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To my family, the most important presence.



Foreword

The story of solitary waves traces back to John Scott Russel. Approaching 200 years
ago he wrote:

I was observing the motion of a boat which was rapidly drawn along a narrow channel by
a pair of horses, when the boat suddenly stopped—not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight
or nine miles an hour, preserving its original figure some thirty feet long and a foot to a
foot and a half in height. Its height gradually diminished, and after a chase of one or two
miles I lost it in the windings of the channel. Such, in the month of August 1834, was my
first chance interview with that singular and beautiful phenomenon which I have called the
Wave of Translation.

Russel went on to conduct experiments and published his findings in 1845 (check
this). Initially, major figures such as Stokes and Airy denied the existence of what we
would now call a traveling wave on the surface of water in a channel. In the second
half of the nineteenth century, one sees in the correspondence between Stokes and
Raleigh that Stokes had changed his mind and this fact even appears in published
work. In the period of this correspondence, Rayleigh found an approximate relation
between the amplitude and speed of a solitary wave in a channel. However, it was
left to Boussinesq in the 1870s to write down evolution equations that approximated
the motion of disturbances on the surface of water and which featured exact solitary-
wave solutions. One of these was the celebrated Korteweg-de Vries equation of water
wave theory that was rederived by Joseph Korteweg and his student Gustav de Vries
in 1895. The issue of existence of these so-called solitary waves having been settled,
at least as far as the nineteenth century hydrodynamicists were concerned, the subject
went moribund.

It came back to life, though in disguise, inwork of Fermi, Pasta, Ulam andTsingou
on a lattice and spring model for heat conduction in the 1950s. Later, by taking an
appropriate continuum limit of this mass and spring model, Kruskal and Zabusky
came again to the Korteweg-de Vries equation. This time, however, the subject did

vii



viii Foreword

not die. In 1967, the inverse scattering theory for this equation was discovered by
Gardner, Greene, Miura and Kruskal. Peter Lax took the first step in putting this
formalism into a very imaginative mathematical structure. Since then, the subject
rapidly achieved industrial proportions, with tens of thousands of journal pages and
with many, many applications of the theory.

As Andrei Ludu, the author of the present monograph writes in his introduction,
considering the large literature on solitary waves, why yet another book? There are
several things that set this text apart from others in the field. First is the overall focus
upon solitary waves defined on compact spaces. Of course, one thinks initially of
the classical cnoidal-wave solutions of the Korteweg-de Vries equation, but as Ludu
ably shows, this is the tip of a very large iceberg. Another aspect of the text that
strikes a new chord is the differential geometric perspective; the view that solitary
waves can be realized as the motion of a planar or three-dimensional curve under
particular flow conditions and with suitable initial conditions. This is not original to
the text in question, but an overall assessment of these ideas and a comprehensive
review of its applications is not to be found elsewhere in the literature. And, speaking
of applications, the text ends with a large number of very diverse and interesting
applications.

The text breaks into four parts. Parts I and II, which comprise the first eight chap-
ters, contain a sketch of the relevant topology and especially the differential geometry
of curves and surfaces in two and three spatial dimensions. It should be acknowl-
edged that this material is not for beginners. Someone without prior knowledge of at
least portions of this material will not find it easy going. However, as a reminder to
those with some knowledge, and a focus on exactly what is needed from differential
geometry in what follows, it is very helpful. Especially the material in Chapter 6 will
be useful even for the cognoscenti.

Chapter 7 works out the connection between the motion of curves in two and three
dimensions and integrable systems. Chapter 8 does the same thing for the motion
of surfaces. Technically, this is the heart of the script. This will be new material to
many readers; indeed, it is a developing subject in the mathematical firmament.

Ludu’s exposition in Parts I and II is technically sound, but it makes much of its
headway by way of appealing to our intuition. Not every theorem is proved in detail,
which is quite okay given the overall goal of the text.

In Parts III and IV, the text becomes more concrete. It begins with a more or less
standard discussion of the kinematics of fluid motion in Chapter 9. Knowledgeable
readersmaywell skip this, but for folks a little rusty, it is helpful. Some of the notation
is laid out in this chapter as well.

Chapters 10 and 11 find us deriving the Euler and Navier-Stokes equations. This
includes a very detailed discussion of surface tension from a geometrical perspective.
He goes on to derivemany of our favorite approximatemodels, such as theKorteweg-
deVries equation, themodifiedKorteweg-deVries equation, theBoussinesq equation
and the cubic Schrodinger equation. He examines the well-known solitary-wave
solutions of these equations by way of the mathematical structure developed in Part
I. He also derives what he terms the GKdV equation (Generalized Korteweg-de Vries
equation) that results from carrying out the formal asymptotics in the shallow water



Foreword ix

parameter and the nonlinear parameter to higher order. This equation specializes to
the various more familiar equations. Again, what is distinctly non-standard is his
concentration upon solitary waves defined on compact spaces that can be obtained
via the motion of curves whose theory was developed in Part II. This part is also not
for a beginner. Without prior background in these sorts of derivations, it will be hard
going. Hard going, but worth the effort.

Chapters 12–15 might well have been lumped into Part II of the text. While they
enlarge upon the theory, they emerge from physical considerations. Chapters 12–
14 are concerned with the fascinating shape oscillations of liquid drops in two and
three space dimensions. Chapter 15 presents another quite different point of view
that yields some of the same fascinating shapes that appeared earlier in droplets.

In the fourth portion of the text, Ludu shows his scientific upbringing. He started
life as a physicist and throughout his career he has been closely tied to real-world
phenomena. He admirably shows off his breadth in Part IV of the text. Here we find
him dealing with a whole stable of solitons that arise in some unlikely places. There
are solitons on filaments of various sorts, solitons on stiff chains, solitons on the
boundaries of microscopic structures, solitons at stellar scales.

The text finisheswith amathematical annex that includes some interesting remarks
that didn’t fit anywhere else in the text.

This book is not to be read in an armchair. As Ludu states in his opening remarks,
it is meant to be studied with pencil and paper at hand and with an algebraic manip-
ulation program up on the screen of a computer. It is a text dense with ideas and
methods, both mathematical and scientific, and a serious addition to the literature.
The fact that it is going into a third edition attests to its impact.

Chicago, USA Hongqiu Chen
Jerry Bona



Preface to the Third Edition

In order to offer as much content as possible from all chapters of the book to readers
with various prerequisites in mathematics, we present below a reader’s map that
can help readers to navigate through the book without being stuck in sections with
denser mathematical content. Pretty much like on a skiing course, we introduce three
possible paths to meet the interest of all our readers:

• No * asterisk is the path that doesn’t request special prerequisites in mathematics,
except calculus and first level course in mathematical physics. For these readers,
we recommend the following path:

I ntroduction → 2.1 → 3.1 → 3.2 → 3.3 → 3.12 → 3.13 → 4.1 → 4.2 →

5 → 6.1 → 6.5 → 7.1 → 7.3 → 9.1 → 9.3 → 9.5 → 9.6.1 → 10.1 → 10.2 →

10.3 → 10.4.1 → 10.5 → 10.6.1 → 11.1 → 12.1 → 12.6 →

13.1 → 14.1 → 14.2 → 14.3 → 17.3 → 18.2 → 18.3 → 19

• Sections labeled with one asterisk ∗ request some previous knowledge in real
analysis, differential systems and elements of geometry. For these readers we
recommend in addition to the "No ∗ asterisk path" to add the following sections:

3.4 → 3.5 → 3.6 → 3.7 → 3.10 → 6.3 → 6.4 → 7.5 → 9.4 → 9.6.2 →

10.4.3 → 10.6.2 → 11.2 → 11.5 → 12.2 → 12.3 → 12.4 → 12.5 → 12.6 →

13 → 14.4 → 14.5 → 15.2 → 18.1 → 18.4.

xi



xii Preface to the Third Edition

• Sections labeled with two asterisks ∗∗ address to mathematicians or theoretical
physicists, or anyone who finds useful de dedicate some time practicing a higher
level of mathematics, like algebraic topology, differential geometry, or nonlinear
differential systems. For these readers,we recommend in addition to the “∗ asterisk
path” to add the following sections:

2.2 → 2.3 → 3.8 → 3.9 → 3.11 → 6.2 → 7.2 → 7.4 → 7.6 → 8 → 9.2

→ 10.4.2 → 10.4.4 → 10.4.5 → 10.4.6 → 10.4.7 → 10.6.3 → 11.3 →

11.4 → 15.1 → 15.3 → 16 → 17.

Besides corrections made in the previous editions, the goal of this third edition
is to implement latest results on solitons traveling on closed, compact surfaces or
curves. We cover again mathematical and physical problems ranging from nuclear to
astrophysical scales. The third edition provides additional examples of systems and
models where the interaction between nonlinearities and the compact boundaries is
essential for the existence and the dynamics of solitons.

The first historic mention of what we call today soliton was made in 1834 by
John Scott Russell following his discovery of a new type of waves of translation [1].
The mathematical model for such waves, the Korteweg-de Vries (KdV) equation,
was first introduced by Boussinesq in 1877, and it was rediscovered in 1895 by
Diederik Korteweg and Gustav de Vries [2]. Relations between nonlinear differential
equations and differential geometry, without any reference yet to solitons, were first
discovered by Edmond Bour in 1862 in the course of the study of surfaces of constant
negative curvature, like the Gauss—Codazzi equation for surfaces of curvature −1
in R3. This is the first mention of the sine-Gordon equation u − sinu = 0. The
equation was rediscovered by Frenkel and Kontorova in 1939 in their study of crystal
dislocations [3]. Only starting with 1970, this equation attracted a lot of attention due
to the presence of soliton solutions and its mathematical connection with differential
geometry. Therefore, it is the main goal of this book to focus on such interesting
and/or recent aspects of relations between nonlinear integrable systems with their
soliton solutions and differential geometry, mainly defined on compact manifolds.

The book consists of 19 chapters organized in four parts, a mathematical annex,
and a bibliography. The first part contains the fundamentals of topology, differential
geometry, and analysis approaches. To render this book accessible to students in all
STEM disciplines, Chap. 2 recalls some basic elements of topology with emphasis
on the concept of being compact. Chapter 3 introduces the reader to calculus on
differentiable manifolds, vector fields, differentiable forms, and various types of
derivatives. We take the reader from the definition of the differential manifold all
the way to the Poincaré lemma. Next, in this chapter, we introduce different types of
fiber bundles, the Cartan theory of frames, and the theory of connection and mixed
covariant derivatives. Without always presenting the proofs, we tried though to keep
a high level of rigorousness (relying on classical mathematical textbooks) all across
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the text while we still introduce intuitive comments for each definition or affirmation.
In Chap. 4, we review various representation formulas for various dimensions. These
formulas justify how the information about the evolution of smooth physical fields
inside a bounded region can be recovered only from the information on the region’s
boundary.

The second part of the book is devoted to applications of differential geometry in
the theory of curves and surfaces.Chapter 5 lays the basis for the differential geometry
of curves in spaceswith three dimensions.We introduce special sections for the theory
of closed curves and curves lying on surfaces. Complementary to these, in Chap. 6,
we introduce elements of the geometry of surfaces with applications to the action of
differential operators on these surfaces. In Chap. 7, we derive the theory of motion
of curves in two and three dimensions, and we emphasize the relationships between
theory of motion of curves and solitons. We devoted a section on the axiomatic
deduction of the theory of curve motions based on differentiable forms and Cartan
connection theory. We describe the relationships between some special motions of
curves and solitons.We describe nonlinear integrable systems that can be represented
by such motions. In Chap. 8, we discuss the theory of motion of surfaces and again
relate such motions to nonlinear integrable systems and solitons.

The third part of the book is dedicated to applications of soliton theory, especially
solitons on closed curves and surfaces, in fluid dynamics. The working frame of
hydrodynamics, which is also the main content of Part III, is presented in Chap. 9.
In Chap. 10, we discuss problems related to liquid surface tension effects and the
associated representation theories for fluid dynamics models. Chapter 11 describes
one-dimensional integrable systems on compact intervals, together with their peri-
odic solutions. In this chapter, we introduce the most common and most used subject
in nonlinear waves, the Korteweg-de Vries equation and system. In Chaps. 12–14,
we approach the same type of problems except in higher dimensions. We describe
and analyze nonlinear shape excitations for two and three-dimensional compact fluid
systems, like liquid drops, liquid shells, etc.

Chapter 15 is devoted to other applications of soliton theory on compact surfaces
in one to three dimensions like nonlinear shapes of layered liquid drops, compact
supported solitons, or the relationship between solitons and collective motions of
nonlinear dynamical systems with boundary.

In the fourth part of the book, as a closure for the first three parts, we present
novel and interesting physical (and even biological) applications of the theory of
nonlinear systems and their soliton solutions. We describe several physical systems
at different space-time-energy scales. In Chap. 16, we study the vortex filaments and
other one-dimensional flows. In Chap. 17, we describe microscopic applications of
solitons and instantons in the theory of elementary particles and quantum fields, in
description of exotic shapes of heavy nuclei, the phenomenon of exotic radioactivity
and relationships between solitons on closed curves and quantum Hall drops.

Chapter 18 containsmacroscopic scale applications of compact supported solitons
in magnetohydrodynamic, plasma systems, elastic solids with surface, nonlinear
surface diffusion, and neutron stars.



xiv Preface to the Third Edition

The book is completed by a mathematical annex, including an original section
on the theory and applications of nonlinear dispersion relations, and their use for
the qualitative description of the soliton solutions of nonlinear partial differential
equations.

A legitimate question of the potential reader would be: “Why one more book
on solitons?” First of all, we have to acknowledge the importance of the interac-
tions between compact boundary manifolds and the dynamics of particles and fields
in mathematical in physical models. Historically, the solitons are observed in sort
of “infinite” systems like infinite long lines or curves, planes or open surfaces, or
unbounded space. However, there is more and more evidence of the existence soli-
tons or of localized patterns (like vortices) in compact lower dimensional spaces,
like closed curves and/or surfaces. As examples, we can mention the unprece-
dented information technology advances in optical communication (light bullets and
ultra-short optical pulses), solid-state spectroscopy, ultra-cold atom studies, soliton
molecules, spinning solitons, quantum computers, spintronics and mass memory
systems, femtosecond laser pulses,mesoscopic superconductivity, etc.Consequently,
the reasons for writing this book are generated by a constantly increasing number of
new challenges, vivid topics and hundreds of published articles. As one last comment,
we mention that this book is not devoted to the teaching of general theory of solitons,
or the Inverse Scattering Transform, and other traditionalmethods to obtain nonlinear
solutions. This book opens a new direction in the field of nonlinear system, namely
about nonlinear waves and solitons evolving in compact spaces, like closed curves,
contours, and closed surfaces, etc.

If a substantial percentage of users of this book feel that it helped them to enlarge
their outlook in the intersection between the fascinating worlds of nonlinear waves
and compact surfaces and closed curves, its purpose has been fulfilled.

During the production of this third edition of this book, I have received the best
support and uninterrupted encouragement from my family. I have also greatly bene-
fited from discussions with my colleagues, and I am particularly grateful to Adrian
S. Carstea and Denys Dutykh who provided valuable help in the elaboration of this
edition.

Daytona Beach, FL, USA Andrei Ludu
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Nonlinear phenomena represent intriguing and captivating manifestations of nature.
The nonlinear behavior is responsible for the existence of complex systems, catas-
trophes, vortex structures, cyclic reactions, bifurcations, spontaneous phenomena,
phase transitions, localized patterns and signals, and many others. The importance of
studying nonlinearities has increased over the decades and has found more and more
fields of application ranging from elementary particles, nuclear physics, biology,
wave dynamics at any scale, fluids, plasma to astrophysics. The soliton is the central
character of this 178-year-old story. A soliton is a localized pulse traveling without
spreading and having particle-like properties plus an infinite number of conserva-
tion laws associated to its dynamics. In general, solitons arise as exact solutions of
approximate models. There are different explanation, at different levels, for the exis-
tence of solitons. From the experimenter’s point of view, solitons can be created if
the propagation configuration is long enough, narrow enough (like long and shallow
channels, fiber optics, electric lines, etc.), and the surrounding medium has an appro-
priate nonlinear response providing a certain type of balance between nonlinearity
and dispersion. From the numerical calculations point of view, solitons are localized
structures with very high stability, even against collisions between themselves. From
the theory of differential equations point of view, solitons are cross-sections in the jet
bundle associated to a bi-Hamiltonian evolution equation (here Hamiltonian pairs are
requested in connection to the existence of an infinite collection of conservation laws
in involution). From the geometry point of view, soliton equations are compatibility
conditions for the existence of a Lie group. From the physicist point of view, solitons
are solutions of an exactly solvable model having isospectral properties carrying out
an infinite number of non-obvious and counter-intuitive constants of motion.

The progress in the theory of solitons and integrable systems has allowed the study
of many nonlinear problems in mathematics and physics: non-local interactions,
collective excitations in heavy nuclei, Bose—Einstein condensates in atomic physics,
propagation of nervous pulses, swimming of motile cells, nonlinear oscillations of
liquid drops, bubbles, and shells, vortices in plasma and in atmosphere, tides in
neutron stars, only to enumerate few of possible applications. A number of other
applications of soliton theory also lead to the study of the dynamics of boundaries.

xv



xvi Preface to the Second Edition

In that, the last three decades have seen the completion of the foundation for what
today we call nonlinear contour dynamics. The subsequent stage of development
along this topic was connected with the consideration of an almost incompressible
systems, where the boundary (contour or surface) plays the major role.

Many of the integrable nonlinear systems have equivalent representations in terms
of differential geometry of curves and surfaces in space. Such geometric realizations
provide new insight into the structure of integrable equations, as well as new physical
interpretations. That is why the theory of motions of curves and surfaces, including
here filaments and vortices, represents an important emerging field for mathematics,
engineering and physics.

The first problem about such compact systems is that shape solitons,which usually
exist in infinite long and shallow propagation media, cannot survive on a circle or
sphere. That is because such compact manifolds cannot offer the requested type
of environment (long and narrow), even by the introduction of shallow layers and
rigid cores. However, there is another basic idea that supports, in a natural way, the
existence of nonlinear solutions on compact spaces. Because of its high localization,
a soliton is not a unique solution for the partial differential system. Its position in
space is undetermined because, far away from its center, the excitation is practically
zero. On the other hand, all linear equations provide uniqueness properties for their
solutions. It results that strongly localized solutions and almost compact supported
solutions can be generated only within nonlinear equations. There is an exception
here: the finite difference equations with their compact supported wavelet solutions,
but in some sense, a finite difference equation is similar to a nonlinear differential
one.

Despite themany applications andpublications onnonlinear equations on compact
domains, there are still no books introducing this theory, except for several sets of
lecture notes. One reason for this may be that the field is still undergoing a major
development and has not yet reached the perfection of a systematic theory. Another
reason is that a fairly deep knowledge of integrable systems on compact manifolds
has been required for the understanding of solitons on closed curves and compact
surfaces.

The goal of the second edition of this book is to analyze the existence and describe
the behavior of solitons traveling on closed, compact surfaces or curves. The approach
of the physical problems ranging from nuclear to astrophysical scales is made in the
language of differential geometry. The text is rather intended to be an introduction
to the physics of solitons on compact systems like filaments, loops, drops, etc., for
students, mathematicians, physicists, and engineers. The author assumes that the
reader has some previous knowledge about solitons and nonlinearity in general. The
book provides the reader examples of systems and models where the interaction
between nonlinearities and the compact boundaries is essential for the existence and
the dynamics of solitons.

We focused on interesting and recent aspects of relations between integrable
systems and their solutions and differential geometry, mainly on compact manifolds.
The book consists of 17 chapters, amathematical annex, and a bibliography. First part
contains the fundamental differential geometry and analysis approach. To render this



Preface to the Second Edition xvii

book accessible to students in science and engineering, Chapter 2 recalls some basic
elements of topology with emphasis on the concept of being compact. In Chapter 3,
we review the representation formulas for different dimensions. The formulas express
how a lot of information about the evolution of differentiable forms and fields inside
a compact domain can be recovered only from its boundary. Chapter 4 introduces the
reader to the calculus on differentiable manifolds, vector fields, forms, and various
types of derivatives. We take the reader frommap all the way to the Poincaré lemma.
Next we introduce different types of fiber bundles, including the Cartan theory of
frames, and the theory of connection and mixed covariant derivative (for immer-
sions). Without always presenting the proofs, we tried though to keep a high level of
rigorousness (relying on classical mathematical textbooks) all across the text while
we still introduce intuitive comments for each definition or affirmation. Chapter 5
lays the basis for the differential geometry of curves in R3 We devote here special
sections to closed curves and curves lying on surfaces. Complementary, in Chapter 7,
we introduce the elements of differential geometry of the surfaces with applications
to the action of differential operators on surfaces. In Chapter 6, we derive the theory
of motion of curves, both in two dimensions, and in the general case. We devoted a
section on the axiomatic deduction of the theory of motions based on differentiable
forms and Cartan connection theory. We relate these motions with soliton solutions
and find the nonlinear integrable systems that can be represented by such motions of
curves. In Chapter 8, we discuss the theory of motion of surfaces, and we also relate
it to integrable systems.

The second part of the monograph contains an exposition of the basic branches
of nonlinear hydrodynamics. The working frame of hydrodynamics is the main
content of the first part of the monograph, namely Chapter 9. In Chapter 10, we
discuss the problems on surface tension effects and representation theorems for fluid
dynamics models. Chapter 11 concentrates with one-dimensional integrable systems
on compact intervals, and their periodic solutions. Chapters 12 and 13 deal with
nonlinear shape excitations of two-dimensional and three-dimensional liquid drops
and bubbles. Chapter 14 is devoted to various applications of three-dimensional
nonlinear drops and also to compact supported solitons.

In the third part of the book, as a final goal for the first two parts, we present
additional physical applications of nonlinear systems and their soliton solutions on
various systems of different scales. In Chapter 15, we study the vortex filaments and
other one-dimensional flows. In Chapter 16, we describe microscopic applications
like elementary particles as solitons, instantons, exotic shapes in heavy nuclei, exotic
radioactivity and quantum Hall drops. Chapter 17 deals with macroscopic applica-
tions like magnetohydrodynamic plasma systems, elastic spheres, nonlinear surface
diffusion, and neutron stars.

The book is closed by a mathematical annex including a section on nonlinear
dispersion relations and their use for nonlinear systems of partial differential
equations.

A legitimate question of the potential reader would be: “Why one more book
on solitons?” First of all, we have to acknowledge the importance of the interac-
tions between compact boundary manifolds and the dynamics of particles and fields
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in mathematical in physical models. Historically, the solitons are observed in sort
of “infinite” systems like infinite long lines or curves, planes or open surfaces, or
unbounded space. However, there is more and more evidence of the existence soli-
tons or of localized patterns (like vortices) in compact lower dimensional spaces,
like closed curves and/or surfaces. As examples, we can mention the unprece-
dented information technology advances in optical communication (light bullets and
ultra-short optical pulses), solid-state spectroscopy, ultra-cold atom studies, soliton
molecules, spinning solitons, quantum computers, spintronics and mass memory
systems, femtosecond laser pulses,mesoscopic superconductivity, etc.Consequently,
the reasons for writing this book are generated by a constantly increasing number of
new challenges, vivid topics and hundreds of published articles.

If a substantial percentage of users of this book feel that it helped them to enlarge
their outlook in the intersection between the fascinating worlds of nonlinear waves
and compact surfaces and closed curves, its purpose has been fulfilled.

While writing the second edition of this book, I have greatly benefited from
discussions with my colleagues. I am particularly grateful to Ivailo Mladenov, Thiab
Taha, Annalisa Calini, Adrian Stefan Carstea who provided an inspirational and
valuable help in the elaboration of this second edition. For the best advices and
uninterrupted encouragement, I am indebted to my family.

May 2011 Andrei Ludu
Department of Mathematics

Embry-Riddle Aeronautical University
Daytona Beach, USA
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Everything the Power of the World

does is done in a circle. The sky is

round and I have heard that the earth

is round like a ball and so are all the stars.

The wind, in its greatest power, whirls.

Birds make their nests in circles,

for theirs is the same religion as ours.

The sun comes forth and goes down

again in a circle. The moon does the

same and both are round. Even the

seasons form a great circle in their

changing and always come back again

to where they were. The life of a man

is a circle from childhood to childhood.

And so it is everything where power moves.

Black Elk (1863-1950)

Nonlinearity is a captivating manifestation of the observable Universe, whose impor-
tance has increased over the decades, and has found more and more fields of applica-
tion ranging from elementary particles, nuclear physics, biology, wave dynamics at
any scale, fluids, plasmas to astrophysics. The central character of this 172-year-old
story is the soliton. Namely, a localized pulse traveling without spreading and having
particle-like properties plus an infinite number of conservation laws associated to its
dynamics. In general, solitons arise as exact solutions of approximativemodels. There
are different explanations, at different levels, for the existence of solitons. From the
experimentalist point of view, solitons can be created if the propagation configuration
is long enough, narrow enough (like long and shallow channels, fiber optics, elec-
tric lines, etc), and the surrounding medium has an appropriate nonlinear response
providing a certain type of balance between nonlinearity and dispersion. From the

xix
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numerical calculations point of view, solitons are localized structures with very high
stability, even against collisions between themselves. From the theory of differential
equations point of view, solitons are cross-sections in the jet bundle associated to a
bi-Hamiltonian evolution equation (here Hamiltonian pairs are requested in connec-
tion to the existence of an infinite collection of conservation laws in involution).
From the geometry point of view, soliton equations are compatibility conditions for
the existence of a Lie group. From the physicist point of view, solitons are solutions
of an exactly solvable model having isospectral properties carrying out an infinite
number of non-obvious and counter-intuitive constants of motion.

The progress in the theory of solitons and integrable systems has allowed the study
of many nonlinear problems in mathematics and physics: elementary particle non-
local interactions, collective excitations in heavy nuclei, Bose-Einstein condensates
in atomic physics, propagation of nervous influxes, nonlinear oscillations of liquid
drops, bubbles, and shells, vortexes in plasma and in atmosphere, tides in neutron
stars, etc., only to enumerate few of possible applications. A number of other appli-
cations of soliton theory also lead to the study of the dynamics of boundaries. In that,
the last three decades have seen the completion of the foundation for what today
we call nonlinear contour dynamics. The subsequent stage of development along
this topic was connected with the consideration of a almost incompressible systems,
where the boundary (contour or surface) plays the major role.

The first problem about such compact systems is that shape solitons, that usually
exist in infinite long and shallow propagation media, can not survive on a circle or
sphere. That is because such compact manifolds can not offer the requested type
of environment (long and narrow), even by the introduction of shallow layers and
rigid cores. However, there is another basic idea that supports, in a natural way, the
existence of nonlinear solutions on compact spaces. Because of its high localization, a
soliton (or a compacton) is not a unique solution for the partial differential system. Its
position in space is undetermined because, far away from its center, the excitation is
practically zero. On the other hand, all linear equations provide uniqueness properties
for their solutions. It results that strongly localized solutions and almost-compact
supported solutions can be generated only within nonlinear equations. There is an
exception here: the finite difference equations with their compact supported wavelet
solutions, but in some sense, a finite-difference equation is similar to a nonlinear
differential one.

Despite themany applications andpublications onnonlinear equations on compact
domains, there are still no books introducing this theory, except for several sets of
lecture notes. One reason for this may be that the field is still undergoing a major
development and has not yet reached the perfection of a systematic theory. Another
reason is that a fairly deep knowledge of integrable systems on compact manifolds
has been required for the understanding of solitons on closed curves and compact
surfaces.

The main aim of this book is to present models of nonlinear phenomena that
occur mainly on closed, compact surfaces or curves, especially where solitons and
solitary waves are involved. The approach of the physical problems ranging from
nuclear to astrophysical scales is made in the language of differential geometry. The
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text is rather intended to be an introduction to the physics of solitons on compact
systems like filaments, loops, drops, etc., for students, mathematicians, physicists,
and engineers. However, the book does not elaborate on the general theory of solitons,
or the inverse scattering problem, for example. The author assumes that the reader
has some previous knowledge about solitons, integrable systems and nonlinearity in
general. The book furnishes the reader with models related to compact boundaries
and their nonlinear dynamics, and, if available, with soliton-like solutions. This is
a book to be read with pencil, paper, and a symbolic computer program at hand.
Our intention is to furnish readers with enough knowledge to be able to identify,
understand, and model such nonlinear systems.

This text is still far from being a comprehensive study on the topic of solitons on
compact systems. It consists of 18 chapters, an appendix, and a bibliography. First
part contains the fundamental differential geometry and analysis approach. To render
this book accessible to students in science and engineering, Chapter 2 recalls some
basic elements of topology. In Chapter 3, we review some representation formulas
for different dimensions, as expressions of the comprehensive information contained
in the boundaries. Chapter 4 introduces the reader in the calculus on differentiable
manifolds, vector fields, forms, and various type of derivatives. Chapter 5 lays the
basis for the differential geometry of curves inR3. In Chapter 6, we derive the theory
of motion of curves, and we relate these motions with soliton solutions. In Chapter 7,
we recall some elements of differential geometry of the surfaces, with applications
on the action of differential operators on surfaces. In Chapter 8, we discuss the theory
of motion of surfaces.

The second part of the monograph contains an exposition of the basic branches
of nonlinear hydrodynamics. The working frame of hydrodynamics is the main
content of the first part of the monograph, namely, Chapter 9. In Chapter 10, we
discuss the problems on surface tension effects and representation theorems for fluid
dynamics models. Chapter 11 concentrates with one-dimensional integrable systems
on compact intervals, and their periodic solutions. Chapters 12 and 13 deal with
nonlinear shape excitations of two-dimensional, and three-dimensional liquid drops
and bubbles. Chapter 14 is devoted for various applications of three-dimensional
nonlinear drops, and also to compact supported solitons.

In the third part of the book, as a final goal for the first two parts, we present
additional physical applications of nonlinear systems and their soliton solutions on
various systems of different scales. In Chapter 15, we study the vortex filaments and
other one-dimensional flows. In Chapter 16, we describe microscopic applications
like exotic shapes in heavy nuclei, exotic radioactivity, and quantum Hall drops.
Chapter 17 deals with macroscopic applications like magnetohydrodynamic plasma
systems, elastic spheres, neutron stars, etc.

The book is closed by a mathematical annex including a section on nonlinear
dispersion relations and their use for nonlinear systems of partial differential
equations.

The last comment of this preface would be: Why one more book on solitons, and
why on compact spaces? A first answer is that there are already a large number of
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application on these vivid topics and hundreds of published articles. On the other
hand, there is the importance of compact manifolds themselves in physics.

If a substantial percentage of users of this book feel that it helped them to enlarge
their outlook in the intersection between the fascinating worlds of nonlinear waves
and compact surfaces and closed curves, its purpose has been fulfilled.

I have greatly benefited from discussions with my colleagues and students, and I
am particularly grateful to Thiab Taha for his sedulous and constant effort to provide
the frame for such discussions through his nonlinear waves meetings. I should like
to thank to whom gave me help and support to write this book: Randall J. Webb,
Austin L. Temple, and the National Science Foundation (through the grant PHYS-
0140274). For interesting and helpful conversations, I am indebted to many friends.
For discussions and constant encouragement, I am indebted to my family. During
the completion of the manuscript, Bob Odom has given me valuable suggestions.
The last but not at all the least I am thankful to the Watson Library and the group
working with the Illiad interlibrary borrowing who offered me the chance to cover
all the necessary references.

June 2009 Andrei Ludu
Department of Physics and Astronomy

Louisiana State University
Baton Rouge, USA
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Chapter 9
Kinematics of Fluids

The goal of this chapter is to discuss the general frame of hydrodynamics, like
particle trajectories (path lines), stream lines, streak lines, free surfaces, and fluid
surfaces, and to compare their behavior in the Eulerian and Lagrangian frames. The
following sections and chapters proceed on the assumption that the fluid is practically
continuous and homogeneous in structure. Of course, the concept of continuum is
an abstraction that does not take into account the molecular and nuclear structure of
matter. In that, we assume that the properties of the fluid do not change if we consider
smaller and smaller amounts of matter [1]. May be the wisest point of view while
we remain at the level of general laws of fluid dynamics (or fluid mechanics) is to
keep the physical scales rather vague [2]. This aspect is in direct relation with the
fact that these laws can be made dimensionless in a large variety of situations.

9.1 Lagrangian Verses Eulerian Frames

In fluid dynamics there are two possible approaches for the dynamical equations: the
Lagrangian (also called material or convected) frame and the Eulerian (also called
the spatial) frame. In the Lagrangian frame we identify and label individual particles
of fluid, and we setup the frame such that particles retain their coordinate labels
in time. In this approach, it is more likely to use topology and group continuous
transformation tools. The Eulerian frame describes the fluid from a stationary lab
frame. The motion of fluid is recorded at a fixed point verses time. In this approach
the mathematical tools are more related to geometry and field theory. In the fol-
lowing, we use the Eulerian approach, unless an explicit statement is made to the
contrary. The fields that characterize the fluid are defined on some domains in the
three-dimensional Euclidean space and they have a certain degree of mathematical
smoothness. The degree of smoothness is chosen for a given fluidmodel such that the
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coarse grain structure of the infinitesimal fluid particles introduced above is not seen
by the differential equations (i.e., the molecular structure of the matter). In other
words, the fluid particle is small enough to allow the existence of smooth space–
time differentials, but large enough to average the molecular and quantum properties
over its volume. The fields under consideration are the velocity field v(r, t), the
non-negative defined mass density ρ(r, t), and the pressure field P(r, t). Of course,
function of necessity, we can add the distribution of energy, free energy, enthalpy,
entropy, force density, or other fields of interest [1, 3] to these fields. We assume,
unless otherwise specified, that these fields are smooth enough so that the standard
calculations may be performed on them.

9.1.1 Introduction

In practice we consider r = (x, y, z) ∈ D a point in domain D filled with fluid,
and consider the particles moving in space and time. In the Lagrangian approach, at
every moment of time t we defined the spatial velocity of a certain particle of fluid
as V = d r

dt .
TheEulerian velocity field (spatial velocity field)V (r, t), in principle not constant

in time, is the velocity of a fluid particle that passes at moment t through the point
r . The Lagrangian frame is attached to that fluid particle, and it records the changes
in velocity, density, etc., happening with this particle verses its own local time,
measuredwith a clock attached to it. In such a Lagrangian system, physical quantities
have a complex time dependence. While traveling, the fluid particle has its physical
quantitiesmeasured in the local frame, so they experience a global timevariation (also
called total or Lagrangian or material time derivative) denoted by d

dt , or identified
by placing a dot on the top of the quantity (sometimes it is also denoted D

Dt ). A part
of this time variation happens because the particle travels through different domains
of space, hence experiencing different constraints. Such a partial variation is called
Eulerian, or partial, and it is denoted ∂

∂t or simply by the subscript t . For example,
we choose a fluid particle moving according to the law rL(t), and we measure the
scalar quantity q(t) ≡ q(rL(t), t) associated to this particle, in this frame. The same
quantity can be described in a fixed Eulerian frame, Q(r, t). The relation between
these two formal approaches is given by

q̇ = dq

dt
(r L(t), t) = ∂Q

∂t
(r, t) + V (r, t) · ∇Q(r, t), (9.1)

where ∇ is the gradient operator ( ∂
∂x ,

∂
∂y ,

∂
∂z ), and · represents the usual Euclidean

scalar product. Equation (9.1) is a well-known transformation law in hydrodynamic
literature, yet is valid in a very restricted sense, namely only for scalar quantities and
for the fluid velocity vector. If we try to apply the transformation (9.1) to a general
vector field or to a covariant tensor field, the result fails, because the resulting quantity
is not anymore a geometrical object of the same type. To keep the geometrical prop-
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erties intact, we need a generalization of (9.1) for arbitrary covariant/contravariant
geometrical objects ω. This is the covariant time derivative (also called convected
or material time derivative) and it is defined by

dcω

dt
= ∂ω

∂t
+ v(ω), (9.2)

where v(ω) is the Lie derivative with respect to the flow v. This generalization is
introduced in Sect. 9.2.6.

9.1.2 Geometrical Picture for Lagrangian Verses Eulerian

We introduce theworking space (t, r) ∈ R × R
3. From the Lagrangian point of view,

the fluid particle motions are non-intersecting regular curves ΓL in this base space,
parameterized by time and described by equations rL(t, r0). They are called paths
or material lines [4] or lines of motion [1]. Since they do not intersect, each such
curve is labeled by one of its points, r0, for example the position of the particle when
t = 0. The tangent to this curve is

tL = (1, vL)√
1 + v2

L

,

where vL = ∂r L(t, r0)/∂t is the Lagrangian velocity of the particle along the path.
All these paths do not intersect and completely fill the base space when r0 ∈ R

3.
If we choose a fixed point in space r , some of the paths r0 will intersect this

fixed point, r L(t, r0) = r , so that we can write the “list” of these particles vs. time:
r0 = r0(t, r). Now, we can define the Eulerian velocity at (t, r) by substituting this
r0(t, r) list in the velocity expression

vE (t, r) = vL(t, r0(t, r)). (9.3)

Example 1 We can illustrate the relation between Lagrangian and Eulerian veloci-
ties (9.3) with a simple one-dimensional example. Water is dripping downward from
a hole in gravitational field, and different water molecules depart from the hole at
different initial moments of time t0. So the ΓL curves are vertical parallel lines. Their
laws of motion are

z(t) = g(t − t0)2

2
.
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In terms of some initial position z0 their Lagrangian equations of motion read

zL(t, z0) = g

2

(
t −

√
2z0
g

)2

,

with

vL(t, z0) = g

(
t −

√
2z0
g

)
.

If we choose a reference level at z and equate z = zL , we obtain

z0 = g

2

(
t −

√
2z

g

)2

with the following signification: What is the initial position z0 (at t = 0) of a particle
to pass through the level z at the moment t? The resulting Eulerian velocity is,
according to (9.3),

vE (t, z) = vL(t, z0(z, t)) = √
2zg = const.,

as it should be from mechanics.

Now, we introduce a physical quantity Q defined for any fluid particle. For the
particle labeled by r0 the Lagrangian value QL(t, r0) is defined along ΓL . Suppose
this ΓL intersects a fixed line r = constant at rL(t, r0) = r . By solving this equation
with respect to r0, we have r0 = r0(t, r). We can define now the Eulerian value of
Q by

QE (t, r) = QL(t, r0(t, r)). (9.4)

While following the particle in its motion, the quantity QL has a variation
dQL(t, r0) = (dQL/dt)dt . At r = const., the quantity QE has another variation
dQE = (∂QE/∂t)dt . By differentiation of (9.4) we have dQL = dQE + (d r L ·
∇QE )dt . Since we follow the particle in its motion we have d r L = vLdt . Since all
these relations are infinitesimal, and all are taken at (t, r), we can use either vE or
vL in them. In the end we obtain the classical relation between the Lagrangian and
Eulerian variations of a physical quantity

dQL

dt
=

(
∂QE

∂t
+ (vE · ∇)QE

)
. (9.5)

In local (Eulerian) coordinates (t, r), this equation reads

(t, r) → dQL

dt
(t, r0(t, r)) =

(
∂QE

∂t
+ (vE · ∇)QE

)

(t,r)
. (9.6)
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In the Lagrangian coordinates (t, r0), same equation reads

(t, r0) → dQL

dt
(t, r0) =

(
∂QE

∂t
+ (vE · ∇)QE

)

(t,r=rL (t,r0))
. (9.7)

The Lagrangian motion of particles is represented by a family of curves ΓL filling
the base space, and the Lagrangian velocity is a vector field defined on this base
space, parametrized by the flow lines. The Eulerian velocity is the same differential
vector field, except is parametrized by local coordinates, like any regular field. Con-
sequently, a Lagrangian physical quantity QL is represented by a family of curves
ΓQ lying in a base spaceR × R

3 × Q̂, where Q ∈ Q̂. The Eulerian value of the same
quantity is a regular surface QE (t, r) parametrized by the base space and immersed
in R × R

3 × Q̂. The Eulerian derivative is the partial derivative of QE . The particle
paths ΓL have tangents

tL = 1√
1 + v2

L

(1, vL).

Fig. 9.1 The Lagrangian–Eulerian point of view for a one-dimensional flow. The path of a fluid
particle is represented in the base horizontal plane by the curve xL (x0, t); all such fluid paths are
labeled by their x0 initial points. The mapping of the fluid path into the base space of a physical
observable Q is a curve xQ(x0, t), i.e., the Lagrangian value of the physical quantity QL (x0, t).
The Lagrangian variation along the fluid path is dQL in a certain dt . But, if we measure Q at a
constant position x , we have its Eulerian value, and consequently its Eulerian variation dQE for
the same time interval dt . The Eulerian value QE (x, t) actually represents the Lagrangian value
associated to another particle (dashed line) that actually moves through the same spot x at t + dt .
When fluid particles fill up the space x and move, the Lagrangian values of the physical quantities
associated to the particles of fluid generate curves, but the Eulerian values generate a surface
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The curves for QL lying in the base space have tangents

t̂Q = 1√
1 + v2

L + Q̇2
L

(1, vL , Q̇L),

where the dot means time differentiation. In this geometrical context, the relation
between Lagrangian and Eulerian variations (9.5) reads

Q̇L = DtΓL
QE , or Q̇L(t) = (QE ◦ ΓL)

′(t).

The Lagrangian derivative is just the directional derivative of the function QE along
the particle path, see Fig. 9.1.

9.2 Fluid Fiber Bundle

9.2.1 Introduction

Hydrodynamics studies the motion of fluid particles. The combination between the
discrete labeling of the system of particles on one hand, and the smooth dependence
of physical quantities on time on the other hand enhances the importance of families
of curves for hydrodynamical systems. Somehow, this fact has a geometrical back-
ground arriving from the importance of compact submanifolds (closed curves, closed
surfaces) for vector fields and flows (see Sect. 3.5) and [5]. Curves of special interest,
parametrized by time, are the path lines, stream lines, streak lines, and vorticity lines,
studied from both Lagrangian and Eulerian points of view (Sect. 9.1.2). Moreover,
there are the fluid particle lines (also called material lines, particle contours, or cir-
cuit lines) and filaments especially important in conservation laws. We can raise the
question if such particle contours are stable or they break at a certain point, or if
they are invariant, etc. For example, to use the Kelvin or Ertel’s theorems for closed
contours (Theorem 10.3) related to invariants of the fluid dynamics, we need to have
rigorous definition for the material lines of fluid particles than just intuition.

Example 2 To exemplify such a possible situation, when a particle contour can
deform up to a breaking point (because of a stagnation point of the flow, for exam-
ple) we choose an incompressible inviscid irrotational two-dimensional flow past a
cylinder. To solve the flow we use a conformal mapping procedure. The velocity
field is represented by v(z) = φx + iφy , z = x + iy, and it is tangent to the curves
φ = const. because of the Riemann–Cauchy conditions. We build the holomorphic
function H(z) = Φ(x, y) + iΨ (x, y) where Φ is the potential function and Ψ is the
stream function, i.e., the harmonic conjugate function to Φ. We have

v = dH∗

dz
,



9.2 Fluid Fiber Bundle 209

and the cylinder contour Γ equation is x2 + y2 = 1. We perform the transforma-
tion u + iv = ω = f (z) = z + z−1. The cylinder contour transforms into f (Γ ) =
{z|v = 0}. A solution of the Laplace equation in the ω coordinates and for the bound-
ary condition ω = 0 on f (Γ ) is G(Φ) = Φ0ω. We have

H(z) = G ◦ f (z) = A

(
z + 1

z

)
.

For example, in polar coordinates the stream lines (Ψ = const.) become

Ψ0

(
r − 1

r

)
sin φ = C = const.

The equation of the stream lines becomes

r(φ) =
r0 +

√
r20 + 4 sin2 φ

2 sin φ

and the Eulerian velocity is

v = Ψ0

(−y cosφ(x2 + y2 − 1) + x sin φ(x2 + y2 + 1)

(x2 + y2)3/2
,

x cosφ(x2 + y2 − 1) + y sin φ(x2 + y2 + 1)

(x2 + y2)3/2

)
.

From the Euler equation the pressure becomes

P = Ψ 2
0 ρ

2(x2 − y2) − 1

2(x2 + y2)2
,

where ρ is the density. In Fig. 9.2 we present the pressure distribution around the
cylinder contour. The Lagrangian paths of fluid particles are obtained by numerical
integration of the equations

∂2x

∂t2
∂x

∂x0
+ ∂2y

∂t2
∂y

∂x0
= −1

ρ

∂P

∂x0
, . . . etc.

In Fig. 9.3 we present the isobaric and stream lines, and the evolution of a particle
contour line (thick line). Initially we choose all particles of this contour line to lie
along a vertical segment. Then, we calculate their Lagrangian positions at a later
moment of time. We notice the tendency of the contour line to spread and tear. In
an extreme example this line may even be broken by possible abrupt changes in
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Fig. 9.2 Pressure distribution for a two-dimensional incompressible inviscid irrotational flow past
a cylinder

Fig. 9.3 Stream lines and isobaric lines (thin lines) for a two-dimensional incompressible inviscid
irrotational flow past a cylinder. Thick lines: a finite particle contour at t = 0 (the vertical segment),
and its Lagrangian flow at a later moment of time

the Lagrangian velocities. This example shows that it makes sense to analyze the
geometry and stability of particle contours for a general flow.

9.2.2 Motivation for a Geometrical Approach

We can always present a fluid using the following traditional picture of the flow, also
introduced in Sect. 9.1.2. We introduce the available space for the fluid (the reference
fluid container [6, 7]) as a domainDofR3, and add an extra dimension for time to form
abase spaceD × R. The particle paths r L(r0, t) are smooth time-parametrized curves
in this base space. The projection on the horizontal planes (projections perpendicular
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Fig. 9.4 A two-dimensional fluid domain D(r0) shown at two moments of time 0, t , and two path
lines rL (t) whose tangents are the Lagrangian velocities vL . The projection of the Lagrangian
velocity field on the tangent space of the fluid domain is the Eulerian velocity field vE . The integral
curves of the Eulerian vector field in the fluid domain, at a given moment of time t , are the stream
lines at that moment (dotted lines). The projections of the path lines on the fluid domain do not
coincide with path lines in general

on the time axis) of the tangent vectors to these curves represents the velocity fields
of the particles. The two velocities, i.e., the Lagrangian (material) and Eulerian
(spatial) velocities, have the same value at the same point of the base space. The only
difference between these two types of velocities consists in the parametrization of
the vector fields. The Lagrangian velocity field is defined along the particle paths in
the base space, while the Eulerian velocity field is defined on the horizontal plane,
in points where these paths intersect it, at a moment of time t . The integral curves of
the Eulerian velocity field contained in any “horizontal” plane are the stream lines
at that moment of time. However, the path lines do not identify with the lift of the
stream lines in the base space. Namely, if we choose a point r in some horizontal
plane t and we compare the path line crossing through this point, and the vertical lift
of the stream line crossing the same point, these two curves are different in general.
An example is presented in Fig. 9.4. In Fig. 9.5 we show another example of path
lines and stream lines, when the particle moves along an open path, but locally the
stream lines may appear to be closed.

For any given fixed point r0 in the initial plane, we can draw all paths crossing
this at different moments of time (Fig. 9.6). The intersections of all these paths with
a certain horizontal plane t generate a streak line initiated by a “nozzle” placed at r0.
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Fig. 9.5 A two-dimensional example. A path line in the physical space R
2 (horizontal solid curve)

and in the base space X (lifted solid curve), and associated stream lines at different moments of
time (dashed lines)

Fig. 9.6 Same space as in
Fig. 9.4, except we present
several paths emerging from
the “nozzle” point r0
(dashed-dotted axis) at
different moments of time.
The intersections of all such
paths with a horizontal plane
t provide a streak line
(dotted) generated by the
“nozzle” at t
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In traditional approaches, see for example [2, 8–10], the motion of the particles
is described by a one-parameter (time) group of diffeomorphisms acting on the
domain D(r0). The Lagrange coordinate of a particle is the result of the action of
this group on the corresponding element r0. If the motion is incompressible, the
group of diffeomorphisms is volume preserving. In this formalism, the infinitesimal
generator of the group is the Lagrangian field of velocities.

However, even practical, such amodel is not quite perfect. That is because we tend
to associate the samegeometrical space to physical spaceswith different signification,
namely thematerial points (initial positions space), and the spatial points per se. Even
if initially (t = 0) the positions r0 of all fluid particles, r0 ∈ D, belong to the position
space during the motion, these vectors actually form a space of parameters, labeling
the particles. On the other hand, the positions of the particles at any arbitrary moment
of time (given by the Lagrangian equations of motion rL(r0, t)) belong to a space of
positions. The above picture does not make this difference a geometrical difference,
and in that is incomplete and difficult to generalize for more complicated flows. For
example, in Fig. 9.4, we can see that the stream lines at different moments of time
belong to different planes. We need to make the distinction between the material
space and the space of positions from a geometrical perspective. This is possible by
using a fiber bundle structure instead of a common space.

9.2.3 The Fiber Bundle

We present a formalism in which a fluid is described using cross-sections σ in a
fiber bundle F over some base manifold X . For the definitions and properties of a
fiber bundle, the reader can check Sect. 3.9 and its [6, 7, 11, 12]. An intuitive picture
of a fiber bundle consists in taking a certain manifold called fiber F , and assigns a
homeomorphic transformation of F to any point of a base manifold X , constructing a
sort of a local cartesian product. In the case of a fixed container for the fluid (even the
case of the whole space), the traditional model is to consider the base as the space of
particles (usually labeled by their initial positions) and the fiber is the space available
for particle positions (see Fig. 9.7, left). On the contrary, a free surface introduces
one more freedom in the problem.We cannot construct it using the same pattern (see
Fig. 9.7, center) because we allow different particles to belong to different shapes
simultaneously, which is impossible. A possible choice to build a fiber bundle is
borrowed from the mechanics of deformable bodies (see Fig. 9.7, right). The base
space is the manifold of all possible shapes, and the standard fiber is particle position
space. The role of the particle labeling space is taken over by the nontrivial structure
group.

The base manifold (for the nonrelativistic case) is usually a space–time mani-
fold built as a product between a smooth three-dimensional oriented Riemannian
manifold (M, g), where g is the metric, and R for time, i.e., X = M × R. The coor-
dinates in X are x = (xμ) = (xi , t) ∈ X , with i = 1, . . . , 3,μ = 1, . . . , 4. For fluid
dynamics we can choose the fiber F = M with coordinates y ∈ F [6]. Consequently,
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Fig. 9.7 Possible fiber bundle structures (M, F) for fluid dynamics problems. Left: In the case of
no free surface the base space is the space of particles, and the fiber is the space available for the
particles positions; Center: A free fluid surface introduces more freedom in the problem making
the previous (Left) structure inoperable. It would allow different particles to belong to different
shapes simultaneously, which is impossible; Right: Mechanics of deformable bodies model for the
fiber bundle. The base space is the manifold of all possible shapes, and the standard fiber is particle
position space. Dotted line means that time does not need necessarily to be included explicitly in
the geometry picture

the local coordinates in this F bundle over X are (x, t, y), and the projection is
Π : F → X, (x, t, y) → (x, t). Transformations and operations that affect only the
base (spatial changes like rotations, etc.) are called fiber-preserving transformations.
A lift of any geometrical object γ (a curve, surface, function, form, etc.) defined in
the base space is a map of this object into the fiber bundle, γ → γ′ ∈ F , such that it
projects back down to the original object in M , Π ◦ γ′ = γ.

Cross-sections in this bundle σ : X → F represent time-dependent configura-
tions, i.e., particle position fields. The cross-section has the coordinates σ(x) =
(xμ,σi (x)) = (xμ, yi ). On the top of the configuration bundle E , we can construct
another fiber bundle J 1F over F called the first jet bundle [6, 13], with the fiber
above (x, y) consisting of linear maps from the tangent space of the base space to
the tangent space of the bundle, γ : Tx X → T(x,y)F , satisfying dπ ◦ γ = IdTx X .

For any cross-section σ in F over X , the differential dσx at x (also called tan-
gent map, see Sect. 3.1) is an element of the jet bundle J 1Fσ(x). Consequently, the
map x → dσx is a cross-section of the jet bundle over X . This section, denoted
j1σ, is called the first jet extension of σ. In coordinates, it is given by j1σ(x) =
(xμ,σi (x), ∂μσ

i ), where ∂μ = (∂i , ∂t ). It is this triple which represents the fluid
motion. The first three base coordinates space components xi , originally coming
from the initial positions of the fluid particles, now represent the particle labeling.
The σi (x) components identify the position of the x particle in space, and the ∂tσ

i

components represent the velocity of the particle x .
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9.2.4 Fixed Fluid Container

For the case when the fluid moves in a fixed region, i.e., with fixed boundaries, the
group structure of the fiber bundleF is the identity, and the bundle is trivial,F = X ×
M . The spatial part of the base manifold M represents the reference configuration
(initial positions of all fluid particles). Actually, the coordinate x ceases to represent
the initial position, but remains attached to the particle and labels it for the rest of
the evolution. So, the space part of the base manifold x (the material points) labels
the fluid particles through the one-to-one correspondence between particles and their
initial positions in the reference fluid container. The time base X corresponds to the
time evolution. The fiber over any base point is the same manifold, meaning that the
space available for any particle is the same at any moment of time. Its coordinates y
are called spatial points. The fiber at any point F(x,t) represents the available space
for particle x at the moment t , and it is diffeomorphic with M , i.e., the reference fluid
container [6, 7]. In the case of F , the requirement for the existence of a projection
Π : F → X from the definition of a fiber bundle (Sect. 3.9, Definition 26) guaranties
that all points of the fiber, at any point of the base, are filled with fluid.

The fluidmotion is described by a cross-section σ(x, t) of the bundleF represent-
ing the particle placement field. Not any cross-section can represent a real motion of
the fluid, and some minimal constraintts are needed. First, σ is not allowed to create
or annihilate fluid particles, and second, two different particles cannot hold the same
spatial point at the samemoment of time. In the traditional approach presented above
(the one not using geometry of a fiber bundle) these two constraintts are fulfilled by
requesting that the Lagrangian paths of the fluid particles represent a diffeomorphism
of the reference fluid container. In the fiber bundle formalism, these two physical
constraintts require a similar thing. The restriction of the cross-section σ(x, t)|t=t0
at a constant t = t0 (for every moment of time t0) needs to be a diffeomorphism of
the manifold F = M . Of course, this is also possible because the bundle is trivial,
and there is a canonical diffeomorphism between any two fibers at any two points.

Let us ignore for a second the deep geometrical implications of the existence of
the group of diffeomorphisms, and let us just look at these conditions locally, in terms
of coordinates. For some more insight into this topic, we recommend for example
[6, 7, 9]. This condition is equivalent to the vector field to be divergence free. This
means that the infinitesimal generator of this diffeomorphisms is a divergence-free
vector field, or in other words that the flow is incompressible.

In addition, the specific cross-section form should result from a solution of the
dynamic equations of motion, for example Euler (10.15) or Navier–Stokes (10.13)
equations, under some additional boundary, initial or regularity conditions which
may be required, too. This constraint will be addressed in the next chapters. For an
explicit discussion of this topics, see for example [6, Theorem 2.1] and reference
herein.

In the local coordinates of a given fiber, y(x, t) ∈ F(x,t) represents the spatial posi-
tion of the particle x at moment t , (x, t, y)σ(x, t). The path lines are the restrictions
of the cross-section rL(x0, t) = σ|x=(x0,t) for fixed point in the space part of the base



216 9 Kinematics of Fluids

space. The tangent vectors to these curves can be expressed in two ways. If we write
vL(x, t) = ∂σv(x, t)/∂t we have the Lagrangian (material) velocity field. The super-
script v (as in vertical) represents the components of the cross-section along the fiber.
The Lagrangian velocity field is actually represented by the last three components
of the cross-section in the first jet bundle dσ. Namely j1σ = (σ, ∂iσ, vL).

Conversely, if we invert the equation y(x, t) with respect to y, we can express
the velocity field in coordinates vL(x(y), t) = vE (y, t), which is nothing but the
Eulerian velocity field. So, even if locally the Eulerian and Lagrangian velocities
coincide at the same point of the fiber bundle F , they are vector fields in different
spaces. The Eulerian velocity is a vector space defined on the standard fiber manifold
F . Indeed, because the fiber at any point F(x,t) is diffeomorphic with the standard
fiber F , according to the minimal constraintts, we can map vectors tangent to any
fiber into vectors tangent to the standard fiber F = M . So, a cross-section σ in F
generates a vector field on F at any moment of time, the Eulerian flow. The integral
curves of this field are, at every moment of time, the collections of time-dependent
stream lines, they lie in the standard fiber, and they have no special assigned parameter
(the stream lines collection is also called flow net [14]). Contrary to the stream lines,
the path lines are time parametrized, hence constant, and they lie in the fiber bundle.
Again, the collection of path lines do not coincide with the flow net in general (they
coincide if the flow is stationary). It is also true that the path lines never cross the
flow net lines.

Ifwe come back to Fig. 9.4,we understand now the trihedron presented there as the
base space, and the horizontal planes as fibers at different points, with their associated
Eulerian fields of velocities. The reunion of all path lines forms the cross-section σ.

Since σ(M, t0) 	 M is a diffeomorphisms because of the minimal constraintts,
the image of any compact set in M is a compact set in F(x,t). Such sets are the
particle structures that remain “stable” to this extent. If such a set is a submanifold
of dimension 1, we call it particle line or material line or circuit line, or filament.
Once identified in the reference fluid container, this line conserves its topological
proprieties in time. If the submanifold is two dimensional, it is a particle surface,
or free fluid surface, etc., and so on. We noticed above that the particle paths are
restrictions of the cross-sections describing the dynamics for constant x . Similarly,
particle lines are restrictions of the cross-section for constant time, and on subsets
of the M manifold: σ(x, t)|(x∈D,t=t0) = σ̂(x)|x∈D.

There is another interesting approach about the path lines as orbits of a group of
diffeomorphisms of the spatial part of the base space. Actually, any such diffeomor-
phism (any flow) can be understood as a relabeling operation of the fluid particles.
Such a relabeling operation is connected with a continuous symmetry of the system.
If we consider the fluid a Lagrangian system and the flow is incompressible, the
Noether current associated to this symmetry is the fluid momentum conservation,
see Fig. 9.8.

In the following, we give an interpretation of the transformation between variation
of Eulerian and Lagrangian quantities (9.1), (9.6), or (9.7) in terms of a connection.

Let us consider again the fiber bundle F representing a fluid confined in a fixed
space domain identified by the manifold M 
 (xi ), where i, j = 1, . . . , 3 and μ =
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Fig. 9.8 Structure of the fiber bundle associated with a fluid. The axes here are the base space (M),
the fiber (F), and the time (t = x0)

0, . . . , 3. The base space is the direct product X = M × R 
 (xμ) = (xi , x0 = t).
We choose the fiber F = M , a trivial identity structure group G = {e}, the projec-
tion Π , Fx = Π−1(x) and a cross-section σ : X → F . The cross-section maps x =
(xμ) → σa = (x,σ j (x)), and its differential dσ : T X → TF maps Tx X 
 v̂(x) =
(v, v0) = (vi , v0) = (vμ) → ŵ = (w, w0, w̄) = (wi , w0, w̄ j ) ∈ Tσ(x)F , with a =
(μ, j). In components, the action of the differential, which is a section in the first jet
fiber bundle over F , reads

dσ(v̂) =
(

∂σa

∂xμ
vμ

)
=

(
∂σν

∂xμ
vμ,

∂σ j

∂xμ
vμ

)
=

(
∂xν

∂xμ
vμ,

∂σ j

∂xi
vi + ∂σ j

∂t
v0

)
=

(
vν,

(
vi ∂

∂i

)
σ j + v0 ∂σ j

∂t

)
=

(
v, 1, (v · ∇)σ + v0 ∂

∂t
σ

)
, (9.8)

according to (3.4). If we restrict ourselves on curves being path lines in the time
parametrization, the tangent vectors are v̂ = (v, 1), i.e., v0 = 1. The interpretation
of (9.8) is as follows. Spatial part σ of vectors in the tangent space to the base is
in one-to-one correspondence with vectors in the tangent space to the fiber, by the
triviality of F . So σ is actually a fiber vector, i.e., an “Eulerian” vector in a local
space frame. This Eulerian vector is mapped to a vector in the tangent space to the
bundle, which is a “Lagrangian” vector

T M 
 v →
[
(v · ∇) + ∂

∂t

]
σ, with σ̂ = (x,σ) ∈ TF . (9.9)

If we put vE = σ, (9.9) reads dσ(vE ) = vL , i.e., the well-known transformation
between the partial time derivative and the material (total) derivative. In this sense,
(9.9) describes a connection in F in the first jet bundle J 1 (for example, see Olver’s
book [13]). Coming down to theF bundle, we note that the only possible connection
is a trivial one, with zero coefficients. This is because the bundle is trivial, so the only
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admissible infinitesimal transformations are translations. The situation is different if
the shape of the fluid container is allowed to change in time.

Even ifweused such a complicatedfiber bundle construction for the transformation
of the time derivatives, the Eulerian–Lagrangian transformation formula (9.9) is use-
ful so far only for the tangent vectors (i.e., tangent to the path lines), and it cannot
be applied to more general vector fields, not mentioning higher rank mixed tensorial
fields.

9.2.5 Free Surface Fiber Bundle

If the shape of the reference fluid container changes with time (boundaries not fixed
anymore), the fiber Fx depends on the point (xi , t) ∈ X through the time dependence
and the bundle is not anymore a global cartesian product. Consequently, it has a
nontrivial structure group G. If the fluid has only one compact free surface, the fiber
bundle F has a different structure than the one described in Sect. 9.2.4.

We consider the fluid “drop” as a connected, simple-connected domain DΣ 	
D3 ⊂ R

3 with smooth boundary (shape) ∂D = Σ , and under no external forces
or torques. By 	 D3 we mean a diffeomorphisms with the three-dimensional disc
x2 + y2 + z2 <= 1. The drop has a set of possible shapes. If we can parameterize the
set of all possible shapeswith coordinates, we could set the structure of amanifoldM .
The shape coordinates can be determined by the expansion in spherical harmonics,
for example, and we can associate to M the l2(C) space structure with the topology
induced by the norm. We call M the shape space of the drop. The base space will
be, like in the previous case, X = M × R 
 (Σ, t).

For any shape we choose a trihedron fixed in this shape, for example the origin in
the center of mass, and the axes directed toward the positions of some chosen zeros
of the spherical harmonics. The configuration of the fluid within the given shape Σ

will be referred to this trihedron. For a given shape Σ , all possible configurations of
the fluid particles {r|r ∈ DΣ } can be described by the set of diffeomorphic (shape
invariant) transformation of DΣ onto itself. These transformations form a Lie group
of diffeomorphisms Diff Σ . Any element gΣ of this group maps some distribution
of particles inside this shape into another distribution of particles within the same
shape. So, by the minimal constraintts, the fiber over x = (Σ, t) ∈ M is represented
by the group of diffeomorphisms of the shape Π−1(Σ, t) =Diff Σ . The structure
group is the group of diffeomorphisms of the three-dimensional disc, Diff D3 , which
is the group model for all the other diffeomorphisms groups. Consequently, F is
a principal bundle, and the coordinate on the fiber over (Σ, t) is a certain group
transformation Diff Σ 
 gΣ : DΣ → DΣ .

This construction must be carried out for all possible shapes. Thus, the total
configuration space of the fluid F is a fiber bundle over the base X , of fiber Diff Σ .
A shape evolution will be identified by a (time-like) curve γ ∈ X , i.e., a regular
curve of shapes Σ(t) parametrized by time. For any particular shape, we have to
integrate a set of dynamical equations�(Σ, r, t) to find the positions of the particles
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associated to that shape. The shape at any moment of time determines the position of
particles within the fiber. Hence, a cross-section σ : X → F represents the evolution
of the drop, namely in components t → Σ(t) → rL(r0, t) = gΣ(t)(r0). From the
geometrical point of view, the dynamical equations of the free surface fluid are
equations for this section. These are basically the equation of continuity, equations
for momentum conservation (Euler or Navier–Stokes equations), and energy transfer
equation.

For any shape in M , we need to specify its fixed reference trihedron and its
reference (wemay call it initial) distribution of particles r0. This choice is not unique,
and the freedom involved is a typical gauge freedom. A similar gauge freedom
is encountered in electromagnetism when we study magnetic monopoles, in the
dynamics of elastic bodies or in the study of the geometric phase change of the
wave function for time variable Hamiltonian (Berry’s phase). Making a choice for
the trihedron orientation and the reference particle distribution with respect to any
shape is nothing but a cross-section in F . However, the physical results should be
independent of this choice, i.e., gauge invariant.

Translation of the drop center of mass could be eliminated from the beginning, but
the shapes should also conserve total angular momentum. Angular momentum can
be changed by deformations (motion in the base space) and also by particle rotations
(motions in the fiber).We need to “synchronize” the succession of deformations with
a unique succession of rotations, such that total angular momentum to be constant. In
that, we can introduce a new type of connection, different from that one introduced
above between Eulerian and Lagrangian approach on tangent vectors (9.9).

For any given smooth curve γ in the base space M , we need to lift it to a curve γ′
in the total spaceF in a unique way. Remember that a lift is a map γ ∈ M → γ′ ∈ F
such that Π(γ′) = γ. However, the lift of a path is not unique by definition. The
mathematical tool needed to make it unique is the connection [12, 15]. A connection,
or better said its differential expression, would assign to any tangent vector v(x) ∈
TxM , an element in T Fx , which is the Lie algebra of the group Diff Σ . Globally,
when we move along a closed path in M the corresponding lifted path in F may not
be closed. That is for γ(x0) = γx1 we may have γ′(x0) = γ′x1 in F . Two different
points on the same fiber mean a relabeling of the particles, or a motion inside the
drop. Such a relabeling could be associated with a finite nonzero rotation of the drop.
The drop begins to move by changing its shape and ends up to the same initial shape
after a finite amount of time. But during this motion, it actually undergoes a net
rotation.

A similar situation happenswhenwe build the configuration space of a deformable
body. Again, we choose for any shape a trihedron fixed in this shape. The orientation
of the body, ignoring free translations of the center of mass, could be described by a
proper rotation matrix R̂ ∈ SO(3) which maps the body-fixed trihedron to a space
frame contained in the ambient space in which the drop is constrained to move, i.e.,
R

3. Thus, the total configuration space F is a fiber bundle over the base M × R, of
fiber SO(3).

Like in the case of the drop, the angular momentum of the body can be changed
by deformations (motion in the base space) and also by rotations (motions in the
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fiber). In this example, the connection assigns to any tangent vector v(x) ∈ T M , an
element in T SO(3), which is nothing but the Lie algebra so(3). When we move
along a closed path in M the corresponding lifted path is not closed in general. Two
different points on the same fiber mean a change in the orientation, a rotation. The
body moves and changes its shape, but during this motion, it undergoes a rotation.
However, because the SO(3) Lie group is not commutative, there are problems in
integrating this lifted path in the fiber. The problem is solved, for example in gauge
field theory, by the so-called Wilson integral. In [12] there is an eloquent example,
namely the falling cat problem. The cat is dropped from an upside down position, but
it lands on its feet, even if it is isolated. The cat manages to deform its body during the
flight, such that all in all involves a net rotation of the body, to conserve its angular
momentum, see also [16]. Similar examples of free deformable compact shapes occur
in the theory of swimming of microorganisms in zero Reynolds number [17]. In that
case the systems are investigated by using the theory of a gauge field over the space
of shapes. The topics of fiber bundles in hydrodynamics have plenty of online and
printed resources out of which we mention for example [6, 7, 9, 18–20].

9.2.6 How Does the Time Derivative of Tensors Transform
from Euler to Lagrange Frame?

In Sects. 9.2.4 and 9.2.5, we have seen that changing the frame from the Eulerian to
Lagrangian is actuallymapping vectors from the tangent space of the base space to the
tangent space of the fiber. To transform higher-order tensors we need to introduce
a new time derivative through a covariant formalism. Equations (9.1) and (9.5)–
(9.7) are not covariant because the time is not explicitly included in the metric, yet
the Lagrangian → Eulerian transformation ω(x, t) → Ω(σ, t) is a time-dependent
coordinate change. Consequently, the partial time derivative does not transform like
a tensor because of the time-dependent basis vectors, the same reason that ordi-
nary derivatives are not covariant (see for example in Sect. 3.10 the comment right
after (3.45)).

The traditionalmaterial derivative is covariant just for the coordinates, the velocity
vector, and (obviously) for scalars, as we know from (9.1) and (9.5)–(9.7), and it was
proved geometrically in (9.9), because the velocity belongs to the tangent space. Let
us have an (r, s) Lagrangian tensor ω(x, t) depending on the Lagrangian coordinates
(x, t). Its time derivative, i.e., the rate of change dω/dt of the tensor while keeping
the Lagrangian coordinates constant, does not transform into the time derivative of
the corresponding Eulerian tensor, ω(x, t) → Ω(σ, t)).

∂ω

∂t
(x, t) �

∂Ω

∂t
(σ, t).

To provide a covariant time derivative for arbitrary vector fields and higher-order
tensors, we need to calculate the pull-back transformation of (9.9), and make sure
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that the result is a tensor of the same type. That is, to introduce a covariant time
derivative operator (e.g., [21] where it is called convected or convective) which
describes the change in time for a certain geometrical quantity ω along (or with
respect to) the flow lines of the fluid, in the Eulerian frame (σ1, t). The covariant
variation of this quantity is the sum of its internal time variation described by the
partial derivative, and the Lie derivative of ω with respect to the flow described by
the vector field vE = (vi )

dcΩ(σ, t)

dt
= ∂Ω

∂t
+ vE (Ω). (9.10)

For scalars, (9.10) reduces to the well-known formula (9.1) or (9.8). We will refer
in the following to (3.19) and (3.20), describing the action of the Lie derivative on
various geometrical objects.

For example, the time covariant derivative acts on a contravariant vector field
A(σ, t) = (Ai ) defined in the Eulerian frame, according to the form (3.19)

dcA
dt

= ∂A
∂t

+ [vE , A]. (9.11)

The covariant time derivative action on a covariant vector ω = (Ai ) is given by the
sum between the partial derivative with respect to time and the Lie derivative with
respect to vE acting on the 1-form (3.20)

dcΩi

dt
= ∂Ωi

∂t
+ vk ∂Ωi

∂σk
+ Ωk

∂vk

∂σi
, (9.12)

The action on an Eulerian tensor of rank (0, 2) is

dcΩi j

dt
= ∂Ωi j

∂t
+ vk ∂Ωi j

∂σk
+ ωk j

∂vk

∂σi
+ Ωik

∂vk

∂σ j
, (9.13)

and so on. The physical signification of the covariant derivative on the LHS of all
(9.11)–(9.13) is the following. First, we calculate the partial time derivative of a
Lagrangian tensor, then we transform this quantity into the Eulerian frame. This
transformed Eulerian object is not anymore the simple partial derivative of the Eule-
rian tensor, but the covariant time derivative of the Eulerian tensor.

To exemplify (9.10) in a direct and even more intuitive way, we obtain the trans-
formation of the time derivative for a tensors of rank (1, 1) for example by a simple
matrix transformation formalism based on formula (3.46). Similar calculations in
components are done in [4, Chap. 8]. We write the tensor transformation of compo-
nents of ω when changing frame from Lagrangian to Eulerian

Ω = JωJ−1, that is Ω p
q = ∂σ p

∂xi
∂x j

∂σq
ωi

j . (9.14)
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By time differentiation of (9.14) with respect to time, we have

dΩ

dt
J + Ω

d J

dt
= d J

dt
ω + J

dω

dt
.

Since Ω is Eulerian we have Ω(σ, t) and further Ω(σ(x, t), t), so

dΩ
p
q

dt
= ∂Ω

p
q

∂t
+ v j ∂Ω

p
q

∂σ j
.

Moreover, we can write
d J j

i

dt
= ∂v j

∂xi
= ∂v j

∂σk

∂σk

∂xi
,

and define the matrix of gradients of velocity

γ
j
i = ∂v j

∂σi
.

With these notations we have

Ωγ J + dΩ

dt
J − γ Jω = J

dω

dt
,

and by using d J/dt = γ J and by multiplication with J−1 to the right, we obtain

J
dω

dt
J−1 = dΩ

dt
+ [Ω, γ] ≡ dcΩ

dt
, (9.15)

where the commutator on the RHS arises from Ωγ − γ(JωJ−1). Equation (9.15)
represents the transformation of the time derivative dω/dt , and since the RHS is an
operator applied to the Eulerian tensor Ω , we define the LHS as the covariant (or
convected) time derivative. In components it reads

(
J
dω

dt
J−1

) j

i

≡ dcΩ
j
i

dt
= ∂Ω

j
i

∂t
+ vk ∂Ω

j
i

∂σk
+ Ω

j
k

∂vk

∂σi
− Ωk

i

∂v j

∂σk
, (9.16)

where we used the notation dc/dt for this covariant derivative. It is easy to check
that (9.16) is in agreement with the general formulation from (9.12) and (9.13).
For the action of the covariant time derivative on other types of tensors, see
Exercises 4 and 5 at the end of the chapter. Also the action of dc/dt can be expressed
entirely in terms of covariant derivatives [4]. For example for a (0, 2)-tensor, we
have

dcΩi j

dt
= ∂Ωi j

∂t
+ (vk∇k)Ωi j + (∇ jv

k)Ωik + (∇iv
k)Ωk j . (9.17)
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Let us choose a simple example to understand how (9.16) works. We consider a
stationary viscous flow next to a rigid wall at σ3 = 0 (or simply z = 0) with velocity
vE = (0, v, 0). The velocity is subjected to a boundary layer effect and it depends
on the distance to the wall, v = v(σ3). In the Lagrangian (convected) frame the
pressure is constant in time and so is its gradient, having nonzero component in
the σ3-direction, ∇P = (0, 0, ∂P/∂σ3) = (α1,α2,α3). The time derivative of this
gradient, which is a (0, 1) covariant vector, is zero. However, in the Eulerian frame
by using (9.16), we have a nonzero material time derivative

dc∇P

dt
=

(
0,

∂vE

∂σ3
(∇P)3, 0

)
.

There is a change in time for the gradient in the Eulerian frame even if the same
gradient is constant in the Lagrangian frame, and this contribution comes from the
last term in the RHS of (9.16), and not from the first two traditional terms on the
same RHS. Physically, it means that the gradient is initially vertical, but because of
the horizontal shearing of the layers of fluid, this gradient is “tilted” more and more
horizontally.

This treatment presented above is not the only way to introduce a covariant time
derivative. For example in [22] the authors introduce a corotational derivative where
the local vorticity of the flow is incorporated into the derivative. However, the covari-
ant time derivative defined by (9.15) and (9.16) is the most familiar one, and it was
initially introduced in [23] in formulating rheological equations of state. This deriva-
tive was used in [24] to develop a theory of fluid motion on an interface, and later
was geometrically extended in [4, 21]. In this last citation there are enumerated
some disadvantages of the covariant time derivative. For example, it is not com-
patible with the metric tensor, and it involves gradients of the velocity so it is not
directional. On the other hand, the importance of the covariant time derivative (9.15)
and (9.16) is not only mathematical. Many nonlinear transport and mixing processes
are described by advection–diffusion equations [21], consisting in a material time
derivative for the concentration of the quantity advected, and a divergence of the
diffusivity tensor. In the Lagrangian frame (along the direction of compression of
fluid elements) the advected terms drop out, and the governing equation reduces
to a simple diffusion equation, much more tractable. Moreover, because of the for-
malism presented in this section, this simplified diffusion equation is still covariant.
This allows the introduction of a Riemannian metric on the tangent space to the
coordinate space, and allows in principle the use of spectral approximation proce-
dures.
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9.3 Path Lines, Stream Lines, and Particle Contours

In this section, we present a parallel between the Eulerian and Lagrangian approaches
from the point of view of the flow box theorem (see Sect. 3.4). We discus here
only finite time flows with t ∈ [t1, t2],−∞ < t1 < t2 < ∞. We begin our construc-
tion with the fluid initial reference container, i.e., a domain D0 ⊂ R

3. We con-
struct the base space X = R

3 × [t1, t2], and we assign a local coordinate system
in r0 ∈ D0. We assume that we are given the fluid flow as smooth homeomor-
phisms r L : D0 × [t1, t2] → R

3 such that the restriction r L |D0×{t} is injective for any
fixed t ∈ [t1, t2]. In coordinates this reads (r0, t) → r L(r0, t). The family of curves
L = {γL ⇒ r L(r0, t)|r0 ∈ D0} is the particle paths, with tangents ṙ L = vL and met-
ric gL = v2

L . These curves can be lifted in the base space and mapped into a family
L̃ = {γ′

L ⇒ (r L(r0, t), t) ∈ R
3 × [t1, t2]|r0 ∈ D0}. Themetric of γ′

L is g̃L = v2
L + 1.

Both γL and γ′
L are Lagrangian path lines viewed in different spaces.

For any t ∈ [t1, t2]we can constructDt = r L(D0, t) ⊂ R
3. A particle contour is a

parametrized curve Γ0 = {γ0(s) ⊂ D0, s ∈ I } ⊂ D0. The question is what happens
to such a particle contour in time. Is Γt = {γ(s, t) = r L(γ0(s), t)} a regular curve
with the same topology as Γ0? We have the following result.

Lemma 7 The set Γt defined by γ(s, t) as above is a regular parametrized curve if

Ĵ (r L(r0, t))|t=const. · tΓ0 �= 0,

for ∀s ∈ I, t ∈ [t1, t2]. Here t is the tangent vector to a curve.
Proof We have

∂r
∂s

(s, t) = ∂xiL
∂γ j

dγ j

ds
= ∂xiL

∂x j
0

· t jΓ0
(s), (9.18)

which represents the requested inequality. �

In other words, a particle contour at the initial moment of the flow remains a regular
curve while transported by the flow in time if the unit tangent of this initial curve
is not in the kernel of the Jacobian matrix of the Lagrangian path function of the
initial coordinates (the flow). If conditions in Lemma 7 are fulfilled, the particle
contour Γ0 remains a regular curve during the flow, so one can apply circulation or
other types of theorems on it. The Jacobian matrix plays a basic role in hydrodynam-
ics [25]. It allows the determination of the main flow parameters and the geometrical
characteristics, in particular the metric properties.

As an application, we can use Lemma 7 criterium in Example 2. The initial vertical
particle contour (for example x0 = 0, y0 ∈ [−a, a]) will breakup at a certainmoment
of time t if, according to (9.18),

∂rL
∂y0

(t) = 0,
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where we consider y to be the vertical axis in Fig. 9.3. Obviously, from the continuity
of the cylinder contour, the coordinates of all path lines depend on y, so (even it looks
hard to believe) the above derivative is nonzero everywhere and consequently the
path lines will not disrupt.

The question is whether the set ∪t∈[t1,t2]Dt is a submanifold of R
3. If it is, we can

assign local coordinates for its points in the form p = (r0, t). In other words, if the
reunion of all path lines over a certain finite interval of time is dense enough to form
a topological space. The answer can be given at least locally, by using the flow box
theorem (Theorem 4). Obviously, the Lagrangian velocity field of any particle vL

fulfills the conditions for the existence of flowboxes on X . Indeed, for any t ∈ [t1, t2]]
and any point p = (r, t) ⊂ Dt , we can find a neighborhood V (r) and t ± δt such
that it exists a > 0 and the triple

((V (r), (t − δt, t + δt))a, γL(rL(r0, t), t + λ)),

is a flow box.
Moreover, we assume that the fluid flows in such a way that X is a topological

space with the product topology of R
3 × R. We also assume that the fluid flows in a

bounded region (bounded fixed region or free compact surface), so the Lagrangian
velocity field has compact support in X . Consequently γL(r0, t) aremaximal integral
curves and forma foliation of X (seeSect. 3.4). Since thefield of velocities of particles
has compact support, according to Lemma 1, it is complete, and any of its integral
curves can be extended so that its domain of parameter becomesR. So the Lagrangian
paths γL(r0) form a foliation of themanifoldDt which is homeomorphic withD0.We
mention again that inside each Dt , we have vE (rL(r0, t), t) ≡ ṙ L(r0, t), but inside
the same Dt the integral curves of ṙL are not the γL curves.

There are of course differences and similarities between the stream and path lines.

Example 3 In Fig. 9.9 we present a cross-section into a spherical drop of incom-
pressible inviscid fluid in oscillationwith an l = 2mode. The thin lines are the stream
lines and the thick line is a path line.

Example 4 To illustrate better these differences, we present a simple example of a
two-dimensional flow. We assume that we know the flow of this two-dimensional
fluid in the Eulerian frame, and hence we know the Eulerian velocities vE (r, t) at
every point and every moment of time. For example let us choose

vE (x, y, t) = (x, y + εt), (9.19)

where ε is an arbitrary parameter. The stream lines, lying in the instantaneous plane
R

2, are obtained by integrating

dx

x
= dy

y + εt
, (9.20)
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Fig. 9.9 Cross-section into a
spherical drop of
incompressible inviscid fluid
in oscillation in an l = 2
mode. The thin curves are
the stream lines, while the
thick curve is an example of
a path line

resulting in the implicit equation

yE = y0 + εt

x0
xE − εt, (9.21)

or in the parametric form rE (s; x0, y0; t)

x = s√
1 +

(
y0+εt
x0

)2

y = y0 + εt

x0

s√
1 +

(
y0+εt
x0

)2
− εt. (9.22)

Equations (9.21) and (9.22) represent the stream line passing through a point (x0, y0).
From the Eulerian velocity we obtain the Lagrangian velocity by integrating the
equations

dxL
dt

= xL(x0, y0, t)

dyL
dt

= yL(x0, y0, t) + εt.

The lifted path lines in parametric form have the expression γL(xL(x0, y0, t),
yL(x0, y0, t), t) with

xL(x0, t) = x0e
t

yL(x0, y0, t) = (y0 + εt)et − ε(t + 1), (9.23)
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and in implicit form read

yL(x0, y0, t) = (y0 + ε)
xL
x0

− ε

(
ln

xL
x0

+ 1

)
. (9.24)

Of course the path lines and the stream lines have different expressions, not forget-
ting the fact that they belong to different spaces. For a check, we notice that if we
eliminate the time dependence by setting ε = 0, these lines (9.21)–(9.24) have the
same expression. In stationary flow the stream lines and the path lines coincide in the
horizontal space. We can also check the definition condition vL(t) = vE (r L(t), t).
Indeed, we can write

vEx = xE |rL (t) = xL(t) = x0e
t = vxL(t),

and from (9.23)

vLy(t) = (y0 + ε)et − ε = yE |r=rL (t) + εt = vEy .

Another check is to verify the relation between the Eulerian and Lagrangian

dvLy

dt
= (y0 + ε)et = y + εt + ε

∂vEy

∂t
+ (vE · ∇)vEy = ε + x

∂(y + εt)

∂x
+ (y + εt)

∂(y + εt)

∂t
= y + εt + ε,

(9.25)
and a similar equation for vx .

For any t , the stream lines (9.22) form a family of curves γE (s; r0; t) labeled
by the points r0 ∈ γE , parameterized by the arc-length s. These curves provide
foliations of each horizontal space R

2, for each moment of time. The vector field
vE (r, t) generates also a family of integral curves in the base spaceR

3 = R
2 × R

time

determined by the equations

dx

x
= dy

y + εt
= dt

1
. (9.26)

At t = 0 we have
γE (s; r0; 0) = s√

x20 + y20

(x0, y0) (9.27)

and the solutions of (9.26) and (9.27) coincide modulo a reparameterization. This
means that the Eulerian stream lines are the projections of the lifted Lagrangian path
lines in the horizontal planes only at t = 0. The above example is also shown in
Fig. 9.10.
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Fig. 9.10 Two dimensional plot (x − y) of flow lines. Upper graphic: stream lines γE (t) in the
horizontal plane generated by (9.21) at t = 0 (dashed lines) and t = 1 (continuous lines). Lower
graphic: a region of the same flow, with stream lines at t = 0 (dashed) and t = 1 (smooth), and a
path line (thick line) of a particle moving from t = 0 to t = 1. The path line is tangent to vE (t = 0)
(dashed line) at its upper left end, and tangent to vE (t = 1) (smooth line) at its lower right end,
respectively
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Fig. 9.11 Upper box: Lagrangian velocity field represented in the base space with arrows. Three
Lagrangian paths as particular integral curves of this field are shown. Lower box: same Lagrangian
paths γL (continuous line). If we project the unit tangent of each such Lagrangian path onto the
horizontal plane, we obtain the Eulerian velocity field vE . The dotted lines are integral curves of
this Eulerian field. The three longer dotted lines on the base of the box are three such stream lines,
intersecting the three Lagrangian path lines at t = 0, respectively. The other three dotted (shorter)
lines in the upper plane are other three stream lines, occurring at t = 1, and intersecting the same
three Lagrangian path lines at t = 1, respectively
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In Fig. 9.11, we present the same flow described by (9.21) and (9.23) in the base
space (a three-dimensional representation, where time is the vertical axis).

9.4 Eulerian–Lagrangian Description for Moving Curves

This section is very short, and its purpose is to recall that the idea of establishing
a Lagrangian–Eulerian change of frames in lower-dimensional flows is not quite
trivial. We elaborated a little about Eulerian–Lagrangian coordinates and velocities
in Sects. 8.2 and 8.3 togetherwith the introduction of the convective velocity. Herewe
justmention one possibility to introduce Eulerian coordinates on amoving curve, like
for example a thin vortex filament in motion. We can consider that the Lagrangian
coordinates along a curve of length L are given by the arc-length parameterized
form of the curve r(s, t). The curve is in motion, and the velocity can be expressed
in its Serret–Frenet local frame {t, n} in the form V (s, t) = U (s, t)n + W (s, t)t . We
introduce the mapping e : [0, L] → C

e(s, t) =
∫ s

eiθ(s
′,t)ds ′,

from the Lagrangian coordinate to the Eulerian one, where θ = ∫ s
κ(s ′, t)ds ′ is

the tangent angle of the curve, and κ is its curvature (Sect. 5.1). In the Eulerian
coordinate, we can express all the intrinsic properties of the curve, namely θ =
−i ln(es),κ = −iess/es , and the dynamics of the transformation of coordinates is
given by est = [(W − iU )es]s [26]. In terms of the new coordinate e and time,
the dynamical equation for the velocity components is θt eiθ = e2iθ(W − iU )e. Let
us choose now a curve motion with zero normal velocity and constant tangential
velocity. Since such a motion is only a reparameterization of the curve, i.e., it is not
a real motion, we expect the Eulerian coordinate to remain constant. Indeed, from
the above relations we have est = 0 so e = const.

9.5 The Free Surface

Physically, free surface is the bounding surface of a certain amount of fluid under
consideration. From the mathematical point of view, we consider the free surface Σ

to be a piecewise smooth, orientable, regular surface. The free surface is described
by the relation S(r, t) = 0. This free surface has to fulfill the so-called free surface
kinematic condition. In the Lagrangian description this equation reads

dS

dt
= 0, (9.28)
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which means [1] that a particle lying in the surface can not have normal velocity
with respect to this surface, otherwise will produce a normal flow of fluid across the
surface, which contradicts the free surface definition. To use the Eulerian picture,
and to express the kinematic condition in terms of the velocity field v, we choose
a particle P that moves together with the moving surface Σ . The particle has a
velocity vPΣ(t) = d r P(t)/dt . If the particle P moves together with Σ , there is a
relation between v and S given by

vPΣ · ∇S + ∂S

∂t
= 0. (9.29)

It is easy to prove this equation if we assume that the particle is contained in the
surface at an arbitrary moment t and also at t + δt . That is: if S(r PΣ(t), t) = 0, then
S(r PΣ(t + δt), t + δt) = 0. Equation (9.28) can also be written as

(
v · ∇S + ∂S

∂t

)

Σ

= 0,

and this is a possible form for the free surface kinematics condition. TheΣ subscript
means that this equation is taken only on Σ , or in other words that, in this equation
(r, t) have to fulfill S(r, t) = 0. This form is more useful if the surface equation S
is provided explicitly. For example if S = 0 → z = η(x, y, t), we have

dη

dt
= vz = ∂η

∂t
+ vx

∂η

∂x
+ vy

∂η

∂y
. (9.30)

We would like to comment that, in some literature, this free surface kinematics
condition is explained as “a fluid particle originally on the boundary surface will
remain on it.” This is not, in general, true. The P particle may sink inside the fluid
(like in the case of dragging of the capillary surface by adherence forces) or evaporate.
A more general physical statement would be that, for any particle lying at moment
t in the surface, its velocity is tangent to the surface at that moment. From the
mathematical point of view, this problem is equivalent to the fact that d r/dt is not
well defined at the surface, because the set of points forming a geometrical surface
Σ admits many mappings into itself. To eliminate this ambiguity, one can use just
the normal velocity, as it is suggested by Meyer [2]. We can define the unit normal
to the regular surface S(r, t) = 0 by n = ∇S/|∇S|. The normal component of the
velocity of Σ is

vn =
(
n
d r
dt

)∣∣∣∣
Σ

·n = −n
∂S

∂t

1

|∇S| .

By using (9.28) for S, we have

vn = −
∂S
∂t

|∇S| = −
dS
dt − (V · ∇)S

|∇S| = (V · ∇)S

|∇S| ,
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where the last RHS is nothing but the velocity field along the normal to the surface
V · n. So we have obtained

vn = V n, (9.31)

which is themost compact (and precise) form of the free surface kinematic condition:
the normal component of the Lagrangian fluid particle velocity is equal, in any point
of the surface, with the normal component of the Eulerian velocity.

9.6 Equation of Continuity

In Sects. 9.6.1 and 9.6.2, we analyze the equation of continuity. There are two reasons
for choosing this topic. The first reason is that this equation provides a simpleworking
application of the basic theorems of existence and uniqueness of the solutions of
(linear or nonlinear) PDE. The second reason is that the equation of continuity has
variable coefficients and it represents also a good toymodel for such typeof equations.
However, it is still linear PDE, yet interesting in some of its particular solutions so it
makes a “smooth” pedagogical transition from linear to nonlinear.

9.6.1 Introduction

In the nonrelativistic approximation mass is neither created nor destroyed, so we
have the law of conservation of mass, i.e., a positive invariant

m =
∫

D
ρdV > 0,

integrated on the closure of the domain D filled with fluid. From its invariance we
find the so-called equation of continuity integral or differential form

∫

D

(
∂ρ

∂t
+ div(ρV )

)
dV = 0,

∂ρ

∂t
+ div(ρV ) = 0, (9.32)

in either integral or differential form. V (r, t) is the velocity field andV is the volume.
In fluidmechanics, the equation of continuity is coupledwith other equations for con-
servation of momentum (Euler or Navier–Stokes) and for energy or entropy transfer,
such that in total we have five scalar PDEs for the five scalar fields for the problem:
ρ, V , and p the pressure (by scalar we mean here also a component of a vector field).
The continuity equation alone is not useful for physics, and some of its solutions do
not have physical signification, unless coupled with the other dynamical equations.
However, we present in the followings a theorem of existence and uniqueness, and
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some applications for (9.32). Such examples are not usually analyzed in books of
fluid dynamics, but they can work as a good exercise of mathematical physics.

We study the equation of continuity when the velocity field is given, and we inte-
grate it to find the density distribution. The continuity equation (9.32) is a homoge-
nous linear PDE of order 1, with variable coefficients, defined in a certain domain
D ⊂ R

4 of space–time. The main tool we need is the Cauchy–Kovalevskaya the-
orem for existence and uniqueness of the solutions of a general (not necessarily
linear) PDE [27]. According to this theorem, the continuity equation has one unique
real analytic solution ρ(r, t) for a given analytic velocity field V (r, t) and given
Cauchy condition provided by ρ(r, t)|Σ = g(ξ1, ξ2, ξ3), where g is an analytic func-
tion defined on a regular hypersurfaceΣ ⊂ R

4. The Cauchy–Kovalevskaya theorem
can be applied to any nonlinear PDE, for arbitrary Cauchy conditions expressed in
terms of analytic functions, if one of the highest order derivative of the PDE can be
explicitly written as an analytic function depending on the other terms and variables
in the PDE. For example in (9.32), PDE of order 1, we can write the time deriva-
tive of the unknown function ρ on the LHS, and express it as an analytic function
of the variable coefficients V i and partial derivatives of ρ with respect to the other
coordinates xi , on the RHS (named generically f (r, t, ρ, ∂ρ/∂xi , . . . ))

∂ρ

∂t
= f −

3∑
i=1

∂(ρVi )

∂xi
.

The function f is analytical because the finite sum and multiplication preserve ana-
lyticity, so we are in the frame of the Cauchy–Kovalevskaya theorem, which we
discussed earlier, see Theorem 2. In general, if the PDE is of order m we need m
Cauchy conditions, one for each derivative of order 0 to m − 1 of the unknown
function, with respect to a non-tangent direction on the Cauchy hypersurface.

In order to ease reader’s search, we briefly write the Cauchy–Kovalevskaya theo-
rem below. If a PDE of orderm in the unknown function u(x1, . . . , xn) can be written
in the form

∂mu

∂xm1
= f

(
x1, . . . , xn, u,

∂u

∂x1
, . . . , ,

∂mu

∂xm1
1 . . . ∂xmn

n

)
, (9.33)

where m = m1 + · · · + mn and where the term ∂mu
∂xm1

does not appear on the RHS,
then the Cauchy problem attached to this PDE:

∂ j u

∂l j

∣∣∣∣
Σ

= g j , j = 0, 1, . . . ,m − 1 (9.34)

with functions g j defined on the (n − 1)-dimensional regular hypersurface Σ ⊂ R
n ,

where l is an arbitrary not tangent direction onΣ , admits a unique analytical solution
u, if the functions f, g j are analytical on their domains of definition.
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This theorem states the existence and uniqueness of an analytic solution, but this
does not exclude the existence of other, non-analytical solutions of the same Cauchy
problem. However, if the PDE is linear (Holmgren uniqueness theorem) there are
no solutions except the analytical ones. This last result shows that possible compact
supported solutions or very localized solutions (like solitons, compactons, peakons,
etc.), which of course are not analytical functions, could not arise from a linear PDE.
High localization is strictly related, or generated, by the nonlinearity in the PDE.

We remind here that there is one special case in which linear equations provide
compact supported solutions, i.e., the discrete wavelets 2-scale equation [28]. For
example, the Haar scaling function (the step function), defined as 1 on [0, 1] and
zero in the rest of real axis, is a solution of the finite difference equation Φ(x/2) =
Φ(x) + Φ(x − 1). This result reveals a possible deeper connection between linear
finite difference equations (or infinite-order linear PDE equations) and nonlinear
PDE.

Returning to the continuity equation we prove the existence and uniqueness the-
orem for its Cauchy problem. In the course of this proof we use special Cauchy
condition defined on the hyperplane t = t0. However, it is easy to generalize the
following proof for general Cauchy conditions on an arbitrary hypersurface. This
is because any arbitrary Cauchy hypersurface is regular, and hence we can find a
local change of coordinates (x, t) → (x′, t ′), such that the hypersurface in the new
coordinates is determined by the equation t ′ = t

′
0, without any loss of generality or

analyticity. Choosing the Cauchy condition on the hyperplane t = t0 means knowing
the density at the initial moment in the whole space, or in the domain of definition
of the position vector. In the general Cauchy hypersurface case, the condition can
be both initial condition and boundary condition, for example if Σ is defined by
Σ = {(x, t)|t = t0 and x ∈ D} ⋃{(x, t)|t ≤ t0 and x ∈ ∂D}, etc. Moreover, we
can always reduce any Cauchy condition to a null Cauchy condition. If the function
ρ̃ is a solution of the equation

∂ρ̃

∂t
= −div(ρ̃V ) − div(gV ) (9.35)

under the null Cauchy condition ρ̃(r, t0) = 0, then ρ = ρ̃ + g(r) is a solution of
the continuity equation (9.32) for the same V , and the general Cauchy condition
ρ(r, t0) = g(r). The analyticity of the functions involved is not changed by this
functional substitution. In the following, we use a generic function f instead of the
RHS of the PDE under consideration, no matter if it is (9.32), (9.33), or (9.35).

The sketch of the proof of existence and uniqueness of the solution of the con-
tinuity equation can be presented briefly as follows. We construct the Taylor series
of a hypothetic analytic solution ρ of (9.32), by using the initial condition and the
equation itself. If such a solution exists, then by construction it is unique. To prove its
existence, we construct an upper bound function f ub for the RHS of (9.32). Such a
construction is always possible, and the good news is that its associate solution, i.e.,
the solution of ∂ρ/∂t = f ub, is an upper bound function for ρ. By using the compar-
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ison criterium, ρ � ρub, it results that ρ is uniformly convergent, hence analytical.
This concludes the proof. Now we proceed with the detailed discussion.

To construct the Taylor series we use the following.

Lemma 8 If the velocity field V (r, t) and the Cauchy condition ρ(r, t0) = g(r) are
analytic in a neighborhood V(r0, t0), then the Cauchy problem for (9.32) admits one
unique analytic solution in V .
Proof Since this hypothetic solution is analytic, we can construct it as a Taylor series
in the form

ρ(r, t) = ρ(r0, t0) + (t − t0)
∂ρ

∂t

∣∣∣∣
0

+
3∑

i=1

(xi − xi0)
∂ρ

∂xi

∣∣∣∣
0

+ 1

2!
[
(xi − xi0)(x j − x j0)

3∑
i, j=0

∂2ρ

∂xi∂x j

∣∣∣∣
0

+
3∑
i

(xi − xi0)(t − t0)
∂2ρ

∂xi∂t

∣∣∣∣
0

+ (t − t0)
2 ∂2ρ

∂t2

∣∣∣∣
0

]
+ 1

3!
[ 3∑
i, j,k=0

(xi − xi0)(x j − x j0)(xk − xk0)
∂3ρ

∂xi∂x j∂xk

∣∣∣∣
0
+· · ·

]
+ · · ·,

(9.36)
where by subscript 0 we understand that the value is taken in the point (r0, t0).
Substitute in this series the initial Cauchy and the equation itself

ρ(r0, t0) = g(r0)

∂ρ

∂t

∣∣∣∣
0

= −div(ρV )|0 = −div(gV )

∂ρ

∂xi

∣∣∣∣
0

=
(

∂

∂xi
ρ(r, t0)

)

r0

= ∂g

∂xi
(r0)

∂ Iρ

∂xi1∂xi2 . . . ∂xin

∣∣∣∣
0

= ∂ Ig

∂xi1∂xi2 . . . ∂xin
(r0)

∂2ρ

∂xi∂t

∣∣∣∣
0

= −div
∂

∂xi
(gV (r, t0))r0 , etc., (9.37)

and so on, for all terms. The hypothetic analytic solution is now fully determined,
which proves its uniqueness. To prove its existence, we need to introduce the concept
of upper bound function in general in R

n . �



236 9 Kinematics of Fluids

Definition 61 Let x0 ∈ R
n and f is an analytic function defined on a neighborhood

V(x0), such that

f (x) =
∑

i1,i2,...in

Fi1,i2,...in (x1 − x01)
i1 · · · (xn − x0n)

in ,

for x ∈ V(x0). We define an analytic function on V(x0)

f ub(x) =
∑

i1,i2,...in

Gi1,i2,...in (x1 − x01)
i1 · · · (xn − x0n)

in ,

called upper bound of f , if ∀i1, . . . in we have:
1. |Fi1,...in | < Gi1,...in .
2. 0 ≤ Gi1,...in .

The notation is f � f ub. The next step is to find an upper bound function for the
RHS term of the continuity equation.

Theorem 23 For any function

f =
∑

i1,i2,...in

Fi1,i2,...in (x1 − x01)
i1 · · · (xn − x0n)

in ,

analytic on a neighborhood V(x0), there is a neighborhood W(x0) ⊂ V(x0) where
f has an analytic upper bound function of the form

f ub(x) = M

1 −
∑n

i=1(xi−x0i )
α

+ C, (9.38)

where M > 0,α ∈ R, and C is a constant.

Proof Obviously, ∃ξ ∈ W such that the numeric series

∑
i1,i2,...in

Fi1,i2,...in (ξ1 − x01)
i1 · · · (ξn − x0n)

in ,

is uniformly convergent, which implies that the sequence Fi1,i2,...in (ξ1 − x01)i1 · · ·
(ξn − x0n)in → 0, so it is bounded, i.e., ∃M > 0 such that

|Fi1,i2,...in (ξ1 − x01)
i1 · · · (ξn − x0n)

in | < M.

Then

M
∑
i1,...in

(x1 − x01)i1 · · · (xn − x0n)in

|(ξ1 − x01)i1 · · · (ξn − x0n)in | ,
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is an upper bound for f on W , according to Definition 3. Since the above series is
also a geometric progression, we can calculate its sum. Then we can find an upper
bound function f ub for this progression in the form

M(
1 − x1−x01

|ξ1−x01|

)
· · ·

(
1 − xn−x0n

|ξn−x0n |

) <
M

1 −
∑n

i=1(xi−x0i )
α

+ cst. = f ub(x), (9.39)

with α = min{|ξ1 − x01|, . . . |ξn − x0n|}. The next step is to take this type of upper
bound function in n = 4 and use it in the RHS of the continuity equation, instead of
its original RHS, with an appropriate choice of the arbitrary constant cst.

∂ρub

∂t
= M

1 − t+x+y+z+ρ+∑3
i=1

∂ρ
∂xi

α

− M. � (9.40)

Lemma 9 The null Cauchy problem for (5.14) has a unique analytic solution ρub

in a neighborhood of 0, whose Taylor series has all coefficients nonnegative.

Proof We introduce the variable χ = t + x + y + z and we look for solutions of
(5.14) of the form ρ(t, x, y, z) = u(χ) under the initial condition u(0) = 0. The
PDE (5.14) reduces to an ODE

u′(α − χ − 3M) − uu′ − 3(u′)2 − Mu − Mχ = 0,

and according to the Peano theorem (remember, it is based on the fixed point
theorem [29]) this equation has a unique analytical solution in the initial condi-
tion u(0) = 0. When χ = 0 we have a possible solution u′(0) = 0. By differen-
tiating the ODE one more time, and by calculating it again in χ = 0, we have
u′′(0) = M/(α − 3M). If we choose α ≥ 3M it results u(k)(0) ≥ 0 for k = 0, 1, 2.
In general, after n successive differentiations, we have

u(n)(0) = 1

α − 3M

( n∑
k, j=0

|Ckj |u(k)(0)u( j)(0) + (αM + n)u(n)(0)

)
.

It results, by induction, that ∀k, u(k)(0) ≥ 0 if α > 3M . This result proves that the
null Cauchy problem for (9.40) has always an unique analytic solution, whose Taylor
series coefficients are nonnegative:

ρub(r, t) =
∑

|Ci0,i1,i2,i3 |t i0xi1 yi2 zi3 . (9.41)

There is no loss of generality by choosing null Cauchy conditions in Lemma 3.
We proved in (9.35) that any null Cauchy conditions can be changed into arbitrary
Cauchy conditions, so Lemma 3 is general. Now we attack the final step of our
proof.
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The uniqueness of the Cauchy problem for (9.32) was proved in Lemma 2, so
we just need to prove the existence of analytic solution ρ. Since the actual RHS
term of the continuity equation is analytic in all its variables, we can find an upper
bound function for the PDE in the form of (9.38). We solved this auxiliary PDE
(Lemma 9) and its solution ρub has the property: ρ � ρub. This is true because we
build the solutions term by term, by using the functions f , f ub, and the Cauchy
data g (like we did in (9.36) and (9.37)). The upper bound property transfers from
the f s to the ρs. Consequently, all the coefficients (partial derivatives in 0) of
the Taylor series for ρ are upper bounded by the corresponding coefficients (cor-
responding partial derivatives in 0) of ρub. Since the series in (9.41) is analytic,
by the comparison criterium, it results the analyticity of the series ρ (see (9.36)
and (9.37)). But this is the actual solution of (9.32), which proves the whole theo-
rem.

We briefly present the above proof in the diagram (9.42)

∂ρ
∂t = f

ρ(r, t0) = 0
−−−−→

T10
∃ f ub � f −−−−→

∂ρub

∂t = f ub

ρub(r, t0) = 0

L 3
⏐⏐�Taylor

⏐⏐�L4

Unique sol.
(5.10)

−−−−→ ρ � ρub ←−−−− ρubhas all
coeff. ≥ 0

⏐⏐�Comparison crit.

∃!ρ
ρ(r, t0) = 0

⏐⏐�Substitution
∃!ρ

ρ(r, t0) = g(r)

� (9.42)

9.6.2 Solutions of the Continuity Equation on Compact
Intervals

InSect. 9.6.1wediscussed the general conditions underwhich the continuity equation
has a unique analytical solution. In this section we investigate some special one-
dimensional situations having exact solutions. That is a Cauchy one-dimensional
problem for ρ(x, t) for given V (x, t). We focus especially on the behavior of the
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solutions at the boundaries of a compact interval of length 2L . The one-dimensional
version of the continuity equation reads

∂ρ

∂t
+ ρ

∂V

∂x
+ V

∂ρ

∂x
= 0, (9.43)

for x ∈ [−L , L], t ≥ 0. At the boundaries of the interval, we should have no flow of
matter so we impose the BC v(±L , t) = 0, in addition to the Cauchy condition. It
is easy to build the general solution from the Fourier expansions

ρ(x, t) =
∑
n≥0

ρn(t)e
iπnx
L , V (x, t) =

∑
n≥0

Vn(t)e
iπnx
L , (9.44)

and from the BC we have ∑
n≥0

(−1)nVn(t) = 0. (9.45)

If we plug the formulas from (9.44) in the continuity equation (9.43), we obtain a
recursion relation

ρ′
k(t) = − iπk

L

k∑
n=0

ρnVk−n. (9.46)

With the notation
V

k(t) ≡ e− iπk
L

∫ t
0 V0(t ′)dt ′ ,

we have (9.46), the new recursion relation

ρk(t) = V
k(t)

(
ρk(0) − iπk

L

∫ t

0
V

−k(t ′)
k−1∑
n=0

ρn(t
′)Vk−n(t

′)dt ′
)

, (9.47)

where ρk(0) are determined by the initial condition through the inverse Fourier trans-
form

ρn(0) = 1

2π

∫ L

−L
ρini tial(x)e

− inπx
L dx . (9.48)

We choose a simple physical example, where the initial density is the same every-
where within the compact [−L , L], and zero outside. That is ρ(x, 0) = m/(2L),
where m is the total mass of the fluid inside the bounded segment. It results
ρ0(0) = m/(2L) and ρn(0) = 0 for n > 0. We also choose a simple configuration

for the velocity, namely V (x, t) = a sin(ωt)

(
e

iπx
L + e

2iπx
L

)
. That is V1(t) = V2(t).

This is a stationary (longitudinal) oscillation in velocity along the segment, with
zero velocity in the ends. We have Vn(t) = 0 for n = 0, 3, . . . . By substituting these
expressions for the velocity components in (5.23), we obtain V

±k = 1 and
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ρk(t) = − iπka

L

∫ t

0
sin(ωt ′)(ρk−1 + ρk−2)dt

′, k = 1, 2, . . . (9.49)

This recursion provides the unique solution for k ≥ 1.
Apparently, finding general solutions for the continuity equation in

one-dimensional, ρt + ρVx + ρx V = 0, is a simple procedure (subscripts represent,
again, differentiation). However, there is a hidden problem at the boundaries, pro-
duced by the zeros of the coefficients in the PDE. At the ends of the interval, we
have to assume no flow of fluid, so V (±L , t) = 0. In a neighborhood (L − ε, L) of
the right boundary for example, we can test the behavior of a Fourier component of
the solution ρω(x, t) = r(x)eiωt , and we obtain

d(ln rω)

dx
Vω = −

(
dVω

dx
+ iω

)
, (9.50)

whichmeans that in this neighborhood, even ifVx = 0,we still have theRHSnonzero.
But, when V → 0, it seems that d(ln rω)/dx → ∞. So, the zeros of velocity at
boundaries may introduce singularities in density (by reciprocity, in the inverse prob-
lem, isolated zeros of density can also introduce singularities in velocity). Let us sup-
pose that the velocity approaches the zero as a power law V (L − ε, t) 	 εa , a > 0.
If a < 1 we have limx→L(ρ) < +∞. But if a > 1 we expect limx→L(ρ) = +∞. If
V is a rapidly decreasing function in that neighborhood, we can neglect the third
term in (9.43) and use the approximation

∂ρ

∂t
	 −ρ

∂V

∂x
,

to investigate the behavior of ρ. By direct integration we obtain

ρ(L − ε, t) 	 ρLe
− ∫ t

0 Vx (L − ε, t ′)dt ′,

where ρL is a constant. This asymptotic solution is a very rapidly increasing function
toward L , but it is not anymore a singularity.

Let us illustrate with examples. We take a simple form for velocity in a compact
interval x ∈ [−L , L]

v(x, t) = V0 sinωt cos kx,

as stationary oscillations, where k = (2n + 1)π/(2L), n arbitrary integer and V0,ω
are constants. The solution can be easily obtained by the procedure indicated above
or by simple separation of variables. The general solution is a real integral over the
label λ of the following components
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ρ(x, t,λ) = ρ0e
− λ

ω cosωt

(
cos kx

2 + sin kx
2

)a−1

(
cos kx

2 − sin kx
2

)a+1 ,

where a = −λ/(kV0), and ρ0 are constants. Obviously this solution has singulari-
ties within [−L , L], provided by the trigonometric zeros of the denominator. The
reason is the cancellation of velocity in different points (function of how large is n)
including the boundaries. Velocity approaches zero by following a quadratic law:
V (L − ε, t) 	 k2ε2/2.

What can be done to eliminate these singularities? Of course, by coupling the
continuity equation with Euler and energy conservation equations, the nonphysi-
cal solutions will be eliminated. However, one simple possibility to eliminate the
singularity in density is to introduce an artificial constant term in velocity

V = V0(sinωt cos kx + V1).

From the physical point of view, it means that we have a little (V1 � 1) constant
“leakage” of fluid at the boundaries. With this new expression for velocity we have

ρ(x, t,λ) = ρ0e
− λ

ω cosωt

(1 + V1−1√
1−V 2

1

tan (2n+1)πx
4L

1 − V1−1√
1−V 2

1

tan (2n+1)πx
4L

) 2Lλ

(2n+1)πV0

√
1−V 2

1 ·

· 1

V1 + cos (2n+1)πx
2L

.

The solution is not anymore singular in ±L and it is illustrated in Fig. 9.12. Global
longitudinal oscillations of the fluid induce oscillations in the amount of fluid accu-
mulated to the right end of the domain.

Fig. 9.12 Plot of velocity
and density from
one-dimensional continuity
equation on an interval
[−1, 1]. Velocity has
stationary oscillations – up
and down in this figure
means motion of the fluid to
right and left – and the fluid
is accumulating in the right
end. The density has itself
push–pull oscillations
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It is interesting to check the reverse phenomenon, namely if zeros in density
provide singularities in velocity. For the stationary oscillating density inside [−L , L]

ρ(x, t) = ρ1 sin kx sinωt,

with ω, ρ1 constants and k defined as above, we compute the velocity in the form

V (x, t) = V) cot ωt
C1 + ωρ1 cos kx

k(ρ0 + ρ1 sin kx)
,

where V0,C1, and ρ0 are constants. In Fig. 9.13 we plot both the velocity and the
density for this example for L = 1. Indeed, the density-isolated zeros provided by
sin kx result in singularity in velocity given by the cot function. Another example
is presented for a semi-infinite domain x ∈ (−∞, 0]. We choose the velocity of the
form

V (x, t) = − ax

at + ρ0 cosh t x
b

,

where a, b, and ρ0 are arbitrary constants. Around zero the velocity behaves like
V (0) 	 x which provides a “milder” type of singularity for ρ. The corresponding
solution for density is

ρ(x, t) = ρ0 + atsech
t x

b
.

The results are presented in Fig. 9.14. In the last example, we present some localized
traveling wave solutions along the axis.We assume the propagation of a KdV solitary
wave on the free surface of a one-dimensional channel

η(x, t) = Asech2
x − vt

L
,

where A is the wave amplitude, L the half-width, and v the group velocity. The
tangent velocity of the fluid at the free surface is given by

V (x, t) = −2A

L
sech2

x − vt

L
tanh

x − vt

L
.

We neglect that the KdV equation for shallow water was deduced in the
incompressibility approximation, at least for a very thin layer on the surface [30].
Let us presume that this layer is compressible (like a surfactant layer on the surface
of the incompressible fluid) and the density in it is the solution of the continuity
equation for the velocity given above. The density reads

ρ(x, t) = ρ0
1

v − V (x, t)
,
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Fig. 9.13 At t = 0 density is uniformly distributed, and velocity has a positive maximum centered
around x = 0, and two symmetric negative minima. Initially, the matter is pushed from left and
right into two points, placed with approximation at x = 0.25 and x = −1. Around t = 2 one can
see in the density plot the resulting accumulation of fluid in these two points. At this moment the
velocity is almost zero and we have quasiequilibrium. Next, the velocity changes the sign, and the
fluid is pushed toward two other centers, namely x = 0 and x = 1. As a result, at t = 5 we have
more accumulation of fluid in these points. About t = 4 velocity has its singularity
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Fig. 9.14 Velocity (dotted
lines) and density
(continuous lines) for a
one-dimensional
semi-infinite axis. The
velocity has a localized
bump which pushes the fluid
against the right wall,
creating a fluid accumulation

Fig. 9.15 Surface density
and tangent velocity at the
free surface for an MKdV
soliton

where ρ0 is the equilibrium density in the absence of the wave. Density has no
singularities in this example. We present the results in Fig. 9.15. We can obtain a
similar result for an MKdV soliton. We choose the velocity profile as a modulated
breather [30]

V (x, t) = V0sech
x − vt

L
sinω(x − vt).

The density profile is given by a similar equation as in the KdV case

ρ(x, t) = ρ0

V (x) − v
,

see Fig. 9.15.
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9.7 Problems

1. Show that the free surface condition, i.e., the path of a fluid particle rL does not
leave a surface Σ (see (9.5), (9.28), and (9.29)), is the equivalent of requesting
the Lagrangian path of the particle to belong to the time variable surface, both
described in extended space R × R

3 for time and positions.
2. Consider a sphere of radius R at rest surrounded by inviscid, incompressible,

and irrotational fluid of density ρ. The fluid moves past the sphere such that
the velocity at infinite distance from the sphere is a constant and uniform field
v∞ = (0, 0,−u). Find the Eulerian velocity, the pressure field and the stream
lines. Find the Lagrangian paths and compare them with the stream lines.

3. Let us have the following field of Eulerian velocity

vE (r, t) = (a1(t)x
α1 , a2(t)y

α2 , a3(t)z
α3),

where ai (t) are arbitrary smooth functions and αi ∈ R. Find the equations of the
stream lines and the path lines. Show that if ai (t) are constant, the stream and
path lines coincide for an appropriate choice of integration constants.

4. Consider the Lagrangian paths of somefluid particles r L(r0, t) as a one-parameter
t group of diffeomorphisms mapping the initial positions of the particles into
the current ones r0 → rL , acting in R

3. Consider a time-dependent physical
quantity Ω described by a differentiable 1-form ω defined on T ∗

rL R
3. Prove that

the Lie derivative of this 1-form with respect to the tangent directions to the
diffeomorphism transformations

L rL (r0,t)(ω) = lim
dt→0

d r∗
L(ω) − ω

dt
= d

dt

(
ω j

∂x j
L

∂xi0
− ωi

)
dxi

provides the Eulerian–Lagrangian law of transformation for Ω .
5. Equations (9.12) and (9.13) were obtained by using the Lie derivative with respect

to the fluid flow. Try to find the same equations from a different approach, namely
a new law of covariant differentiation on a four-dimensional manifold (σ0,σi )

with a linear connection. The last two and three terms, respectively, in the RHS
of (9.12) and (9.13) could be understood as connection coefficients with the
Christoffel symbols of the second kind fulfilling

Γ i
k0 = − ∂vi

∂σk
.

Hint: we need to introduce ametric on this manifold, gμν , withμ, ν = 0, 1, . . . , 3.
The Christoffel symbols of first and second kind are related by Γ α

βγ = gδαΓβδγ ,
and the last one is defined by the metric
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Γαβγ = 1

2

(
∂gγβ

∂σα
+ ∂gβα

∂σγ
− ∂gαγ

∂σβ

)
,

see for example [4, 31–34]. A possible hypothesis could be gi0 = 0, g00 = const.
The remaining PDE equations for gi j may result in an exponential matrix solution.
It is interesting to relate the skew-symmetry property of this PDE in the metric
coefficients with the fact that the integral curves of a rotational flow are singular.

6. Prove that the covariant time derivative (9.12) and (9.13) has the following actions

dc A

dt
= d A

dt
+ γt A, on covariant vectors,

dc A

dt
= d A

dt
− γA, on contravariant vectors,

dcΩ

dt
= dΩ

dt
− γΩ − Ωγt , on (2.0) tensors,

dcΩ

dt
= dΩ

dt
+ γtΩ + Ωγ, on (0.2) tensors.
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