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Chapter 1

Introduction

With the widespread proliferation of AI technology, deep architectures — many of
which are based on neural networks — have been incredibly successful in a variety of
different research areas and applications. Within the relatively new domain of Music
Information Retrieval (MIR), deep neural networks have slowly gained prominence
and have been successful for a variety of tasks, including tempo estimation, beat
detection, and genre classification (Humphrey, Bello, and LeCun 2012).

Drawing inspiration from projects like George E. Lewis’s Voyager (Lewis 2000) and
Al Biles’s GenJam (Biles 1994) two pioneering endeavors in human-computer interac-
tion, this project attempts to tackle the problem of expressive music generation and
seeks to create a Symbolic Music Transformer as a real-time musical improvisation
companion, exploring the potential of AI to enhance the human experience of music.
The Transformer, a groundbreaking model introduced in the 2017 paper ”Attention is
All You Need” (Vaswani et al. 2023) is at the core of Large Language Models (LLMs)
like ChatGPT that have exploded in popularity around the world.

This paper discusses the historical context for the rise of generative AI technology,
popular model architectures for sequence-to-sequence tasks that can be directly com-
pared to our own, and dives deep into the details of the transformer architecture.

I successfully manage to implement the first iteration of a Transformer model that
can generate musical output. While the model struggles to generalize to a variety of
inputs — likely due to limited training resources and data used while training — it
can learn the structure of the proposed MIDI encoding scheme (Oore et al. 2018) and
can generate expressive MIDI performances. I also briefly present a working proto-
type of a performance environment built with Max/MSP which can parse auditory
information in real-time and serve as the interface between the model and the mu-
sician. I document and evaluate various challenges and design decisions through a
variety of means, as well as opportunities for future improvement and work.
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Chapter 2

Background - A Brief History of
Generative AI

Before diving into the history of Generative AI, it is important to provide a simple
definition for our understanding of the field: Generative AI refers to a subset of
artificial intelligence techniques that focus on generating new content in various forms
— text, images, music, or other forms of data — given some or no amount of input.
This technology has evolved significantly, from rule-based systems to advanced neural
networks.

2.1 Early Generative AI - Expert Systems

Early attempts at generative AI models were based on deterministic, rule-based sys-
tems — also known as expert systems — that dominated the early 1960s. An early
example of such a model from this era is Weizenbaum’s program ELIZA, a computer
program built for the study of natural language communication between man and
machine (Weizenbaum 1966). For its time the model was incredibly innovative in
its use of rules to simulate the process of reading, understanding, and responding to
textual input.

Such systems became tangible demonstrations of the power of small amounts of
domain-specific knowledge to enable an intelligent decision-making process within
programs in numerous areas of importance. However, such systems suffer from some
key limitations:

• Domain-Specific Knowledge—Rule-based systems often require large amounts
of domain-specific expertise to develop accurate rules. This is a time-consuming
process of converting human-defined rules into machine logic and is also prone
to human error and bias.

• Scalability and Maintainability — Expert systems can become exceedingly
difficult to manage as the set of domain rules expands and changes. Given that
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Figure 2.1: An example of a conversation with Eliza from Weizenbaum et.al.
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such systems are unable to learn from new data, rules must be manually added
to changed to ensure that a system can perform its task well. For example,
MYCIN (Buchanan and Shortliffe 1984) was a system for diagnosing bacte-
rial infections and recommending medical treatment, consisting of around 600
manually derived rules.

• Complexity — Due to the manually defined nature of rule-based systems,
they may oversimply complex problems and may fail to capture nuances in
their target task, resulting in overly simple or inaccurate output.

2.2 Generative AI Today - Deep Architectures

Expert systems were instrumental in laying the groundwork for future developments
in AI, establishing that ”knowledge is power” (Buchanan 2005). Recognizing the
limitations of expert systems, there was a gradual shift toward data-driven learning
rather than rule-based learning, building the foundation for systems that would be
able to adapt to new information and grow better at handling complex, non-linear
relationships in data. The dominance of neural network architectures was cemented
by the creation of the back-propagation algorithm (Rumelhart, Hinton, and Williams
1986), which allowed deep neural network architectures to learn and model repre-
sentations in data very effectively. Nearly all of the generative models we see today
incorporate elements of feed-forward neural networks which are integral to processing
input data, transforming and learning data representations, and generating output.

2.2.1 Examples of Generative AI models

Generative Adversarial Networks (GANs)— Introduced by Ian Goodfellow and
his colleagues in 2014, GANs represented a breakthrough in generative AI for image
processing (Goodfellow et al. 2020). They consist of two neural networks, a generator,
and a discriminator, that are trained simultaneously. The generator creates images,
while the discriminator evaluates them. This competition drives the generator model
to produce increasingly realistic images.

Recurrent Neural Networks—While neural networks can effectively model single
or neighboring input entities, long-term relationships are important when dealing with
sequential data, such as time series data. Recurrent Neural Networks (RNNs) were
created specifically for such sequential data, where feed-forward connections from
lower to higher layers are complemented by feedback connections from higher to lower
layers. These connections can model delays in the signal and thus represent memory-
like sequence modeling units. RNNs can therefore model temporal sequences. Several
recurrent network models have been introduced, such as the long-short-term memory
(LSTM) (Hochreiter and Schmidhuber 1997). Oore et. al uses such networks for
expressive music generation, discussed in a subsequent chapter.

Variational Autoencoders (VAEs) — VAEs are based on the architecture of
autoencoders, which consist of two main components: an encoder and a decoder. The
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encoder compresses input data into a smaller, dense representation or latent space,
and the decoder reconstructs the input data from this compressed form. Unlike
standard autoencoders, VAEs introduce a probabilistic approach to the encoding
process. (Kingma and Welling 2022). The Magenta team at Google has used VAEs
to develop a variety of generative models in the music domain, such as GrooveVAE,
which adds expressive dynamics to MIDI-sequenced drum beats to create a more
human sense groove.

Transformers — Another kind of autoencoder model, the introduction of trans-
former models (Vaswani et al. 2023) marked a significant turning point in sequence
modeling tasks by relying on self-attention mechanisms alone to compute represen-
tations of input and output. These models outperformed previous architectures by
a wide margin, leading to their widespread adoption. Vaswani et al.’s paper is a
must-read for understanding the foundation of modern transformer models and will
be covered in greater detail in a subsequent chapter.

2.3 Impact of Generative AI in Various Fields

The rise of Generative AI marks a transformative era in the field of artificial in-
telligence, characterized by the ability of computers to create new content. These
technologies have evolved into very sophisticated models, including the likes of Ope-
nAI’s DALL-E, capable of generating highly realistic and creative visual content from
textual descriptions, and ChatGPT-4, the leading large language model that can pro-
cess multimedia content to interact with a user in a general context. These models
are not just limited to creative tasks but also assist in data augmentation, simula-
tion tasks, and more. (Richter et al. 2016). Generative AI is reshaping industries,
posing significant ethical and societal questions about authorship, and redefining the
boundaries of machine-assisted creativity and innovation.
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Chapter 3

Relevant Work

3.1 Music generation systems geared toward Mu-

sical Improvisation

The subsequent two projects (while less technically relevant) were extremely inspira-
tional to me as systems that privileged and made real the spirit of musical improvi-
sation, in real-time. They provided me with ideas about how I might structure my
model and the long-term goals I might hope to achieve in pursuing this work past the
senior project.

In both cases, I was left rather mesmerized when I watched performances operated
with these systems.

3.1.1 Voyager — George E. Lewis

Voyager is a “non-hierarchical, interactive musical environment that privileges impro-
visation” (Lewis 2000). In this environment, an improvisor engages in dialogue with
a computer-driven interactive virtual improvising orchestra. The program analyzes
the human improviser’s performance and uses the analysis to guide a complex, im-
provised response to the player, as well as an independent response from its creative
internal process

Voyager was conceived as a set of 64 asynchronously operating single-voice MIDI-
controlled players, each of whom responds to and generates music in real-time. First,
a low-level routine parses incoming MIDI data into separate streams, accommodating
up to two human improvisers. The improvisers are either playing MIDI-equipped key-
board instruments or playing acoustic instruments that are interfaced with pitch de-
tection devices that parse the sounds of acoustic instruments into MIDI data streams.
A mid-level smoothing routine is also called to construct averages of pitch, velocity,
probability of note activation, and note spacing.

In response, a global subroutine called setPhraseBehaviour ( Figure 3.1) is called in
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intervals of 5 - 7 seconds and continuously recombines the MIDI players into new
ensemble combinations with defined behaviors. These behaviors define how players
are in the new ensemble, choosing whether to let the new ensemble play alongside the
older ensemble or to shut off the older ensemble entirely. Lewis created several varying
sonic behavior groupings — some of which clash — such that they may be active
simultaneously, or move in and out of a unified metric pulse. The setPhraseBehaviour
routine also includes internal subroutines that determine the choice of timbre, melody
generation algorithm, pitch sets, volume range, transposition, tempo, note spacing,
probability of playing a note, interval width range, MIDI-related ornamentation (e.g.
reverb) and how these parameters may change over time.

Figure 3.1: Voyager’s setPhraseBehaviour Routine

Furthermore, each newly created ensemble chooses both a distinct group sonority,
as well as a unique response to the input, deciding which improvisers — one, both,
or none — influence its output behavior. The setresponse subroutine in Figure 3.2
runs completely independent of setPhraseBehaviour. This routine processes both the
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raw and the averages returned by the smoothing routine to decide how the ensemble
responds to specific elements of the input, such as tempo, melodic intervals, etc.

Figure 3.2: Voyager’s setResponse Routine

A critical distinction between Voyager and other improvisatory systems is that Voy-
ager is still able to function in the absence of any outside input. With no input,
the specification of the system’s behavior is entirely governed by setPhraseBehaviour.
Given that the computer can spontaneously create music that is in no way influ-
enced by the improviser, decisions made by Voyager have consequences that must be
accounted for by the listening improviser, creating a situation where both the com-
puter and the improviser are held equally accountable for the final output. This is
an especially desirable quality for an improviser program.

3.1.2 GenJam by John A. Biles

GenJam (Biles 1994) is an interactive genetic algorithm that models a jazz improviser
and performs as a featured soloist in the author’s “Virtual Quintet”. Previous papers
published by Biles have described GenJam’s hierarchically related populations of
melodic ideas, its chromosome representations for those ideas, its genetic operators
for evolving new ideas, and the training of new soloists. This training is done under
the guidance of a human mentor, who listens to GenJam improvise and can provide
feedback as to whether the output was “good” or “bad”. The mentor’s feedback is
used to increment or decrement the fitness1 of individual melodic ideas and serves
as the environment in which musical ideas either persist or are removed from the
stored hierarchy. Mimicking biological evolutionary processes, new ideas evolve by
selecting the “better” ideas to be parents, breeding “children” ideas using musically
meaningful mutations, and replacing the “worse” ideas in the population with these
new children.
1Fitness in genetic algorithms refers to a measure of how well a solution solves the problem at hand
or how “fit” it is in the environment defined by the problem.
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In their paper, Biles demonstrates how a four-bar phrase is mapped into the “Gen-
Jam Normal Form (GJNF)” and discusses the various mutation operators available to
GenJam to create a musical response. A key strength of GenJam is that it was later
optimized to ”trade-fours” with the player in a very traditional jazz style (Biles 1998).
Many other improvising systems are unable to tell when a phrase ends (a massively
subjective art in and of itself) which means they frequently interrupt another impro-
viser mid-phrase. GenJam instead hardcodes the knowledge of the four-bar phrase,
removing the problem entirely. The high-level algorithm it uses to accomplish this is
described below:

1. GenJam first receives a chord progression for a specific tune, (read in from a
data file) and constructs a chord-scale mapping for the entire tune. The table
below provides an example of a chord scale-mapping used during the listening
phase and in the playing phase of Jerome Kern’s All the Things You Are.

Figure 3.3: An Example of chord-scale mappings for the tune All the Things you
are, bars 25-32

2. The human performer plays four bars into a microphone plugged into a pitch-
to-midi converter.

Figure 3.4: An example of a Charlie Parker quote played over measures 25-28 of All
the Things You are

3. The pitch-to-MIDI converter sends MIDI events to GenJam running on the host
computer.

4. GenJam listens to MIDI events and quantizes them into 8th-note long windows.
It then uses the chord-scale mappings provided to create measure and phrase
chromosomes for the four-bar phrase in “GenJam Normal Form (GJNF)”.

5. In the last 30 milliseconds of the human’s four-bar phrase, GenJam stops listen-
ing and performs musically meaningful mutations on some of the chromosomes

12



Figure 3.5: The melody from Figure 3.4 in “GenJam Normal Form”. Note that the
triplet melodies cannot be preserved due to 8th note quantization

in preparation to play them back as its next four. Since all the input has
been converted to GJNF, the phrase may be mutated using any of GenJam’s
musically meaningful mutation operators, which guarantees that the result is
playable over the subsequent four-bar phrase. These mutations include revers-
ing or inverting phrases, transposing phrases, repeating a phrase, and many
other changes that can be combined to derive entirely new and musical four-bar
phrases.

6. Mutated chromosomes are then used as GenJam’s next four bars as if they were
part of a stored soloist.

Figure 3.6: The four-bar phrase returned by GenJam to be played over bars 29-32

The system of trading fours as presented here in GenJam is extremely robust. Com-
pared to Voyager which functions largely in the space of free improvisation, GenJam
makes full use of hard-coded information to make the performance work (eg. the
data file with chord progressions for a specific tune). In building my system, it may
be useful to include an interface that can hold similar information and essentially set
the “context” in which the improvised performance is happening, helping the model
adjust to different scenarios like trading fours, taking a solo, or comping over another
musician’s solo.

3.2 Music Generation via Deep Learning

The following two papers are much less in the ideological domain but are projects
put forth by the Magenta project at Google, an open-source research project that
explores the role of machine learning in creative endeavors. If Voyager and GenJam
are my inspiration to make machines that can improvise, these papers showed me
how to make that possible.

13



3.2.1 Learning Expressive Musical Performance

In this paper, Oore et.al propose a novel approach to music generation, concentrating
on direct performance generation (Oore et al. 2018). This involves jointly predicting
the notes and their expressive attributes, such as timing and dynamics, rather than
just creating or interpreting scores. This is in direct contrast to other models cre-
ated by Magenta like MelodyRNN or GrooveVAE, which separate the generation of
musical phrases from their expressive attributes. Specific to this task, the authors
emphasize the importance of using a dataset that is appropriate for the task of gen-
erating expressive musical performances, one that captures not just the notes but
also the nuances of timing and dynamics. To satisfy this requirement, the authors
turn to the International E-Piano Competition Dataset, which contains MIDI-aligned
performances of piano works on a Yamaha Disklavier, capturing musical notes as well
as their expressive information with very high fidelity.

Figure 3.7: MIDI Encoding example proposed by Oore et.al.

The model employed is an LSTM-based network with three layers, each consisting of
512 cells. Oore et. al introduces a novel means of encoding MIDI data to an event-
based representation of integers, encoding NOTE-ON, NOTE-OFF, TIME-SHIFT,
and VELOCITY events, all of which can be retrieved from the MIDI message pro-
tocol. The TIME-SHIFT events are particularly notable for allowing the model to
capture expressive timing. They enable the network to move the time step forward by
increments of 8 ms up to 1 second, thus maintaining expressiveness in note timings.
An example of this is in Figure 3.7, which displays a snippet of a piano-roll with two
notes and a gap between them. The encoding creates the following events in order:
the SET-VELOCITY and NOTE-ON events for the first note, a TIME-SHIFT event
covering the duration of the event, the NOTE-OFF event for the first note followed
by the SET-VELOCITY and NOTE-ON events for the next note.

14



Figure 3.8: LSTM architecture used by Oore et. al

The network operates on one-hot encoding2 over this event vocabulary, with each
input to the RNN being a single one-hot 413-dimensional vector.

The system was found to be effective in generating MIDI performances with expres-
sive timing and dynamics. The feedback from professional composers and musicians
suggested that the system’s output resembled human performances in terms of local
structure, like phrasing and dynamics, although it lacked long-term structural co-
herence. The conclusion highlights that the while system can generate output that
sounds like a skilled pianist, the lack of long-term structure creates performances
that are expressive but somewhat random. This research marked a significant step in
the field of generative music, especially in its focus on the expressiveness of musical

2One-hot encoding is a method used to convert categorical data into a numerical format that can
be understood and processed by machine learning algorithms. For example, in a color classification
problem with a categorical variable representing the colors “Red”, “Green”, and “Blue”, we could
represent them as the vectors [1,0,0], [0,1,0], and [0,0,1] respectively.
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performances. The use of LSTM networks for this purpose shows promising results
in capturing the nuances that make the music feel more human and less mechanically
generated.

Key Takeaways — For myself, the MIDI encoding proposed by Oore et. al. was
the most fascinating part of this paper, and the generated expressive performances
are a testament to its success. However, this event representation also comes with
certain caveats:

• While the event representation is far less memory intensive than raw audio
or a multi-attribute grid-based representation like a piano roll, it does involve
significantly longer data sequences when compared to similar symbolic data that
lacks the same amount of fine precision for dynamics and timing.

• The event representation also compromises the relationship between position
and time in the sequence, as TIME-SHIFT events are encoded into the sequence
itself (e.g. a single note’s NOTE-ON and NOTE-OFF events can be very far
away ), compared to the position of an element being indicative of the time it
was recorded.

3.2.2 Generating Music with Long Term Structure

In this paper, a Transformer with a modified attention mechanism is proposed for
the task of expressive music generation with long-term structure (Huang et al. 2018).
They argue that music has two dimensions along which relative differences matter
more than absolute differences: Time and Pitch. This key information is already
captured in the event-based input representation proposed by Oore et.al., which they
use to encode the entirety of the MAESTRO dataset (Hawthorne et al. 2019) for
training purposes.

The paper discusses and introduces an alternative version of the self-attention mech-
anism that is regulated by the distance between two points (Shaw, Uszkoreit, and
Vaswani 2018), by constructing Srel, an L×L dimensional logits3 matrix that can be
used to modulate the attention probabilities for each head

AbsoluteAttention(Q,K, V ) = softmax(
QKT

√
dk

)V

RelativeAttention(Q,K, V ) = softmax(
QKT + Srel

√
dk

)V (1.4)

Sparing the intricate details, the implementation by Shaw et.al. incurs an additional
space complexity of O(L2D), where L is the length of the sequence and D is the

3In machine learning a logit often refers to the output of the model before it is passed through the
softmax activation function to produce a probability.]
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dimensionality of the input to the model because each attention head requires multiple
intermediate tensors to create Srel. This restricts its application to long sequences
and makes the model less feasible for long sequences and real-time generation tasks.

Huang et.al. instead propose a memory-efficient implementation of relative attention
by reducing the intermediate memory requirement to O(LD) (Huang et al. 2018).
They find an alternative means to construct Srel with fewer intermediate tensors, by
first constructing an alternate version of Srel with all the logits in the wrong position,
and then propose an in-place “skew” procedure to move the relative logits to their
correct positions. The “skewing” procedure is illustrated in Figure 3.9 below and is
detailed in Huang et al. The time complexity for both methods is still O(L2D), but
they demonstrate that in practice, their method is 6x faster at input sequences of
length 650, since it bypasses the need to manipulate larger tensors.

Figure 3.9: Skew Procedure from Huang et al.(2018)

Another incredible innovation from this paper was their ability to visualize the at-
tention distribution from the generated input, showing how generated notes attend
to previous notes in the sequence. This provides huge insight into the model’s inner
workings.

Figure 3.10: An example of a sequence generated by the Relative Attention
Transformer. The query note is in the left-hand and attends to its immediate past
neighbors to the earlier left-hand chords, with most attention lines distributed in

the lower half of the piano roll (Huang et al. 2018)

Key Takeaways — The paper above was the first documented use of a Transformer
architecture for music generation and confirmed my idea that Transformer architec-
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tures could be well-suited to the task of Music Generation, even without the imple-
mentation of the relative attention mechanisms. It provided me with key insights
into the implementation details of the Transformer as well as with hyper-parameter
values I used in my attempt to train such a Transformer model.

3.3 Concerns and Choices

Given the scope of the project and the number of different works involved, I made
many early design choices that greatly affected the choice of software and libraries
that would be used throughout development.

3.3.1 Input Data Type

• Concern — For the task of Music Generation we can choose to work with 1)
real-time audio or 2) a symbolic representation of the music, in a format such
as MIDI. The choice of input greatly affects the model architecture, its output,
as well its overall speed. Furthermore, the choice of data format informs the
choice of the dataset, and as discussed by Oore et. al, it is critical to use data
of a high quality that matches the problem description to a high degree.

• Choice — I explicitly decided to use the MIDI encoding proposed by Oore
et.al., given the success of expressive performances demonstrated by both the
RNN and Transformer models described earlier. As mentioned previously, while
this choice greatly lessens the processing requirement of the model compared
to using raw audio, the length of the MIDI-encoded sequences extends far be-
yond the original MIDI file due to TIME-SHIFT events being encoded in the
sequence, forcing us to grapple with excessively long sequences. This also com-
promises the sequence’s relationship between position and time, while placing
the responsibility of extracting a meaningful stream of MIDI data from the
model environment.

3.3.2 Choice of Performance Environment

• Concern — Given the project’s aim to create a live, improvisation-centric
system, we first require an environment/software that can perform multiple
tasks:

1. Record live auditory information

2. Parse it into a format acceptable to the model

3. Trigger model inference

4. Generate musical output given the model’s output

Additionally, for the system to be accessible to non-technical musicians, it would
ideally support some form of visual GUI that makes it relatively easy to use and
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learn, while abstracting away much of the core logic in the program. Considering
the unique constraints of the performance environment, the model would likely
be trained and evaluated within a separate environment that privileges tasks
such as manipulating the training data, setting up data processing pipelines,
and training the model with an ML framework of choice.

• Choice— I chose to construct the model’s performance environment in Max/MSP
(Cycling ’74 2023). Max/MSP — also known as Max — is a visual program-
ming paradigm for music and multimedia developed by Cycling ’74. It provides
a graphical interface for creating and manipulating audio, video, and other
multimedia content and is widely used in the fields of music composition, live
performance, sound design, and interactive multimedia art. It is easy to use,
highly optimized as an audio processing unit, and has an assortment of pre-built
objects that directly address our needs, like a pitch-tracking module that can be
used to help parse live audio to midi. Max programs are known as ”patches” and
involve connecting a graph of various Max objects. Max also supports compos-
ability and reusability, with the ability to define and reuse custom sub-patches
across multiple projects.

Furthermore, Max features an internal Node.js runtime engine that can com-
municate directly with Max patches via the Max-For-Node API. Leveraging
this, we can exploit the full flexibility of Javascript/Typescript in our patch
in a manner that is completely abstracted from the performer, housing our
machine-learning model within the Node.js runtime and doing any additional
processing as required.

3.3.3 Choice of ML Framework and Model Size

• Concern - The most popular ML frameworks available today are PyTorch
and Tensorflow/Keras, both of which leverage Python as the main language
to train ML models. The ML framework of choice must be flexible enough
to support models being exported from the training environment easily, and
the performance environment must be able to host the model in its exported
form. Our model also has to balance between being large enough to extract
meaningful information from large amounts of sequential data, while also being
small enough such that inference could still be run relatively quickly.

• Choice — While PyTorch is reportedly easier to use and prototype models
with, I have chosen to use Tensorflow/Keras as my Machine learning library
of choice specifically because of my familiarity with it and because has a pre-
existing Javascript port, Tensorflow. js, which supports run models trained
with the regular Tensorflow backend. This would effectively allow me to train
and build my model in a separate Python environment, and then load it within
the Node.js runtime housed within Max.

Given that I am trying to keep the inference time of the model to a minimum, I
choose to work with smaller models of only 1-2 encoder-decoder stacks, rather
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than the usual practice of using 4-8 encoder-decoder stacks. This helps to keep
the model small and may force it to extrapolate and generalize with limited
parameters.
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Chapter 4

The Transformer Model

4.1 Background

In the landmark paper “Attention Is All You Need” (Vaswani et al. 2023), Vaswani
et al. propose the Transformer model as an alternative to previous state-of-the-art
sequence transduction models. These include Recurrent Neural Networks (RNNs),
Long Short-Term Memory (LSTMs) (Hochreiter and Schmidhuber 1997) and Gated
RNNs (Chung et al. 2014) built with encoder-decoder architectures for sequence-to-
sequence generation. Recurrent models typically handle computation on a sequence
based on the positions of symbols in the input and output. At each step, the RNN
generates a series of hidden states such that the most recent hidden state, ht, depends
on the previous hidden state, ht−1, and the input for the current position (t). The task
performed at each element in the sequence is the same, just with different “memory”
of what came prior, hence the name “recurrent”

This sequential nature of processing means that an RNN only looks at one piece of
the input data at a given time, rather than looking at larger chunks of the sequence.
When processing a very long sentence or a large set of sentences, these models strug-
gle because they have to process each part of the sequence in order. This makes
parallelization 1 difficult and requires a lot of memory, as the model has to keep track
of the information through each step of the sequence. Recent research has made
notable strides in improving computational efficiency through methods like factoriza-
tion techniques (Kuchaiev and Ginsburg 2017) and conditional computation (Shazeer
et al. 2017) while enhancing model performance. Many of these models also employ
attention mechanisms, which allow some amount of modeling of input sequence de-
pendencies without regard to their distance in the input/output sequence (Kim et al.
2017). Nonetheless, the core constraint of sequential computation has remained as a
bottleneck to the ability to train RNNs on large amounts of data.

1Parallelization in computing refers to the process of dividing a task into smaller parts that can
be processed simultaneously on a computer, compared to one after the other in sequence. When
done correctly, this can greatly improve the overall speed of a process
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The Transformer model, however, does away with the recurrent aspect of RNNs
entirely and relies solely on dot-product attention mechanisms to draw global rela-
tionships between input and output. While this intensifies the Transformer’s memory
requirement due to the O(n2) dot-product computations, it makes the model highly
parallelizable for training on large datasets.

4.2 Model Structure

Similar to many autoencoder models, the Transformer has an encoder-decoder struc-
ture where the encoder maps an input sequence of representations X = (x1, ...xn) to
some sequence of continuous feature representations Z = (z1, ...zn). Provided with
these continuous feature representations Z, the decoder can generate an output se-
quence one element at a time, using previously generated symbols as additional input
to generate subsequent symbols. The Transformer uses a similar overall architecture
but with stacked self-attention layers and fully connected layers in both the encoder
and decoder, as shown in Figure Figure 4.1.

4.3 Inputs and Embeddings

The input to a transformer consists of a sequence of tokens. The tokens can be
words, characters, numbers, or any other kind of symbol that inherently holds se-
quential logic. Before being fed into the model, these tokens are often embedded into
continuous vector representations — feature vectors — using an embedding layer such
that each token is now represented by a unique vector. These input embeddings can
be learned by the model during training. More commonly, we reuse learned input
embeddings created by other models that may be trained on much larger data sets.

4.4 Positional Encoding

Unlike Recurrent Neural Networks, the self-attention mechanism of the Transformer
creates a new problem: our input sequence no longer inherently holds positional
information. To encode position into our input, Vaswani et. al. propose a means
to “inject” positional information about the tokens in our sequence. This is done
by adding “positional encodings” to the input embeddings directly. Vaswani et. al.
use sinusoidal functions of different frequencies to encode position into each token’s
embedding:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (1.1)
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Figure 4.1: The Transformer Model Architecture. Left side is the Encoder, Right
side is the Decoder (Vaswani et al. 2023)

In Formula 1.1, pos is the position in the token and i is the dimension of the positional
encoding that corresponds to a sinusoidal function. While it may seem intuitive to
use simple integer values, the benefit of using sine and cosine functions is that the
output of sine and cosine is normalized with [−1, 1], unlike integer numbers which can
grow very large. This removes the need for additional training to determine position
since a unique value is generated for each position index.

4.5 Encoder / Decoder Stacks

Encoder — The Encoder is composed of a stack of N identical layers, each with 2
sub-layers, as shown in the left block in Figure 4.1. The first is a multi-head self-
attention layer, followed by a fully connected feed-forward network. Each sub-layer
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Figure 4.2: Visual Example of Positional Encoding being added to an embedded
vector representation (Taken from Hunter Phillips https:

//medium.com/@hunter-j-phillips/positional-encoding-7a93db4109e6)

has a residual connection2, followed by layer normalization3 where the output of each
sub-layer is equivalent to Normalize(x + sublayer(x)). In the simplest terms, our
Encoder receives a sequence and converts it into a form of contextual input for the
Decoder.

Decoder — The Decoder is also composed of a stack of N identical layers, but
each with 3 sub-layers, as shown in the right block in Figure 4.1. From the bottom
up, the Decoder uses 2 multi-head attention layers. The bottom-most or first layer
is completely auto-regressive. The second multi-head attention layer receives the
encoder outputs and is often called the Cross-Attention layer, where attention
values are computed not auto-regressive but, across the encoder output as well as the
data flowing through the Decoder. In simple terms, it is in this layer that the data
flowing through the Decoder is influenced by the encoded context received from the
Encoder. Like the Encoder stack, we similarly employ residual connections and layer

2Residual connections is a technique used in deep learning architectures, to allow the flow of
information and gradients through layers of a network more directly, by skipping one or more
layers

3Layer Normalization is a technique in machine learning used to stabilize the distribution of the
activations in a neural network, performing normalization for every individual data point across all
features
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normalization around each sub-layer.

4.6 Attention

4.6.1 Self-Attention

The self-attention function is at the core of the transformer and is the reason for
the transformer’s huge success in the field of NLP. The self-attention mechanism is
what allows the model to be heavily parallelized, and also allows the model to draw
relationships between tokens across the entire length of the input sequence in constant
time. The auto-regressive nature of self-attention makes this mechanism particularly
great for music, which is often composed of recurring structures that repeat and
develop.

Similar to many modern-day search engines, an attention function can be described
as mapping a query and a set of key-value pairs to some output, where each of these
— the query, keys, values, and output — are vectors. The output is computed as the
weighted sum of each matched value, where the weight assigned to each value is de-
pendent on a “similarity” function that compares the query against the corresponding
key.

• Queries, Keys, and Values: Each input token is associated with three vec-
tors: Query (Q), Key (K), and Value (V). These vectors are learned during
training. In an auto-regressive scenario, these are the same vectors!

• Attention Scores: For each token in the sequence, the self-attention mecha-
nism calculates an attention score by measuring the similarity between its Query
vector and the Key vectors of all other tokens.

• Weighted Sum: The attention scores determine how much of every other
token in the sequence contributes to the output for the current token. This
is achieved with a weighted sum of each token’s Value vectors, producing the
context vector as output for the current token.

4.6.2 Multi-Head Attention

Instead of performing a single attention function over the entire Q, K, and V vectors of
dimension dmodel, which is the dimensionality of the input to the Multi-Head Attention
Layer, Vaswani et.al. propose a linear projection of the queries, keys, and values h
times to dquery, dkey, dvalue dimensions respectively, where each of these corresponds to
dmodel/h. This is achieved by placing linear layers before the multi-head attention layer
and projecting the queries, keys, and values into a smaller space. From the collection
of h projected versions of the queries, keys, and values, the attention function is
applied in parallel to each of these projected versions of Q, K, and V. The output of
each of these ’heads’ is a which are concatenated and once again projected to get our
final output back in the dmodel space, as shown in Figure 4.3. This parallelism allows
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the model to focus on different parts of the input sequence differently for each head
and capture different relationships within the sequence.

MultiHeadAttention(Q,K, V ) = Concat(head1, ....headh)W
O

headi = Attention(QWQ
i , KWK

i , V W V
i ) (1.2)

where the projections are done via the following parameter matrices:

WQ
i ∈ R dmodel × dk

WK
i ∈ R dmodel × dk

W V
i ∈ R dmodel × dv

WO ∈ R h∗dv × dmodel (1.3)

As described by Vaswani et. al, the Transformer uses multi-head attention in three
different ways:

• In the ”Encoder-Decoder attention” layers, the Queries come from the previous
Decoder layer, while Keys and Values come from the output of the Encoder.
This allows every position in the decoder to attend to all positions in the input
sequence. This mimics the typical Encoder-Decoder attention mechanisms in
other sequence-to-sequence models and is often referred to asCross Attention,
and is the middle attention block of the Decoder in Figure 4.1.

• In the Encoder self-attention layers, all of the keys, values, and queries come
from the output of the previous layer and can attend to all positions in the
Sequence. This is often called Global Attention

• Finally, the lower attention block of the Decoder in Figure 4.1 uses autoregres-
sive self-attention, attending to all positions in the Decoder up to and including
the current position. Think of this as making sure that the Decoder cannot
predict the next event based on future events. To ensure this, an input mask
is added within the scaled dot-product attention (setting to −∞), masking out
values in the input of the softmax that correspond to illegal connections. This
is often called Causal Self-Attention.

4.6.3 Scaled Dot-Product Attention

In particular, the form of attention implemented by Vaswani et al. is Scaled-Dot-
Product Attention. First, the dot products of the query vector with all of the key
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Figure 4.3: (Left) Scaled Dot-product Attention. (Right) Multi-head Attention with
several layers in parallel. (from Vaswani et.al.)

vectors are calculated. It is then divided by
√
dk and converted to a probability

distribution by applying a softmax4 function. We divide by
√
dk to counter dot-

product values from growing too large which can cause vanishing gradients.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1.4)

4.7 Position-Wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder
contains a fully connected feed-forward network, which is applied to each position
separately and identically. This consists of two linear transformations with a ReLU5

activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (1.5)

4The softmax function is a mathematical function commonly used in machine learning, particularly
in the context of classification tasks. It transforms an output vector of real-valued scores (often
called “logits” in machine learning contexts) into a vector of values that sum up to one, effectively
representing probabilities. This is often used at the end of a neural network to determine what is
the most likely output class for a classification task given a certain input

5ReLU stands for Rectified Linear Unit, and it is a type of activation function commonly used
in neural networks. The ReLU function is defined mathematically as f(x) = max(0, x). (i.e the
function outputs x if it is greater than 0, or 0 otherwise.)
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where W1,W2, and b1, b2 are weights and biases of each linear layer respectively. In
the case of Vaswani et al., the dimensionality of input and output is dmodel = 512,
and the inner layer has dimensionality dff = 2048.

Figure 4.4: Example of a simplified 3-layer feed-forward network

4.8 Summing up

Overall, the Transformer is an extremely dense and complicated architecture with
many different moving parts. It marks a significant advancement in the field of deep
learning and natural language processing. Its unique approach to handling sequences
through attention mechanisms alone allows it to capture long-range dependencies
and contextual relationships in data more effectively than traditional sequence-based
models like RNNs and LSTMs. This quality makes Transformers especially power-
ful for tasks like machine translation, text generation, and semantic analysis, where
understanding context is crucial.

The parallelization capabilities of Transformers have also set a new standard, enabling
the use of much larger datasets. The adaptability of the Transformer model has led
to its rapid adoption across different domains beyond NLP, including computer vision
and in my case, even music generation.

To understand this architecture that has revolutionized the AI world as deeply as
possible, I implemented my own version of it. All code is referenced in the chapter 9,
under subsection 9.2.2.
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Chapter 5

The Performance Environment: A
prototype

Before working on training of the model itself, I created a prototype for our model
environment and tested it against a pre-built music generation model, ImprovRNN,
taken from Google’s Magenta Library. ImprovRNN takes in a quantized note se-
quence as well as an optionally provided chord progression and returns a candidate
continuation of the sequence. The description of this performance patch is brief be-
cause I could not test it with our trained Transformer models due to time constraints.
What I do want to show, however, is the visual nature of the program. I often feel that
Machine Learning research in the music domain is too far removed from musicians,
and it was important to me that my interface was approachable for a non-technical
musician.

5.1 For the non-technical perfomer

Within Max, I have created a patch called interface.maxpat that serves as the
interface between the performer and the entire system. To abstract and hide the
intricate details of the Max conveniently features a “presentation mode”, making it
particularly approachable for a non-technical performer who might use the system in
the future.

The patch has 4 distinct control sections:

1. setTimeSettings — Here the performer can pre-set settings based on the kind
of music they would like to play. This includes setting a time signature using
numbeats and beatvalue (eg. 9/8 would be 9 beats, each with an 8th note
value). The performer can also alter the quarter note tempo and as well as
stepsPerQuarter variable, which represents how many times a quarter note
should be evenly split, which is useful for any kind of note quantization.

2. Script Messaging — After the time settings have been set, the performer can
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Figure 5.1: Performer interface using Presentation mode in Max, which lets us
selectively show Max objects whilst hiding all of the necessary “cabling”
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start the script “main.js” the entry point file for our Javascript interface, by
clicking on script start They can also manually call setTimeSettings to reset
the established settings if they change it once the script has already started

3. Metronome — Once the script has started, the model has loaded and the time
settings have been set, the performer can click the toggle within this section to
start the metronome for the piece. The metronome here is created using Max’s
global transport object, which is a crucial component for tracking the input midi
notes.

4. Test Keyboard and Pitch Tracking Module — In its current state, the
environment works with the test keyboard rendered within Max itself which can
send out note onsets as well as note velocities. This can be readily swapped
out with a pitch-tracking module. Next to the keyboard is also a “bang” object
that will manually flush our note queue for testing purposes. In reality, the
note queue will automatically flush its contents to the Javascript runtime at set
intervals based on the time settings set by the performer.

With a working Pitch-Tracking Module, a performer need only click start and
the model would automatically be loaded and listening, ready to generate output
sequences. These output sequences can then be sent to any available digital
audio workstation via the noteout object in Max to play the note back.

5.2 Details of the Patch

To send all the required information to our Javascript Runtime, I first instantiated
a metronome that ticks alongside the host computer’s internal clock. After the
metronome has started, the global transport object mentioned earlier is simultane-
ously able to keep track of the current bar and beat (based on the time settings
provided) as well as the total ticks elapsed since the metronome started.

Given that we are working with MIDI in real-time, we have to manually calculate
the time data that is naturally present in a MIDI file. Every time a note is triggered
via the test keyboard, we can immediately retrieve a note value as well as a velocity
value. It also then uses the values from the global transport object to determine how
long the note was played for, as well as the delta time between the start of the note,
and the start of the bar. These four variables are packed into a queue every time
a note is sounded. Every time a new bar starts, Max then flushes the note queue
entirely into our Javascript Runtime.

Our Javascript process then parses these notes into a stream of MIDI note ob-
jects, which are then quantized and passed to the model using methods from the
Magenta.js library.
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Figure 5.2: The Max patch collecting note events into a queue
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5.3 Pitch Tracking

As it currently stands, the pitch-tracking module has already been included in the
patch but has not yet been connected to the patch to replace the test keyboard.
The pitch-tracking module is currently built to track monophonic pitch with the
Sigmund object created by Max Miller Puckette. While polyphonic pitch tracking is
notoriously difficult and not within the scope of this paper, one possible method is
to use harmonic partial subtraction alongside the Fiddle object in Max (Robertson
and Plumbley 2009).

Figure 5.3: Simple Pitch-tracking with Sigmund

5.3.1 Custom code within the Javascript Runtime

I also wrote custom Typescript code that uses the Max-for-Node API to communicate
and send messages between the patch and its Node.js runtime that houses the model.
The most important part of this code is the Improvisor class, which handles model
initialization/loading, and a bulk of the communication. All Typescript code can be
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found in chapter 9 under 9.4.
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Chapter 6

Project Design

6.1 Choice of Dataset

For this project, I decided to use the MAESTRO dataset (Hawthorne et al. 2019)
used by Huang et.al during their attempt to build a modified Transformer model for
long-context music generation. Put together by the same team, MAESTRO (MIDI
and Audio Edited for Synchronous TRacks and Organization) is a dataset composed
of about 200 hours of virtuosic piano performances captured with 3-millisecond fine
alignment between note labels and audio waveforms. The dataset is made available
by Google LLC under a Creative Commons Attribution Non-Commercial Share-Alike
4.0 (CC BY-NC-SA 4.0) license.

While there are several other datasets of paired piano audio and MIDI tracks that
have been published previously and have enabled significant advances in MIR tasks,
I chose to use the MAESTRO dataset for several reasons. First, MAESTRO is much
larger than most other similar datasets, making it a perfect choice for training trans-
former models that notoriously require a large amount of data. Second, the quality
of recorded MIDI performances in the MIDI dataset is extremely high, collected from
several annual runs of the International Piano e-competition. Virtuoso pianists per-
form on Yamaha Disklaviers which utilize an integrated high-precision MIDI capture
and playback system, while simultaneously having an acoustic quality comparable to
the upper echelon of concert grand pianos. The recorded data is granular enough
that the audition stage of the competition is remotely judged by listening to con-
testant performances reproduced on another Disklavier instrument (hence the name
’E-Competition’).

Below is information about other similar datasets that were considered for the task
of expressive music generation (Hawthorne et al. 2019):

1. MusicNet (Thickstun, Harchaoui, and Kakade 2017) contains recordings of
human performances, but separately sourced scores. As discussed in Hawthorne
et al. (2018), the alignment between audio and score is not fully accurate.
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Figure 6.1: Comparing MAESTRO to other datasets ( from Hawthorne et al.)

One advantage of MusicNet is that it contains instruments other than piano
(not counted in the table above) and a wider variety of acoustic environments,
making it more flexible for ML tasks that deal directly with audio.

2. MAPS (Emiya et al. 2010) contains Disklavier recordings like MAESTRO and
synthesized audio created from MIDI files that were entered via a sequencer.
Unfortunately, the synthesized audio makes up a large fraction of the MAPS
dataset, which is not as expressive as the MAESTRO tracks captured from live
performances, making it less attractive for the task of musical improvisation.

3. Saarland Music Data (SMD) (Müller et al. 2011) is very similar to MAE-
STRO in that it contains raw audio recordings and aligned MIDI of human
performances on a Disklavier, but is far smaller than the MAESTRO dataset.

6.2 Dataset Analysis

Figure 6.2: Maestro Dataset Split (From
https://magenta.tensorflow.org/datasets/maestro)

The figure above gives us some brief statistics about the data set as well as details
about a proposed train, validation, and test split. Hawthorne et. al notes that this
split was proposed so that:
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1. No composition should appear in more than one split

2. Train/validation/test should make up roughly 80/10/10 percent of
the dataset (in time) respectively and the validation and test splits
should contain a variety of compositions

3. Extremely popular compositions performed by many performers should
be placed in the training split.

They also note that these proportions should be true globally as well as within each
composer’s corpus of performed work. However, Hawthorne et al. also note that
maintaining these proportions is not always possible because some composers have
too few compositions in the dataset. The graphs below show that while the dataset
has a large amount of data, there is an especially huge disparity in the amount of music
for each composer in the training set. While this is mirrored within the validation
and test sets as well, this fundamentally implies that any model trained on the entire
dataset will be biased toward the musical style of a specific composer.

Figure 6.3: Histograms of Counted Compositions / Total Duration by Composer in
the MAESTRO train split

Furthermore, given that the MAESTRO dataset is constructed from multiple years
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Figure 6.4: Histograms of Counted Compositions / Total Duration by Composer in
the MAESTRO validation split
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Figure 6.5: Histograms of Counted Compositions / Total Duration by Composer in
the MAESTRO test split
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of piano competition entries, some pieces show up far more often than others in the
training. While different interpretations of a piece from different performers may allow
the model to have more variation in its expressive output, this may also overexpose
one piece of music to the model during training, biasing a specific style and possibly
even a specific tonal center(s). Hawthorne et. al discusses this in their paper but
does not disclose any data to show how severe this problem is. Using a simple regular
expression, we find 451 duplicate files or 46.89% of the original training set. The
validation and test sets remain the same due to the conditions of the original split
mentioned above.

6.3 MIDI Encoding and Input Representation

I adopt the sparse, MIDI-like event representation from Oore et al discussed earlier.
The vocabulary of this encoding consists of 128 NOTE-ON events, 128 NOTE-OFFs,
100 TIME-SHIFTs allowing for expressive timing at 10ms, and 32 VELOCITY bins
for expressive dynamics, as shown in Figure 3.7.

Rather than implement the full MIDI encoding process myself, I found and used a
working implementation online: Midi-neural-preprocesser developed by Kevin-Yang.
I examined the code to ensure the implementation matched the description by Oore
et. al and tested it by writing unit tests and comparing MIDI files with their original
counterparts after they had been encoded and decoded. My unit tests counted every
recorded event across all files, ensuring that the registered note events fell within
the range of an actual grand piano (MIDI note range 21 - 108) and that there were
an equal number of note-on and note-off events for each note recorded. Since the
encoding process for each MIDI file was quite long, I wrote a preprocessor script that
employs multi-threading to speed up the encoding process of each MIDI file before
saving it to a raw binary format. This made the encoding process across the dataset
about 10x faster.

Below are some interesting statistics about the collected MIDI event sequences.

Event Statistics by split
Split Train Validation Test All
Average 24166 19112 17140 22648
Maximum 100467 99866 67859 100467
Minimum 5 2258 1837 5
Std Deviation 17942.411 16304.913 12660.855 17342.889

Table 6.1: Event statistics captured by counting every encoded event across all files

The table above provides insight into the huge variance in sequence length across
examples, especially within the training set, and is dealt with accordingly in my
dataset implementations.

40

https://github.com/jason9693/midi-neural-processor
https://github.com/jason9693


6.4 Building an input pipeline in Tensorflow

Given that I was dealing with a substantial amount of sequential data across thou-
sands of files and constrained by limited memory/compute resources, it was of paramount
importance to experiment with different data pipelines and consider which was best
suited for me given the limited computing resources on hand. While the raw encoded
sequences themselves could all fit into memory, it is important to note that the train-
ing examples for the model are constructed by grabbing fixed-length event sequence
windows from the sequence, with a stride of 1. This results in an explosion of our
data’s memory footprint as elaborated below.

Figure 6.6: Generating examples from large sequence using a rolling window

• Assuming a fixed overhead for each list O and a fixed integer size I, For each
sequence of length N, the memory footprint is equal to I ∗N +O

• For a stride of S, the number of rolling windows of size L we can extract from
the sequence (where N > L) = ⌊(N − L)/S⌋

• Total number of events across all examples = ⌊(N − L)/S⌋ ∗ L ∗ I + (O ∗ L).
Therefore memory requirement grows quadratically as L increases

• e.g. For a sequence of 32-bit integers of size 20,000 (80KB), a window size
of 1024, and stride 1, the number of events generated across all examples =
19432448 (77.73 MB). That’s nearly 1000 times larger, and only for a
single file!

6.4.1 The BaseDataset class

The BaseDataset class serves as the parent class for all subsequent various dataset
implementations and accomplishes two key functions. It first loads metadata from
the JSON file provided with the MAESTRO dataset, which tags each MIDI file to
its respective composer and title, year of creation, whether it should belong to the
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training, validation, or test split, and more. A separate variable, the fileDict, stores
key-value pairs of the MIDI file’s key within the JSON file, as well as the path to its
encoded MIDI representation when get_encoded_files() is called.

The get_encoded_files() function also implements additional logic that filters out
files that do not meet a minimum duration or a minimum number of encoded events
(see code 6.7). Based on the recorded event statistics above, some files can be consid-
ered outliers in terms of their duration and the length of their encoded event sequence,
the latter being a more useful metric since the length of a piece’s encoded event se-
quence is not necessarily tied to its duration, but to the number of individual midi
events generated during a full midi performance. The filtering removes pieces whose
overall length is less than our training window as they are less relevant to the case of
”improvisation” where the goal is primarily to generate more music within a certain
context. Training on such shorter training examples might pre-empt the model to
stop early or generate no response at all, thinking that a piece has ended, because
the teacher-forced sequence passed to our decoder might be significantly padded with
0 values.

1 #Remove midi files that are too short in length by number of events

2 if min_event_length is not None:

3 i = 0

4 while i < len(midi_filenames_from_json):

5 #open the file and get the length

6 with open(midi_filenames_from_json[i], 'rb') as f:

7 if self.data_format == "pickle":

8 data = pickle.load(f)

9 else:

10 data = np.load(f,allow_pickle=True)

11 if len(data) < min_event_length:

12 del midi_filenames_from_json[i]

13 i+=1

Figure 6.7: Code from BaseDataset.py to filter files by event sequence length

6.4.2 The TestDataset class

The TestDataset class inherits from the BaseDataset class to accomplish a few specific
goals. First, the TestDataset class implements mockTFDataset_from_scale(), which
generates test sequences based on major/minor scales and arpeggios. These are simple
sequences of integers representing MIDI note numbers with no encoding of velocity
or time, serving only as a baseline test to verify that our model architecture could
learn and overfit to a basic training set sequence.

The second purpose of the TestDataset class was to explore how much data might
realistically be used with an in-memory dataset. To experiment with this, the Test-
Dataset class implements a method retrieve_files_by_maestro_split() to first
separate encoded MIDI paths by their intended split indicated in the MAESTRO
metadata JSON file, while specifying the number of files to keep from each split as
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1 import tensorflow as tf

2

3 #scales in C

4 MAJOR_SCALE = [24, 26, 28, 29, 31, 33, 35]

5 MINOR_SCALE = [24, 26, 27, 29, 31, 32, 34]

6 MAJOR_ARPEGGIO_7 = [24, 28, 31, 35]

7 MINOR_ARPEGGIO_7 = [24, 27, 31, 34]

8 MAX_VAL = 127

9

10 def constructScales(self,scale):

11 #Only iterate within the max midi note range

12 num_iterations = (MAX_VAL - scale[-1]) // 12

13 single_scale = []

14

15 #get degrees in all octaves for C root

16 for i in range(num_iterations):

17 for note in scale:

18 single_scale.append(note + i*12)

19

20 #get scale degrees for all roots (any note in the octave)

21 all_scales = [[note + i for note in single_scale] for i in range(12)]

22 return single_scale, all_scales

23

Figure 6.8: Code from TestDataset.py to generate simple test sequences from
major/minor scales/ arpeggios.

1 def memory_limit(percent):

2 #Limit max memory usage to half

3 soft, hard = resource.getrlimit(resource.RLIMIT_AS)

4 # Convert KiB to bytes, and divide in two to half

5 resource.setrlimit(resource.RLIMIT_AS, (int(get_memory() * 1024 * percent),

hard))↪→

6

7 def get_memory():

8 with open('/proc/meminfo', 'r') as mem:

9 free_memory = 0

10 for i in mem:

11 sline = i.split()

12 if str(sline[0]) in ('MemFree:', 'Buffers:', 'Cached:'):

13 free_memory += int(sline[1])

14 return free_memory # KiB

Figure 6.9: Code from TestDataset.py to put a limit on memory allocation from
within a python process

an argument. We also implement two functions memory_limit() & get_memory()

to safely test this by limiting the total memory that can be allocated by the process,
preventing the system from becoming non-responsive.

The naive implementation of the TestDataset uses Python lists to hold encoded MIDI
sequences and extract fixed-length rolling windows to construct a TensorFlow dataset
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instance that existed entirely in memory. However, this quickly causes runtime and
memory to become a bottleneck. For example, the system takes 194.18 seconds just
to create 3 Tensorflow datasets (train/validation/test) with only 8/2/2 number of
files respectively. To optimize this, I use Numpy arrays instead of Python lists and
set our integer datatype to uint16 (given that our event sequence only spans 0 - 388),
greatly speeding up all processing while minimizing memory usage (see code 6.10).
However, even after greatly optimizing the in-memory dataset, we find that the upper
bound on our in-memory dataset is ∼ 160 files. While this severely limits our dataset,
training with an in-memory dataset was the most straightforward training method
and still managed to yield a viable model, discussed in a later chapter.

1 import time as time

2

3 def rolling_window(self,sequence, seq_len, stride=1):

4 ls = []

5 #append windows of length seq_len to outer list

6 for i in range(0,len(sequence) - seq_len + 1,stride):

7 ls.append(sequence[i: i + seq_len])

8 return ls

9 ...

10 ...

11 def rolling_window_np(self,seq,seq_len, stride=1):

12 # Ensure the sequence is a numpy array

13 if type(seq) == list:

14 seq = np.array(seq, dtype=np.uint16)

15

16 # Compute the shape of the resulting 2D array after applying the rolling

window↪→

17 shape = seq.shape[:-1] + (seq.shape[-1] - seq_len + 1, seq_len)

18

19 # Compute the strides to be used for creating the rolling window view

20 strides = seq.strides + (seq.strides[-1],)

21

22 # Create the rolling window view using as_strided

23 return np.lib.stride_tricks.as_strided(seq, shape=shape, strides=strides)

24

25 '''

26 >>> File has 18647 encoded midi events - taking rolling windows of size 1000

27 >>> Time taken for rolling window with encoded midi data:0.061524391174316406

28 >>> Time taken for rolling window np with encoded midi data:0.00029015541076660156

29 '''

Figure 6.10: Examples of code from TestDataset.pyoptimized with Numpy for
improved processing

6.4.3 The RandomCropDataset class

In their paper on the long-context music transformer, Huang et. al. state that
they use random crops of event sequences in their training process, leading me to
experiment with a similar dataset implementation. For this class, I wrote a Python
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generator that retrieves a batch of sequence examples to train the model, where
each example is retrieved from a randomly selected file. Tensorflow allows us to
create a tf.data.Dataset instance from a Python generator via the from_generator
method, which accepts a callable generator as well as a tensor output specification.

1 def _batch_generator(self,length, num_tokens_to_predict=None):

2 if num_tokens_to_predict is None:

3 num_tokens_to_predict = length

4 while True:

5 #get batch randomly selects n files and calls extract_random_crop on them

6 data = self.get_batch(length+num_tokens_to_predict)

7

8 x = data[:, 0:length]

9 y = data[:, length:length+num_tokens_to_predict]

10

11 #attach start-of-sequences and end-of-sequences tokens to y examples

12 y = np.array([[token_sos] + list(seq) + [token_eos] for seq in y])

13 yield x,y

14

15 def extract_random_crop(self, file_data,length):

16 with open(file_data, 'rb') as f:

17 data = pickle.load(f)

18

19 start_index = random.randint(0, len(data))

20 end_index = start_index + length

21

22 #If the end index is greater than the length of the file and the pad length is

less than half the window size, pad the sequence with 0s↪→

23 #Otherwise, recursively find a new random crop

24 if end_index > len(data):

25 pad_length = end_index - len(data)

26 if pad_length <= length // 2:

27 sequence = np.pad(data[start_index:], (0, pad_length), 'constant',

constant_values=0)↪→

28 else:

29 return self.extract_random_crop(file_data)

30 else:

31 sequence = data[start_index:end_index]

32

33 return sequence

Figure 6.11: Code from RandomDataset.py which shows how random crops are
returned from a python generator

While this dataset implementation was straightforward, I remained doubtful as to
how efficient it was. From a probabilistic perspective, our generator would select
an even distribution of sequences across the entire dataset, especially if training was
allowed to run for a long time. However, with shorter training times, it was completely
possible that certain sequences could be revisited multiple times and be overexposed
to the model.
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6.4.4 The SequenceDataset class

To directly address my concerns with the RandomCropDataset class, the final dataset
class I implemented was the SequenceDataset class. The SequenceDataset class inher-
its from both my own BaseDataset class, as well as the tf.keras.utils.Sequence

class, a Keras helper class that can be used instead of a traditional Tensorflow dataset.
The SequenceDataset generates examples in a structured manner:

1. We retrieve all paths for encoded MIDI files associated with a specific split in
class the variable self.data

2. We convert them to a list of FileData objects. These objects store the path to
the encoded MIDI file, as well as the next starting index a sequence should be
retrieved from (initialized at 0).

3. Every time a batch is generated, n FileData objects are selected, a sequence
is extracted from the recorded starting index, and the starting index is incre-
mented by 1. If we detect that our extracted sequence has hit the end of the
full encoded sequence, that FileData object is removed from self.data and
instead added to a separate list variable self.complete_files.

4. As more and more batches are generated, all of our FileData objects slowly
migrate self.complete_files.

5. When self.data is found to be empty we assign self.data to self.complete_files
and self.complete_files to a new empty list, resetting the dataset so that
training can resume.

This ensures that every example sequence is visited at least once before looping over
the entire dataset. To implement the interface required by tf.keras.utils.Sequence,
we also add the __len__() and __getitem__() methods which calculate the total
number of batches in the data and return a batch respectively. Like the RandomCrop-
Dataset, an added benefit of using a generator-style implementation is that Tensorflow
supports multi-processing, While this ensures we visit each example at most once over
each pass of the dataset, it also unintentionally forces examples from each file to be
extracted sequentially. This may have unintended effects on training, especially to-
ward the end of a single pass when a batch may contain several sequential examples
from just a handful of files.

For the full dataset implementations, please refer to chapter 9.

6.5 Streamlining training experiments

Given the scope of the project, it was crucial to be able to run multiple experiments
with different model architectures and slightly altered hyperparameters, while also
storing data from each experimental run. To facilitate this, I created a Params class
that would take a snapshot of all the parameters involved in the experiment, as well
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1 class FileData():

2 def __init__(self,file_path):

3 self.path = file_path

4 self.current_note_index = 0

5 ...

6 ...

7 def extract_sequence_v2(self, file_data, length):

8 #=grabs a sequence of size 'length' from file, starting at the start index 0.

Then, shifts current_note_index by 1↪→

9 with open(file_data.path, 'rb') as f:

10 data = pickle.load(f)

11

12 #pick up from the last recorded start_index

13 start_index = file_data.current_note_index

14

15 #if the start index + length is less than the file length, we can grab a

sequence of length↪→

16 if start_index + length < len(data):

17 #extract a sequence of length len from the file

18 data = data[start_index:start_index + length]

19

20 #update the start index for the next sequence

21 file_data.current_note_index += 1

22 else:

23 #if there is not enough data left in the file (only possible with stride >

1) then start from padding the remaining sequence with zeros↪→

24 data = data[start_index:]

25 while len(data) < length:

26 data = np.append(data, self.params.pad_token)

27 self.move_to_complete_list(file_data)

28 return data

29 ...

30 ...

31 #Reset all indices

32 def reset(self):

33 self.data += self.complete_files

34 self.complete_files = []

35 file.current_note_index = 0 for file in self.data

36 random.shuffle(self.data)

Figure 6.12: Code examples from SequenceDataset.py showing the FileData
object, sequence extraction, and how the dataset is reset

as several helper functions such as setup_experiment() in train_utils.py that
would assist in executing a single experiment and saving all data about it.

All trained models are stored in the models directory, where each model has the
following:

• Saved model checkpoints

• Tensorboard logs to inspect the model during and after training
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1 class Params:

2 def __init__(self, param_dict):

3 #set dict values class attributes

4 for key, value in param_dict.items():

5 setattr(self, key, value)

6

7 def print_params(self):

8 #Print all the parameters

9 all_attrs = vars(self)

10 for key, value in all_attrs.items():

11 print(key, ":", value)

12

13 def get_params(self):

14 #Return all the parameters

15 return vars(self)

16 ...

17 ...

18 def save_params(p,base_path,logger,args):

19 #Save parameters that will be used to load

the model↪→

20 try:

21 logger.info("Saving Params...")

22 with open(base_path+'params.json', 'w')

as file:↪→

23 param_dict = p.get_params()

24 param_dict['name'] = args.name

25 param_dict['training_date'] =

datetime.now()↪→

26 json.dump(param_dict, file)

27 logger.info("Params Saved!")

28 except Exception as e:

29 logger.error(e)

30

1 {

2 "num_heads": 8,

3 "key_dim": 64,

4 "value_dim": 64,

5 "model_dim": 384,

6 "batch_size": 8,

7 "l_r": 0.001,

8 "feed_forward_dim": 1042,

9 "dropout_rate": 0.2,

10 "encoder_vocab_size": 388,

11 "num_encoder_layers": 1,

12 "decoder_vocab_size": 388,

13 "num_decoder_layers": 1,

14 "epochs": 200,

15 "beta_1": 0.9,

16 "beta_2": 0.98,

17 "epsilon": 1e-08,

18 "encoder_seq_len": 512,

19 "decoder_seq_len": 514,

20 "max_seq_len": 512,

21 "pad_token": 0,

22 "token_sos": 1,

23 "token_eos": 2,

24 "debug": true,

25 "steps_per_epoch": 500,

26 "save_freq": 10,

27 "seed": 236,

28 "name":

"baseline_80_files_np",↪→

29 "training_date": "28/11/2023

03:54:13"↪→

30 }

Figure 6.13: (Left) The Params class and the save params() method
(Right) Example of params.json from a training run

• history.json file with the training history returned by model.fit()

• Parameters stored inparams.json

• An output log/nohup.out log

This makes it much simpler to run inference for a specific model, as we can easily
find and load the parameters of a model, and its trained weights, and generate MIDI
outputs accordingly.

6.6 Model Details

To understand the Transformer architecture as deeply as possible, I first implemented
a Transformer model in Keras by subclassing the Keras Layer and Model class, build-
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ing layers such as the PositionalEncodingLayer and the MultiHeadAttention layer
myself connecting all pieces of the architecture manually. As a baseline to compare
against, I also implemented a second version of the Transformer using pre-built layers
from Keras and Keras NLP and the TensorFlow functional API to connect all the
different layers. All the code for both transformer implementations is included in
chapter 9. under 9.2.2 and 9.2.3.

Across either implementation, we use hyper-parameters largely informed by the music
transformer paper (Huang et al. 2018). We train on sequences of the length of 512 for
the encoder and 514 for the decoder (inclusive of start and end tokens). This is smaller
than what is used by Huang et.al. and is largely due to memory constraints in our
training setup. Similarly, we use a batch size of 8, as larger batch sizes quickly cause
the GPU to run out of memory when training. We experiment with an embedding
dimension of 256/384, 10%/20% dropout after each sublayer, and use a dimension of
1024 in the transformer feedforward network. We also experiment with an attention
size of 512 and 4/8 heads, such that the dimension of the queries, keys, and values
are equal to att size/num heads. While training, we make use of early stopping on
our validation set with a patience of 3 epochs. When training with the RandomCrop-
Dataset or SequenceDataset which may have infinitely looping data, we set steps per
epoch to 1000. Similarly, our validation set is not fixed and the loss computation is
averaged over 1000 steps on the validation data in between each epoch.

For our optimizer, we make use of an Adam optimizer with default values (0.9 for
Beta-1, 0.98 for Beta-2, and 10−8 for Epsilon). Instead of providing the optimizer
with a fixed learning rate of 0.1 as done by Huang et. al., we use a learning rate
scheduler based on the formula proposed in ”Attention is All you need” (Vaswani
et al. 2023).

lrate = d−0.5
model ∗min(step num−0.5, step num · warmup steps) (1.6)

This increases the learning rate linearly for the first N warmup training steps and
decreases it thereafter proportionally to the inverse square root of the step number.
I use the default value of 4000 for the warmup steps.

For our loss function, I make use of the sparse-categorical-cross-entropy loss
object provided by TensorFlow, which is meant for multi-label classification problems.
At each step, our model essentially predicts what ’class’ the next MIDI event will be
and acts on the final linear layer outputs of the model, which uses softmax activation
to retrieve a probability distribution over our event vocabulary. Training over the
Decoder was done in a teacher-forced1 manner.

1Teacher forcing is a training strategy used in the context of machine learning, particularly in the
training of Recurrent Neural Networks (RNNs) and similar models that generate sequences, such
as Long Short-Term Memory (LSTM) networks. In a standard sequence generation task without
teacher forcing, the model generates an output at each step of the sequence and then feeds its
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output from the previous step as the input for the next step. However, this can lead to problems
during training if the model starts generating incorrect outputs; these errors can accumulate and
lead the model further astray. Teacher forcing addresses this issue by using a different approach
during training. Instead of feeding the model’s output from the previous step into the next step,
it uses the actual or ”true” output from the training dataset at each step. This ensures that the
model is always trained with the correct sequence up to that point, helping it learn more effectively.
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Chapter 7

Results and Analysis

7.1 Metrics

While there are a large number of metrics to evaluate NLP tasks, such as Perplexity,
Bilingual Evaluation Understudy score (BLEU) (Papineni et al. 2002) and Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) (Lin 2004) etc., metrics for
evaluating generated models — and generated music specifically — are very limited.
In the visual domain, where generative models have been experimented with on a
larger scale with output that can be immediately perceived, there are already several
arguments that raise doubts regarding the efficacy of standard metrics for evaluating
model quality (Theis, Oord, and Bethge 2016). These explanations extend naturally
to the case of musically generative models. In particular, they point out that ul-
timately, “models need to be evaluated directly with respect to the application(s)
they were intended for”. In the case of the model we hope to create, this involves
human listening. One such subjective study was carried out in the creation of a Jazz
transformer, where listeners were asked to blindly rate the model’s output against
real data in a five-point Likert scale on four aspects (Wu and Yang 2020) :

• Overall Quality (does it sound good?)

• Impression (Can you remember a certain part of the melody?)

• Structure (does it sound musically coherent with recurring ideas etc.)

• Richness (is it diverse and interesting?)

Unfortunately, any research involving human subjects must be reviewed by an Insti-
tutional Review Board (IRB), which could not be completed for this project.

Given the above limitations, I evaluate trained models to on the standard evaluation
metrics criteria supplemented by additional metrics inspired by Wu et.al for a set of
examples selected from our test set to generate full-length responses.

• Negative Logarithmic Loss (NLL) — This is a standard loss metric used
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to measure the performance of probabilistic models, including those in natural
language processing, machine learning, and other fields. In Tensorflow, we can
compute this by using the sparse_categorical_crossentropy loss metric over
our entire test set.

• Pitch Class Histogram Entropy — Proposed by Wu et.al., this metric gains
insight into the model’s ability to use different pitches. I collect the notes that
appear over sequential output and construct a 12-dimensional pitch class his-
togram, h, normalized by the total note count such that

∑
i hi = 1. If the piece

has clear tonality and learns well, specific pitch classes should dominate the
pitch histogram (e.g., the tonic and the dominant), resulting in a low entropy
that is close to the input. If the tonality is unstable, the usage of pitch classes
may be scattered, giving rise to a high entropy. On the other end of the spec-
trum, if our entropy is suspiciously low, the model may have learned even less
and may be simply repeating the same note over and over. The entropy value
is calculated as:

Entropy(h) = −
11∑
i=0

hi ∗ log2(hi)

(1.7)

• Time-Shift and Velocity Histogram Entropy — I propose a similar metric
for TIME-SHIFT events, grouping them by the time-shift event vocabulary of
size 100. I assume that if the entropy of the output is high, the model has an
unstable perception of time. If the entropy of the model is low, it likely uses
specific time-shift events much more often than others, which might be indica-
tive of the model learning some kind of specified rhythm. The same is applied
to velocity events, which are a measure of coherent musical expressiveness.

• Subjective Listening and Visualized Piano rolls/Chroma — Finally, I
evaluate the model output with examples generated from our test set, generating
piano rolls and pitch chroma vectors to be visually examined.

7.2 Custom Transformer

While the implementation of the Custom Transformer was syntactically sound, early
attempts to train our Custom Transformer revealed that it was not learning effec-
tively when compared to our model built with pre-built Keras layers, either due to
implementation errors or uncaught bugs. The figure below includes sample output
from one of the earliest trained models, trained using the RandomCropDataset.

Examining Figure 7.1 above, we can inspect the generated piano rolls and see that
the model struggles to learn the MIDI encoding structure and instead plays notes
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Figure 7.1: Examples Piano Rolls from training the Custom Transformer: (Top)
The input MIDI sequence. (Middle) The actual MIDI sequence in its entirety

(Bottom) Input sequence (till ∼ 700ms) followed by the output generated by the
Transformer to the front

Figure 7.2: Pitch Class histogram of Note-on events from piano rolls, annotated
with Entropy values and the input sequence removed from the model output

seemingly randomly, with many notes held for extremely long periods and the sense
of time lost completely. Interestingly, Figure 7.2 suggests that the model does learn
relevant pitch-based relationships given that the segment is in the tonality of C. While
the actual MIDI files feature a prominent tonic-dominant relationship with C and G
popping up most frequently, the Custom Transformer has seemingly learned the tonic-

53



subdominant relationship, with C and F popping up very frequently. Furthermore, it
avoids the Tritone1 relationship which is between C and F#.

Inspecting Figure 7.3, we can see a much higher entropy value and a much larger scat-
tering across the time-shift even histogram bins, suggesting that the model struggled
to learn rhythmic relationships in the encoded sequence.

Figure 7.3: Time-shift event histogram from piano rolls, annotated with Entropy
values and the input sequence removed from the model output

The failure of the Custom Transformer was further corroborated by its inability to
overfit to much smaller test sequences. The table below shows the results of our
Custom transformer against the Keras Transformer trained with the same hyper-
parameters for 50 epochs, on the Major scale sequences generated by our TestDataset.
It is important to note that in this experiment, the test set was randomly sampled
from the rolling windows extracted from the generated scalic sequences. As demon-
strated in Figure 6.6 from the previous chapter, nearby sequences have a large degree
of overlap, implying that our Custom Transformer performs poorly even when it has
seen a large amount of the test set. This hints at an uncaught implementation error.

This revelation was especially disappointing as I had spent a large amount of time
developing the Custom Transformer to eventually implement the relative attention
mechanism described in Huang et.al, which is not yet supported in Keras. As a
result, all subsequent evaluation is conducted on the Transformer implementation
using Keras NLP layers. (See subsection 9.2.3)

1A Tritone is a musical interval that spans three whole tones or six semitones. It has a unique,
dissonant sound, which historically led to its nickname “diabolus in musica” or “the devil in music
in the context of early Western Classical Music
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Model Custom Transformer Keras Transformer

Loss Values 4.344 0.045

Accuracy Values 0.081 0.992

Table 7.1: Loss/Accuracy values for both models when trained on test integer
sequences

7.3 Keras Transformer

7.3.1 Experimenting with Hyper-parameters

layers d model h dropout size(106) ValidationNLL TestNLL

Base 2 384 8 0.1 32.4 2.319 2.263

a) 1
...

...
... 16.6 2.575 2.504

b)
... 256

...
... 15.3 2.290 2.233

c)
...

... 4
... 18.2 2.381 2.306

d)
...

...
... 0.2 32.4 2.791 2.677

Table 7.2: Results from hyper-parameter tuning experiments with the
RandomCropDataset for the base model and variants a) - d). All model parameters

are the same as the Base model, except where explicitly indicated

During training, the RandomCropDataset was far more successful than our SequenceDataset
implementation, which frequently caused training to abruptly halt due to errors when
shifting FileData objects. Therefore I use this dataset implementation to experiment
with different hyperparameter values to optimize the model. I successfully managed
to train multiple model variants with slightly altered hyper-parameter values, err-ing
on the side of a smaller model. I find that a smaller hidden size than the one used
in Huang et.al. works slightly better in our implementation while halving the size of
the model for much faster training and inference. Fewer encoder/decoder stacks, in-
creasing dropout, and using fewer attention heads seem to worsen our log loss values.
It is also important to note that all models were terminated via early stopping, and
only ran for 38k - 42k steps of training.

However, the actual generated output from these models is extremely poor, in some
ways even poorer than those generated by the Custom Transformer, a testament to
the sentiment provided by Oore et.al. that traditional loss metrics may be far from
good indicators of model performance.
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Figure 7.4: Piano Rolls generated from model b) trained with the
RandomdCropDataset. The model most just plays a C major chord very quickly

7.4 Final Attempts

Given these findings I then attempted to train a separate model with the optimal
hyperparameters from our RandomCropDataset experiments, but while using the
SequenceDataset implementation. Unfortunately, the training time for a full epoch
to cover the entire training set was far too long, coming in at about ∼317 hours, even
with training distributed across 2 GPUs. Even when I tried reducing the training
time by eliminating duplicate works from the training set based on earlier analysis,
our training time per epoch was still ∼196 hours per epoch, which was far too long to
complete multiple rounds of training. Rudimentary analysis of the GPU performance
of the SequenceDataset with the NVIDIA tool nvprof, revealed that the GPU was
suffering from low shared memory. Shared memory on a GPU acts as a user-managed
cache and allows threads within the same block to share data efficiently. It’s much
faster than accessing main GPU memory, but it’s also much smaller. In our case,
a low amount of shared memory implies that the demands of shared memory from
the running processes exceed its availability, which is common in complex machine
learning models, where many threads are working with a large amount of data that
they need to share quickly.

Instead, I manage to train a much smaller model with an in-memory dataset using
only 80/20 files, in a training/validation split which yields interesting results. While
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the Log-Loss metric on the test set is significantly higher for this model, coming in
at 6.574, I find that the model is able to generate output that resembles some form
of expressive generation.

Figure 7.5: Examples Piano Rolls from training model trained with an in-memory
dataset : (Top) The actual input MIDI sequence (Middle) The actual MIDI

sequence in its entirety (Bottom) The output generated by the Transformer. The
input sequence is the same is Figure 7.4

The response generated from this last model actually captures elements valid elements
of expressive performance. It is able to capture rhythmic phrases and interesting pitch
relationships. Unfortunately, by inspecting the individual pitch class histogram bins,
I find that it is still quite poor in terms of being able to adequately respond to the
pitch context provided in the input. This is unsurprising, given that this model is
trained on a mere fraction of the dataset and with no data augmentation. It is likely
overexposed to tonalities present from the randomly sampled training set.

The Velocity and Time-Shift Histograms (Figures 7.7,7.8) however are much more
promising, with lower entropy values and a much tighter distribution compared to
previous results, indicating that the model has learned some semblance of rhythm, as
well as expressive performance.

MIDI samples from this last model are available here, and the code used to construct
piano rolls/histograms can be found in chapter 9 under section 9.3
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Figure 7.6: Pitch Class histogram of Note-on events from the model trained with an
in-memory dataset

Figure 7.7: Time-Shift Event histogram from model trained with an in-memory
dataset

7.5 Conclusions

I successfully implemented a Transformer model that can create expressive perfor-
mances, operating on a mere fraction of the dataset. However, the Transformer is
still limited and is nowhere close in performance to examples generated by Huang
et.al and the Google team. I find that the original in-memory dataset implementa-
tion works best given our resources, and postulate that given more time, and resources
and by including data augmentation, the model is likely to perform much better.
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Figure 7.8: Velocity Event histogram from model trained with an in-memory dataset
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Chapter 8

Reflections

To round out the work described in this paper, I discuss implementation changes that
might make our model more successful, as well as future directions for the project as
it currently stands.

8.1 Avenues for different implementations

• A Different Dataset — While the MAESTRO dataset is especially fantastic
for the general task of expressive music generation, it is less incredible when
we consider the overarching goal of this project: to create a model that can
improvise alongside a human performer.To this end, the MAESTRO dataset
is severely limited because it is composed only of classical music, the genre of
choice for improvisation until about the late 17th century. Instead, a dataset of
expressive, MIDI-aligned jazz performances would be far better suited to this
task, especially MIDI with multi-instrument tracks that would allow a model to
learn how to accompany another player, rather than just generate an improvised
response. Some examples of Jazz datasets include the WJazzD dataset (Wu and
Yang 2020) and the PiJAMA dataset (Edwards, Dixon, and Benetos 2023), but
both of these include solo performances only, and do not have the same level
of granularity for expressive performance generation at the same level as the
MAESTRO dataset

• A Different MIDI representation — While the encoding proposed by Oore
et.al. holds promising results, it also comes with clear downsides, resulting in
very long event sequences that can explode a Transformer’s memory require-
ments. Furthermore, a note’s attributes may be very far apart in a sequence
(eg. note-on and note-off) and such long-distance relationships are difficult to
model, especially with fixed attention sizes. To deal with this, the Google Brain
team later proposed a new representation, NoteTuple, that groups a note’s at-
tributes into one event, resulting in a model that requires fewer attributes and
has faster generation. This involves swapping out the model’s output softmax
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with a Neural Auto-regressive Distribution Estimation Model, or NADE, to
predict a note’s attributes (Hawthorne 2018)

• A Different ML framework — While the choice to use Tensorflow seemed
clear-cut when I started the senior project, I would now choose PyTorch if I
were allowed to re-implement the project. This is for many reasons, but mostly
around Tensorflow’s ability to communicate with a machine’s CUDA drivers
and use GPUs for training. Many days and hours were spent uninstalling and
reinstalling CUDA drivers and CUDNN packages, digging into Tensorflow and
Nvidia documentation, and changing low-level parameters on the Linux ma-
chine I was using, only for the Tensorflow library to ignore the GPUs connected
to the computer. By contrast, I managed to get GPU support up and running
in PyTorch almost immediately. I also realized after the fact that being able
to export the model to a Javascript environment was not unique to Tensor-
flow; PyTorch models can also be exported in an ONNX format and run in a
Javascript environment using ONNX.js.

• A Different Model architecture—While Transformer models have been the
rage in machine learning, the baseline Transformer model that we use is rather
outdated. More complex variants of the Transformer-like the Switch Trans-
former (Fedus, Zoph, and Shazeer 2021), Transformer-XL(Dai et al. 2019),
and the Perceiver(Jaegle et al. 2021) have made massive strides in improving
the training time and inference time of Transformer based architectures. In par-
ticular, the Perceiver architecture has been used to great effect by researchers
from the Magenta project to improve on the Long Context Music Transformer
created by Huang et.al. Conversely, it may be the case that Transformer-based
architectures are simply too large to use in a real-time setting when not pow-
ered by production-grade GPUs and servers. LSTM models like those developed
by Oore et.al. or even Hidden Markov Models might be better suited to the
real-time performance domain.

8.2 Future Work

• Sharded Dataset — One dataset implementation that I had yet to implement
was the sharded dataset, with generated sequences stored across multiple dif-
ferent files. TensorFlow has built-in support for sharding datasets (especially
in large production environments). This would be a very interesting opportu-
nity to pursue especially given the surprisingly robust output from our model
trained with the in-memory dataset on far fewer files overall.

• Pretraining — Our model can stand to gain from pretraining practices that
are already extremely common within the NLP domain. Rather than train new
word embeddings, most NLP models today make use of embeddings that have
already been trained by very large encoder models such as RoBERTa which are
great at learning embedded input representations of sequential data. Similarly,
we can use a BERT-based model to pretrain useful MIDI embeddings which can
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then be transferred to our Transformer model. MIDI2vec (Alam et al. 2022), is
one such study that is working to create reliable embedded representations of
symbolic MIDI data.

• The Performance Interface—One very obvious part of the project that went
unimplemented due to lack of time was connecting the Max/MSP performance
interface to the model. This would require further testing and development of
the performance interface, especially if we hope to implement Polyphonic Pitch
Detection. One very interesting tool that may be of interest is Basic-Pitch,
developed by the Spotify Audio Intelligence Lab (Bittner et al. 2022). This is a
lightweight model that does exceedingly well at instrument-agnostic multi-pitch
estimation, converting raw audio fragments directly to the MIDI domain.

• Decoder-only architectures and Beam Sampling — Another avenue of
experimentation is exploring Decoder-only architectures, similar to ChatGPT.
Making use of pre-trained weights from an Encoder model like RoBERTa, a
Decoder-only model could be small enough to enable real-time generation due
to constrained model size. Furthermore, this would enable to model to be able
to generate output in the absence of input, similar to Voyager. We can also
further improve the model output without adding to its size by using Beam
search1 to sample from the model.

1Beam search is a heuristic search algorithm that is used to find the most likely sequence of
decisions in such generative models. Unlike the simple greedy search algorithm implemented in our
project which only keeps the single best option at each step, beam search keeps track of multiple
alternatives, which is specified by the ”beam width.”
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Chapter 9

Appendix

9.1 Detailed Directory Structure

(Root)

PyModel

Analysis

Data

raw

processed

Dataset

KerasTransformer

CustomTransformer

midi-neural-preprocessor

models
...

samples
...

utils

train.py (Custom training loop)

train-v2.py (Training loop with Model.fit())
...

TSImprovisor

main.ts

improviser.ts

utils.ts

interface.maxpat
...
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9.2 PyModel

9.2.1 Dataset Implementations

BaseDataset.py

1 import os

2 import json

3 import random

4 import numpy as np

5 import pickle

6 from CustomTransformer.params import midi_test_params_v2, Params

7 import json

8 from time import time

9

10 class BaseDataset():

11 def __init__(self, p:Params,

12 path="./data/processed",

13 data_format="pickle",

14 min_duration=None,

15 min_event_length=None,

16 logger = None):

17

18 self.logger = logger

19 self.data_format = data_format

20 self.maestroJSON = self.get_maestroJSON()

21 self.fileDict =

self.get_encoded_files(path,min_duration,min_event_length)↪→

22 self.params = p

23

24 random.seed(self.params.seed)

25

26

27 def get_maestroJSON(self, path="./data/raw/maestro-v3.0.0.json"):

28 with open(path) as f:

29 data = json.load(f)

30 return data

31

32 def get_encoded_files(self,path,min_duration,min_event_length):

33 if not os.path.exists(path):

34 os.mkdir(path)

35

36 #strip the year from the midi filename path, add .pickle to the end

and add to base path↪→

37 lambda_func = lambda x: os.path.join(path, x.split('/')[-1] +'.' +

'pickle')↪→

38

39 #From the json files, get the indexed midi filenames

40 midi_filenames_from_json = { int(key) : lambda_func(value) for key,

value in self.maestroJSON['midi_filename'].items()}↪→

41

42 #Check for duplicate midi filenames ensure no duplicates found
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43 dup_dict = {}

44 for key, value in midi_filenames_from_json.items():

45 dup_dict.setdefault(value, set()).add(key)

46 result = [key for key, values in dup_dict.items() if len(values) >

1]↪→

47 assert len(result) == 0, f"Duplicate midi filenames found: {result}"

48

49 #Remove midi files that are too short in length by duration

50 if min_duration is not None:

51 i = 0

52 while i < len(midi_filenames_from_json):

53 duration = self.maestroJSON['duration'][f'{i}']

54 if duration < min_duration:

55 self.log_or_print(f"Removed file

{midi_filenames_from_json[i]}, Duration of is

{duration}, which is less than {min_duration}")

↪→

↪→

56 del midi_filenames_from_json[i]

57 i+=1

58

59 self.log_or_print(f"Number of midi files remaining after

removing files less than {min_duration} seconds:

{len(midi_filenames_from_json)}")

↪→

↪→

60

61 #Remove midi files that are too short in length by number of events

62 if min_event_length is not None:

63 i = 0

64 while i < len(midi_filenames_from_json):

65 with open(midi_filenames_from_json[i], 'rb') as f:

66 if self.data_format == "pickle":

67 data = pickle.load(f)

68 else:

69 data = np.load(f,allow_pickle=True)

70 if len(data) < min_event_length:

71 self.log_or_print(f"Removed file

{midi_filenames_from_json[i]}, Length of is

{len(data)}, which is less than {min_event_length}")

↪→

↪→

72 del midi_filenames_from_json[i]

73 i+=1

74 self.log_or_print(f"Number of midi files remaining after

removing files less than {min_event_length} events:

{len(midi_filenames_from_json)}")

↪→

↪→

75

76 return midi_filenames_from_json

77

78 def log_or_print(self,log_str,isWarning=False):

79 if self.logger:

80 if isWarning:

81 self.logger.warning(log_str)

82 else:

83 self.logger.info(log_str)

84 else:

85 print(log_str)
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86

87 def format_dataset(self,x, y):

88 return (

89 {

90 "encoder_inputs": x,

91 "decoder_inputs": y[:, :-1],

92 },

93 y[:, 1:],

94 )

95

96 if __name__ == "__main__":

97

98 #Testing creating base dataset - testing speed of np files vs lists

99 p = Params(midi_test_params_v2)

100

101 start = time()

102 dataset = BaseDataset(p, data_format='npy',

min_event_length=p.encoder_seq_len*2)↪→

103 end = time()

104 print(f"Time taken to create dataset with npy format: {end-start}")

105

106 start = time()

107 dataset = BaseDataset(p, data_format='pickle',

min_event_length=p.encoder_seq_len*2)↪→

108 end = time()

109 print(f"Time taken to create dataset with pickle format: {end-start}")

TestDataset.py

1 import tensorflow as tf

2 import random

3 import pickle

4 import numpy as np

5 from .BaseDataset import BaseDataset

6 from CustomTransformer.params import Params, midi_test_params_v2

7 import resource

8 import sys

9 import time

10 import os

11

12 MAJOR_SCALE = [24, 26, 28, 29, 31, 33, 35]

13 MINOR_SCALE = [24, 26, 27, 29, 31, 32, 34]

14 MAJOR_ARPEGGIO_7 = [24, 28, 31, 35]

15 MINOR_ARPEGGIO_7 = [24, 27, 31, 34]

16 MAX_VAL = 127

17

18

19 def memory_limit(percent):

20 #Limit max memory usage to half

21 soft, hard = resource.getrlimit(resource.RLIMIT_AS)

22 # Convert KiB to bytes, and divide in two to half
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23 resource.setrlimit(resource.RLIMIT_AS, (int(get_memory() * 1024 *

percent), hard))↪→

24

25 def get_memory():

26 with open('/proc/meminfo', 'r') as mem:

27 free_memory = 0

28 for i in mem:

29 sline = i.split()

30 if str(sline[0]) in ('MemFree:', 'Buffers:', 'Cached:'):

31 free_memory += int(sline[1])

32 return free_memory # KiB

33

34 class TestDataset(BaseDataset):

35 def __init__(self,

36 p:Params,

37 data_format="pickle",

38 min_duration=None,

39 min_event_length=None,

40 logger=None,

41 num_files_by_split=None):

42

43 super().__init__(

44 p=p,

45 data_format=data_format,

46 min_duration=min_duration,

47 min_event_length=min_event_length,

48 logger=logger)

49

50 self.data = {

51 'train':[],

52 'validation':[],

53 'test':[]

54 }

55 self.retrieve_files_by_maestro_split()

56

57 if num_files_by_split != None:

58 self.data['train'] =

self.data['train'][0:num_files_by_split['train']]↪→

59 self.data['validation'] =

self.data['validation'][0:num_files_by_split['validation']]↪→

60 self.data['test'] =

self.data['test'][0:num_files_by_split['test']]↪→

61

62 def constructScales(self,scale):

63 num_iterations = (MAX_VAL - scale[-1]) // 12

64 single_scale = []

65

66 for i in range(num_iterations):

67 for note in scale:

68 single_scale.append(note + i*12)

69
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70 all_scales = [[note + i for note in single_scale] for i in

range(12)]↪→

71 return single_scale, all_scales

72

73 def mockTfDataset_from_scale(self, scale, seq_len, stride=1):

74 single_scale, all_scales = self.constructScales(scale)

75 all_sequences = self.rolling_window(all_scales, seq_len*2, stride)

76 random.shuffle(all_sequences)

77 x, y = [], []

78 for seq in all_sequences:

79 x.append(seq[:seq_len])

80 y.append([1] + seq[seq_len:] + [2])

81

82 split_1 = int(0.8*len(x))

83 split_2 = int(0.9*len(x))

84

85 train_x , val_x, test_x = x[0:split_1], x[split_1:split_2],

x[split_2:]↪→

86 train_y , val_y, test_y = y[0:split_1], y[split_1:split_2],

y[split_2:]↪→

87

88 train = tf.data.Dataset.from_tensor_slices((train_x, train_y))

89 val = tf.data.Dataset.from_tensor_slices((val_x, val_y))

90 test = tf.data.Dataset.from_tensor_slices((test_x, test_y))

91 return train,val,test

92

93 def rolling_window(self,sequence, seq_len, stride=1):

94 ls = []

95 for i in range(0,len(sequence) - seq_len + 1,stride):

96 ls.append(sequence[i: i + seq_len])

97 return ls

98

99 def get_all_sequences_by_split(self,split, seq_len,stride=1):

100 print("Getting all sequences for split:{}".format(split))

101 all_sequences = []

102 counter = 0

103 for path in self.data[split]:

104 with open(path, 'rb') as f:

105 event_sequence = pickle.load(f)

106 sequences = self.rolling_window(event_sequence, seq_len * 2,

stride)↪→

107 all_sequences.extend(sequences)

108 counter+=1

109 print("Finished processing {} files".format(counter))

110

111 return all_sequences

112

113 def rolling_window_np(self,seq,seq_len, stride=1):

114 # # Convert each list to a NumPy array of type uint16

115 # ls = []

116 # #if sequence is a list and not a numpy array , convert to numpy

array↪→
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117 # if type(seq) == list:

118 # seq = np.array(seq, dtype=np.uint16)

119

120 # for i in range(0,len(seq) - seq_len + 1,stride):

121 # ls.append(seq[i: i + seq_len])

122 # return np.array(ls)

123

124 # Ensure the sequence is a numpy array

125 if type(seq) == list:

126 seq = np.array(seq, dtype=np.uint16)

127

128 # Compute the shape of the resulting 2D array after applying the

rolling window↪→

129 shape = seq.shape[:-1] + (seq.shape[-1] - seq_len + 1, seq_len)

130

131 # Compute the strides to be used for creating the rolling window

view↪→

132 strides = seq.strides + (seq.strides[-1],)

133

134 # Create the rolling window view using as_strided

135 return np.lib.stride_tricks.as_strided(seq, shape=shape,

strides=strides)↪→

136

137 def get_all_sequences_by_split_np(self,split, seq_len,stride=1):

138 print("Getting all sequences for split:{}".format(split))

139 all_sequences = []

140 counter = 0

141 for path in self.data[split]:

142 with open(path, 'rb') as f:

143 event_sequence = np.load(f,allow_pickle=True)

144 sequences = self.rolling_window_np(event_sequence, seq_len * 2,

stride)↪→

145 all_sequences.append(sequences)

146 counter+=1

147 print("Finished processing {} files".format(counter))

148

149 # Concatenate all sequences and shuffle

150 all_sequences_np = np.concatenate(all_sequences, axis=0)

151 return all_sequences_np

152

153 def mockTfDataset_from_encoded_midi_np(self, stride=1):

154 datasets = {}

155

156 for key in self.data.keys():

157 sequences = self.get_all_sequences_by_split_np(key,

self.params.encoder_seq_len, stride)↪→

158 x = sequences[:, :self.params.encoder_seq_len]

159 y = np.pad(sequences[:, self.params.encoder_seq_len:],

160 ((0, 0), (1, 1)),

161 mode='constant',

162 constant_values=(1, 2))

163
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164 datasets[key] = tf.data.Dataset.from_tensor_slices((x, y))

165

166 return datasets['train'], datasets['validation'], datasets['test']

167

168 def mockTfDataset_from_encoded_midi_pickle(self, stride=1):

169 datasets = {}

170

171 for key in self.data.keys():

172 sequences = self.get_all_sequences_by_split(key,

self.params.encoder_seq_len, stride)↪→

173 x = [seq[:self.params.encoder_seq_len] for seq in sequences]

174 y = [[1] + seq[self.params.encoder_seq_len:] + [2] for seq in

sequences]↪→

175 datasets[key] = tf.data.Dataset.from_tensor_slices((x, y))

176

177 return datasets['train'], datasets['validation'], datasets['test']

178

179 def mockTfDataset_from_encoded_midi(self, stride=1):

180 if self.data_format == 'pickle':

181 return self.mockTfDataset_from_encoded_midi_pickle(stride)

182 elif self.data_format == 'npy':

183 return self.mockTfDataset_from_encoded_midi_np(stride)

184 else:

185 raise Exception("Invalid data format")

186

187 def mockTfDataset_from_encoded_midi_path(self, path ,stride=1):

188 with open(path, 'rb') as f:

189 event_sequence = np.load(f,allow_pickle=True)

190 sequences = self.rolling_window_np(event_sequence,

self.params.encoder_seq_len * 2, stride)↪→

191 x = [seq[:self.params.encoder_seq_len] for seq in sequences]

192 y = [[1] + seq[self.params.encoder_seq_len:] + [2] for seq in

sequences]↪→

193 dataset = tf.data.Dataset.from_tensor_slices((x, y))

194

195 return dataset

196

197 def retrieve_files_by_maestro_split(self):

198 for i in self.fileDict.keys():

199 if self.maestroJSON['split'][f'{i}'] == 'train':

200 self.data['train'].append(self.fileDict[i])

201 elif self.maestroJSON['split'][f'{i}'] == 'validation':

202 self.data['validation'].append(self.fileDict[i])

203 elif self.maestroJSON['split'][f'{i}'] == 'test':

204 self.data['test'].append(self.fileDict[i])

205 else:

206 raise Exception(f"Invalid mode found:

{self.maestroJSON['split'][f'{i}']}")↪→

207

208 def __repr__(self) -> str:

209 return "<TestDataset has {} files for training, {} files for

validation, {} files for testing>".format(↪→
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210 len(self.data['train']),

211 len(self.data['validation']),

212 len(self.data['test']))

213

214

215 if __name__ == '__main__':

216 p = Params(midi_test_params_v2)

217 os.environ["CUDA_VISIBLE_DEVICES"]="1"

218

219 # ===========Test creating scales for easier problem ===========

220 # dataset = TestDataset(p, data_format='npy',

min_event_length=p.encoder_seq_len*2)↪→

221 # train,val,test, = dataset.mockTfDataset_from_scale(MAJOR_SCALE, 12, 2)

222

223 # ============ Test rolling window efficiency (numpy vs list)

===========↪→

224 #Compare time between rolling window and rolling window npwith encoded

midi data↪→

225

226 dataset = TestDataset(p, data_format='npy',

min_event_length=p.encoder_seq_len*2)↪→

227 with open('...', 'rb') as f:

228 event_sequence = pickle.load(f)

229

230 start = time.time()

231 all_sequences = dataset.rolling_window(event_sequence, 1000,1)

232 end = time.time()

233 print("Time taken for rolling window with encoded midi

data:{}".format(end - start))↪→

234

235 start = time.time()

236 all_sequences_np = dataset.rolling_window_np(event_sequence, 1000,1)

237 end = time.time()

238 print("Time taken for rolling window np with encoded midi

data:{}".format(end - start))↪→

239

240 #check equality across all sequences

241 for i in range(len(all_sequences)):

242 # print("Sequence {} is equal to

{}".format(all_sequences[i],all_sequences_np[i]))↪→

243 assert np.array_equal(all_sequences[i],all_sequences_np[i])

244

245 # ==================Test tf dataset==================

246 start = time.time()

247 dataset = TestDataset(p, data_format='pickle',

min_event_length=p.encoder_seq_len*2,

num_files_by_split={'train':2,'validation':1,'test':1})

↪→

↪→

248

249 #limit num files considered

250 print(dataset)

251 train,val,test = dataset.mockTfDataset_from_encoded_midi()

252 end = time.time()
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253 print("Time taken for creating tf dataset:{}".format(end - start))

254

255 start = time.time()

256 dataset = TestDataset(p, data_format='npy',

min_event_length=p.encoder_seq_len*2,

num_files_by_split={'train':2,'validation':1,'test':1})

↪→

↪→

257

258 print(dataset)

259 train_np,val_np,test_np = dataset.mockTfDataset_from_encoded_midi()

260 end = time.time()

261 print("Time taken for creating tf dataset:{}".format(end - start))

262

263 # train = train.shuffle(len(train))

264 train = train.batch(16, drop_remainder=True)

265 train = train.map(dataset.format_dataset)

266

267 # val = val.shuffle(len(val))

268 val = val.batch(16, drop_remainder=True)

269 val = val.map(dataset.format_dataset)

270

271 # train_np = train_np.shuffle(len(train_np))

272 train_np = train_np.batch(16, drop_remainder=True)

273 train_np = train_np.map(dataset.format_dataset)

274

275 # val_np = val_np.shuffle(len(val_np))

276 val_np = val_np.batch(16, drop_remainder=True)

277 val_np = val_np.map(dataset.format_dataset)

278

279 for x , x_np in zip(train.take(len(train)),

train_np.take(len(train_np))):↪→

280 assert

np.array_equal(x[0]['encoder_inputs'],x_np[0]['encoder_inputs'])↪→

281 assert

np.array_equal(x[0]['decoder_inputs'],x_np[0]['decoder_inputs'])↪→

282 assert np.array_equal(x[1],x_np[1])

283

284

285 #========Test if we can construct fully in memory dataset with np using

stride of 2================↪→

286 # memory_limit(0.8)

287 # strategy = tf.distribute.MirroredStrategy()

288

289 # with strategy.scope():

290 # try:

291 # dataset = TestDataset(p, data_format='npy',

min_event_length=p.encoder_seq_len*2,

num_files_by_split={'train':120,'validation':15,'test':15})

↪→

↪→

292

293 # train_np,val_np,test_np =

dataset.mockTfDataset_from_encoded_midi_np(2)↪→

294 # except MemoryError:

295 # print("Memory error raised")
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296 # print("Memory usage:{}".format(get_memory()))

297 # sys.exit(1)

RandomDataset.py

1 from .BaseDataset import BaseDataset

2 from CustomTransformer.params import Params, midi_test_params_v2

3 import tensorflow as tf

4 import numpy as np

5 import random

6 import pickle

7

8 class RandomCropDataset(BaseDataset):

9 def __init__(self, p: Params, mode, min_duration=None,

min_event_length=None, num_files_to_use=None, logger=None):↪→

10 super().__init__(p=p, min_duration=min_duration,

min_event_length=min_event_length, logger=logger)↪→

11 self.data = []

12 self.mode = mode

13 self.num_files_to_use = num_files_to_use

14 self.retrieve_files_by_maestro_split()

15 self.stats = {}

16

17 random.shuffle(self.data)

18 if num_files_to_use is not None:

19 self.data = self.data[:num_files_to_use]

20

21 def retrieve_files_by_maestro_split(self):

22 if self.mode not in ["train", "validation", "test"]:

23 raise Exception(f"Invalid mode passed: {self.mode}")

24

25 for i in self.fileDict.keys():

26 if self.maestroJSON['split'][f'{i}'] == self.mode:

27 self.data.append(self.fileDict[i])

28

29 def make_gen_callable(self,_gen):

30 def gen():

31 for x,y in _gen:

32 yield x,y

33 return gen

34

35 def get_batch(self,length, collect_stats=False):

36 batch_data = []

37 for _ in range(self.params.batch_size):

38 file_data = random.choice(self.data)

39 sequence = self.extract_random_crop(file_data,length,

collect_stats=collect_stats)↪→

40 batch_data.append(sequence)

41 return np.array(batch_data,int)

42

43 def batch_generator(self,length,collect_stats=False):

44 return self.make_gen_callable(
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45 self._batch_generator(length,collect_stats=collect_stats)

46 )

47

48 def _batch_generator(self,length, num_tokens_to_predict=None,

collect_stats=False):↪→

49 if num_tokens_to_predict is None:

50 num_tokens_to_predict = length

51 while True:

52 data = self.get_batch(length+num_tokens_to_predict,

collect_stats=collect_stats)↪→

53

54 x = data[:, 0:length]

55 y = data[:, length:length+num_tokens_to_predict]

56

57 #attach start and end tokens to each y sequence

58 y = np.array([[self.params.token_sos] + list(seq) +

[self.params.token_eos] for seq in y])↪→

59 yield self.format_dataset(x,y)

60

61 def extract_random_crop(self, file_data, length, collect_stats=False):

62 with open(file_data, 'rb') as f:

63 data = pickle.load(f)

64

65 start_index = random.randint(0, len(data))

66 end_index = start_index + length

67

68 # Handle the padding scenario

69 #If the end index is greater than the length of the file and the

pad length is less than half the window size, pad the sequence

with 0s

↪→

↪→

70 #Otherwise, recursively find a new random crop

71 if end_index > len(data):

72 pad_length = end_index - len(data)

73 if pad_length <= length / 2:

74 sequence = np.pad(data[start_index:], (0, pad_length),

'constant', constant_values=0)↪→

75 else:

76 return self.extract_random_crop(file_data,length,

collect_stats) # Recursively find a new random crop↪→

77 else:

78 sequence = data[start_index:end_index]

79

80 if collect_stats:

81 if file_data not in self.stats:

82

83 self.stats[file_data] = [len(data),(start_index, end_index)]

84 else:

85 self.stats[file_data] =

self.stats[file_data].append((start_index, end_index))↪→

86

87 return sequence

88
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89 def __repr__(self):

90 return "<RandomCropDataset_{} has {} files>".format(self.mode,

len(self.data))↪→

91

92 if __name__ == "__main__":

93 p = Params(midi_test_params_v2)

94 p.batch_size =2

95

96 train_dataset = RandomCropDataset(p, 'train',

min_event_length=p.encoder_seq_len*2,logger=None)↪→

97

98 train = train_dataset._batch_generator(10)

99 for _ in range(5):

100 example = next(train)

101 print(example)

102 print(example[0]["encoder_inputs"].shape)

103 print(example[0]["decoder_inputs"].shape)

104 print(example[1].shape)

105

106 train = train_dataset.batch_generator(10)

107

108 #convert to tf.data.Dataset

109 train = tf.data.Dataset.from_generator(

110 train,

111 output_signature=(

112 {

113 'encoder_inputs':tf.TensorSpec(shape=(p.batch_size,10),

dtype=tf.int32),↪→

114 'decoder_inputs':tf.TensorSpec(shape=(p.batch_size,11),

dtype=tf.int32)↪→

115 },

116 tf.TensorSpec(shape=(p.batch_size,11), dtype=tf.int32))

117

118 )

119 for ex in train.take(5):

120 print(ex)

121

122 #=======================

123 #Test to check stats

124 #=======================

125 train = train_dataset._batch_generator(1000,collect_stats=True)

126 for _ in range(1000):

127 example = next(train)

128

129 for k,v in train_dataset.stats.items():

130 if v == None:

131 print(k)
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SequenceDataset.py

1 from .BaseDataset import BaseDataset

2 import tensorflow as tf

3 from CustomTransformer.params import Params, midi_test_params_v2

4 import numpy as np

5 import random

6 import pickle

7 import time

8

9 class FileData():

10 def __init__(self,file_path):

11 self.path = file_path

12 self.current_note_index = 0

13

14 class SequenceDataset(BaseDataset,tf.keras.utils.Sequence):

15 def __init__(self, p:Params, mode, min_duration=None,

16 min_event_length=None,num_files_to_use=None, logger=None):

17 super().__init__(

18 p=p,

19 min_duration=min_duration,

20 min_event_length=min_event_length,

21 logger=logger)

22

23 self.data = []

24 self.complete_files = []

25 self.num_files_to_use = num_files_to_use

26 self.mode = modew

27 self.retrieve_files_by_maestro_split()

28 self.convert_all_to_FileData()

29

30 random.shuffle(self.data)

31

32 if num_files_to_use is not None:

33 self.data = self.data[0:num_files_to_use]

34

35 def __len__(self):

36 return self.calculate_num_batches(self.params.encoder_seq_len, 1)

37

38 def retrieve_files_by_maestro_split(self):

39 if self.mode not in ["train", "validation", "test"]:

40 raise Exception(f"Invalid mode passed: {self.mode}")

41

42 for i in self.fileDict.keys():

43 if self.maestroJSON['split'][f'{i}'] == self.mode:

44 self.data.append(self.fileDict[i])

45

46 def __getitem__(self, idx):

47 x,y = self.seq2seq_batch(self.params.batch_size,

self.params.encoder_seq_len)↪→

48 return (

49 {

50 "encoder_inputs": x,

76



51 "decoder_inputs": y[:, :-1],

52 },

53 y[:, 1:],

54 )

55

56 def convert_all_to_FileData(self):

57 self.log_or_print("Converting all files to FileData objects")

58 for i in range(len(self.data)):

59 self.data[i] = FileData(self.data[i])

60

61 def get_batch(self, batch_size, length):

62 data = []

63

64 #select k files from the list of files

65 #allows us to grab a batch from the same file multiple times

66 for _ in range(batch_size):

67 if len(self.data)==0:

68 self.reset()

69 file = (random.choice(self.data))

70 data.append(self.extract_sequence_v2(file, length))

71

72 return np.array(data,int)

73

74 #extract_sequence, grabs a sequence of size 'length' from file, starting

at the start index 0. Then, shifts the sequence down by 1↪→

75 def extract_sequence_v2(self, file_data, length):

76 #Grab a random sample of length len from a while

77 with open(file_data.path, 'rb') as f:

78 data = pickle.load(f)

79

80 #pick up from the last recorded start_index

81 start_index = file_data.current_note_index

82

83 #if the start index + length is less than the file length, we can

grab a sequence of length↪→

84 if start_index + length < len(data):

85 #extract a sequence of length len from the file

86 data = data[start_index:start_index + length]

87

88 #update the start index for the next sequence

89 file_data.current_note_index += 1

90 else:

91 #We either 1) perfectly hit the last event in the sequence with

a full sequence 2) we hit the end of the file early and need

to pad with zeros

↪→

↪→

92 #if there is not enough data left in the file (only possible

with stride > 1) then start from start index and take the

remaining events in the file, padding the remaining sequence

with zeros

↪→

↪→

↪→

93 data = data[start_index:]

94 while len(data) < length:

95 data = np.append(data, self.params.pad_token)
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96 self.move_to_complete_list(file_data)

97 return data

98

99 #Move a fileData object from the model_data[mode] list to the

complete_files list↪→

100 def move_to_complete_list(self,file_data):

101 if file_data not in self.complete_files:

102 self.complete_files.append(file_data)

103 else:

104 self.log_or_print("File{file_data.path} already in

complete_files list", isWarning=True)↪→

105

106 try:

107 self.data.remove(file_data)

108 except:

109 self.log_or_print(f"File{file_data.path} was already removed

from not data list", isWarning=True)↪→

110

111 #if training decoder, num_tokens_to_predict is 0, we teacher force the

entire sequence↪→

112 #if training regular transformer, length and num_tokens_to_predict are

the same↪→

113

114 #first half is passed to encoder as context

115 #second half passed to decoder for teacher forcing

116 def seq2seq_batch(self, batch_size, length, num_tokens_to_predict=None):

117 if num_tokens_to_predict is None:

118 num_tokens_to_predict = length

119 data = self.get_batch(batch_size, length+num_tokens_to_predict)

120 x = data[:, 0:length]

121 y = data[:, length:length + num_tokens_to_predict]

122

123 #attach start and end tokens to each y sequence

124 y = np.array([[self.params.token_sos] + list(seq) +

[self.params.token_eos] for seq in y])↪→

125 return x, y

126

127 def calculate_num_batches(self, seq_len, stride):

128 num_examples = 0

129 for file in self.data:

130 with open(file.path, 'rb') as f:

131 data = pickle.load(f)

132 #seq_len multiplied by two for the encoder and decoder seq

respectively↪→

133 num_examples += (len(data) - seq_len*2) // stride

134 num_batches = int(num_examples / self.params.batch_size)

135 remaining_examples = num_examples % self.params.batch_size

136

137 # print(f"Number of batches: {num_batches}, Number of remaining

examples: {remaining_examples}")↪→

138 assert num_batches*self.params.batch_size + remaining_examples ==

num_examples↪→
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139

140 return num_batches

141

142 #Reset all indices

143 def reset(self):

144 self.log_or_print("Reset Called, resetting fileData objects")

145 self.data += self.complete_files

146 self.complete_files = []

147 for file in self.data:

148 file.current_note_index = 0

149 random.shuffle(self.data)

150

151 def __repr__(self):

152 return "<SequenceDataset_{} has {} files>".format(self.mode,

len(self.data))↪→

153

154 if __name__ == "__main__":

155 p = Params(midi_test_params_v2)

156

157 data = SequenceDataset(p, 'train', min_event_length=p.encoder_seq_len*2,

num_files_to_use=5)↪→

158 print(data)

159

160 #===================

161 #Testing out methods required for keras.utils.sequence

162 #__getitem__ and __len__ methods

163 #__calculate_num_batches method caluculates the number of batches in the

dataset, which is needed for __len__↪→

164 #__getitem__ returns a batch of data, given an idx

165

166 #Should show multiple sequences and an increasing note_index, before

they are shifted to the complete list↪→

167 #===================

168 num_batches = data.calculate_num_batches(p.encoder_seq_len, 1)

169 print(num_batches)

170

171 time.sleep(2)

172 for i in range(p.epochs):

173 print("Epoch:",i)

174 for i in range(num_batches):

175 batch = data.__getitem__(i)

176 print(batch.shape)

177 if i % 100 == 0:

178 print(f'Batch: {i}')

179 # print(f'encoder_input shape:

{batch[0]["encoder_inputs"].shape}')↪→

180 # print(f'decoder_input shape:

{batch[0]["decoder_inputs"].shape}')↪→

181 # print(f'decoder_output shape: {batch[1].shape}')

182 for file in data.data:

183 print(file.path,file.current_note_index)

184 print(f"Complete files:{len(data.complete_files)}=========")
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185 for file in data.complete_files:

186 print(file.path)

187 print(len(data.complete_files))

188 data.on_epoch_end()

9.2.2 Custom Transformer Implementation

PositionalEncodingLayer.py

1 from tensorflow.keras.layers import Layer, Embedding

2 import numpy as np

3 import tensorflow as tf

4 from .utils import check_shape

5 from matplotlib import pyplot as plt

6

7 class PositionEmbeddingFixedWeights(Layer):

8 def __init__(self, seq_len, vocab_size, output_dim, **kwargs):

9 super(PositionEmbeddingFixedWeights, self).__init__(**kwargs)

10 self.model_dim = output_dim

11 self.voacb_size = vocab_size

12 self.seq_len = seq_len

13

14 # Initialize the positional encoding matrices

15 self.position_embedding_matrix =

self.get_positional_encoding(seq_len, output_dim)↪→

16

17 # Input embedding layer

18 self.input_embedding_layer = Embedding(

19 input_dim=vocab_size,

20 output_dim=output_dim,

21 )

22

23 def get_config(self):

24 config = super(PositionEmbeddingFixedWeights, self).get_config()

25 config.update({

26 'seq_len': self.seq_len,

27 'vocab_size': self.vocab_size,

28 'output_dim': self.output_dim,

29 'input_embedding_layer': tf.keras.saving.serialize_keras_object(

self.input_embedding_layer),↪→

30 'position_embedding_layer':

tf.keras.saving.serialize_keras_object(

self.position_embedding_layer),

↪→

↪→

31 })

32 return config

33

34 #Based on "attention is all you need"

35 #Given a input sequence of size L and model dimension, initialize the

positional encoding matrix↪→

36

37 # P(k,2i) = sin(k/n^(2i/d)) , P(k,2i+1) = cos(k/n^(2i/d))
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38 # k = position, where k < L/2 (since we alternate between sin and cos)

39 # d = dimension of the output embedding space

40 # n user defined scalar, 10000 in the paper

41 # i = dimension index, where i < d/2

42 @classmethod

43 def get_positional_encoding(self, size, output_dim, n=10000):

44 P = np.zeros((size, output_dim))

45 for pos in range(size):

46 for i in range(output_dim // 2):

47 denominator = np.power(n, (2 * i) / output_dim)

48 P[pos, 2 * i] = np.sin(pos / denominator)

49 P[pos, 2 * i + 1] = np.cos(pos / denominator)

50

51 # Ensure the data type matches TensorFlow expectations

52 P = P.astype(np.float32)

53 return P

54

55 def call(self, inputs):

56 # Generate a sequence of position indices

57 position_indices = tf.range(start=0, limit=tf.shape(inputs)[1],

delta=1)↪→

58 # Embed the input tokens and the positions

59 embedded_input = self.input_embedding_layer(inputs)

60 #Scale the input embedding by sqrt(model_dim)

61 embedded_input *= tf.math.sqrt(tf.cast(self.model_dim, tf.float32))

62 # Sum the token embeddings and position embeddings

63 return embedded_input + self.position_embedding_matrix

64

MultiHeadAttentionLayer.py

1 import tensorflow as tf

2 from tensorflow.keras.layers import Layer, Dense

3 from .utils import check_shape

4 from .params import Params

5 import json

6

7 @tf.keras.saving.register_keras_serializable()

8 class MultiHeadAttentionLayer(Layer):

9 def __init__(self, p:Params, isRelative=False, **kwargs):

10 super(MultiHeadAttentionLayer,self).__init__(**kwargs)

11

12 if isRelative:

13 raise NotImplementedError("Relative attention not yet

implemented")↪→

14

15 self.num_heads = p.num_heads

16 self.key_dim = p.key_dim

17 self.value_dim = p.value_dim

18 self.model_dim = p.model_dim

19

20 #Model dimensionality must be divisible by the number of heads

81



21 assert self.model_dim % self.num_heads == 0

22

23 #Initialize linear layers for projecting queries, keys, values, and

output↪→

24 self.W_query = Dense(self.key_dim)

25 self.W_key = Dense(self.key_dim)

26 self.W_value = Dense(self.value_dim)

27 self.W_out = Dense(self.model_dim)

28

29 def scaled_dot_product_attention(self, q, k, v, mask=None):

30 #Q, K, V all have shape [batch_size, num_heads, seq_len,

dim_per_head]↪→

31

32 #First multiply queries by keys to get similarity scores and

normalize↪→

33 attention_weights = tf.matmul(q, k, transpose_b=True) /

tf.math.sqrt(tf.cast(self.key_dim, tf.float32))↪→

34

35 #Mask if required (Eg. decoder layer), prevent attention from future

outputs↪→

36 #Essentially multiply by an extremely small negative number to

remove future values from softmax calculation↪→

37 if mask is not None: attention_weights += -1e9 * mask

38

39 #Use softmax to get attention weights in terms of probability

distribution↪→

40 attention_weights = tf.nn.softmax(attention_weights)

41

42 #Multiply by values to get context vector

43 context_vector = tf.matmul(attention_weights, v)

44

45 return context_vector

46

47 def reshape_tensor(self,tensor):

48 '''

49 Eg. for a single input query of size 5(seq len),16(query dim) > 80

elements↪→

50 Therefore if 8 heads, each head will have 8/8 = 10 elements

51 10 elements > 2 sequences of 5 elements, per batch

52 '''

53 tensor = tf.reshape(tensor, (tf.shape(tensor)[0],

tf.shape(tensor)[1], self.num_heads, -1))↪→

54 check_shape("reshaped_tensor",tensor,(p.embedding_dim,p.seq_len,

p.num_heads,int(p.batch_size/p.num_heads)))↪→

55

56 tensor = tf.transpose(tensor, perm=[0,2,1,3])

57 check_shape("transposed_tensor",tensor,(p.embedding_dim,

p.num_heads,p.seq_len,int(p.batch_size/p.num_heads)))↪→

58

59 return tensor

60

61 def concat_heads(self,tensor):
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62 tensor = tf.transpose(tensor, perm=[0,2,1,3])

63 tensor = tf.reshape(tensor, (tf.shape(tensor)[0],

tf.shape(tensor)[1], self.key_dim))↪→

64 return tensor

65

66 def get_config(self):

67 config = super(MultiHeadAttentionLayer, self).get_config()

68 config.update({

69 'num_heads': self.num_heads,

70 'key_dim': self.key_dim,

71 'value_dim': self.value_dim,

72 'model_dim': self.model_dim,

73 'W_query': tf.keras.saving.serialize_keras_object(self.W_query),

74 'W_key': tf.keras.saving.serialize_keras_object(self.W_key),

75 'W_value': tf.keras.saving.serialize_keras_object(self.W_value),

76 'W_out': tf.keras.saving.serialize_keras_object(self.W_out),

77 })

78 return config

79

80 def call(self, inputs, mask=None, **kwargs):

81 '''

82 input: a list of tensors, representing [queries, keys, values]

83 mask: for masked multi head attention in decoder

84

85 '''

86 q,k,v = inputs[0], inputs[1], inputs[2]

87 # for tensor in [q,k,v]:

88 # check_shape("input_tensor",tensor,(p.batch_size,

p.seq_len,p.embedding_dim))↪→

89

90 #First project through linear layers

91 q,k,v = self.W_query(q), self.W_key(k), self.W_value(v)

92

93 #Reshape to [batch_size, num_heads, seq_len, dim_per_head] for dot

product attention↪→

94 q,k,v = self.reshape_tensor(q), self.reshape_tensor(k),

self.reshape_tensor(v)↪→

95 # for tensor in [q,k,v]:

96 # check_shape("reshaped_query",

tensor,(p.embedding_dim,p.num_heads,

p.seq_len,int(p.batch_size/p.num_heads)))

↪→

↪→

97

98 #compute scaled dot product attention for each head

99 attention = self.scaled_dot_product_attention(q, k, v, mask)

100

101 #concat attention representations across each head

102 concat_attention = self.concat_heads(attention)

103 # check_shape("attention", concat_attention,(p.batch_size,

p.seq_len,p.embedding_dim)↪→

104

105 #pass through final linear layer

106 output = self.W_out(concat_attention)
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107 # check_shape("output",output,(p.batch_size, p.seq_len,p.model_dim))

108

109 return output

Decoder.py

1 import tensorflow as tf

2 from tensorflow.keras.layers import Layer, Dropout

3 from .MultiHeadAttentionLayer import MultiHeadAttentionLayer

4 from .FeedForwardLayer import FeedForward

5 from .AddNormalizationLayer import AddNormalization

6 from .PositionalEncodingLayer import PositionEmbeddingFixedWeights

7 from .utils import check_shape

8 from .params import baseline_test_params, Params

9

10 @tf.keras.saving.register_keras_serializable()

11 class DecoderLayer(Layer):

12 def __init__(self, p:Params, **kwargs):

13 super(DecoderLayer,self).__init__(**kwargs)

14

15 self.seq_len = p.decoder_seq_len

16 self.model_dim = p.model_dim

17 self.dropout_rate = p.dropout_rate

18 self.feed_forward_dim = p.feed_forward_dim

19

20 #First Multiheaed attention layer - Causal self attention (masked)

21 self.masked_mha_layer = MultiHeadAttentionLayer(p,isRelative=False)

22 self.dropout1 = Dropout(self.dropout_rate)

23 self.add_norm1 = AddNormalization()

24

25 #Second Multihead attention layer - encoder-decoder attention or

cross attention↪→

26 self.mha_layer = MultiHeadAttentionLayer(p,isRelative=False)

27 self.dropout2 = Dropout(self.dropout_rate)

28 self.add_norm2 = AddNormalization()

29

30 #Feed forward layer

31 self.feed_forward = FeedForward(self.feed_forward_dim,

self.model_dim)↪→

32

33 self.dropout3 = Dropout(self.dropout_rate)

34 self.add_norm3 = AddNormalization()

35

36 def get_config(self):

37 config = super(DecoderLayer, self).get_config()

38 config.update({

39 'seq_len': self.seq_len,

40 'model_dim': self.model_dim,

41 'dropout_rate': self.dropout_rate,

42 'feed_forward_dim': self.feed_forward_dim,

43 'masked_mha_layer': self.masked_mha_layer.get_config(),

44 'mha_layer':self.mha_layer.get_config(),
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45 'feed_forward': self.feed_forward.get_config(),

46 })

47 return config

48

49 def call(self, x, encoder_output, lookahead_mask, padding_mask,

training):↪→

50 attention_output1 = self.masked_mha_layer([x, x, x], lookahead_mask)

51 attention_output1 = self.dropout1(attention_output1,

training=training)↪→

52 addnorm_output1 = self.add_norm1(x, attention_output1)

53

54 attention_output2 =

self.mha_layer([addnorm_output1,encoder_output,encoder_output],

padding_mask)

↪→

↪→

55 attention_output2 = self.dropout2(attention_output2,

training=training)↪→

56 addnorm_output2 = self.add_norm2(addnorm_output1, attention_output2)

57

58 ff_output = self.feed_forward(addnorm_output2)

59 ff_output = self.dropout3(ff_output, training=training)

60 final = self.add_norm3(addnorm_output2, ff_output)

61 return final

62

63 class Decoder(Layer):

64 def __init__(self,p:Params, **kwargs):

65 super().__init__(**kwargs)

66 self.decoder_seq_len = p.decoder_seq_len

67 self.model_dim = p.model_dim

68 self.dropout_rate = p.dropout_rate

69 self.decoder_vocab_size = p.decoder_vocab_size

70 self.num_decoder_layers = p.num_decoder_layers

71

72 #Create postiinal encoding layer

73 self.positional_encoding =

PositionEmbeddingFixedWeights(self.decoder_seq_len,

self.decoder_vocab_size, self.model_dim)

↪→

↪→

74 #N decoder stacks

75 self.decoder_layers = [

76 DecoderLayer(p) for _ in range(self.num_decoder_layers)]

77

78 def get_config(self):

79 config = super(Decoder, self).get_config()

80 config.update({

81 'decoder_seq_len': self.encoder_seq_len,

82 'decoder_vocab_size': self.encoder_vocab_size,

83 'model_dim': self.model_dim,

84 'dropout_rate': self.dropout_rate,

85 'num_encoder_layers': self.num_encoder_layers,

86 'positional_encoding': self.positional_encoding.get_config(),

87 'encoder_layers': [layer.get_config() for layer in

self.encoder_layers.layers]↪→

88 })
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89

90 def call(self, x, encoder_output, lookahead_mask, padding_mask,

training):↪→

91 positional_encoding_output = self.positional_encoding(x)

92

93 for layer in self.decoder_layers:

94 output = layer(

95 positional_encoding_output,

96 encoder_output=encoder_output,

97 lookahead_mask=lookahead_mask,

98 padding_mask=padding_mask,

99 training = training

100 )

101 return output

Encoder.py

1 import tensorflow as tf

2 from tensorflow.keras.layers import Layer, Dropout, Input

3 from tensorflow.keras.models import Model

4 from .MultiHeadAttentionLayer import MultiHeadAttentionLayer

5 from .FeedForwardLayer import FeedForward

6 from .PositionalEncodingLayer import PositionEmbeddingFixedWeights

7 from .AddNormalizationLayer import AddNormalization

8 from .utils import check_shape

9 from .params import baseline_test_params, Params

10

11 @tf.keras.saving.register_keras_serializable()

12 class EncoderLayer(Layer):

13 def __init__(self, p:Params, **kwargs):

14 super(EncoderLayer, self).__init__(**kwargs)

15 self.seq_len = p.encoder_seq_len

16 self.model_dim = p.model_dim

17 self.dropout_rate = p.dropout_rate

18 self.feed_forward_dim = p.feed_forward_dim

19

20 #EncoderMultihead attention layer - Global self attention (fully

autoregressive)↪→

21 self.mha_layer = MultiHeadAttentionLayer(p, isRelative=False)

22 self.add_norm1 = AddNormalization()

23 self.dropout1 = Dropout(p.dropout_rate)

24

25 #Feed forward layer

26 self.feed_forward = FeedForward(p.feed_forward_dim, p.model_dim)

27 self.add_norm2 = AddNormalization()

28 self.dropout2 = Dropout(p.dropout_rate)

29

30

31 def get_config(self):

32 config = super(EncoderLayer, self).get_config()

33 config.update({

34 'seq_len': self.seq_len,
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35 'model_dim': self.model_dim,

36 'dropout_rate': self.dropout_rate,

37 'feed_forward_dim': self.feed_forward_dim,

38 'mha_layer': self.mha_layer.get_config(),

39 'feed_forward': self.feed_forward.get_config(),

40 })

41 return config

42

43 def call(self, x, padding_mask, training):

44 attention_output = self.mha_layer([x, x, x], padding_mask)

45 # check_shape("attention_output", attention_output, (x.shape[0],

self.seq_len, self.model_dim))↪→

46 attention_output = self.dropout1(attention_output,

training=training)↪→

47 #the input itself + the scaled attention values

48 addnorm_output = self.add_norm1(x, attention_output)

49

50 ff_output = self.feed_forward(addnorm_output)

51 ff_output = self.dropout2(ff_output, training=training)

52 #the previous addnorm output + values from the feedforward network

53 final = self.add_norm2(addnorm_output, ff_output)

54 return final

55

56 class Encoder(Layer):

57 def __init__(self, p:Params, **kwargs):

58 super(Encoder,self).__init__(**kwargs)

59 self.encoder_seq_len = p.encoder_seq_len

60 self.model_dim = p.model_dim

61 self.dropout_rate = p.dropout_rate

62 self.encoder_vocab_size = p.encoder_vocab_size

63 self.num_encoder_layers = p.num_encoder_layers

64

65 #Create the positional encoding layer

66 self.positional_encoding =

PositionEmbeddingFixedWeights(self.encoder_seq_len,

self.encoder_vocab_size, self.model_dim)

↪→

↪→

67 #N encoder layers

68 self.encoder_layers = [EncoderLayer(p) for _ in

range(self.num_encoder_layers)]↪→

69

70 def get_config(self):

71 config = super(Encoder, self).get_config()

72 config.update({

73 'encoder_seq_len': self.encoder_seq_len,

74 'encoder_vocab_size': self.encoder_vocab_size,

75 'model_dim': self.model_dim,

76 'dropout_rate': self.dropout_rate,

77 'num_encoder_layers': self.num_encoder_layers,

78 # 'positional_encoding' is also a layer and needs to handle its

config↪→

79 'positional_encoding': self.positional_encoding.get_config(),
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80 'encoder_layers': [layer.get_config() for layer in

self.encoder_layers.layers]↪→

81 })

82

83 def call(self, x, padding_mask, training):

84 positional_encoding_output = self.positional_encoding(x)

85

86 for layer in self.encoder_layers:

87 output = layer(

88 positional_encoding_output,

89 padding_mask=padding_mask,

90 training = training

91 )

92 return output

FeedForwardLayer.py

1 from tensorflow.keras.layers import Layer, Dense, ReLU

2 import tensorflow as tf

3 from .utils import check_shape

4 import json

5

6 @tf.keras.saving.register_keras_serializable()

7 class FeedForward(Layer):

8 def __init__(self, d_in, d_out, **kwargs):

9 super(FeedForward,self).__init__(**kwargs)

10 self.d_in = d_in

11 self.d_out = d_out

12

13 # First fully connected layer takes in input dimensions

14 self.dense1 = Dense(self.d_in)

15 # Second fully connected layer, based on model output dimensions

16 self.dense2 = Dense(self.d_out)

17 self.activation = ReLU()

18

19 def get_config(self):

20 config = super(FeedForward, self).get_config()

21 config.update({

22 'd_in': self.d_in,

23 'd_out': self.d_out,

24 'dense1': tf.keras.saving.serialize_keras_object(self.dense1),

25 'dense2': tf.keras.saving.serialize_keras_object(self.dense2),

26 })

27 return config

28

29 def call(self, x):

30 #Send inputs through the first fully connected layer

31 output = self.dense1(x)

32 #Apply ReLU activation

33 output = self.activation(output)

34 #Send inputs through the second fully connected layer

35 output = self.dense2(output)
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36 return output

37

AddNormalizationLayer.py

1 from tensorflow.keras.layers import Layer, LayerNormalization, Add

2 import tensorflow as tf

3 from .utils import check_shape

4 import json

5

6 @tf.keras.saving.register_keras_serializable()

7 class AddNormalization(Layer):

8 def __init__(self, **kwargs):

9 super(AddNormalization, self).__init__(**kwargs)

10 # Layer normalization layer

11 self.layer_norm = LayerNormalization()

12 # Add layer - the add layers ensure that keras masks are properly

propagated↪→

13 self.add = Add()

14

15 def call(self, x, sublayer_x):

16 #Skip connection

17 output = self.add([x + sublayer_x])

18 return self.layer_norm(output)

19

20 def get_config(self):

21 base_config = super(AddNormalization, self).get_config()

22 config = {

23 "layer_norm":

tf.keras.saving.serialize_keras_object(self.layer_norm),↪→

24 }

25 return {**base_config, **config}

Model.py

1 import tensorflow as tf

2 from tensorflow.keras.models import Model

3 from tensorflow.keras.layers import Dense

4 from CustomTransformer.Encoder import Encoder

5 from CustomTransformer.Decoder import Decoder

6 from CustomTransformer.utils import padding_mask, lookahead_mask

7 from CustomTransformer.params import baseline_test_params, Params

8

9 class TransformerModel(Model):

10 def __init__(self,p:Params,**kwargs):

11 super(TransformerModel,self).__init__(**kwargs)

12 self.debug = p.debug

13 self.model_dim = p.model_dim

14 self.encoder = Encoder(p)

15 self.decoder = Decoder(p)

16 self.dense = Dense(p.decoder_vocab_size)
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17 self.train_loss = tf.keras.metrics.Mean(name="train_loss")

18 self.train_accuracy = tf.keras.metrics.Mean(name="train_accuracy")

19 self.val_loss = tf.keras.metrics.Mean(name='val_loss')

20

21 def call(self, input_data, training):

22 encoder_input, decoder_input = input_data

23 padding = padding_mask(encoder_input)

24 #tf.maximum returns tensor maximum element wise - lookahead mask is

a upper triangular matrix of ones to prevent decoder from

looking ahead

↪→

↪→

25 lookahead = tf.maximum(padding_mask(decoder_input),

lookahead_mask(decoder_input.shape[1]))↪→

26

27 #encoder takes in encoder input and padding mask

28 encoder_output = self.encoder(encoder_input, padding, training)

29

30 #decoder takes in decoder input, encoder output, lookahead mask, and

padding mask↪→

31 decoder_output = self.decoder(decoder_input, encoder_output,

lookahead, padding, training)↪→

32 return self.dense(decoder_output)

33

34 #Overriden train_step method to ensure model can be run using

model.fit()↪→

35 def train_step(self, data):

36 train_batchX, train_batchY = data

37 encoder_input = train_batchX

38 decoder_input = train_batchY[:, :-1]

39 decoder_output = train_batchY[:, 1:]

40 with tf.GradientTape() as tape:

41 #generate prediction

42 prediction = self((encoder_input, decoder_input), training =

True)↪→

43

44 #compute loss

45 loss = self.compute_loss(decoder_output, prediction)

46

47 # Compute the training accuracy

48 accuracy = self.compute_accuracy(decoder_output, prediction)

49

50 gradients = tape.gradient(loss, self.trainable_variables)

51 self.optimizer.apply_gradients(zip(gradients,

self.trainable_variables))↪→

52 self.train_loss.update_state(loss)

53 self.train_accuracy.update_state(accuracy)

54 return {"train_loss": self.train_loss.result(), "train_accuracy":

self.train_accuracy.result()}↪→

55

56 #Overriden test_step method to ensure model can be evaluated using

model.evaluate() and model.predict()↪→

57 def test_step(self,val_data):

58 val_batchX, val_batchY = val_data
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59 encoder_input = val_batchX

60 decoder_input = val_batchY[:, :-1]

61 decoder_output = val_batchY[:, 1:]

62 prediction = self((encoder_input, decoder_input), training = False)

63

64 loss = self.compute_loss(decoder_output, prediction)

65 self.val_loss.update_state(loss)

66 return {"val_loss": self.val_loss.result()}

67

68 #Custom compile method to ensure model can be run using model.fit() and

can receive custom loss and accuracy functions↪→

69 def compile(self, optimizer,loss_fn,accuracy_fn):

70 super().compile(optimizer = optimizer)

71 self.optimizer = optimizer

72 self.compute_loss = loss_fn

73 self.compute_accuracy = accuracy_fn

74

75 @property

76 def metrics(self):

77 return [self.train_loss, self.train_accuracy, self.val_loss]

utils.py

1 import tensorflow as tf

2 from tensorflow.keras.losses import sparse_categorical_crossentropy

3

4 def check_shape(name,tensor,expectedshape):

5 assert tensor.shape == expectedshape, f" {name} expected shape

{expectedshape}, shape: {tensor.shape}"↪→

6

7 def padding_mask(input):

8 # Mask out padding values by marking them with True

9 mask = tf.math.equal(input,0)

10

11 # Cast the mask to float32, true values are cast to 1.0 and false values

are cast to 0.0↪→

12 mask = tf.cast(mask,tf.float32)

13

14 # Add extra dimensions to add the padding to the attention logits

15 return mask[:,tf.newaxis,tf.newaxis,:]

16

17

18 def lookahead_mask(shape):

19 # Mask out future entries by marking them with a 1.0

20 return 1 - tf.linalg.band_part(tf.ones((shape,shape)), -1, 0)

21

22 #define the custom loss function

23 def custom_loss(y_true,y_pred):

24 # Create mask so that the zero padding values are not included in the

computation of loss↪→

25 padding_mask = tf.math.logical_not(tf.equal(y_true, 0))

26 padding_mask = tf.cast(padding_mask, tf.float32)
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27

28 # Compute a sparse categorical cross-entropy loss on the unmasked values

- logits = True if we do not have the softmax in our model↪→

29 loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred,

from_logits=False) * padding_mask↪→

30

31 # Compute the mean loss over the unmasked values

32 return tf.reduce_sum(loss) / tf.reduce_sum(padding_mask)

33

34 def custom_accuracy(y_true,y_pred):

35 # Create mask so that the zero padding values are not included in the

computation of accuracy↪→

36 padding_mask = tf.math.logical_not(tf.equal(y_true, 0))

37

38 # Find equal prediction and target values, and apply the padding mask

39 accuracy = tf.equal(tf.cast(y_true,tf.int64), tf.argmax(y_pred, axis=2))

40 accuracy = tf.math.logical_and(padding_mask, accuracy)

41

42 # Cast the True/False values to 32-bit-precision floating-point numbers

43 padding_mask = tf.cast(padding_mask, tf.float32)

44 accuracy = tf.cast(accuracy, tf.float32)

45

46 # Compute the mean accuracy over the unmasked values

47 return tf.reduce_sum(accuracy) / tf.reduce_sum(padding_mask)

9.2.3 Keras Transformer Implementation

LearningRateScheduler.py

1 from tensorflow.keras.optimizers.schedules import LearningRateSchedule

2 from tensorflow import math

3 import tensorflow as tf

4

5 class LRScheduler(LearningRateSchedule):

6 def __init__(self, d_model, warmup_steps=4000, **kwargs):

7 super(LRScheduler, self).__init__(**kwargs)

8 self.d_model = tf.cast(d_model, tf.float32)

9 self.warmup_steps = warmup_steps

10

11 def __call__(self, step_num):

12 # Linearly increasing the learning rate for the first warmup_steps,

and decreasing it thereafter - taken directly from Vaswani et

al.

↪→

↪→

13 arg1 = tf.cast(step_num,tf.float32) ** tf.cast(-0.5, tf.float32)

14 arg2 = tf.cast(step_num, tf.float32) * tf.cast((self.warmup_steps **

-1.5), tf.float32)↪→

15

16 return tf.cast((self.d_model ** -0.5) * math.minimum(arg1, arg2),

tf.float32)↪→
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baselineEncoder.py

1 import keras

2 from CustomTransformer.params import Params

3 from tensorflow.keras import layers

4 import tensorflow as tf

5

6 class TransformerEncoder(tf.keras.layers.Layer):

7 def __init__(self, p:Params, **kwargs):

8 super().__init__(**kwargs)

9 self.model_dim = p.model_dim

10 self.feed_forward_dim = p.feed_forward_dim

11 self.num_heads = p.num_heads

12

13 self.attention = layers.MultiHeadAttention(

14 num_heads=self.num_heads, key_dim=self.model_dim

15 )

16 self.dense_proj = keras.Sequential(

17 [

18 layers.Dense(self.feed_forward_dim, activation="relu"),

19 layers.Dense(self.model_dim),

20 ]

21 )

22 self.layernorm_1 = layers.LayerNormalization()

23 self.layernorm_2 = layers.LayerNormalization()

24 self.dropout1 = layers.Dropout(p.dropout_rate)

25 self.dropout2 = layers.Dropout(p.dropout_rate)

26 self.supports_masking = True

27

28 def call(self, inputs, mask=None):

29 attention_output = self.attention(query=inputs, value=inputs,

key=inputs)↪→

30 attention_output = self.dropout1(attention_output)

31 proj_input = self.layernorm_1(inputs + attention_output)

32

33 proj_output = self.dense_proj(proj_input)

34 proj_output = self.dropout2(proj_output)

35

36 return self.layernorm_2(proj_input + proj_output)

37

38 def get_config(self):

39 config = super().get_config()

40 config.update(

41 {

42 "model_dim": self.model_dim,

43 "feed_forward_dim": self.feed_forward_dim,

44 "num_heads": self.num_heads,

45 }

46 )

47 return config
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baselineDecoder.py

1 import keras

2 from CustomTransformer.params import Params

3 from tensorflow.keras import layers

4 import tensorflow as tf

5

6 class TransformerDecoder(layers.Layer):

7 def __init__(self, p:Params, **kwargs):

8 super().__init__(**kwargs)

9 self.model_dim = p.model_dim

10 self.feed_forward_dim = p.feed_forward_dim

11 self.num_heads = p.num_heads

12

13 self.attention_1 = layers.MultiHeadAttention(

14 num_heads=self.num_heads, key_dim=self.model_dim

15 )

16

17 self.attention_2 = layers.MultiHeadAttention(

18 num_heads=self.num_heads, key_dim=self.model_dim

19 )

20

21 self.dense_proj = keras.Sequential(

22 [

23 layers.Dense(self.feed_forward_dim, activation="relu"),

24 layers.Dense(self.model_dim),

25 ]

26 )

27 self.layernorm_1 = layers.LayerNormalization()

28 self.layernorm_2 = layers.LayerNormalization()

29 self.layernorm_3 = layers.LayerNormalization()

30

31 self.dropout1 = layers.Dropout(p.dropout_rate)

32 self.dropout2 = layers.Dropout(p.dropout_rate)

33 self.dropout3 = layers.Dropout(p.dropout_rate)

34

35 self.add = layers.Add() # instead of `+` to preserve mask

36 self.supports_masking = True

37

38 def call(self, inputs, encoder_outputs, mask=None):

39 attention_output_1 = self.attention_1(

40 query=inputs,

41 value=inputs,

42 key=inputs, use_causal_mask=True

43 )

44 attention_output_1 = self.dropout1(attention_output_1)

45 out_1 = self.layernorm_1(self.add([inputs, attention_output_1]))

46

47 attention_output_2 = self.attention_2(

48 query=out_1,

49 value=encoder_outputs,

50 key=encoder_outputs,

51 )
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52 attention_output_2 = self.dropout2(attention_output_2)

53 out_2 = self.layernorm_2(self.add([out_1, attention_output_2]))

54

55 proj_output = self.dense_proj(out_2)

56 proj_output = self.dropout3(proj_output)

57

58 return self.layernorm_3(self.add([out_2, proj_output]))

59

60 def get_config(self):

61 config = super().get_config()

62 config.update(

63 {

64 "model_dim": self.model_dim,

65 "feed_forward_dim": self.feed_forward_dim,

66 "num_heads": self.num_heads,

67 }

68 )

69 return config

baselineModel.py

1 import keras_nlp

2 import keras

3 from CustomTransformer.params import Params, midi_test_params_v2

4 from .baselineEncoder import TransformerEncoder

5 from .baselineDecoder import TransformerDecoder

6 from tensorflow.keras import layers

7 import tensorflow as tf

8

9 class PositionalEmbedding(layers.Layer):

10 def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):

11 super().__init__(**kwargs)

12 self.embedding_layer = keras_nlp.layers.TokenAndPositionEmbedding(

13 vocabulary_size=vocab_size,

14 sequence_length=sequence_length,

15 embedding_dim=embed_dim,

16 mask_zero=True,

17 )

18 self.sequence_length = sequence_length

19 self.vocab_size = vocab_size

20 self.embed_dim = embed_dim

21

22 def call(self, inputs):

23 return self.embedding_layer(inputs)

24

25 def compute_mask(self, inputs, mask=None):

26 return tf.math.not_equal(inputs, 0)

27

28 def get_config(self):

29 config = super().get_config()

30 config.update(

31 {
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32 "sequence_length": self.sequence_length,

33 "vocab_size": self.vocab_size,

34 "embed_dim": self.embed_dim,

35 }

36 )

37 return config

38

39 def createBaselineTransformer(p:Params):

40 encoder_inputs = keras.Input(shape=(None,), dtype="uint16",

name="encoder_inputs")↪→

41 x = PositionalEmbedding(p.encoder_seq_len, p.encoder_vocab_size,

p.model_dim)(encoder_inputs)↪→

42 for _ in range(p.num_encoder_layers):

43 x = TransformerEncoder(p)(x)

44 encoder_outputs = x

45 encoder = keras.Model(encoder_inputs, encoder_outputs)

46

47 decoder_inputs = keras.Input(shape=(None,), dtype="uint16",

name="decoder_inputs")↪→

48 encoded_seq_inputs = keras.Input(shape=(None, p.model_dim),

name="decoder_state_inputs")↪→

49

50 x = PositionalEmbedding(p.decoder_seq_len, p.decoder_vocab_size,

p.model_dim)(decoder_inputs)↪→

51 for _ in range(p.num_decoder_layers):

52 x = TransformerDecoder(p)(x, encoded_seq_inputs)

53 decoder_outputs = layers.Dense(p.decoder_vocab_size,

activation="softmax")(x)↪→

54 decoder = keras.Model([decoder_inputs, encoded_seq_inputs],

decoder_outputs)↪→

55

56 decoder_outputs = decoder([decoder_inputs, encoder_outputs])

57 transformer = keras.Model(

58 [encoder_inputs, decoder_inputs], decoder_outputs,

name="transformer"↪→

59 )

60

61 return transformer

62

63 if __name__ == "__main__":

64 p = Params(midi_test_params_v2)

65 model = createBaselineTransformer(p)

66 model.summary()
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9.3 Analysis

Analysis.py

1 class Analysis:

2 def __init__(self):

3 self.seq_data = {

4 'input': [],

5 'output': [],

6 'actual': []

7 }

8 self.pitch_list = [ "C", "C#/Db", "D", "D#/Eb", "E", "F", "F#/Gb",

"G","G#/Ab", "A", "A#/Bb", "B"]↪→

9 self.pitch_class_dict = {i: self.pitch_list[i] for i in

range(len(self.pitch_list))}↪→

10

11 def load_encoded_MIDI_seq(self, input_seq, output_seq, actual_seq):

12 self.seq_data['input'] = input_seq

13 self.seq_data['output'] = output_seq

14 self.seq_data['actual'] = actual_seq

15 # self.seq_data['input'].append(input_seq)

16 # self.seq_data['output'].append(output_seq)

17 # self.seq_data['actual'].append(actual_seq)

18

19 def decode_single_event(self,event):

20 valid_value = event

21 if event in range_note_on:

22 return ('note_on', valid_value)

23

24 elif event in range_note_off:

25 valid_value -= RANGE_NOTE_ON

26 return ('note_off', valid_value)

27

28 elif event in range_time_shift:

29 valid_value -= (RANGE_NOTE_ON + RANGE_NOTE_OFF)

30 return ('time_shift', valid_value)

31

32 else:

33 valid_value -= (RANGE_NOTE_ON + RANGE_NOTE_OFF +

RANGE_TIME_SHIFT)↪→

34 return ('velocity', valid_value)

35

36 def get_histograms(self):

37 histograms_from_seq = {key:

self.calculate_event_distribution(self.seq_data[key]) for key in

self.seq_data}

↪→

↪→

38 return histograms_from_seq

39

40 def calculate_event_distribution(self,seq):

41 note_on_counts = [0] * 12

42 note_off_counts = [0] * 12

43 time_shift_counts = [0] * 100
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44 velocity_counts = [0] * 32

45

46 for event in seq:

47 event_type, event_value = self.decode_single_event(event)

48 if event_type == 'note_on':

49 pitch_class = event_value % 12

50 note_on_counts[pitch_class] += 1

51 elif event_type == 'note_off':

52 pitch_class = event_value % 12

53 note_off_counts[pitch_class] += 1

54 elif event_type == 'time_shift':

55 time_shift_counts[event_value] += 1

56 elif event_type == 'velocity':

57 velocity_counts[event_value] += 1

58 else:

59 raise Exception("Invalid event type decoded")

60 #normalize by sum of all notes - to turn into a probability

distribution↪→

61 note_on_counts = np.array(note_on_counts) / np.sum(note_on_counts)

62 note_off_counts = np.array(note_off_counts) /

np.sum(note_off_counts)↪→

63 time_shift_counts = np.array(time_shift_counts) /

np.sum(time_shift_counts)↪→

64 velocity_counts = np.array(velocity_counts) /

np.sum(velocity_counts)↪→

65

66 #create dictionaries to be used for histogram

67 note_on_dict = {self.pitch_class_dict[i]: note_on_counts[i] for i in

range(len(note_on_counts))}↪→

68 note_off_dict = {self.pitch_class_dict[i]: note_off_counts[i] for i

in range(len(note_off_counts))}↪→

69

70 time_shift_dict = {i: time_shift_counts[i] for i in

range(len(time_shift_counts))}↪→

71 velocity_dict = {i: velocity_counts[i] for i in

range(len(velocity_counts))}↪→

72 return {'note_on': note_on_dict, 'note_off': note_off_dict,

'time_shift': time_shift_dict, 'velocity': velocity_dict}↪→

73

74 def get_entropies(self,histograms):

75 input_histograms, output_histograms, actual_histograms =

histograms['input'], histograms['output'], histograms['actual']↪→

76 all_entropies = {

77 'input': {},

78 'output': {},

79 'actual': {}

80 }

81 for key,histogram in input_histograms.items():

82 all_entropies["input"][key] = sum([histogram[k] *

np.log2(histogram[k]) for k in histogram.keys() if

histogram[k] > 0])

↪→

↪→

83 for key,histogram in output_histograms.items():
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84 all_entropies["output"][key] = sum([histogram[k] *

np.log2(histogram[k]) for k in histogram.keys() if

histogram[k] > 0])

↪→

↪→

85 for key,histogram in actual_histograms.items():

86 all_entropies["actual"][key] = sum([histogram[k] *

np.log2(histogram[k]) for k in histogram.keys() if

histogram[k] > 0])

↪→

↪→

87 return all_entropies

88

89 def plot_values(self,histograms,entropies,name):

90 for key,histogram in histograms.items():

91 plt.bar(histogram.keys(), histogram.values())

92 plt.title(f'{name}-{key} (Entropy value: {entropies[key]})')

93 plt.show()

9.4 TSImprovisor

Improvisor.ts

1 import * as core from "@magenta/music/node/core";

2 import { MusicRNN } from "@magenta/music/node/music_rnn";

3

4 const _ = require('lodash');

5 const Detect = require('tonal-detect');

6 const Tonal = require('tonal')

7 //require("@tensorflow/tfjs-node");

8

9 //import { zeros } from "@tensorflow/tfjs-node";

10 import { TimeSettings, ChordProg, NumBeats, BeatValue, StepsPerQuarter,

Note, logErrorToMax } from "./utils"↪→

11 import type { NoteSequence } from "@magenta/music/node/protobuf/index.d.ts";

12 import { tensorflow } from "@magenta/music/node/protobuf/proto";

13

14 export class Improvisor {

15 model: MusicRNN;

16 timeSettings: TimeSettings;

17 currentChordProg: ChordProg;

18 inputNotes: Note[];

19 quantizedInput: NoteSequence;

20

21 constructor(timeSettings: TimeSettings) {

22 this.model = this.loadModel('...')

23 this.timeSettings = timeSettings;

24 this.currentChordProg = [];

25 this.inputNotes = [];

26 this.quantizedInput = core.sequences.createQuantizedNoteSequence(

27 this.timeSettings.stepsPerQuarter,

28 this.timeSettings.qpm

29 );

30 }
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31

32 loadModel(path:string):MusicRNN {

33 let rnn = new MusicRNN(path);

34 rnn.initialize();

35 return rnn;

36 }

37

38 updateTimeSettings(timeSettings: TimeSettings) {

39 this.timeSettings = timeSettings;

40 }

41

42 updateChordProg(chordProg: ChordProg) {

43 this.currentChordProg = chordProg;

44 }

45

46 quantizeInputNotes(){

47 try{

48 if (!this.model){ throw new Error("Model not loaded!"); }

49 if (!this.model.isInitialized){ throw new Error("Model not

Initialized!");}↪→

50 if (!this.timeSettings){ throw new Error("Time Settings not

initialized!");}↪→

51 if (!this.inputNotes){ throw new Error("No input notes!"); }

52

53 if (this.inputNotes){

54 let notes = [];

55 for (let i = 0; i < this.inputNotes.length; i++){

56 notes.push({

57 pitch: this.inputNotes[i].pitch,

58 startTime: this.inputNotes[i].startTime,

59 endTime: this.inputNotes[i].startTime +

this.inputNotes[i].duration,↪→

60 });

61 }

62

63 const unquantizedSequence = {

64 notes:notes,

65 tempos: [

66 {

67 time: 0,

68 qpm: this.timeSettings.qpm

69 }

70 ],

71 totalTime: 60 / this.timeSettings.qpm *

this.timeSettings.numbeats,↪→

72 }

73

74 let quantizedSequence =

core.sequences.quantizeNoteSequence(unquantizedSequence,

this.timeSettings.stepsPerQuarter);

↪→

↪→

75 this.quantizedInput = quantizedSequence;

76 } else {
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77 throw new Error("input notes could not be Quantized!");

78 }

79 } catch (error : any) {

80 console.log(error);

81 }3

82 }

83

84 async generateNewSequence(): Promise<tensorflow.magenta.INoteSequence >

{↪→

85 let midiNotes = this.quantizedInput.notes.map(n => n.pitch);

86 console.log("midinotes",midiNotes);

87 const notes = midiNotes.map(Tonal.Note.fromMidi);

88 console.log("notes",notes);

89 const possibleChords:ChordProg = Detect.chord(notes);

90 console.log("chords",possibleChords);

91

92 let stepsToGenerate = this.getNumStepsToGenerate();

93 try {

94 //Provide quantized note sequence, steps to generate,

temperature and chord progression↪→

95 return await this.model.continueSequence(

96 this.quantizedInput,

97 stepsToGenerate,

98 1.2,

99 possibleChords

100 );

101 } catch (error: any) {

102 console.log(error);

103 //return empty seqeunce

104 return core.sequences.createQuantizedNoteSequence(

105 this.timeSettings.stepsPerQuarter,

106 this.timeSettings.qpm

107 );

108 }

109 }

110

111 //Necessary because tempo is in quarter notes per minute

112 /*

113 eg.

114 3/4 with 12 steps per quarter = 36

115 6/8 has 6 beats, so each must have only 6 steps per quarter to have 36

steps↪→

116 */

117 getNumStepsToGenerate(): number {

118 let numSteps: number = this.timeSettings.numbeats *

this.timeSettings.stepsPerQuarter;↪→

119 if(this.timeSettings.beatvalue == 8) numSteps /= 2;

120 return numSteps;

121 }

122 }
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Main.ts

1 import { Improvisor } from "./improvisor";

2 import { NumBeats, BeatValue, StepsPerQuarter, TimeSettings, Note} from

"./utils";↪→

3

4 const maxApi = require("max-api");

5 let improvisor: Improvisor;

6 //retrieve time Settings from Max Patch, initialize Improvisor

7 maxApi.addHandler("setTimeSettings", (numbeats:NumBeats,

beatvalue:BeatValue, stepsPerQuarter:StepsPerQuarter, qpm:number) => {↪→

8 //measured beat is currently not used

9 const timeSettings:TimeSettings = {

10 numbeats: numbeats,

11 beatvalue: beatvalue,

12 stepsPerQuarter: stepsPerQuarter,

13 qpm: qpm

14 }

15 if (improvisor) {

16 improvisor.updateTimeSettings(timeSettings);

17 } else {

18 improvisor = new Improvisor(timeSettings);

19 }

20 console.log(improvisor.timeSettings);

21 });

22

23 maxApi.addHandler("getNotes", (...midiNotes: number[]) => { //need to use

spread operator to grab all values↪→

24 if (midiNotes.length == 0){

25 return

26 }

27 let notes = [];

28 for (let i = 0; i < midiNotes.length; i+=4) {

29 let note : Note = {

30 pitch: midiNotes[i],

31 velocity: midiNotes[i+1],

32 duration: midiNotes[i+2]/1000,

33 startTime: midiNotes[i+3] //already in seconds

34 }

35 if (improvisor.inputNotes === null) {

36 improvisor.inputNotes = [];

37 }

38 notes.push(note);

39 }

40 improvisor.inputNotes = notes;

41 console.log("INPUT NOTES\n",improvisor.inputNotes)

42 improvisor.quantizeInputNotes();

43 console.log("QUANTIZED INPUT NOTES\n", improvisor.quantizedInput);

44 });

45

46 maxApi.addHandler("generateSequence", async() => {

47 let generated = await improvisor.generateNewSequence();

48 console.log("GENERATED NOTES\n", generated)
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49 maxApi.outlet(generated);

50 })

utils.ts

1 const maxApi = require("max-api");

2

3 export type NumBeats = 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 12;

4 export type BeatValue = 4 | 8;

5 export type StepsPerQuarter = 1 | 2 | 4 | 6 | 8 | 12; //let 12 be default

(whole, half, triplet half, 4th, triple 4th, 8th, triplet 8th, 16th,

triplet 16th)

↪→

↪→

6 //Array of strings representing chords

7 export type ChordProg = Array<string>;

8 export interface Note {

9 pitch: number;

10 velocity: number;

11 duration: number;

12 startTime: number; //start time from start of the bar

13 }

14

15 export interface TimeSettings {

16 numbeats: NumBeats

17 beatvalue: BeatValue

18 stepsPerQuarter:StepsPerQuarter

19 qpm:number //quarter notes per minute

20 }

21

22 export function logErrorToMax(error: any) {

23 maxApi.post(error, maxApi.POST_LEVELS.ERROR);

24 }
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