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Abstract – For given two any graph  and the set multipartite Ramsey number  is the smallest integer t such that for 

every factorization of graph Kt×j := F1 F2 so that  contain  as a subgraph or  contains as a subgraph. In this paper, we 
determine with  and   where   denotes a path for  vertices and  denotes a matching 

(stripes) of size  and pairwise disjoint edges. 
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I. INTRODUCTION 

Let G=(V,E) be a graph with the vertex-set V(G) and edge-set E(G). All graphs in this paper are finite and simple. The 
minimum degree and maximum degree of  G is denoted by  and , respectively. The order of the graph  is defined by

. If  then u is called adjacent to v. A graph G is said to be factorable into factors  if these factors 
are pairwise edge-disjoint and  If G is factored into , then , which is called a 

factorization of G. A path  is the graph on  vertices with two vertices of degree 1, and n-2 vertices on of degree 2. A  

stripe of a graph  is defined as a set of  edges without a common vertex.  

The notion of set multipartite Ramsey numbers were introduced by Burger and Vuuren [1] in 2004. Let  and d be 

natural numbers with . The set multipartite Ramsey numbers  is the smallest natural number  such that an 

arbitrary colouring of the edges of , using two colours red and blue necessarily forces a red  or blue  as a subgraph. 

In this paper, we generelize this concept by releasing completeness requirement in the forbidden graphs as follows. The definition 

can be formulated as follows. Given two graphs , , and integer , the set multipartite Ramsey numbers  is 

the smallest integer such that every factorization of graph  satisfies the following condition: either  contains  

as a subgraph or  contains  as a subgraph of . 

There are only few results on the set multipartite Ramsey numbers Mj(G,H). These are  was studied by 
Chartand and Schuster [3],  studied by Chavatal and Harry [2],  and 

 studied by Harborth and Mengersen [7,8],  studied by Greenwood and Gleason [6],
 studied by Exoo [5]. In [4], Jayawardene and Samarasekara studied size multiprtite Ramsey numbers for 

small paths versus stripes. The aim of this paper is determined  with  for . In this note, we prove the 

following theorem. 
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II. SET RAMSEY NUMBERS RELATED TO   AND   

We will determine the set multipartite Ramsey numbers for path versus stripes as the following theorem.  

Theorem 3.1. For positive integer   and , then we have . 

Proof. Let  We will show first that the lower bound of . Let  be the any factorization of graph 

 such that  contains no  for  as subgraph. Let  for  and be 

the partite set of . Since all edges of graph  , then there are not enough vertex to form  in . Therefore  

, for  

Next, we will show the upper bound . Let  be any the factorization of  such that  

contains no  as a subgraph. We will show that  contains  as a subgraph. Let  for  and 

be the partite set of . Since  contains no  as subgraph, then  is isolated vertex. Hence  vertex, 

then  can form . As a consequence,  contains  as a subgraph. Therefore, the set multipartite ramsey numbers

 

Next, to show the upper bound . Let  be any the factorization of  such that  contains 

no  as a subgraph. We will show that  contains  as a subgraph. Let  for  and be the 

partite set of . Since  contains no  as subgraph and , then . Thus, the complement of  that is  
will form . Hence,  contains  as a subgraph. Therefore, the set multipartite ramsey numbers . 

III. CONCLUSIONS  

In this paper, we obtain the set multipartite Ramsey numbers for   for  and  with . 
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