

Vol. 39 No. 1 June 2023, pp. 465-466

The Set Multipartite Ramsey Numbers $M_j(P_n, mK_2)$

Syafrizal Sy*, Nada Nadifah Ma'ruf

Department of Mathematics and Data Science, Faculty of Mathematics and Natural Science, Andalas University, Campus of UNAND Limau Manis Padang-25163, Indonesia *Corresponding Author: syafrizalsy@sci.unand.ac.id

Abstract – For given two any graph H and G, the set multipartite Ramsey number $M_j(G, H)$ is the smallest integer t such that for every factorization of graph $Kt \times j := F1 \oplus F2$ so that F_1 contain G as a subgraph or F_2 contains H as a subgraph. In this paper, we determine $M_j(P_n, mK_2)$ with j = 3, 4, 5 and $m \ge 2$ where P_n denotes a path for n = 2, 3 vertices and mK_2 denotes a matching (stripes) of size m and pairwise disjoint edges.

Keywords - Paths, Set Multipartite Ramsey Numbers, Stripes

I. INTRODUCTION

Let G=(V,E) be a graph with the vertex-set V(G) and edge-set E(G). All graphs in this paper are finite and simple. The *minimum degree* and *maximum degree* of G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. The order of the graph G is defined by |V(G)|. If $e = uv \in E(G)$ then u is called *adjacent* to v. A graph G is said to be *factorable* into factors G_1, \dots, G_n if these factors are pairwise edge-disjoint and $\bigcup_{i=1}^n E(G_i) = E(G)$. If G is factored into G_1, \dots, G_n , then $G = G_1 \bigoplus \dots \bigoplus G_n$, which is called a *factorization* of G. A path P_n is the graph on $n \ge 2$ vertices with two vertices of degree 1, and n-2 vertices on of degree 2. A m stripe of a graph G is defined as a set of m edges without a common vertex.

The notion of set multipartite Ramsey numbers were introduced by Burger and Vuuren [1] in 2004. Let *a*, *b*, *c*, and d be natural numbers with *a*, $c \ge 2$. The set multipartite Ramsey numbers $M_j(K_{a \times b}, K_{c \times d})$ is the smallest natural number ξ such that an arbitrary colouring of the edges of $K_{\xi \times j}$, using two colours red and blue necessarily forces a red $K_{a \times b}$ or blue $K_{c \times d}$ as a subgraph. In this paper, we generelize this concept by releasing completeness requirement in the forbidden graphs as follows. The definition can be formulated as follows. Given two graphs G_1, G_2 , and integer $t \ge 2$, the set multipartite Ramsey numbers $M_j(G_1, G_2) = t$ is the smallest integer such that every factorization of graph $K_{t \times j} \coloneqq F_1 \oplus F_2$ satisfies the following condition: either F_1 contains G_1 as a subgraph of K_2 as a subgraph of $K_{t \times j}$.

There are only few results on the set multipartite Ramsey numbers $M_j(G,H)$. These are $M_1(K_{2\times2}, K_{3\times3}) = 7$ was studied by Chartand and Schuster [3], $M_1(K_{2\times2}, K_{4\times1}) = 10$ studied by Chavatal and Harry [2], $M_2(K_{2\times2}, K_{3\times1}) = 4$ and $M_2(K_{2\times2}, K_{4\times1}) = 7$ studied by Harborth and Mengersen [7,8], $M_1(K_{2\times2}, K_{5\times1}) = 14$ studied by Greenwood and Gleason [6], $M_1(K_{2\times2}, K_{6\times1}) = 18$ studied by Exoo [5]. In [4], Jayawardene and Samarasekara studied size multiprite Ramsey numbers for small paths versus stripes. The aim of this paper is determined $M_j(P_n, mK_2)$ with j = 3,4,5 for $m \ge 2$. In this note, we prove the following theorem.

II. SET RAMSEY NUMBERS RELATED TO $P_{n \text{ AND }} mK_2$

We will determine the set multipartite Ramsey numbers for path versus stripes as the following theorem.

Theorem 3.1. For positive integer $3 \le j \le 5$ and $m \ge 2$, then we have $M_j(P_n, mK_2) = \left[\frac{2m}{j}\right]$.

Proof. Let $s = \left\lfloor \frac{2m}{j} \right\rfloor$. We will show first that the lower bound of $M_j(P_n, mK_2) \ge s$. Let $F_1 \oplus F_2$ be the any factorization of graph $F = K_{(s-1)\times j}$ such that F_1 contains no P_n for n = 2,3 as subgraph. Let $V_i = \{a_{ij}\}$ for i = 1, 2, 3, ..., (s - 1) and j = 3,4,5 be the particle set of F. Since all edges of graph $F = K_{(s-1)\times j}$, then there are not enough vertex to form mK_2 in F_1 . Therefore $M_t(P_n, mK_2) \ge s$, for n = 2,3.

Next, we will show the upper bound $M_j(P_2, mK_2) \le s$. Let $G_1 \oplus G_2$ be any the factorization of $G = K_{s \times j}$ such that G_1 contains no P_2 as a subgraph. We will show that G_2 contains mK_2 as a subgraph. Let $V_i = \{a_{ij}\}$ for i = 1, 2, 3, ..., s and j = 3,4,5 be the partite set of G. Since G_1 contains no P_2 as subgraph, then G_1 is isolated vertex. Hence $|V(G)| = \left(\left[\frac{2m}{j} \right] \right) j$ vertex, then $\frac{sj}{2}$ can form mK_2 . As a consequence, G_2 contains mK_2 as a subgraph. Therefore, the set multipartite ramsey numbers $M_j(P_2, mK_2) \le s$

Next, to show the upper bound $M_j(P_3, mK_2) \le s$. Let $G_1 \oplus G_2$ be any the factorization of $G = K_{s \times j}$ such that G_1 contains no P_3 as a subgraph. We will show that G_2 contains mK_2 as a subgraph. Let $V_i = \{a_{ij}\}$ for i = 1, 2, 3, ..., s and j = 3,4,5 be the partite set of G. Since G_1 contains no P_3 as subgraph and $\Delta(G_1) = 1$, then $G_2 = 3(s - 1)$. Thus, the complement of G_1 that is G_2 will form mK_2 . Hence, G_2 contains mK_2 as a subgraph. Therefore, the set multipartite ramsey numbers $M_j(P_3, mK_2) \le s$.

III. CONCLUSIONS

In this paper, we obtain the set multipartite Ramsey numbers for $M_j(P_n, mK_2)$ for j = 3,4,5 and n = 2,3 with $m \ge 2$.

REFERENCES

- Burger A. P., and Van Vuuren, J. H, "Ramsey Numbers In Complete Balance Multipartite Graphs, Part I : Set Numbers", vol. 283. Discreate Math. 2004, pp. 37–43.
- [2] Chavatal, V., and F. Harry, "Generalised Ramsey Theory For Graphs, II: Small Diagonal Numbers", vol. 32. Proceedings of The American Mathematical Society. 1972, pp. 389-394.
- [3] Chartand, G., and S. Schuster, "On The Existence of Specified Cycles In Complementary Graphs", vol. 77. Bulletin of The American Mathematical Society. 1971, pp. 995-998.
- [4] C. Jayawardene and L. Samarasekara, "Size Multiprtite Ramsey Numbers for Small Paths Versus Stripes", vol. 12. Annals of Pure and Applied Mathematics. 2016, pp. 211-220.
- [5] Exoo, G, "Constructing Ramsey Graphs With a Computer", vol. 59. Congressus Numerantium. 1987, pp. 31-36.
- [6] Greenwood, R. E., and Gleason, A. M, "Combinatorial Relations and Chromatic Graphs", vol. 7. Canada. J. Math. 1955, pp. 1-7.
- [7] Harborth, H., and Mengersen, I, "Some Ramsey Numbers For Complete Bipartite Graphs", vol. 13. Australasian. J. Combin. 1996, pp. 119-128.
- [8] Harborth, H., and Mengersen, I, "Ramsey Numbers in Octahedron Graps", vol. 231. Discrete Math. 2001, pp. 241-246.