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Abstract
This note presents the application of the mobilisable strength design (MSD) method to the monitoring results of the multi-

propped excavation in the south area of the British Library Euston, constructed in a highly overconsolidated stiff clay deposit.
The MSD method is an energy-based approach (a nonlinear finite-element method for a single-degree-of-freedom soil-wall
system) introduced to develop a simplified design methodology that satisfies both ultimate and serviceability limit states. Wall
displacement predictions based on the MSD method are compared with considerable field monitoring data. The sensitivity
of the method to reasonable variations in input parameters is considered. A spreadsheet and python code demonstrating the
MSD analysis from this paper are provided in the online supplement alongside details of the mathematical formulation.
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Introduction
The mobilisable strength design (MSD) method for analysis

of geotechnical structures offers a dependable yet quick and
simple method to quantify ground movements caused by
geotechnical construction. This method provides a robust
and relatively simple analysis (suitable for spreadsheet
calculations) that allows the incorporation of soil material
nonlinearity and is based on routinely determined parame-
ters and clear assumptions. The MSD method was originally
developed at the University of Cambridge from displacement
mechanisms observed during centrifuge testing (Powrie
1986; Bolton and Powrie 1987, 1988) and is underpinned
by principles of similarity introduced by Skempton (1951).
This design process was developed for various geotechnical
constructions including bridge abutments (Bolton et al.
1990; Bolton and Sun 1991a), shallow and deep foundations
(Bolton and Sun 1991b; Osman and Bolton 2004a, 2005; Klar
and Osman 2008; Bouzid et al. 2013), and tunnelling (Osman
et al. 2006).

Additionally, MSD principles have been used to anal-
yse deep excavations, inspired by earlier work develop-
ing approximate analytical methods (e.g., Clough et al.
1989; O’Rourke 1993). These include cantilever retaining
walls (Osman and Bolton 2004b, 2004c; Li and Bolton 2014;
Wang et al. 2018; Deng and Haigh 2022), braced exca-
vations (Osman and Bolton 2006a, 2006b), flexible walls
(Diakoumi and Powrie 2013; Deng et al. 2021; Madabhushi

and Haigh 2022), and narrow excavations (Lam and Bolton
2011).

In comparison to finite element analysis (FEA), this ap-
proach relies on an assumed displacement mechanism, is
limited to simpler constitutive behaviour (e.g., cannot in-
clude stress dependent stiffness directly), and would require
reformulating to incorporate additional problem elements
(such as flexible props and wall roughness). However, it of-
fers a quick and simple alternative to FEA, particularly during
early stages of design, to predict displacements from simpli-
fied nonlinear soil constitutive models (or even directly from
site-specific element test data) with a much simpler mesh,
boundary conditions, and calculations that can be carried out
using a spreadsheet.

The validity of the MSD method has previously been in-
vestigated by comparison with FEA (e.g., Lam and Bolton
2011) and also in the context of deep excavation design prac-
tice in Sweden by Bjureland (2013). Bolton et al. (2014) used
the database of excavation records from the thesis of Xu
(2007) along with the principles presented in Lam and Bolton
(2011) to develop pertinent dimensionless groups and hence
produce new design charts for predicting excavation perfor-
mance in soft Shanghai soils. Similarly, Deng et al. (2021)
modified the MSD approach and successfully applied it to
case studies in Dublin Boulder Clay and Oslo Clay.

In this note, predictions of wall displacements using the
MSD method are compared with field monitoring data from
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Fig. 1. Predicted wall displacements (black; this study) against field monitoring data (grey; data and location sketch from
Simpson and Vardanega 2014, including Appendix W3) for each excavation stage. Soil parameters are given as mean values in
Table 1 (EI = 2192 MNm2/m, αλ = 1.2).
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the staged construction of the British Library Euston excava-
tion. A preliminary analysis of this case study using the MSD
method is presented in Campbell (2017). The MSD method
employed here is based on that presented in Lam and Bolton
(2011) (extending the work of Osman and Bolton 2006b) with
some minor simplifications (primarily no discretisation in
horizontal cells of the mechanism with depth).

Case study: British Library Euston
excavation

This high-profile project was completed many years ago
and is described in detail by Ryalls and Stevens (1990), Stevens
and Ryalls (1990), and St John Wilson (1998). Further de-
tails related to the instrumentation and anchorage design for
the project are provided by Loxham et al. (1990) and Raison
(1987a, 1987b, 1988). The wall/excavation details and mon-
itoring data are detailed by Simpson and Vardanega (2014)
including detailed site progress drawings in Appendix W5
of this publication. This note examines the excavation and
staged construction of the South area (see plan view in Fig. 1),
detailed as follows:

1) A wall length of 29.6 m is supporting a 25 m excavation
below ground level at 19.5 metres above ordinance datum
(mAOD). The wall construction is detailed in Ground En-
gineering (1984).

2) The excavation was carried out top-down in five stages to
the following reduced levels [14.3, 9.2, 4.4, −0.4, and −5.4]
(mAOD).

3) Slabs of 0.4 m thickness were constructed 0.6 m above
each excavation level, which act as props supporting the
wall.

Soil properties
The wall was constructed in ∼2 m of fill, 18 m of London

Clay, and 10 m of Lambeth Group deposits (described as clay)
which continue below the base of the wall (Simpson and Var-
danega 2014). Analysis of some of the soil properties for the
site in question is presented in Simpson et al. (1981) with fur-
ther analysis conducted in Vardanega et al. (2012a, 2012b) as
explained in Simpson and Vardanega (2014). London Clay has
been the subject of many high-quality testing studies (e.g.,
Gasparre 2005; Gasparre et al. 2007a, 2007b; Hight et al. 2007;
Kamal et al. 2014). Therefore, as the London Clay and Lam-
beth Group are similar materials and the former makes up
most of the excavated depth and likely dominates the re-
sponse, London Clay properties are used as representative val-
ues throughout the excavation. For this analysis, a power-law
soil constitutive relationship was selected to describe the soil
behaviour (Vardanega and Bolton 2011a, 2011b):

τ

su
= 1

2

(
γ

γ50

)b

(1)

where τ and γ are the mobilised soil engineering shear
stress and strain, respectively, su is the soil undrained shear
strength, γ 50 is the soil shear strain when 50% of the shear

Table 1. London Clay soil properties (depth y is measured in
metres).

Parameter Mean (μ) Variation considered

Saturated unit
weight, γ sat
(kN/m3)∗

20 19 (Low value)
21 (High value)

Undrained shear
strength, su (kPa)†

40.0 + 11.0 y
(eye-fit)

39.0 + 9.9 y (25th percentile)
24.8 + 13.9 y (Triaxial data only)

Nonlinearity
exponent, b‡

0.58 0.47 (μ − 1σ )
0.69 (μ + 1σ )

Shear strain at
50% of su, γ 50

‡
7.0 × 10−3 5.1 × 10−3 (μ − 1σ )

8.9 × 10−3 (μ + 1σ )

∗Based on a review of the datasets presented in Hight et al. (2003).
†Vardanega et al. (2012a).
‡Vardanega and Bolton (2011a).

strength is mobilised, and b is a soil nonlinearity exponent.
Vardanega and Bolton (2011a) calibrated this model against
high-quality test data in London Clay (parameters given
in Table 1). Different soil parameters could be selected for
different zones within the assumed deformation mechanism
dependent on their expected shear failure mode (discussed
further in Osman and Bolton 2006b and Lam and Bolton 2011,
see also Beesley and Vardanega 2020). However, for simplic-
ity, in this analysis, single b and γ 50 values were selected.

Application of MSD
Using the mean (μ) soil parameters from Table 1, the MSD

approach (detailed in the online supplement) was applied to
predict the wall displacements in the South excavation of the
British Library Euston. The first stage of excavation (Stage 1)
is assumed to result in the rotation of the wall only. In subse-
quent stages, a slab is first installed, then further excavation
is carried out, which is assumed to result in cumulative
bulging of the wall below the slab level. The predicted wall
displacements are plotted in Fig. 1 against field monitoring
data (where available) from inclinometers installed in the
wall (Simpson and Vardanega 2014, Appendix W3). Anoma-
lous data from the top of some inclinometers have been
excluded in accordance with Simpson and Vardanega (2014).

Figure 1 shows reasonable predictions of the wall displace-
ments, particularly for Stages 1 and 5. The variation in the in-
termediate stages is likely due to flexibility in the constructed
slabs which are modelled in the MSD analysis as perfectly
rigid lateral supports. This results in further wall rotation
during these stages that is not accounted for in the MSD so-
lution. In addition to this, piles installed within the excava-
tion likely reduced the heave observed, which is not consid-
ered in this MSD analysis. The incremental maximum wall
displacement calculated for the final stage (Stage 5) is nega-
tive (−0.6 mm). This is due to the method being inherently
approximate and is considered to be negligible.

The field monitoring measurements for Stages 1 and 5 plot-
ted in Fig. 1 were taken ∼1 and 4 years, respectively, after the
corresponding stage of excavation was completed. The effect
of time on the wall displacements is shown in Fig. 2 for Stages
1 and 5 (where suitable data are available). Generally, over
time, the maximum wall displacements increase, and the
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Fig. 2. Effect of time after excavation on the field monitoring data (grey; data and location sketch from Simpson and Vardanega
2014, including Appendix W3) for (a) Stage 1 (excavation completed May 1983) and (b) Stage 5 (excavation completed August
1987). Soil parameters are given as mean values in Table 1 (EI = 2192 MNm2/m, αλ = 1.2).

location of maximum bulging moves down the wall. This may
also explain some of the variations between predicted and
measured results in Stages 2, 3, and 4 observed in Fig. 1. For
these stages, field monitoring data are only available ∼1–3
months after each excavation was completed.

Sensitivity to parameter variability
The impact of varying b and γ 50 by one standard deviation,

σ , from the mean, μ, (obtained from the results presented in
Vardanega and Bolton 2011a) on the predicted wall displace-
ments is shown in Figs. 3a and 3b, respectively. The maxi-
mum wall displacements at Stage 5 can vary by up to 30%
due to changing the b value ± 1σ and 26% due to changing
the γ 50 value ± 1σ . This highlights the importance of having
either site-specific triaxial test deformation data or a suitable
database of similar test results in the same material (as used
here) with which to fit the constitutive model (eq. 1). The mo-
bilisation factor [βm = τ /su], calculated using eq. 1 with the
average shear strain within the mechanism, is around 0.2.

This means that the power-law soil model is near the limit of
the recommended fitting range and, for smaller excavations
or similar excavations in stiffer soil, an alternative simplified
soil model (e.g., a modified hyperbolic model) may be more
suitable.

The different su lines provided in Table 1 were fitted by
Vardanega et al. (2012a) from site-specific test data in London
Clay. The impact of the su lines employed on the predicted
wall displacement in Stage 5 is shown in Fig. 3c. Similarly,
the impact of the variations γ sat for London Clay on the pre-
dicted wall displacements is shown in Fig. 3d. The impact of
each of these two parameter choices is notably lower than
that observed for the constitutive model parameters.

The secant pile wall construction is detailed in Ground En-
gineering (1984). The bending stiffness EI of this section can
be calculated with various assumptions; the three considered
in this work are illustrated in Fig. 4a. A steel Young’s modu-
lus of 210 GPa was used, alongside 31 GPa for the concrete
(based on a target 90-day strength of 30 MPa, Ground Engi-
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Fig. 3. The effect of the variation of soil parameters on the wall displacements predicted for Stage 5 from the mobilisable
strength design (MSD) method. Soil parameters (unless otherwise noted) are given as mean values in Table 1 (EI = 2192 MNm2/m,
αλ = 1.2).

neering 1984). The different assumptions are shown in Fig. 4b
to have minimal effect on the predicted wall displacements,
likely due to this excavation being in a stiff clay.

The parameter αλ, introduced by Osman and Bolton
(2006b), is used in this method to describe the fixity at the
base of the wall (1 ≤ αλ ≤ 2). This factor is applied to the size of
the assumed deformation mechanism (illustrated in Fig. 5a,
further details are provided in the online supplement). Se-
lecting this parameter requires the designer to predict the
location of maximum wall bending. If αλ = 1, the base of the
wall is assumed to be fixed in a stiff stratum with zero lateral
displacement. Alternatively, if αλ = 2, the base of the wall is
assumed to be the location of maximum displacement, a rea-
sonable assumption for walls embedded in soft soils (Clough
and Reed 1984). Most walls installed in practice will have αλ

values between 1 and 2, but no guidance exists on how to
select this value. Prior to construction, similar case studies
can be used to estimate αλ. Then, once the first bulging stage
of excavation is completed, a preliminary αλ value can be
estimated from measured wall displacements. For this case

study, a value of αλ = 1.2 (used in the above analysis) was
empirically determined from the field test results in Stage 2.
This value can be updated throughout construction; for this
case study, αλ = 1.4 may be a better fit based on the observed
behaviour after Stage 5. The authors acknowledge that more
research into the value of αλ is needed for the application of
this method prior to construction. The effects of αλ on the
predicted wall displacement (Stage 5) are shown in Fig. 5b.

Conclusions
The results of the MSD analysis to predict wall displace-

ments of the British library were compared with previously
reported field monitoring data. To this end:

� The mean maximum inclinometer displacement 1 year af-
ter the completion of Stage 1 (where available) was 12.3 mm
(with a range of 7.8–22.9 mm), compared to a predicted
value of 14.2 mm (shown in Fig. 1). The mean maximum
inclinometer displacement 4 years after the completion of
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Fig. 4. (a) Calculation of the wall stiffness, EI, options (based on information from Ground Engineering 1984) and (b) the effect
of the variation of EI on the wall displacements predicted for Stage 5 from the mobilisable strength design (MSD) method. Soil
parameters are given as mean values in Table 1 (αλ = 1.2).

Fig. 5. (a) Illustration on the effect of αλ on the predicted incremental wall displacements (during bulging) and (b) the effect
of αλ on the wall displacements predicted from the mobilisable strength design (MSD) method. Soil parameters are given as
mean values in Table 1 (EI = 2192 MNm2/m).

Stage 5 (where available) was 27.6 mm (with a range of 16.7–
38.8 mm), compared to a predicted value of 24.8 mm. The
mean depth to the maximum displacement measured at
21.3 m, compared to a predicted value of 19.7 m.

� The predictions for Stages 2–4 show larger maximum
bulging (lower down the wall) than the field monitoring
data, possibly due to the modelling assumption of perfectly
rigid props and/or the short time after the excavation that
field measurements were taken.

� The predicted results better match field monitoring results
after they have been given time to deflect after excavation
(shown in Fig. 2). Investigating how time effects could be
incorporated into the MSD method (either directly or indi-
rectly) could be an interesting avenue for future work.

� Realistic variation in the soil undrained shear strength pro-
file, soil saturated unit weight, and the wall bending stiff-
ness had minor effects in the predicted wall displacements.
The soil constitutive model properties (b and γ 50) had a

greater effect, highlighting the importance of site-specific
soil deformation parameters.

� A preliminary αλ value can be estimated from measured
wall displacements in similar excavations or early stages
of construction. However, more research into selecting this
parameter is required to use this MSD method a priori.

List of symbols

FEA finite element analysis
mAOD metres above ordinance datum
MSD mobilisable strength design
b soil nonlinearity exponent
su soil undrained shear strength
EI plane-strain bending stiffness per metre length of

the wall
y depth below the top of the wall
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αλ modification factor to scale the displacement mech-
anism for different wall base conditions

βm soil shear stress mobilisation factor (τ /su)
γ soil engineering shear strain
γ 50 soil shear strain when 50% of the soil shear strength

is mobilised
γ sat soil saturated unit weight
μ mean value
σ standard deviation
τ soil engineering shear stress
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