SCHOLAR AI
Be Smart

The Set Multipartite Ramsey Numbers $\boldsymbol{M}_{\boldsymbol{j}}\left(\boldsymbol{P}_{\boldsymbol{n}}, \boldsymbol{m} \boldsymbol{K}_{\mathbf{2}}\right)$

Syafrizal Sy*, Nada Nadifah Ma'ruf
Department of Mathematics and Data Science, Faculty of Mathematics and Natural Science, Andalas University,
Campus of UNAND Limau Manis Padang-25163, Indonesia
*Corresponding Author: syafrizalsy@sci.unand.ac.id

(cc) $\overline{B Y}$

Abstract

For given two any graph H and G, the set multipartite Ramsey number $M_{j}(G, H)$ is the smallest integer \boldsymbol{t} such that for every factorization of graph $K t \times j:=F 1 \oplus F 2$ so that F_{1} contain G as a subgraph or F_{2} contains H as a subgraph. In this paper, we determine $M_{j}\left(P_{n}, m K_{2}\right)$ with $j=3,4,5$ and $m \geq 2$ where P_{n} denotes a path for $n=2,3$ vertices and $m K_{2}$ denotes a matching (stripes) of size m and pairwise disjoint edges.

Keywords - Paths, Set Multipartite Ramsey Numbers, Stripes

I. Introduction

Let $G=(V, E)$ be a graph with the vertex-set $V(G)$ and edge-set $E(G)$. All graphs in this paper are finite and simple. The minimum degree and maximum degree of G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. The order of the graph G is defined by $|V(G)|$. If $e=u v \in E(G)$ then u is called adjacent to v. A graph G is said to be factorable into factors G_{1}, \cdots, G_{n} if these factors are pairwise edge-disjoint and $\cup_{i=1}^{n} E\left(G_{i}\right)=E(G)$. If G is factored into G_{1}, \cdots, G_{n}, then $G=G_{1} \oplus \cdots \oplus G_{n}$, which is called a factorization of G. A path P_{n} is the graph on $n \geq 2$ vertices with two vertices of degree 1 , and $n-2$ vertices on of degree 2 . A m stripe of a graph G is defined as a set of m edges without a common vertex.

The notion of set multipartite Ramsey numbers were introduced by Burger and Vuuren [1] in 2004. Let a, b, c, and d be natural numbers with $a, c \geq 2$. The set multipartite Ramsey numbers $M_{j}\left(K_{a \times b}, K_{c \times d}\right)$ is the smallest natural number ξ such that an arbitrary colouring of the edges of $K_{\xi \times j}$, using two colours red and blue necessarily forces a red $K_{a \times b}$ or blue $K_{c \times d}$ as a subgraph. In this paper, we generelize this concept by releasing completeness requirement in the forbidden graphs as follows. The definition can be formulated as follows. Given two graphs G_{1}, G_{2}, and integer $t \geq 2$, the set multipartite Ramsey numbers $M_{j}\left(G_{1}, G_{2}\right)=t$ is the smallest integer such that every factorization of graph $K_{t \times j}:=F_{1} \oplus F_{2}$ satisfies the following condition: either F_{1} contains G_{1} as a subgraph or F_{2} contains G_{2} as a subgraph of $K_{t \times j}$.

There are only few results on the set multipartite Ramsey numbers $\mathrm{M}_{\mathrm{j}}(\mathrm{G}, \mathrm{H})$. These are $M_{1}\left(K_{2 \times 2}, K_{3 \times 3}\right)=7$ was studied by Chartand and Schuster [3], $M_{1}\left(K_{2 \times 2}, K_{4 \times 1}\right)=10$ studied by Chavatal and Harry [2], $M_{2}\left(K_{2 \times 2}, K_{3 \times 1}\right)=4$ and $M_{2}\left(K_{2 \times 2}, K_{4 \times 1}\right)=7$ studied by Harborth and Mengersen [7,8], $M_{1}\left(K_{2 \times 2}, K_{5 \times 1}\right)=14$ studied by Greenwood and Gleason [6], $M_{1}\left(K_{2 \times 2}, K_{6 \times 1}\right)=18$ studied by Exoo [5]. In [4], Jayawardene and Samarasekara studied size multiprtite Ramsey numbers for small paths versus stripes. The aim of this paper is determined $M_{j}\left(P_{n}, m K_{2}\right)$ with $j=3,4,5$ for $m \geq 2$. In this note, we prove the following theorem.

II. Set Ramsey numbers related to $\boldsymbol{P}_{\boldsymbol{n} \text { AND }} \boldsymbol{m} \boldsymbol{K}_{\mathbf{2}}$

We will determine the set multipartite Ramsey numbers for path versus stripes as the following theorem.
Theorem 3.1. For positive integer $3 \leq j \leq 5$ and $m \geq 2$, then we have $M_{j}\left(P_{n}, m K_{2}\right)=\left\lceil\frac{2 m}{j}\right\rceil$.
Proof. Let $s=\left\lceil\frac{2 m}{j}\right\rceil$. We will show first that the lower bound of $M_{j}\left(P_{n}, m K_{2}\right) \geq s$. Let $F_{1} \oplus F_{2}$ be the any factorization of graph $F=K_{(s-1) \times j}$ such that F_{1} contains no P_{n} for $n=2,3$ as subgraph. Let $V_{i}=\left\{a_{i j}\right\}$ for $i=1,2,3, \ldots,(s-1)$ and $j=3,4,5$ be the partite set of F. Since all edges of graph $F=K_{(s-1) \times j}$, then there are not enough vertex to form $m K_{2}$ in F_{1}. Therefore $M_{t}\left(P_{n}, m K_{2}\right) \geq s$, for $n=2,3$.

Next, we will show the upper bound $M_{j}\left(P_{2}, m K_{2}\right) \leq s$. Let $G_{1} \oplus G_{2}$ be any the factorization of $G=K_{s \times j}$ such that G_{1} contains no P_{2} as a subgraph. We will show that G_{2} contains $m K_{2}$ as a subgraph. Let $V_{i}=\left\{a_{i j}\right\}$ for $i=1,2,3, \ldots, s$ and $j=3,4,5$ be the partite set of G. Since G_{1} contains no P_{2} as subgraph, then G_{1} is isolated vertex. Hence $|V(G)|=\left(\left\lceil\frac{2 m}{j}\right\rceil\right) j$ vertex, then $\frac{s j}{2}$ can form $m K_{2}$. As a consequence, G_{2} contains $m K_{2}$ as a subgraph. Therefore, the set multipartite ramsey numbers $M_{j}\left(P_{2}, m K_{2}\right) \leq s$

Next, to show the upper bound $M_{j}\left(P_{3}, m K_{2}\right) \leq s$. Let $G_{1} \oplus G_{2}$ be any the factorization of $G=K_{s \times j}$ such that G_{1} contains no P_{3} as a subgraph. We will show that G_{2} contains $m K_{2}$ as a subgraph. Let $V_{i}=\left\{a_{i j}\right\}$ for $i=1,2,3, \ldots, s$ and $j=3,4,5$ be the partite set of G. Since G_{1} contains no P_{3} as subgraph and $\Delta\left(G_{1}\right)=1$, then $G_{2}=3(s-1)$. Thus, the complement of G_{1} that is G_{2} will form $m K_{2}$. Hence, G_{2} contains $m K_{2}$ as a subgraph. Therefore, the set multipartite ramsey numbers $M_{j}\left(P_{3}, m K_{2}\right) \leq s$.

III. Conclusions

In this paper, we obtain the set multipartite Ramsey numbers for $M_{j}\left(P_{n}, m K_{2}\right)$ for $j=3,4,5$ and $n=2,3$ with $m \geq 2$.

References

[1] Burger A. P., and Van Vuuren, J. H, "Ramsey Numbers In Complete Balance Multipartite Graphs, Part I : Set Numbers", vol. 283. Discreate Math. 2004, pp. 37-43.
[2] Chavatal, V., and F. Harry, "Generalised Ramsey Theory For Graphs, II: Small Diagonal Numbers", vol. 32. Proceedings of The American Mathematical Society. 1972, pp. 389-394.
[3] Chartand, G., and S. Schuster, " On The Existence of Specified Cycles In Complementary Graphs", vol. 77. Bulletin of The American Mathematical Society. 1971, pp. 995-998.
[4] C. Jayawardene and L. Samarasekara, "Size Multiprtite Ramsey Numbers for Small Paths Versus Stripes", vol. 12. Annals of Pure and Applied Mathematics. 2016, pp. 211-220.
[5] Exoo, G, "Constructing Ramsey Graphs With a Computer", vol. 59. Congressus Numerantium. 1987, pp. 31-36.
[6] Greenwood, R. E., and Gleason, A. M, "Combinatorial Relations and Chromatic Graphs", vol. 7. Canada. J. Math. 1955, pp. 1-7.
[7] Harborth, H., and Mengersen, I, "Some Ramsey Numbers For Complete Bipartite Graphs", vol. 13. Australasian. J. Combin. 1996, pp. 119-128.
[8] Harborth, H., and Mengersen, I, "Ramsey Numbers in Octahedron Graps", vol. 231. Discrete Math. 2001, pp. 241246.

