

+a2
13

v.452

Bearing in mind the definition (2.4), we can write \rho + = - (1 + r)\rho  - , where r(\rho  - , z - )> 0453

is the effective restitution coefficient. Furthermore, let us write z+ = Rz(\rho 
 - , z - )\rho  - . For a454



LIMIT CYCLES FROM BOUNDARY EQUILIBRIUM BIFURCATION 25

Figure 19. A geometric sketch of the reset map.

given set of parameters in (C.2) and (C.5), the stretching coefficients r and Rz can be written455

explicitly. Specifically, for the focus case we get456

\biggl[ 
r
Rz

\biggr] 
= - 

\biggl[ 
a12 a13
 - a13 a12

\biggr] \biggl[ 
b2
b3

\biggr] 
 - 
\biggl[ 
1
0

\biggr] 

= - 
\biggl[ 
(\alpha  - \lambda 3) sin\varphi cos\varphi \beta sin\varphi 

 - \beta sin\varphi (\alpha  - \lambda 3) sin\varphi cos\varphi 

\biggr] \biggl[ 
b2
b3

\biggr] 
 - 
\biggl[ 
1
0

\biggr] 
.

(5.1)

Now, let us consider two cases with the same Jacobian A but with different reset maps.457

Specifically, the two cases in Example 4.2 having different reset maps. Note that in this458

example, the eigenvalues of A all have strictly negative real parts. Thus, for \mu = - 1 there is459

an asymptotically stable equilibrium. For the two cases in Table 2 we can compute460

1. r= 1.5, R\mathrm{z} = 0; 2. r= 0.8, R\mathrm{z} = 4.6.

We saw how both cases led to supercritical bifurcation of an LCO, but with different kinds of461

bifurcation. In the first case, the coefficient of restitution r > 1, which explains how additional462

energy enters through impact. Indeed, in this case, the pseudoequilibrium is unstable. In the463

second case, while the effective coefficient of restitution r < 1, there is a large component of464

the rest map in the e\mathrm{z} direction. It is this coupling of velocity (perpendicular to \ell ) into the465

displacement in the direction transverse to \ell that enables a stable limit cycle to emerge. In466

effect, energy is being gained by the z-component, which is compensated for during the free AQ13467
motion. Such a limit cycle can coexist with a stable pseudoequilibrium, whose stability mostly468

comes about because of the stability of the sticking set, which is ensured because 0< r < 1.469

5.3. Toward a sufficient condition for a limit cycle. An alternative way to think about470

the mechanism for the generation of limit cycles in n-dimensional BEBs is to consider an471

analytic form for p(t), using the matrix exponential. As in the previous example, we shall472
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consider the simplified case that A is asymptotically stable (sometimes called a Hurwitz473

matrix), that is, all its eigenvalues are in the left-half complex plane.474

Consider the form of p(t) given by (3.7b). Recall that P = I  - \^B\^C\^A, and hence it is475

straightforward to show that P has eigenvalues equal to 1, with multiplicity n - 1, and  - r476

with multiplicity 1. Moreover, because A is Hurwitz, the eigenvalues of Pe\bfA T  - I will each477

approach  - 1. Hence478

lim
t\rightarrow \infty 

p(t) = lim
t\rightarrow \infty 

det(Pe\bfA t  - I) = ( - 1)n.(5.2)

Meanwhile, we notice that p(0) = 0, so an important piece of information is to work out479

the sign of p(t) for small t. The details are given in Appendix D. There we find that480

p(t) = - 1

2
(r - 1)det(A)tn +\scrO (tn+1).(5.3)

Combining (5.2) and (5.3) we can state our first result with sign(A) = ( - 1)n, namely,481

if r > 1, then sign

\biggl( 
lim
t\rightarrow 0+

p(t)

\biggr) 
\not = sign

\Bigl( 
lim
t\rightarrow \infty 

p(t)
\Bigr) 
.(5.4)

It is thus tempting to appeal to the intermediate value theorem to show that there must482

therefore be a zero of p(t) for some finite value t = \^T . Unfortunately, there are two caveats:483

first, one would need to check the viability condition, and, second, there is no guarantee that484

p(t) does not develop a singularity. In principle, these caveats can be dealt with by writing485

down explicit conditions on the matrix exponential. But the details are left to future work.486

Incidentally, the converse of (5.4) also applies:487

if 0< r < 1, then sign
\Bigl( 
lim
t\rightarrow 0

p(t)
\Bigr) 
= sign lim

t\rightarrow \infty 
p(t)).

This condition goes some way to explaining why the stable limit cycle we found that coexists488

with the stable pseudoequilibrium for 0 < r < 1 has to be coexisting with another (albeit489

unstable) limit cycle. If the function p(t) avoids any singularities as t increases from zero,490

then we would have to have an even number of zero crossings, which would correspond to an491

even number of nominal LCOs.492

5.4. Conclusion. In summary, in this paper, we have attempted to shed more light on493

the analysis of Hopf-like bifurcation of limit cycles at boundary equilibrium bifurcations in494

piecewise-smooth systems. Specifically, we have dealt with the case of impacting hybrid495

systems. In fact, in [8], it is shown how BEB normal form analysis for impacting hybrid496

systems can be regarded as a special case of piecewise-smooth continuous and Filippov systems,497

at least when one considers only equilibria and pseudoequilibria. In principle, the approach498

adopted here for finding LCOs could be extended to deal with piecewise-smooth continuous499

systems. However, now p(t) would become a function of two parameters p(t1, t2), where t1500

and t2 are the a priori unknown times spent under the regular flow and the sliding flow. An501

investigation of this will form the subject of future work.502
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Another weakness of the present work is that we look only at limit cycles. For systems with503

sufficiently high dimensionality, other attractors such as invariant tori or chaotic attractors504

may also occur locally at a BEB. For example, numerical evidence for a particular three-505

dimensional system in [13] suggests local birth of chaotic attractors at a BEB in an impacting506

hybrid system. A full unfolding of that case is pending.507

Even within the realm of LCOs at BEBs of impacting hybrid systems, there remain many508

analytical details that we have not fully explored in this paper. The arguments presented in509

this section suggest that, provided we can get a control of possible singularities of p(t), then510

it may be possible to derive sufficient conditions for N limit cycles to bifurcate, owing to sign511

changes of p(t). We have also avoided any discussion of degenerate cases, for which one has512

to go beyond the scale-invariant normal form.513

Appendix A. Full equations of motion for airfoil model. The model studied in subsection514

1.1 is a reduced-order model of a two-dimensional airfoil within a constant air stream. A515

full derivation can be found in [27]; here we just present enough information to specify the516

equations in full. The three mechanical degrees of freedom are \alpha , \beta , and \zeta . The first two517

represent the angular displacement (pitch) of the airfoil and flap, respectively; and \zeta = h/b518

is the dimensionless displacement in the heave degree of freedom, normalized by semichord b.519

The parameter \=U =U/\omega \alpha b is a dimensionless measure of the magnitude of the free stream air520

velocity approaching the airfoil, and the parameter \delta characterizes the amount of flap freeplay.521

Using Lagrangian mechanics, it is straightforward to write down the equations of motion522

of the mechanical degrees of freedom in the form523

\bfitM 

\left[ 
  

\"\zeta 

\"\alpha 

\"\beta 

\right] 
  +\bfitC 

\left[ 
  

\.\zeta 

\.\alpha 

\.\beta 

\right] 
  +\bfitK 

\left[ 
  
\zeta 

\alpha 

\beta 

\right] 
  =

\left[ 
  

L/(mb)

T\alpha /mb2

T\beta /(mb2)

\right] 
  +

\bigl[ 
F
\bigr] 
,(A.1)

where \bfitM =

\left[ 
  
1 \=x\alpha \=x\beta 

\=x\alpha \=r2\alpha \=r2\beta + \=x\beta (\=c - \=a)

\=x\beta \=r2\beta + \=x\beta (\=c - \=a) \=r2\beta 

\right] 
  ,

\bfitK =

\left[ 
  
\omega 2
h 0 0

0 \omega 2
\alpha \=r

2
\alpha 0

0 0 \omega 2
\beta \=r

2
\beta 

\right] 
  and \bfitC = (\Phi T ) - 1

\left[ 
  
2\xi h\omega h 0 0

0 2\xi \alpha \omega \alpha \=r
2
\alpha 0

0 0 2\xi \beta \omega \beta \=r
2
\beta 

\right] 
  \Phi  - 1,

where \Phi is an eigenvector matrix defined by (\bfitK  - \omega 2\bfitM )\phi i = 0, \Phi = [\phi 1 . . . \phi n], and \Phi T\bfitM \Phi = \bfitI .524

Also, L, T\alpha , and T\beta define state-dependent generalized aerodynamic forces, defined below,525

and F represents other external generalized forces (set to zero in the current model, except526

for preload 1\% \cdot \delta k\beta in the component corresponding rotational flag degree). The \xi i, for527

i \in \{ h,\alpha ,\beta \} , corresponds to mode-proportional structural damping ratios for each degree of AQ16528
freedom; by default we set the reasonable value \xi i = \xi = 0.02 for each degree of freedom529

(cf. [29]).530
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The unsteady aerodynamics L,T\alpha , T\beta are given as531
532

L= \pi \rho ab
2

\biggl( 
\"h+ V \.\alpha  - b\=a\"\alpha  - V

\pi 
T4

\.\beta  - b

\pi 
T1

\"\beta 

\biggr) 
(A.2a)

+ 2\pi \rho aV b

\biggl( 
Qa(\^\tau )\phi w(0) - 

\int \^\tau 

0
Qa(\sigma )

d\phi \mathrm{w}(\^\tau  - \sigma )

d\sigma 
d\sigma 

\biggr) 
,

T\alpha = \pi \rho ab
2

\biggl[ 
b\=a\"h - V b

\biggl( 
1

2
 - \=a

\biggr) 
\.\alpha  - b2

\biggl( 
1

8
+ \=a2

\biggr) 
\"\alpha  - V 2

\pi 
(T4 + T10)\beta (A.2b)

+
V b

\pi 

\biggl( 
 - T1 + T8 + (\=c - \=a)T4  - 

1

2
T11

\biggr) 
\.\beta +

b2

\pi 
(T7 + (\=c - \=a)T1) \"\beta 

\biggr] 

+ 2\pi \rho aV b2
\biggl( 
\=a+

1

2

\biggr) \biggl( 
Qa(\^\tau )\phi w(0) - 

\int \^\tau 

0
Qa(\sigma )

d\phi \mathrm{w}(\^\tau  - \sigma )

d\sigma 
d\sigma 

\biggr) 
,

T\beta = \pi \rho ab
2

\biggl[ 
b

\pi 
T1

\"h+
V b

\pi 

\biggl( 
2T9 + T1  - 

\biggl( 
\=a - 1

2

\biggr) 
T4

\biggr) 
\.\alpha  - 2b2

\pi 
T13\"\alpha (A.2c)

 - 
\biggl( 
V

\pi 

\biggr) 2

(T5  - T4T10)\beta +
V b

2\pi 2
T4T11

\.\beta +

\biggl( 
b

\pi 

\biggr) 2

T3
\"\beta 

\Biggr] 

 - \rho aV b2T12

\biggl( 
Qa(\^\tau )\phi w(0) - 

\int \^\tau 

0
Qa(\sigma )

d\phi w(\^\tau  - \sigma )

d\sigma 
d\sigma 

\biggr) 
.

In order to approximate the unsteady aerodynamics, we use the exponential approximation533

to the Theodorsen functions534

\phi (\tau ) = 1 - a1e
 - b1\tau  - a2e

 - b2\tau ,

as introduced by Jones [16], and see [29] for a derivation and for how to define values of the535

coefficients a1,2 and b1,2. Then we introduce augmented variables536

w1(t) =

\int t

0
Qae

 - \mathrm{b}1(\mathrm{t} - \sigma )d\sigma , w2(t) =

\int t

0
Qae

 - \mathrm{b}2(\mathrm{t} - \sigma )d\sigma (A.3)

to calculate the aerodynamic forces L, T\alpha T\beta in terms of feedback from the structural motion,537

where538

Qa =

\biggl( 
V \alpha + \.h+ b

\biggl( 
1

2
 - a

\biggr) 
\.\alpha +

V

\pi 
T10\beta +

b

2\pi 
T11

\.\beta 

\biggr) 
.

If we define Xs = [\zeta ,\alpha ,\beta ]\top for the structural variables and wp = [w1,w2]
\top for the aug-539

mented parametric variables, then the full coupled system can be written as540

\.Xs = \.Xs,

M \"Xs = - KXs  - C \.Xs  - Dwwp,

\.wp =EqXs +Eqd
\.Xs +Ewwp,

(A.4)
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where

M =M  - \eta Mnc, K =K  - \eta (U/b)2(Knc + 0.5RcSc1), C =C  - \eta (U/b)(Bnc + 0.5RcSc2),

D\omega = \eta (U/b)Rc

\bigl[ 
a1b1(U/b)

2 a2b2(U/b)
\bigr] 
, Eq = (U/b)

\bigl[ 
Sc1;Sc1

\bigr] 
, Eqd =

\bigl[ 
Sc2;Sc2

\bigr] 
,

E\omega =

\biggl[ 
 - b1 0
0  - b2

\biggr] 
, \eta = 1/\pi \mu , and \mu =m/\pi \rho ab

2,

\bfitM nc =

\left[ 
  
 - \pi \pi \=a T1

\pi \=a  - \pi 
\bigl( 
1/8 + \=a2

\bigr) 
 - 2T13

T1  - 2T13 T3/\pi 

\right] 
  , \bfitB nc =

\left[ 
  
0  - \pi T4

0 \pi (\=a - 0.5)  - T16

0  - T17  - T19/\pi 

\right] 
  ,

\bfitR c =

\left[ 
  

 - 2\pi 
2\pi (\=a+ 0.5)

 - T12

\right] 
  , \bfitK nc =

\left[ 
  
0 0 0

0 0  - T15

0 0  - T18/\pi 

\right] 
  ,

\bfitS c1 =

\biggl[ 
0 1

T10

\pi 

\biggr] 
, \bfitS c2 =

\biggl[ 
1 0.5 - \=a

T11

2\pi 

\biggr] 

with all Ti constants given in [28].541

Finally, transform the differential-integral equations (A.1) into the following system of542

first-order ODEs:543

\left[ 
  

\.Xs

\"Xs

\.w\mathrm{p}

\right] 
  =

\left[ 
  

03\times 3 \bfitI 3\times 3 03\times 2

 - \bfitM  - 1\bfitK  - \bfitM  - 1\bfitC  - \bfitM  - 1\bfitD 

\bfitE q \bfitE qd \bfitE w

\right] 
  

\left[ 
  
Xs

\.Xs

w\mathrm{p}

\right] 
  +

\left[ 
  

03\times 1

 - \bfitM  - 1\bfitF (Xs)

02\times 1

\right] 
  .(A.5)

The detailed physical parameters used in this study are given in Table 4. AQ17544
For convenience, we also specify here the numerically evaluated matrices necessary to545

compute the normal form (2.12) at the BEB we have found at parameter values \=U = 0.64833546

and \delta = 0.01 rad. After numerical evaluation, we find547

A= [A1 A2],

Table 4
Parameter definition

Physical parameters

b \omega h \omega \alpha \omega \beta \rho \mathrm{a} m
0.3 m 50 rad/s 100 rad/s 0 rad/s 1.225 kg/mm3 1.5 kg
a1 a2 b1 b2 \xi i, i= h,\alpha ,\beta r
0.165 0.0455 0.335 0.3 2\% 0.72

Dimensionless parameters

a c x\alpha x\beta r2\alpha r2\beta 
 - 0.4 0.6 0.2 0.0125 0.25 0.00625
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where548

A1 =

\left( 
               

0 0 0

0 0 0

0 0 0

 - 2.9340e+ 03 2.3800e+ 03  - 31.8848
2.5143e+ 03  - 1.4569e+ 04  - 126.9591
 - 1.5787e+ 03 3.9373e+ 04 119.8092

0 0 0

0 64.8330 35.6462

\right) 
               

,

A2 =

\left( 
               

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 - 4.1409  - 1.7578  - 0.2147  - 118.8655  - 29.0256
3.3583  - 8.2454  - 1.0773 157.7863 38.5297

 - 3.2826 17.0083  - 1.9570  - 328.2203  - 80.1478
0 0 0 0 1

1 0.9000 0.1487  - 57.3753  - 22.3998

\right) 
               

and the reset map related matrices are549

C\top =

\left( 
               

0

0

1

0

0

0

0

0

\right) 
               

, B= (1+ r)

\left( 
               

0

0

0

0.0030

 - 0.0774
1

0

0

\right) 
               

.

Appendix B. Derivation of normal form. We give here a constructive proof of Theo-550

rem 2.4, by specifying the specific transformations necessary to put a general n-dimensional551

impacting hybrid system undergoing a BEB with linearization (2.8) into the normal form552

(2.12).553

Without loss of generality, we first set \mu \ast = 0 in (2.8) and assume the sign convention554

that transition from an admissible to a virtual equilibrium occurs as \mu increases through zero.555

Then, according to (2.8) the linearization around the admissible equilibrium \=x for \mu < 0 with556

H(\=x)> 0 satisfies557
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A(\=x - x\ast ) +M\mu = 0,

C(\=x - x\ast ) +N\mu = \eta ,

where558

\eta = - (CA - 1M - N)\mu > 0,(B.1)

which implies CA - 1M - N> 0.559

Next, setting \Delta x= \=x - x\ast , we arrive at560

\~F (x, \mu ) =A\Delta x+M\mu 

=A(\Delta x+A - 1M\mu ),

\~H(x, \mu ) =C(\Delta x+A - 1M\mu ) + (N - CA - 1M)\mu .

We can now rescale the problem by dividing by the positive scalar561

| \mu | (CA - 1M - N).(B.2)

Then we reorganize the system using a new state variable562

y=
\Delta x+A - 1M\mu 

| \mu | (CA - 1M - N)
,

under which the reset map (2.3) becomes a linear transform563

y+ = y - +W (y - )v(y - )

= y -  - BCAy - 

=Py - 
(B.3)

with564

v(y - ) =\scrL F (H)(y - ) =CAy - and discontinuity set \~H(y, \^\mu ) :=Cy - \^\mu = 0,

where \^\mu = sign(\mu ), so that the the dynamics around the boundary equilibrium can be be fully565

understood by studying on the cases \^\mu \in \{  - 1,0,1\} .566

Accordingly, we redefine the incoming set as \{ \Sigma  - | v < 0,H(y) = 0\} , the outgoing set567

\{ \Sigma +| v > 0,H(y) = 0\} , and the grazing set \{ \Sigma 0| v = 0,H(y) = 0\} on the discontinuity set568

\{ \Sigma | H(y) = 0\} , where v = \scrL F (H)(y). Thus, the reset map will map the points in \Sigma  - to \Sigma +.569

The vector fields for their free flight and sticking motion are driven by respective vector fields570

\~F (y, \^\mu ) =Ay and Fs(y, \^\mu ) =Asy.

Furthermore, we note that the observing vector C can be transformed to a unit vector571

eT1 by an additional coordinate transform, which also has the effect of redefining A and B.572

Without loss of generality, consider a general unit observing vector C\top \in \BbbR n (otherwise, we573

can normalize it). We also assume the nondegeneracy condition that C\top is not tangent to the574

eigenspace of A.575
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Then, in general, C\top can be parameterized by n - 1 independent parameters, via576

C\top =

\left[ 
                

cos\theta 1
n - 1\prod 
i=2

sin\theta i

sin\theta 1
n - 1\prod 
i=2

sin\theta i

cos\theta 2
n - 1\prod 
i=3

sin\theta i

...
cos\theta n - 2 sin\theta n - 1

cos\theta n - 1

\right] 
                

.(B.4)

To see this, observe the following:577578

1. C2
1 +C2

2 =
\prod n - 1

i=2 sin2 \theta i.579

2. C2
1 +C2

2 +C2
3 =

\prod n - 1
i=3 sin2 \theta i.580

3. We can observe the form of remaining elements of C to easily conclude that
\sum m

1 C2
i =581 \prod n - 1

i=m sin2 \theta i for 2\leq m\leq n - 1.582

Therefore, we have583

norm(C) =

n\sum 

i=1

C2
i =

n - 1\sum 

i=1

C2
i + cos2 \theta n - 1 = 1.

The kernel space C is given by584

Ker(C) = \{ v \in \BbbR n | Cv= 0\} ,

and we can find an orthogonal basis for this subspace so that585

Ker(C) = span\{ e2\mathrm{k}, . . . ,en\mathrm{k}\} ,

and from (2.9) we know that the vector B is in this kernel. So we can write586

B= b2e
2
\mathrm{k} + \cdot \cdot \cdot + b\mathrm{n}e

n
\mathrm{k} , where bi = \langle B,ei\mathrm{k}\rangle , i= 2, . . . , n.

Furthermore, let us define a transformation matrix587

T= [C\top ,e2\mathrm{k},e
3
\mathrm{k}].(B.5)

Under such a transformation and rescaled time dt=d\tau /s, s\in \BbbR +, the system is converted to588

one with corresponding matrices589

\^A=T - 1A

s
T, \^B=T - 1B=

\left[ 
    

0
b2
...
bn

\right] 
    ,

\^C=CT= e1,P= I - \^B\^C\^A.(B.6)

Compared to (2.10), it can be easily checked that \^As =T - 1\bfA s

s T.590
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Appendix C. Reduced description in the three-dimensional case. For the591

three-dimensional case, it is possible to derive the conditions (3.7b) explicitly. Following592

(3.9), the minimal parameter space to define the matrices \^A and \^B is593

\Lambda = \{ \lambda 1, \lambda 2, \lambda 3, b2, b3, \theta ,\varphi \} .(C.1)

Furthermore, without loss of generality, provided \lambda 3 \not = 0, we can rescale time, for example, to594

assume \lambda 3 = \pm 1. We now derive explicit equations for p(t) and velocity v in terms of these595

two parameters in each of the two cases (C.2) and (C.5).596

C.1. Case I. If we denote \Delta ij = \lambda i  - \lambda j , then it is straightforward to find coordinate597

transformations to express \^A and \^B in terms of the parameter set (C.1). We find598

\^A=

\left[ 
 
a11 a12 a13
a21 a22 a23
a31 a32 a33

\right] 
 , \^B=

\left[ 
 
0
b2
b3

\right] 
 , \^C\top =

\left[ 
 
1
0
0

\right] 
 (C.2a)

and599

P=

\left[ 
     

1 0 0

p21 p22
b2 sin(2\theta )

2
sin\varphi \Delta 21

p31 p32 1 +
b3 sin(2\theta )

2
sin\varphi \Delta 21

\right] 
     
,(C.2b)

where600

a11 =\Delta 12 sin
2\varphi cos2 \theta +\Delta 32 cos

2\varphi + \lambda 2, a12 = sin\varphi cos\varphi (\Delta 12 cos
2 \theta +\Delta 23),601

a13 =
sin(2\theta )

2
sin\varphi \Delta 21, a22 = (\Delta 12 cos

2 \theta +\Delta 23) cos
2\varphi + \lambda 3, a23 =

sin(2\theta )

2
cos\varphi \Delta 21,602

a33 =\Delta 21 cos
2 \theta + \lambda 1, a21 = a12, a31 = a13, a32 = a21,

and603

p21 = - b2(\Delta 12 sin
2\varphi cos2 \theta +\Delta 32 cos

2\varphi + \lambda 2), p22 = 1 - b2 sin\varphi cos\varphi (\Delta 12 cos
2 \theta +\Delta 23),604

p31 = - b3(\Delta 12 sin
2\varphi cos2 \theta +\Delta 32 cos

2\varphi + \lambda 2), p32 = - b3 sin\varphi cos\varphi (\Delta 12 cos
2 \theta +\Delta 23).

Thus, by taking an exponential of the appropriate diagonal matrix and transforming back, AQ18605
we can write the existence condition (3.7b) explicitly as606

p(\Lambda , t) = - 1 + h11 e
(\lambda 1+\lambda 2+\lambda 3)t + h12 e

(\lambda 1+\lambda 2)t + h13 e
(\lambda 2+\lambda 3)t

 - (1 + 2h11 + h12 + h13) e
(\lambda 1+\lambda 3)t + (1+ h11 + h12) e

\lambda 3t

 - (h11 + h12 + h13) e
\lambda 2t + (1+ h11 + h13) e

\lambda 1t = 0,

(C.3)
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where607

h11 =1 - b2(\lambda 1 cos
2 \theta + \lambda 2 sin

2 \theta  - \lambda 3) sin\varphi cos\varphi 

+ b3(\lambda 1  - \lambda 2) sin\theta cos\theta sin\varphi ,

h12 = - 1 + b2(\lambda 1 cos
2 \theta + \lambda 2 sin

2 \theta ) sin\varphi cos\varphi 

 - b3(\lambda 1  - \lambda 2) sin\theta cos\theta sin\varphi ,

h13 = - 1 + b2(\lambda 2 sin
2 \theta  - \lambda 3) sin\varphi cos\varphi 

+ b3\lambda 2 sin\theta cos\theta sin\varphi .

Combining the (4.2) and (3.3), we can also write down the expression that determines the608

direction of bifurcation,609

\^v(\Lambda , T ) = k11 e
(\lambda 1+\lambda 2)t + k12 e

(\lambda 1+\lambda 3)t + k13 e
(\lambda 2+\lambda 3)t

+ (k11  - k10) e
\lambda 3t + (k12  - k10) e

\lambda 2t + (k13  - k10) e
\lambda 1t + k10,

(C.4)

where

AQ19

610

k10 = (\lambda 1 cos
2 \theta + \lambda 2 sin

2 \theta ) sin2\varphi + \lambda 3 cos
2\varphi ,

k11 = \lambda 3 cos
2\varphi  - b2(\lambda 1 cos

2 \theta + \lambda 2 sin
2 \theta )\lambda 3 cos\varphi sin\varphi 

+ b3(\lambda 1 cos
2\varphi  - \lambda 2 cos

2\varphi )\lambda 3 sin\theta cos\theta sin\varphi ,

k12 = \lambda 2 sin
2 \theta sin2\varphi + b2\lambda 2\lambda 3 sin

2 \theta sin\varphi cos\varphi 

+ b3(\lambda 1 sin
2\varphi + \lambda 3 cos

2\varphi )\lambda 2 sin\theta cos\theta sin\varphi ,

k13 = \lambda 1 cos
2 \theta sin2\varphi + b2\lambda 1\lambda 3 cos

2 \theta sin\varphi cos\varphi 

 - b3(\lambda 2 sin
2\varphi + \lambda 3 cos

2\varphi )\lambda 1 sin\theta cos\theta sin\varphi .\lambda 3 cos
2\varphi .

C.2. Case II. Proceeding similarly for the focus case, we find611

A=

\left[ 
 
(\lambda 3  - \alpha ) cos2\varphi + \alpha sin\varphi cos\varphi (\alpha  - \lambda 3) \beta sin\varphi 
sin\varphi cos\varphi (\alpha  - \lambda 3) (\alpha  - \lambda 3) cos

2\varphi + \lambda 3 \beta cos\varphi 
 - \beta sin\varphi  - \beta cos\varphi \alpha 

\right] 
 , \^B=

\left[ 
 
0
b2
b3

\right] 
 , \^C\top =

\left[ 
 
1
0
0

\right] 
 ,(C.5a)

and612

P=

\left[ 
 

1 0 0
(cos2\varphi (\alpha  - \lambda 3) - \alpha )b2 1 - b2(\alpha  - \lambda 3) cos\varphi sin\varphi  - b2\beta sin\varphi 
(cos2\varphi (\alpha  - \lambda 3) - \alpha )b3  - b3(\alpha  - \lambda 3) cos\varphi sin\varphi 1 - b3\beta sin\varphi 

\right] 
 .(C.5b)

Then, the existence condition can be explicitly written as613

p(\Lambda , t) = h21 e
(2\alpha +\lambda 3)t + h22 e

(\alpha +\lambda 3)t cos(\beta t) + h23 e
(\alpha +\lambda 3)t sin(\beta t)

 - (1 + 2h21  - h22) e
2\alpha t + (2+ 2h21 + h22) e

\alpha t cos(\beta t)

 - h23 e
\alpha t sin(\beta t) - (h21 + h22) e

\lambda 3t  - 1 = 0,

(C.6)
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where614

h21 = 1 - [b2(\alpha  - \lambda 3) cos\varphi + b3\beta ] sin\varphi ,

h22 = - 2 + [b2(\alpha  - 2\lambda 3) cos\varphi + b3\beta ] sin\varphi ,

h23 = - (b2\beta cos\varphi  - b3\alpha ) sin\varphi .

Combining the (3.3), we can write down the expression that determines the direction of615

bifurcation,616

\^v(\Lambda , T ) = k21 e
(\alpha +\lambda 3)t cos(\beta t) + k22 e

(\alpha +\lambda 3)t sin(\beta t) + (k20  - k21) e
2\alpha t

+ (k21  - 2k20) e
\alpha t cos(\beta t) - k22 e

\alpha t sin(\beta t) - k21 e
\lambda 3t + k20,

(C.7)

where617

k20 = \alpha sin2\varphi + \lambda 3 cos
2\varphi ,

k21 = (b2\alpha + b3\beta cos\varphi )\lambda 3 cos\varphi sin\varphi + \alpha sin2\varphi ,

k22 = [\beta sin\varphi + b2\beta \lambda 3 cos\varphi  - b3
\bigl( 
\alpha \lambda 3 cos

2\varphi + (\alpha 2 + \beta 2) sin2\varphi 
\bigr) 
] sin\varphi .

Appendix D. General analytic form for \bfitp (\bfitt ). Let K(t) = Pe\bfA t  - I, so that p(t) =618

det(K(t)). We know p(0) = 0, so we can expand this analytic function around t= 0. We can619

write620

e\bfA t = I+At+
1

2!
A2t2 +

\infty \sum 

l=3

Al

l!
(D.1)

and621

det(K) = | P - I+PAt+
1

2!
PA\bftwo t2 +

\infty \sum 

l=3

Al

l!
| .

Now we can appeal to the following standard result from linear algebra [26].622

623

Lemma D.1. Suppose Q and K are invertible n\times n matrices, then624

det(QK) = det(Q)det(K),

and hence625

det((K)) = det(Q - 1KQ).

According to Lemma D.1, we can split p(t) into626

p(t) = det(P)det

\Biggl( 
I - P - \bfone +At+

1

2!
A\bftwo t2 +

\infty \sum 

l=3

Altl

l!

\Biggr) 
.

Further let \scrP (t) be the polynomial p(t)/det(P), and write627

\scrP (t) =
\infty \sum 

k=0

pkt
k,(D.2)

where we know that det(P) = - r. Now let us find information about the coefficients pk. The628

following result is useful.629
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Definition D.2. [19] Let \alpha and \beta be integer sequences of length 1 \leq m \leq n chosen from630

1, . . . , n:631632

\bullet A[\alpha | \beta ] (square brackets) is the m\times m submatrix of A lying in rows \alpha and columns \beta ;633

\bullet B(\alpha | \beta ) (round brackets) is the (n - m)\times (n - m) submatrix of B lying in rows com-634

plementary to \alpha and columns complementary to \beta .635

Lemma D.3. [19] For two n\times n matrices A and B, the determinant of their sum is given636

by637

det(A+B) =

n\sum 

m=1

\sum 

\alpha ,\beta 

( - 1)s(\alpha )+s(\beta ) det(A[\alpha | \beta ]) det(B(\alpha | \beta )),(D.3)

where m denotes the number of rows and columns extracted from A. For a particular m, the638

inner sum is over all strictly increasing integer sequences \alpha and \beta of length m chosen from639

1, . . . , n, and s(\alpha )/s(\beta ) is the sum of integers in \alpha /\beta .640

Lemma D.4. Consider a matrix polynomial641

Z(t) =

n\sum 

i=0

Mit
i,

where Mi are constant n\times n matrices such that the determinant of Mit is also a polynomial of642

t up to highest order tn
2

. According to Laplace expansion [26], we know the det(Z) is linearly643

dependent on every column of every elementary matrix Mi. If we define a sequence644

S = [s0, s1, . . . , sn],

where si denotes the number of elements from Mi, which take part in the product term of the645

Laplace expansion. Obviously, 0\leq si \leq n and
\sum 

si = n; also, each si should be from different646

columns and rows of Mi. We define \delta (si) as an index set of integer number si, indicating647

column index of the elements M j,k
i in the Laplace expansion term. Then we can write648

det(Z) =
\sum 

S

( - 1)\Gamma (S)
\Biggl( 

n\prod 

i=0

det(Mi[\delta (si)| \sigma (si)]) \cdot t(i si)
\Biggr) 
.

Now, applying Lemma D.4, we substitute649

M0 = I - P - \bfone = - 1

r
BCA, Mi =

Ai

i!
,

and the order kS of every expansion term with sequence S is kS =
\sum 

i=1 isi. We observe that650

rank(M0) = 1, and the only nonzero eigenvalue  - 1
rCAB. Thus, for all terms in the Laplace651

expansion with s0 > 1, we have that kS \leq n - 2 will be zero. To get all terms with kS \leq n652

under the condition s0 \leq 1, the only sequences leading to possible nonzero terms are653

S1 = [0, n,0, . . . ,0], S2 = [1, n - 1,0, . . . ,0], and S3 = [1, n - 2,1,0, \cdot \cdot \cdot ,0].
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Then, by Lemma D.4, the following hold:654655

1. For S1, the corresponding term is656

det(M1)t
n.

2. For S2, the corresponding term is
\sum n

i=1( - 1)i+jMi,j
0 adj(Mi,j

1 )tn - 1.657

3. For S3, the corresponding term is (trace(M0)
\mathrm{d}\mathrm{e}\mathrm{t}(\bfM 1)

2 )tn.658

The coefficient the tn - 1 term derived from S2 can be shown to be zero, because (i) M0's AQ20659
row space is just expanded by CA, and (ii) from condition (2.9) CB= 0. Finally, we get the660

conclusion that the first n - 1 terms of \scrP are zero. Thus, the n\mathrm{t}\mathrm{h}-order term is the leading661

order of \scrP (t), which can be calculated by summing terms from S1 and S3,662

det(M1)(1 +
trace(M0)

2
)tn.

Therefore, by multiplying the above with det(P), the leading order for the p(t) is663

 - 1

2
(r - 1)det(A)tn.(D.4)

Acknowledgments. The authors thank Mike Jeffrey and Nick Lieven for helpful conver-664

sations.665

REFERENCES

[1] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, Classics Appl. Math.666
45, SIAM, Philadelphia, 2003, https://doi.org/10.1137/1.9780898719154.667

[2] I. Belykh, R. Kuske, M. Porfiri, and D. Simpson, Beyond the Bristol book: Advances and perspectives668
in non-smooth dynamics and applications, Chaos, 33 (2023), 010402.669

[3] V. Carmona and F. Fern\'andez-S\'anchez, Integral characterization for Poincar\'e half-maps in670
planar linear systems, J. Differential Equations, 305 (2021), pp. 319--346, https://doi.org/671
10.1016/j.jde.2021.10.010.672

[4] V. Carmona, F. Fern\'andez-S\'anchez, and D. D. Novaes, Uniform upper bound for the number of673
limit cycles of planar piecewise linear differential systems with two zones separated by a straight line,674
Appl. Math. Lett., 137 (2023), 108501, https://doi.org/10.1016/j.aml.2022.108501.675

[5] V. Carmona, F. Fern\'andez-S\'anchez, and D. D. Novaes, Uniqueness and stability of limit cycles in676
planar piecewise linear differential systems without sliding region, Commun. Nonlinear Sci. Numer.677
Simul., 123 (2023), 107257, https://doi.org/10.1016/j.cnsns.2023.107257.678

[6] V. Carmona, E. Freire, E. Ponce, and F. Torres, Bifurcation of invariant cones in679
piecewise linear homogeneous systems, Internat. J. Bifur. Chaos, 15 (2005), pp. 2469--2484,680
https://doi.org/10.1142/S0218127405013423.681

[7] M. di Bernardo, C. Budd, A. Champneys, and P. Kowalczyk, Piecewise-Smooth Dy-682
namical Systems: Theory and Applications, Appl. Math. Sci., Springer, New York, 2008,683
https://doi.org/10.1007/978-1-84628-708-4.684

[8] M. di Bernardo, A. Nordmark, and G. Olivar, Discontinuity-induced bifurcations of equilib-685
ria in piecewise-smooth and impacting dynamical systems, Phys. D, 237 (2008), pp. 119--136,686
https://doi.org/10.1016/j.physd.2007.08.008.687

[9] T. Dossogne, J. P. No\"el, C. Grappasonni, G. Kerschen, B. Peeters, J. Debille, M. Vaes,688
and J. Schoukens, Nonlinear ground vibration identification of an F-16 aircraft---Part II: Under-689
standing nonlinear behaviour in aerospace structures using sine-sweep testing , in Proceedings of the690
International Forum on Aeroelasticity and Structural Dynamics, IFASD 2015, 2015, pp. 1--19.691

https://doi.org/10.1137/1.9780898719154
https://doi.org/10.1016/j.jde.2021.10.010
https://doi.org/10.1016/j.jde.2021.10.010
https://doi.org/10.1016/j.jde.2021.10.010
https://doi.org/10.1016/j.aml.2022.108501
https://doi.org/10.1016/j.cnsns.2023.107257
https://doi.org/10.1142/S0218127405013423
https://doi.org/10.1007/978-1-84628-708-4
https://doi.org/10.1016/j.physd.2007.08.008


38 HONG TANG AND ALAN CHAMPNEYS

[10] M. H. Fredriksson and A. B. Nordmark, On normal form calculations in impact oscillators, Proc.692
A, 456 (2000), pp. 315--329, https://doi.org/10.1098/rspa.2000.0519.693

[11] E. Freire, E. Ponce, and F. Torres, Hopf-like bifurcations in planar piecewise linear systems, Publ.694
Mat., 41 (2011), pp. 135--148, https://doi.org/10.5565/publmat \.41197 \.08. AQ14695

[12] M. S. Heiman, P. J. Sherman, and A. K. Bajaj, On the dynamics and stability of an inclined impact696
pair , J. Sound Vib., 114 (1987), pp. 535--547, https://doi.org/10.1016/S0022-460X(87)80022-6.697

[13] C. H\H os and A. Champneys, Grazing bifurcations and chatter in a pressure relief valve model , Phys. D,698
241 (2012), pp. 2068--2076.699

[14] M. Jeffery, Hidden Dynamics: The Mathematics of Switches, Decisions and Other Discontinuous Be-700
haviour , Springer, New York, 2018.701

[15] M. R. Jeffrey, T. I. Seidman, M. A. Teixeira, and V. I. Utkin, Into higher dimen-702
sions for nonsmooth dynamical systems, Phys. D, 434 (2022), 133222, https://doi.org/10.1016/703
j.physd.2022.133222.704

[16] R. T. Jones, Operational Treatment of the Non-Uniform Lift Theory in Airplane Dynamics,705
https://digital.library.unt.edu/ark:/67531/metadc54463/, 1938.706

[17] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd ed., Appl. Math. Sci. 112, Springer,707
Berlin, 1998.708

[18] R. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Springer,709
New York, 2004.710

[19] M. Marcus, Determinants of sums, College Math. J., 21 (1990), pp. 130--135, https://doi.org/711
10.1080/07468342.1990.11973297.712

[20] A. B. Nordmark, Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators,713
Nonlinearity, 14 (2001), pp. 1517--1542, https://doi.org/10.1088/0951-7715/14/6/306.714

[21] A. B. Nordmark and P. T. Piiroinen, Simulation and stability analysis of impacting systems with715
complete chattering , Nonlinear Dynam., 58 (2009), pp. 85--106, https://doi.org/10.1007/s11071-008-716
9463-y.717

[22] R. Seydel, Practical Bifurcation and Stability Analysis, 3rd ed., Springer, New York, 2010.718
[23] D. Simpson, A compendium of Hopf-like bifurcations in piecewise-smooth dynamical systems, Phys. Lett.719

A, 382 (2018), pp. 2439--2444, https://doi.org/10.1016/j.physleta.2018.06.004.720
[24] D. Simpson, Twenty Hopf-like bifurcations in piecewise-smooth dynamical systems, Phys. Rep., 970721

(2022), pp. 1--80, https://doi.org/10.1016/j.physrep.2022.04.007.722
[25] D. Simpson and J. Meiss, Aspects of bifurcation theory for piecewise-smooth, continuous systems, Phys.723

D, 241 (2012), pp. 1861--1868, https://doi.org/10.1016/j.physd.2011.05.002.724
[26] G. Strang, Introduction to Linear Algebra, 5th ed., Cambridge University Press, Cambridge, 2021.725
[27] H. Tang, A. R. Champneys, and N. Lieven, Bifurcation Analysis of an Airfoil Model with Freeplay ,726

in preparation, 2023. AQ15727
[28] Theodorsen, Report no. 496, general theory of aerodynamic instability and the mechanism of flutter , J.728

Franklin Inst., 219 (1935), pp. 766--767, https://doi.org/10.1016/S0016-0032(35)92022-1.729
[29] J. Wright and J. Cooper, Introduction to Aircraft Aeroelasticity and Loads, Aerosp. Ser., Wiley, New730

York, 2008.731

https://doi.org/10.1098/rspa.2000.0519
https://doi.org/10.5565/publmat.41197.08
https://doi.org/10.1016/S0022-460X(87)80022-6
https://doi.org/10.1016/j.physd.2022.133222
https://doi.org/10.1016/j.physd.2022.133222
https://doi.org/10.1016/j.physd.2022.133222
https://digital.library.unt.edu/ark:/67531/metadc54463/
https://doi.org/10.1080/07468342.1990.11973297
https://doi.org/10.1080/07468342.1990.11973297
https://doi.org/10.1080/07468342.1990.11973297
https://doi.org/10.1088/0951-7715/14/6/306
https://doi.org/10.1007/s11071-008-9463-y
https://doi.org/10.1007/s11071-008-9463-y
https://doi.org/10.1007/s11071-008-9463-y
https://doi.org/10.1016/j.physleta.2018.06.004
https://doi.org/10.1016/j.physrep.2022.04.007
https://doi.org/10.1016/j.physd.2011.05.002
https://doi.org/10.1016/S0016-0032(35)92022-1

	Introduction
	Motivating example
	Outline

	Preliminaries
	Impacting dynamical systems
	Normal form for boundary equilibrium bifurcation
	Equilibrium transitions at a BEB
	Bifurcation and stability of limit cycles

	Finding single-impact limit cycles
	Formulation as a fixed-point problem
	Stability of the LCO
	Analytic formulae for three-dimensional examples

	Numerical examples
	Planar examples
	Three-dimensional examples
	Airfoil model in <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	R8?></0:tex-math></0:inline-formula>

	Discussion
	Numerical continuation
	Geometrical interpretation of the reset map in three dimensions
	Toward a sufficient condition for a limit cycle
	Conclusion

	Acknowledgments
	References
	Appendix A. Full equations of motion for airfoil model
	Appendix B. Derivation of normal form
	Appendix C. Reduced description in the three-dimensional case
	Case I
	Case II

	Appendix D. General analytic form for p(t)

