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To my family, the most important presence.



Foreword

The story of solitary waves traces back to John Scott Russel. Approaching 200 years
ago he wrote:

I was observing the motion of a boat which was rapidly drawn along a narrow channel by
a pair of horses, when the boat suddenly stopped—not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight
or nine miles an hour, preserving its original figure some thirty feet long and a foot to a
foot and a half in height. Its height gradually diminished, and after a chase of one or two
miles I lost it in the windings of the channel. Such, in the month of August 1834, was my
first chance interview with that singular and beautiful phenomenon which I have called the
Wave of Translation.

Russel went on to conduct experiments and published his findings in 1845 (check
this). Initially, major figures such as Stokes and Airy denied the existence of what we
would now call a traveling wave on the surface of water in a channel. In the second
half of the nineteenth century, one sees in the correspondence between Stokes and
Raleigh that Stokes had changed his mind and this fact even appears in published
work. In the period of this correspondence, Rayleigh found an approximate relation
between the amplitude and speed of a solitary wave in a channel. However, it was
left to Boussinesq in the 1870s to write down evolution equations that approximated
the motion of disturbances on the surface of water and which featured exact solitary-
wave solutions. One of these was the celebrated Korteweg-de Vries equation of water
wave theory that was rederived by Joseph Korteweg and his student Gustav de Vries
in 1895. The issue of existence of these so-called solitary waves having been settled,
at least as far as the nineteenth century hydrodynamicists were concerned, the subject
went moribund.

It came back to life, though in disguise, inwork of Fermi, Pasta, Ulam andTsingou
on a lattice and spring model for heat conduction in the 1950s. Later, by taking an
appropriate continuum limit of this mass and spring model, Kruskal and Zabusky
came again to the Korteweg-de Vries equation. This time, however, the subject did

vii



viii Foreword

not die. In 1967, the inverse scattering theory for this equation was discovered by
Gardner, Greene, Miura and Kruskal. Peter Lax took the first step in putting this
formalism into a very imaginative mathematical structure. Since then, the subject
rapidly achieved industrial proportions, with tens of thousands of journal pages and
with many, many applications of the theory.

As Andrei Ludu, the author of the present monograph writes in his introduction,
considering the large literature on solitary waves, why yet another book? There are
several things that set this text apart from others in the field. First is the overall focus
upon solitary waves defined on compact spaces. Of course, one thinks initially of
the classical cnoidal-wave solutions of the Korteweg-de Vries equation, but as Ludu
ably shows, this is the tip of a very large iceberg. Another aspect of the text that
strikes a new chord is the differential geometric perspective; the view that solitary
waves can be realized as the motion of a planar or three-dimensional curve under
particular flow conditions and with suitable initial conditions. This is not original to
the text in question, but an overall assessment of these ideas and a comprehensive
review of its applications is not to be found elsewhere in the literature. And, speaking
of applications, the text ends with a large number of very diverse and interesting
applications.

The text breaks into four parts. Parts I and II, which comprise the first eight chap-
ters, contain a sketch of the relevant topology and especially the differential geometry
of curves and surfaces in two and three spatial dimensions. It should be acknowl-
edged that this material is not for beginners. Someone without prior knowledge of at
least portions of this material will not find it easy going. However, as a reminder to
those with some knowledge, and a focus on exactly what is needed from differential
geometry in what follows, it is very helpful. Especially the material in Chapter 6 will
be useful even for the cognoscenti.

Chapter 7 works out the connection between the motion of curves in two and three
dimensions and integrable systems. Chapter 8 does the same thing for the motion
of surfaces. Technically, this is the heart of the script. This will be new material to
many readers; indeed, it is a developing subject in the mathematical firmament.

Ludu’s exposition in Parts I and II is technically sound, but it makes much of its
headway by way of appealing to our intuition. Not every theorem is proved in detail,
which is quite okay given the overall goal of the text.

In Parts III and IV, the text becomes more concrete. It begins with a more or less
standard discussion of the kinematics of fluid motion in Chapter 9. Knowledgeable
readersmaywell skip this, but for folks a little rusty, it is helpful. Some of the notation
is laid out in this chapter as well.

Chapters 10 and 11 find us deriving the Euler and Navier-Stokes equations. This
includes a very detailed discussion of surface tension from a geometrical perspective.
He goes on to derivemany of our favorite approximatemodels, such as theKorteweg-
deVries equation, themodifiedKorteweg-deVries equation, theBoussinesq equation
and the cubic Schrodinger equation. He examines the well-known solitary-wave
solutions of these equations by way of the mathematical structure developed in Part
I. He also derives what he terms the GKdV equation (Generalized Korteweg-de Vries
equation) that results from carrying out the formal asymptotics in the shallow water
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parameter and the nonlinear parameter to higher order. This equation specializes to
the various more familiar equations. Again, what is distinctly non-standard is his
concentration upon solitary waves defined on compact spaces that can be obtained
via the motion of curves whose theory was developed in Part II. This part is also not
for a beginner. Without prior background in these sorts of derivations, it will be hard
going. Hard going, but worth the effort.

Chapters 12–15 might well have been lumped into Part II of the text. While they
enlarge upon the theory, they emerge from physical considerations. Chapters 12–
14 are concerned with the fascinating shape oscillations of liquid drops in two and
three space dimensions. Chapter 15 presents another quite different point of view
that yields some of the same fascinating shapes that appeared earlier in droplets.

In the fourth portion of the text, Ludu shows his scientific upbringing. He started
life as a physicist and throughout his career he has been closely tied to real-world
phenomena. He admirably shows off his breadth in Part IV of the text. Here we find
him dealing with a whole stable of solitons that arise in some unlikely places. There
are solitons on filaments of various sorts, solitons on stiff chains, solitons on the
boundaries of microscopic structures, solitons at stellar scales.

The text finisheswith amathematical annex that includes some interesting remarks
that didn’t fit anywhere else in the text.

This book is not to be read in an armchair. As Ludu states in his opening remarks,
it is meant to be studied with pencil and paper at hand and with an algebraic manip-
ulation program up on the screen of a computer. It is a text dense with ideas and
methods, both mathematical and scientific, and a serious addition to the literature.
The fact that it is going into a third edition attests to its impact.

Chicago, USA Hongqiu Chen
Jerry Bona



Preface to the Third Edition

In order to offer as much content as possible from all chapters of the book to readers
with various prerequisites in mathematics, we present below a reader’s map that
can help readers to navigate through the book without being stuck in sections with
denser mathematical content. Pretty much like on a skiing course, we introduce three
possible paths to meet the interest of all our readers:

• No * asterisk is the path that doesn’t request special prerequisites in mathematics,
except calculus and first level course in mathematical physics. For these readers,
we recommend the following path:

I ntroduction → 2.1 → 3.1 → 3.2 → 3.3 → 3.12 → 3.13 → 4.1 → 4.2 →

5 → 6.1 → 6.5 → 7.1 → 7.3 → 9.1 → 9.3 → 9.5 → 9.6.1 → 10.1 → 10.2 →

10.3 → 10.4.1 → 10.5 → 10.6.1 → 11.1 → 12.1 → 12.6 →

13.1 → 14.1 → 14.2 → 14.3 → 17.3 → 18.2 → 18.3 → 19

• Sections labeled with one asterisk ∗ request some previous knowledge in real
analysis, differential systems and elements of geometry. For these readers we
recommend in addition to the "No ∗ asterisk path" to add the following sections:

3.4 → 3.5 → 3.6 → 3.7 → 3.10 → 6.3 → 6.4 → 7.5 → 9.4 → 9.6.2 →

10.4.3 → 10.6.2 → 11.2 → 11.5 → 12.2 → 12.3 → 12.4 → 12.5 → 12.6 →

13 → 14.4 → 14.5 → 15.2 → 18.1 → 18.4.

xi



xii Preface to the Third Edition

• Sections labeled with two asterisks ∗∗ address to mathematicians or theoretical
physicists, or anyone who finds useful de dedicate some time practicing a higher
level of mathematics, like algebraic topology, differential geometry, or nonlinear
differential systems. For these readers,we recommend in addition to the “∗ asterisk
path” to add the following sections:

2.2 → 2.3 → 3.8 → 3.9 → 3.11 → 6.2 → 7.2 → 7.4 → 7.6 → 8 → 9.2

→ 10.4.2 → 10.4.4 → 10.4.5 → 10.4.6 → 10.4.7 → 10.6.3 → 11.3 →

11.4 → 15.1 → 15.3 → 16 → 17.

Besides corrections made in the previous editions, the goal of this third edition
is to implement latest results on solitons traveling on closed, compact surfaces or
curves. We cover again mathematical and physical problems ranging from nuclear to
astrophysical scales. The third edition provides additional examples of systems and
models where the interaction between nonlinearities and the compact boundaries is
essential for the existence and the dynamics of solitons.

The first historic mention of what we call today soliton was made in 1834 by
John Scott Russell following his discovery of a new type of waves of translation [1].
The mathematical model for such waves, the Korteweg-de Vries (KdV) equation,
was first introduced by Boussinesq in 1877, and it was rediscovered in 1895 by
Diederik Korteweg and Gustav de Vries [2]. Relations between nonlinear differential
equations and differential geometry, without any reference yet to solitons, were first
discovered by Edmond Bour in 1862 in the course of the study of surfaces of constant
negative curvature, like the Gauss—Codazzi equation for surfaces of curvature −1
in R3. This is the first mention of the sine-Gordon equation u − sinu = 0. The
equation was rediscovered by Frenkel and Kontorova in 1939 in their study of crystal
dislocations [3]. Only starting with 1970, this equation attracted a lot of attention due
to the presence of soliton solutions and its mathematical connection with differential
geometry. Therefore, it is the main goal of this book to focus on such interesting
and/or recent aspects of relations between nonlinear integrable systems with their
soliton solutions and differential geometry, mainly defined on compact manifolds.

The book consists of 19 chapters organized in four parts, a mathematical annex,
and a bibliography. The first part contains the fundamentals of topology, differential
geometry, and analysis approaches. To render this book accessible to students in all
STEM disciplines, Chap. 2 recalls some basic elements of topology with emphasis
on the concept of being compact. Chapter 3 introduces the reader to calculus on
differentiable manifolds, vector fields, differentiable forms, and various types of
derivatives. We take the reader from the definition of the differential manifold all
the way to the Poincaré lemma. Next, in this chapter, we introduce different types of
fiber bundles, the Cartan theory of frames, and the theory of connection and mixed
covariant derivatives. Without always presenting the proofs, we tried though to keep
a high level of rigorousness (relying on classical mathematical textbooks) all across
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the text while we still introduce intuitive comments for each definition or affirmation.
In Chap. 4, we review various representation formulas for various dimensions. These
formulas justify how the information about the evolution of smooth physical fields
inside a bounded region can be recovered only from the information on the region’s
boundary.

The second part of the book is devoted to applications of differential geometry in
the theory of curves and surfaces.Chapter 5 lays the basis for the differential geometry
of curves in spaceswith three dimensions.We introduce special sections for the theory
of closed curves and curves lying on surfaces. Complementary to these, in Chap. 6,
we introduce elements of the geometry of surfaces with applications to the action of
differential operators on these surfaces. In Chap. 7, we derive the theory of motion
of curves in two and three dimensions, and we emphasize the relationships between
theory of motion of curves and solitons. We devoted a section on the axiomatic
deduction of the theory of curve motions based on differentiable forms and Cartan
connection theory. We describe the relationships between some special motions of
curves and solitons.We describe nonlinear integrable systems that can be represented
by such motions. In Chap. 8, we discuss the theory of motion of surfaces and again
relate such motions to nonlinear integrable systems and solitons.

The third part of the book is dedicated to applications of soliton theory, especially
solitons on closed curves and surfaces, in fluid dynamics. The working frame of
hydrodynamics, which is also the main content of Part III, is presented in Chap. 9.
In Chap. 10, we discuss problems related to liquid surface tension effects and the
associated representation theories for fluid dynamics models. Chapter 11 describes
one-dimensional integrable systems on compact intervals, together with their peri-
odic solutions. In this chapter, we introduce the most common and most used subject
in nonlinear waves, the Korteweg-de Vries equation and system. In Chaps. 12–14,
we approach the same type of problems except in higher dimensions. We describe
and analyze nonlinear shape excitations for two and three-dimensional compact fluid
systems, like liquid drops, liquid shells, etc.

Chapter 15 is devoted to other applications of soliton theory on compact surfaces
in one to three dimensions like nonlinear shapes of layered liquid drops, compact
supported solitons, or the relationship between solitons and collective motions of
nonlinear dynamical systems with boundary.

In the fourth part of the book, as a closure for the first three parts, we present
novel and interesting physical (and even biological) applications of the theory of
nonlinear systems and their soliton solutions. We describe several physical systems
at different space-time-energy scales. In Chap. 16, we study the vortex filaments and
other one-dimensional flows. In Chap. 17, we describe microscopic applications of
solitons and instantons in the theory of elementary particles and quantum fields, in
description of exotic shapes of heavy nuclei, the phenomenon of exotic radioactivity
and relationships between solitons on closed curves and quantum Hall drops.

Chapter 18 containsmacroscopic scale applications of compact supported solitons
in magnetohydrodynamic, plasma systems, elastic solids with surface, nonlinear
surface diffusion, and neutron stars.



xiv Preface to the Third Edition

The book is completed by a mathematical annex, including an original section
on the theory and applications of nonlinear dispersion relations, and their use for
the qualitative description of the soliton solutions of nonlinear partial differential
equations.

A legitimate question of the potential reader would be: “Why one more book
on solitons?” First of all, we have to acknowledge the importance of the interac-
tions between compact boundary manifolds and the dynamics of particles and fields
in mathematical in physical models. Historically, the solitons are observed in sort
of “infinite” systems like infinite long lines or curves, planes or open surfaces, or
unbounded space. However, there is more and more evidence of the existence soli-
tons or of localized patterns (like vortices) in compact lower dimensional spaces,
like closed curves and/or surfaces. As examples, we can mention the unprece-
dented information technology advances in optical communication (light bullets and
ultra-short optical pulses), solid-state spectroscopy, ultra-cold atom studies, soliton
molecules, spinning solitons, quantum computers, spintronics and mass memory
systems, femtosecond laser pulses,mesoscopic superconductivity, etc.Consequently,
the reasons for writing this book are generated by a constantly increasing number of
new challenges, vivid topics and hundreds of published articles. As one last comment,
we mention that this book is not devoted to the teaching of general theory of solitons,
or the Inverse Scattering Transform, and other traditionalmethods to obtain nonlinear
solutions. This book opens a new direction in the field of nonlinear system, namely
about nonlinear waves and solitons evolving in compact spaces, like closed curves,
contours, and closed surfaces, etc.

If a substantial percentage of users of this book feel that it helped them to enlarge
their outlook in the intersection between the fascinating worlds of nonlinear waves
and compact surfaces and closed curves, its purpose has been fulfilled.

During the production of this third edition of this book, I have received the best
support and uninterrupted encouragement from my family. I have also greatly bene-
fited from discussions with my colleagues, and I am particularly grateful to Adrian
S. Carstea and Denys Dutykh who provided valuable help in the elaboration of this
edition.

Daytona Beach, FL, USA Andrei Ludu



Preface to the Second Edition

Nonlinear phenomena represent intriguing and captivating manifestations of nature.
The nonlinear behavior is responsible for the existence of complex systems, catas-
trophes, vortex structures, cyclic reactions, bifurcations, spontaneous phenomena,
phase transitions, localized patterns and signals, and many others. The importance of
studying nonlinearities has increased over the decades and has found more and more
fields of application ranging from elementary particles, nuclear physics, biology,
wave dynamics at any scale, fluids, plasma to astrophysics. The soliton is the central
character of this 178-year-old story. A soliton is a localized pulse traveling without
spreading and having particle-like properties plus an infinite number of conserva-
tion laws associated to its dynamics. In general, solitons arise as exact solutions of
approximate models. There are different explanation, at different levels, for the exis-
tence of solitons. From the experimenter’s point of view, solitons can be created if
the propagation configuration is long enough, narrow enough (like long and shallow
channels, fiber optics, electric lines, etc.), and the surrounding medium has an appro-
priate nonlinear response providing a certain type of balance between nonlinearity
and dispersion. From the numerical calculations point of view, solitons are localized
structures with very high stability, even against collisions between themselves. From
the theory of differential equations point of view, solitons are cross-sections in the jet
bundle associated to a bi-Hamiltonian evolution equation (here Hamiltonian pairs are
requested in connection to the existence of an infinite collection of conservation laws
in involution). From the geometry point of view, soliton equations are compatibility
conditions for the existence of a Lie group. From the physicist point of view, solitons
are solutions of an exactly solvable model having isospectral properties carrying out
an infinite number of non-obvious and counter-intuitive constants of motion.

The progress in the theory of solitons and integrable systems has allowed the study
of many nonlinear problems in mathematics and physics: non-local interactions,
collective excitations in heavy nuclei, Bose—Einstein condensates in atomic physics,
propagation of nervous pulses, swimming of motile cells, nonlinear oscillations of
liquid drops, bubbles, and shells, vortices in plasma and in atmosphere, tides in
neutron stars, only to enumerate few of possible applications. A number of other
applications of soliton theory also lead to the study of the dynamics of boundaries.

xv
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In that, the last three decades have seen the completion of the foundation for what
today we call nonlinear contour dynamics. The subsequent stage of development
along this topic was connected with the consideration of an almost incompressible
systems, where the boundary (contour or surface) plays the major role.

Many of the integrable nonlinear systems have equivalent representations in terms
of differential geometry of curves and surfaces in space. Such geometric realizations
provide new insight into the structure of integrable equations, as well as new physical
interpretations. That is why the theory of motions of curves and surfaces, including
here filaments and vortices, represents an important emerging field for mathematics,
engineering and physics.

The first problem about such compact systems is that shape solitons,which usually
exist in infinite long and shallow propagation media, cannot survive on a circle or
sphere. That is because such compact manifolds cannot offer the requested type
of environment (long and narrow), even by the introduction of shallow layers and
rigid cores. However, there is another basic idea that supports, in a natural way, the
existence of nonlinear solutions on compact spaces. Because of its high localization,
a soliton is not a unique solution for the partial differential system. Its position in
space is undetermined because, far away from its center, the excitation is practically
zero. On the other hand, all linear equations provide uniqueness properties for their
solutions. It results that strongly localized solutions and almost compact supported
solutions can be generated only within nonlinear equations. There is an exception
here: the finite difference equations with their compact supported wavelet solutions,
but in some sense, a finite difference equation is similar to a nonlinear differential
one.

Despite themany applications andpublications onnonlinear equations on compact
domains, there are still no books introducing this theory, except for several sets of
lecture notes. One reason for this may be that the field is still undergoing a major
development and has not yet reached the perfection of a systematic theory. Another
reason is that a fairly deep knowledge of integrable systems on compact manifolds
has been required for the understanding of solitons on closed curves and compact
surfaces.

The goal of the second edition of this book is to analyze the existence and describe
the behavior of solitons traveling on closed, compact surfaces or curves. The approach
of the physical problems ranging from nuclear to astrophysical scales is made in the
language of differential geometry. The text is rather intended to be an introduction
to the physics of solitons on compact systems like filaments, loops, drops, etc., for
students, mathematicians, physicists, and engineers. The author assumes that the
reader has some previous knowledge about solitons and nonlinearity in general. The
book provides the reader examples of systems and models where the interaction
between nonlinearities and the compact boundaries is essential for the existence and
the dynamics of solitons.

We focused on interesting and recent aspects of relations between integrable
systems and their solutions and differential geometry, mainly on compact manifolds.
The book consists of 17 chapters, amathematical annex, and a bibliography. First part
contains the fundamental differential geometry and analysis approach. To render this
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book accessible to students in science and engineering, Chapter 2 recalls some basic
elements of topology with emphasis on the concept of being compact. In Chapter 3,
we review the representation formulas for different dimensions. The formulas express
how a lot of information about the evolution of differentiable forms and fields inside
a compact domain can be recovered only from its boundary. Chapter 4 introduces the
reader to the calculus on differentiable manifolds, vector fields, forms, and various
types of derivatives. We take the reader frommap all the way to the Poincaré lemma.
Next we introduce different types of fiber bundles, including the Cartan theory of
frames, and the theory of connection and mixed covariant derivative (for immer-
sions). Without always presenting the proofs, we tried though to keep a high level of
rigorousness (relying on classical mathematical textbooks) all across the text while
we still introduce intuitive comments for each definition or affirmation. Chapter 5
lays the basis for the differential geometry of curves in R3 We devote here special
sections to closed curves and curves lying on surfaces. Complementary, in Chapter 7,
we introduce the elements of differential geometry of the surfaces with applications
to the action of differential operators on surfaces. In Chapter 6, we derive the theory
of motion of curves, both in two dimensions, and in the general case. We devoted a
section on the axiomatic deduction of the theory of motions based on differentiable
forms and Cartan connection theory. We relate these motions with soliton solutions
and find the nonlinear integrable systems that can be represented by such motions of
curves. In Chapter 8, we discuss the theory of motion of surfaces, and we also relate
it to integrable systems.

The second part of the monograph contains an exposition of the basic branches
of nonlinear hydrodynamics. The working frame of hydrodynamics is the main
content of the first part of the monograph, namely Chapter 9. In Chapter 10, we
discuss the problems on surface tension effects and representation theorems for fluid
dynamics models. Chapter 11 concentrates with one-dimensional integrable systems
on compact intervals, and their periodic solutions. Chapters 12 and 13 deal with
nonlinear shape excitations of two-dimensional and three-dimensional liquid drops
and bubbles. Chapter 14 is devoted to various applications of three-dimensional
nonlinear drops and also to compact supported solitons.

In the third part of the book, as a final goal for the first two parts, we present
additional physical applications of nonlinear systems and their soliton solutions on
various systems of different scales. In Chapter 15, we study the vortex filaments and
other one-dimensional flows. In Chapter 16, we describe microscopic applications
like elementary particles as solitons, instantons, exotic shapes in heavy nuclei, exotic
radioactivity and quantum Hall drops. Chapter 17 deals with macroscopic applica-
tions like magnetohydrodynamic plasma systems, elastic spheres, nonlinear surface
diffusion, and neutron stars.

The book is closed by a mathematical annex including a section on nonlinear
dispersion relations and their use for nonlinear systems of partial differential
equations.

A legitimate question of the potential reader would be: “Why one more book
on solitons?” First of all, we have to acknowledge the importance of the interac-
tions between compact boundary manifolds and the dynamics of particles and fields
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in mathematical in physical models. Historically, the solitons are observed in sort
of “infinite” systems like infinite long lines or curves, planes or open surfaces, or
unbounded space. However, there is more and more evidence of the existence soli-
tons or of localized patterns (like vortices) in compact lower dimensional spaces,
like closed curves and/or surfaces. As examples, we can mention the unprece-
dented information technology advances in optical communication (light bullets and
ultra-short optical pulses), solid-state spectroscopy, ultra-cold atom studies, soliton
molecules, spinning solitons, quantum computers, spintronics and mass memory
systems, femtosecond laser pulses,mesoscopic superconductivity, etc.Consequently,
the reasons for writing this book are generated by a constantly increasing number of
new challenges, vivid topics and hundreds of published articles.

If a substantial percentage of users of this book feel that it helped them to enlarge
their outlook in the intersection between the fascinating worlds of nonlinear waves
and compact surfaces and closed curves, its purpose has been fulfilled.

While writing the second edition of this book, I have greatly benefited from
discussions with my colleagues. I am particularly grateful to Ivailo Mladenov, Thiab
Taha, Annalisa Calini, Adrian Stefan Carstea who provided an inspirational and
valuable help in the elaboration of this second edition. For the best advices and
uninterrupted encouragement, I am indebted to my family.

May 2011 Andrei Ludu
Department of Mathematics

Embry-Riddle Aeronautical University
Daytona Beach, USA
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Everything the Power of the World

does is done in a circle. The sky is

round and I have heard that the earth

is round like a ball and so are all the stars.

The wind, in its greatest power, whirls.

Birds make their nests in circles,

for theirs is the same religion as ours.

The sun comes forth and goes down

again in a circle. The moon does the

same and both are round. Even the

seasons form a great circle in their

changing and always come back again

to where they were. The life of a man

is a circle from childhood to childhood.

And so it is everything where power moves.

Black Elk (1863-1950)

Nonlinearity is a captivating manifestation of the observable Universe, whose impor-
tance has increased over the decades, and has found more and more fields of applica-
tion ranging from elementary particles, nuclear physics, biology, wave dynamics at
any scale, fluids, plasmas to astrophysics. The central character of this 172-year-old
story is the soliton. Namely, a localized pulse traveling without spreading and having
particle-like properties plus an infinite number of conservation laws associated to its
dynamics. In general, solitons arise as exact solutions of approximativemodels. There
are different explanations, at different levels, for the existence of solitons. From the
experimentalist point of view, solitons can be created if the propagation configuration
is long enough, narrow enough (like long and shallow channels, fiber optics, elec-
tric lines, etc), and the surrounding medium has an appropriate nonlinear response
providing a certain type of balance between nonlinearity and dispersion. From the

xix
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numerical calculations point of view, solitons are localized structures with very high
stability, even against collisions between themselves. From the theory of differential
equations point of view, solitons are cross-sections in the jet bundle associated to a
bi-Hamiltonian evolution equation (here Hamiltonian pairs are requested in connec-
tion to the existence of an infinite collection of conservation laws in involution).
From the geometry point of view, soliton equations are compatibility conditions for
the existence of a Lie group. From the physicist point of view, solitons are solutions
of an exactly solvable model having isospectral properties carrying out an infinite
number of non-obvious and counter-intuitive constants of motion.

The progress in the theory of solitons and integrable systems has allowed the study
of many nonlinear problems in mathematics and physics: elementary particle non-
local interactions, collective excitations in heavy nuclei, Bose-Einstein condensates
in atomic physics, propagation of nervous influxes, nonlinear oscillations of liquid
drops, bubbles, and shells, vortexes in plasma and in atmosphere, tides in neutron
stars, etc., only to enumerate few of possible applications. A number of other appli-
cations of soliton theory also lead to the study of the dynamics of boundaries. In that,
the last three decades have seen the completion of the foundation for what today
we call nonlinear contour dynamics. The subsequent stage of development along
this topic was connected with the consideration of a almost incompressible systems,
where the boundary (contour or surface) plays the major role.

The first problem about such compact systems is that shape solitons, that usually
exist in infinite long and shallow propagation media, can not survive on a circle or
sphere. That is because such compact manifolds can not offer the requested type
of environment (long and narrow), even by the introduction of shallow layers and
rigid cores. However, there is another basic idea that supports, in a natural way, the
existence of nonlinear solutions on compact spaces. Because of its high localization, a
soliton (or a compacton) is not a unique solution for the partial differential system. Its
position in space is undetermined because, far away from its center, the excitation is
practically zero. On the other hand, all linear equations provide uniqueness properties
for their solutions. It results that strongly localized solutions and almost-compact
supported solutions can be generated only within nonlinear equations. There is an
exception here: the finite difference equations with their compact supported wavelet
solutions, but in some sense, a finite-difference equation is similar to a nonlinear
differential one.

Despite themany applications andpublications onnonlinear equations on compact
domains, there are still no books introducing this theory, except for several sets of
lecture notes. One reason for this may be that the field is still undergoing a major
development and has not yet reached the perfection of a systematic theory. Another
reason is that a fairly deep knowledge of integrable systems on compact manifolds
has been required for the understanding of solitons on closed curves and compact
surfaces.

The main aim of this book is to present models of nonlinear phenomena that
occur mainly on closed, compact surfaces or curves, especially where solitons and
solitary waves are involved. The approach of the physical problems ranging from
nuclear to astrophysical scales is made in the language of differential geometry. The
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text is rather intended to be an introduction to the physics of solitons on compact
systems like filaments, loops, drops, etc., for students, mathematicians, physicists,
and engineers. However, the book does not elaborate on the general theory of solitons,
or the inverse scattering problem, for example. The author assumes that the reader
has some previous knowledge about solitons, integrable systems and nonlinearity in
general. The book furnishes the reader with models related to compact boundaries
and their nonlinear dynamics, and, if available, with soliton-like solutions. This is
a book to be read with pencil, paper, and a symbolic computer program at hand.
Our intention is to furnish readers with enough knowledge to be able to identify,
understand, and model such nonlinear systems.

This text is still far from being a comprehensive study on the topic of solitons on
compact systems. It consists of 18 chapters, an appendix, and a bibliography. First
part contains the fundamental differential geometry and analysis approach. To render
this book accessible to students in science and engineering, Chapter 2 recalls some
basic elements of topology. In Chapter 3, we review some representation formulas
for different dimensions, as expressions of the comprehensive information contained
in the boundaries. Chapter 4 introduces the reader in the calculus on differentiable
manifolds, vector fields, forms, and various type of derivatives. Chapter 5 lays the
basis for the differential geometry of curves inR3. In Chapter 6, we derive the theory
of motion of curves, and we relate these motions with soliton solutions. In Chapter 7,
we recall some elements of differential geometry of the surfaces, with applications
on the action of differential operators on surfaces. In Chapter 8, we discuss the theory
of motion of surfaces.

The second part of the monograph contains an exposition of the basic branches
of nonlinear hydrodynamics. The working frame of hydrodynamics is the main
content of the first part of the monograph, namely, Chapter 9. In Chapter 10, we
discuss the problems on surface tension effects and representation theorems for fluid
dynamics models. Chapter 11 concentrates with one-dimensional integrable systems
on compact intervals, and their periodic solutions. Chapters 12 and 13 deal with
nonlinear shape excitations of two-dimensional, and three-dimensional liquid drops
and bubbles. Chapter 14 is devoted for various applications of three-dimensional
nonlinear drops, and also to compact supported solitons.

In the third part of the book, as a final goal for the first two parts, we present
additional physical applications of nonlinear systems and their soliton solutions on
various systems of different scales. In Chapter 15, we study the vortex filaments and
other one-dimensional flows. In Chapter 16, we describe microscopic applications
like exotic shapes in heavy nuclei, exotic radioactivity, and quantum Hall drops.
Chapter 17 deals with macroscopic applications like magnetohydrodynamic plasma
systems, elastic spheres, neutron stars, etc.

The book is closed by a mathematical annex including a section on nonlinear
dispersion relations and their use for nonlinear systems of partial differential
equations.

The last comment of this preface would be: Why one more book on solitons, and
why on compact spaces? A first answer is that there are already a large number of
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application on these vivid topics and hundreds of published articles. On the other
hand, there is the importance of compact manifolds themselves in physics.

If a substantial percentage of users of this book feel that it helped them to enlarge
their outlook in the intersection between the fascinating worlds of nonlinear waves
and compact surfaces and closed curves, its purpose has been fulfilled.

I have greatly benefited from discussions with my colleagues and students, and I
am particularly grateful to Thiab Taha for his sedulous and constant effort to provide
the frame for such discussions through his nonlinear waves meetings. I should like
to thank to whom gave me help and support to write this book: Randall J. Webb,
Austin L. Temple, and the National Science Foundation (through the grant PHYS-
0140274). For interesting and helpful conversations, I am indebted to many friends.
For discussions and constant encouragement, I am indebted to my family. During
the completion of the manuscript, Bob Odom has given me valuable suggestions.
The last but not at all the least I am thankful to the Watson Library and the group
working with the Illiad interlibrary borrowing who offered me the chance to cover
all the necessary references.

June 2009 Andrei Ludu
Department of Physics and Astronomy

Louisiana State University
Baton Rouge, USA
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Chapter 10
Hydrodynamics

The mathematical description of the states of a fluid is based on the study of three
fields defined on the domain occupied by the fluid: the velocity field V , the density
ρ, and the pressure field P . These three “unknowns” are determined by integrating
other five scalar equations, namely the mass conservation (continuity equation), the
three components of the equation of momentum balance (Euler or Navier–Stokes),
and the energy balance. This last equation needs in addition information about the
thermodynamics of the fluid, so it may need to be supplied with some equation of
state. In addition to these five equations, we request regularity, asymptotic and, if it
is the case, boundary conditions, to provide a unique solution. When we study the
dynamics of the fluid confined in a compact domain with free boundaries, the system
is slightly more complicated, and we have to add the kinematical equation of the free
surface, as well as equations of momentum balance at the surface. If we take into
account the nonlinear terms in the dynamical equations, and in the associated curved
geometry, some interesting solutions occur. Special nonlinear effects related to fluids
on compact domainswith free surface could beGibbs–Marangoni effect, dividing the
flow in cells (Bènard effect), couplings between different modes, collective effects,
separation of flow in layer (boundary layer, turbulence), standing traveling surface
waves, etc. In this chapter, we introduce some elements of general hydrodynamics
whichwewill use later on in the book, boundary conditions especially at free surfaces,
surface pressure theory, and representation theorems.
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250 10 Hydrodynamics

10.1 Momentum Conservation: Euler and Navier–Stokes
Equations

The continuity equation for fluid dynamics (9.32) was derived in Sect. 9.6 and it has
the form

∂ρ

∂t
+ ∇ · (ρV ) = 0, (10.1)

where V = (Vi ) is the Lagrangian or material velocity of the fluid particle, and ρ is
the fluid density. Becausewe study the fluid in the three-dimensional Euclidean space
of flat metric, there is no difference between covariant and contravariant character
of the Euclidean vectors, so we will place the label as subscripts as a rule in this
section. The momentum of the unit of fluid volume is given by

pi ≡ ∂

∂t
(ρVi ) = fi = Fi

V
, (10.2)

where f = ( fi ) is the volume force density, derived for the total force field in the
fluid F. From (10.1) and (10.2), we have

∂Vi

∂t
+ Vk

(
∂

∂xk
Vi

)
= − ∂

∂x j
(Pδi j + ρViVj ) ≡ − ∂

∂x j
Θi j , (10.3)

where P is the pressure, and we define the fluid symmetric momentum flux tensor
as Θ̂ . In the inviscid case, where we have no loss of momentum in viscosity and
internal frictions, this tensor has the property

fi = ∂ pi
∂t

= ∂

∂t
(ρVi ) = − ∂

∂xi
Θ inviscid

i j . (10.4)

If we draw an imaginary smooth surface with unit normal N , (10.4) can be written
in the form

Π̂ inviscid · N = PN + ρV (V · N), (10.5)

which represents the balance of reversible momentum. The LHS term represents
how much momentum is transferred per unit of time and cross-section area in the
direction N , the first term on the RHS is the change of momentum by molecular
motion and interaction, and the last term is the change of momentum by bulk flow
only.

If we consider the viscosity, η, we have to extend the momentum flux tensor with
an extra term, namely

Θ inviscid
i j → Θi j = Pδi j + ρViVj − σ

′
i j . (10.6)
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In literature [1–5, 14, 27], authors use another tensor, namely the fluid stress tensor
σ̂, inspired from the study of elasticity, representing the total momentum transferred
by molecular motion both reversible and irreversible, and defined by

σi j = −Pδi j + σ
′
i j , (10.7)

so that
Θi j = −σi j + ρViVj . (10.8)

So far we took for granted that these stress tensors are symmetric. The proof is based
on the judgment that the total torque, dMi = εi jk x j∂Θkl/∂xldV , produced by fluid
forces in an infinitesimal domain depends only on the surface of the domain, because
inside forces between different elements cancel each other in action–reaction pairs.
From the Green theorem applied on this domain, we obtain that εi jkΘ jk = 0, where
from Θi j = Θ j i ,σi j = σ j i .

To have an expression for the stress tensor, we need to use the Newtonian fluid
hypothesis, namely the part of themomentumflux tensorwhich results from frictional
interaction of the fluid in relative motion (represented by the viscous stress tensor
σ′) depends only on the instantaneous gradient of fluid velocity. In addition, this
dependence is approximated to be linear. If we keep the general dependence on the
gradient, thefluid is calledStokesianfluid, but the hypothesis need to be supplemented
by requiring smoothness, isotropy, and homogeneity [6, 7]. So, we can write

σ
′
i j = Ci jkl

∂Vk

∂Vl
. (10.9)

To determine the tensor C , we note that a global rotation of the fluid should not
introduce any stress, so we have Ci jkl = Ci jlk . In addition we require C to be an
isotropic tensor, namely invariant to any rotation. We know that the only rotational
invariant tensors of rank 0 is a scalar, of rank 1 there is none, of rank 2 is the
Kronecker symbol δi j , and of rank 3 is the Levi–Civita tensor εi jk . The number of
linear independent isotropic tensors of rank k is given by the Motzkin recursion
formula

Nk = k − 1

k + 1
(2Nk−1 + 3Nk−2), k = 1, 2, . . . ,

from where it results N4 = 3 [8]. To obtain the general formula for the C tensor, we
can use a theorem from elasticity [9, 10]. This theorem states that a rank 2 symmetric
tensor (i.e., σ̂

′
) generated by all possible linear combinations between another rank 2

tensor ∇V and a rank 4 isotropic tensor Ĉ with the above listed properties is a linear
combination of the symmetric part of ∇V and the Kronecker tensor times the trace
of ∇V . That is

σ̂ = −P Î + η(∇V + (∇V )t ) + λTr(∇V ) Î , (10.10)
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where (̂I ) = δi j , and where the second term on the RHS is the symmetric part of∇V
(containing the transpose), also called the rate of deformation (or rate of strain), and
Tr(∇V ) = ∇ · V is called rate of expansion [3, 5]. The last assumption on the stress
tensor (Stokes’ assumption) namely σ̂′ makes no contributions to the mean normal
stress, so we have λ = −2/3 from here. It results

σ̂ = −P Î + η

[
( ˆ∇V + (∇V )t ) − 2

3
Tr(∇V )

]
Î

= −Pδi j + η

[
∂Vi

∂x j
+ ∂Vj

∂xi
− 2

3

∂Vk

∂xk
δi j

]
. (10.11)

If we neglect the Stokesian assumption, and we also consider the contribution of a
dilatational viscosity, we correct (10.11) into

σi j = −Pδi j + η

[
∂Vi

∂x j
+ ∂Vj

∂xi
− 2

3

∂Vk

∂xk
δi j

]
+ ζ

∂Vk

∂xk
δi j , (10.12)

where ζ is the coefficient of dilatational viscosity. In the non-Newtonian fluid, we
have η, ζ = f (∂vi/∂xk).

We can rewrite (10.12) in a vectorial form, such that the dynamical equation for
a viscous fluid reads

ρ

[
∂V
∂t

+ (V∇)V
]

= −∇P + ρ f + η�V +
(

ζ + η

3

)
∇(∇ · V ), (10.13)

which is the famous Navier–Stokes equation of a fluid in the presence of a volume
density force f . In the case of incompressible fluid, (10.14) becomes

∂V
∂t

+ (V∇)V = −1

ρ
∇P + f + η

ρ
�V , (10.14)

which reduces to the Euler equation in absence of viscosity

∂V
∂t

+ (V∇)V = −1

ρ
∇P + f . (10.15)

10.2 Boundary Conditions

Boundary conditions at the surface of a fluid Σ can be of three types: separation
between two fluids (fluid interface), free surface of a fluid in a rarefacted gaseous
atmosphere (or vacuum), and contact with rigid surfaces. The expressions of the
conditions of continuity in each case depend if the fluid (fluids) is viscous or inviscid.
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Basically, we can write a general continuity condition for the separation of two fluids
(say fluids 1 and 2), and this condition can be modified for the other two cases.

The continuity of the velocity at the interface is a relation strongly dependent on
the model (viscous or not, slipping interface or not, etc.), so we will use it for every
situation in particular. Nevertheless, we can write a provisional continuity condition
in the form V 1|Σ = V 2|Σ or

V n,1|Σ = V n,2|Σ, V �,1|Σ = V �,2|Σ, (10.16)

where the two components are the normal and the parallel one to the surface. In many
models, it is more practical to rewrite the continuity conditions (10.16) in another
form,

V n,1|Σ = V n,2|Σ,

N · (∇Σ · V 1|Σ) = N · (∇Σ · V 2|Σ),

N · (∇Σ × V 1|Σ) = N · (∇Σ × V 2|Σ), (10.17)

namely the continuity of the normal components of the velocity, of the divergence
and the curl of the velocity. The last one is nothing but the continuity of the normal
component of the vorticity ω = ∇ × V . The operator ∇Σ is the surface gradient.
Basically, it represents the gradient expressed in surface curvilinear coordinates,
acting on vectors in the tangent plane to Σ . Its rigorous definition and properties are
described in Sect. 6.5. Equation (10.17) represent mixed Dirichlet and von Neumann
boundary conditions, and guarantee the uniqueness of the solution of the (elliptic
type partial differential equations) Euler or Navier–Stokes equations (see (10.13)
and (10.15)).

In the case of rigid surface in contact with the fluid, because of the cohesive
forces, we ask V |Σ = 0. Such a relation cannot be fulfilled by the Euler equation (it
would generate zero solutions all over the space), but it can be fulfilled at least for the
normal components in the case of inviscid fluids (or actually the normal component
of fluid velocity should be equal to the local velocity of the rigid surface), while
V � �= 0 for ideal fluids. Consequently, the separation between the fluid and the rigid
boundary is a special zone, so-called “vortex-sheet” or “boundary layer” where we
model the discontinuity for the tangent velocity. In the boundary layer the vorticity
is nonzero, but because the equation for vorticity in the viscous case is a diffusion
type of equation

∂ω

∂t
= ν�ω,

where we eliminate the volume forces for simplification, we expect the vorticity to
decay toward the bulk of the fluid, away from the boundary layer. This also implies
that out of the boundary layer the velocity is almost potential.
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The balance of the momentum across the surface is

F1|Σ = F2|Σ → Niσ
1
ik |Σ = Niσ

2
ik |Σ (10.18)

or in tensor form
(σ̂1 − σ̂2) · N = 0, on Σ. (10.19)

For a free surface, (10.18) reduces to

Niσ
′1
ik |Σ = P|ΣNk . (10.20)

In tensor form the continuity condition across a free surface reads

(σ̂′ · N)Σ = P|Σ · N = 2σH,

(σ̂′ · ta,b)Σ = 0, (10.21)

where ta,b form a basis in the tangent space of the surface, σ is the coefficient of
surface tension, and H is the mean curvature of the surface. These equations will be
elaborated in detail in Sect. 10.4. In this case of an isolated droplet, the driving force
(the surface tension) acts always perpendicularly to the free surface. Therefore, the
tangential stress on the surface vanishes, and the normal stress is the driving force.
In Chap.8, we have noticed that there are a lot of other interactions at the interface
between two fluids, especially if the surface is material and it is moving.

If the surface of separation carries some material properties, for example it has
mass distribution, internal viscoelastic forces, etc. (in this case the separation is
called an interface), the continuity equations for the stress (10.19) and (10.21) change
correspondingly

(σ̂1 − σ̂2) · N|Σ = Fnet,Σ , (10.22)

where the RHS is the net force per unit of surface area acting upon the physical
surface, sometimes denoted σΣ . This surface density force, Fnet = FnN + F�,
contains the surface tension and many other terms related to the existence of surface
elasticity, viscosity, shear, surfactants, mass transfer, etc. Its expression is obtained
on differential geometry grounds in Sect. 8.4 (see (8.41) and (8.56)).

10.3 Circulation Theorem

This subject was initially investigated by Thomson [11] and Helmholtz [12].
Some different proofs of the theorems on vortex motion were given later by Lord
Kelvin [13]. The circulation theorem states that:
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Theorem 24 (Kelvin Circulation Theorem) The line integral of the fluid velocity v
along a closed circuit Γ (the circulation of the velocity) which moves together with
the fluid is constant in time if the fluid is perfect

Cv,Γ =
∮

Γ

v · tds = const. (10.23)

Here v is calculated in the Lagrangian frame and t is unit tangent to Γ .
By perfect fluid we understand here inviscid isentropic flow, governed by Euler

equation (10.15) in the presence of only potential external forces

a = dv

dt
= ∂v

∂t
+ (v · ∇)v = −1

ρ
∇P − ∇U, (10.24)

where a is the Lagrangian acceleration and U is the potential of external forces
acting on the fluid. This result is important both for vortex motion and potential
motion. However, in spite of the fact that the concept of closed circuit moving with
the fluid is intuitive, and it is based on the Lagrangian point of view, this concept
is not quite rigorously defined geometrically. In the following, we give two proofs
for the circulation theorem differing in the degree of rigorousness and geometry
involved [1, 3, 14].

Proof 1 (Equation of State Approach) The rate of change of the circulation is

dCv,Γ

dt
=

∮
Γ

a · tds +
∮

Γ

v · d
(
d r
dt

)
. (10.25)

The second integral on the RHS is a total differential (vdv) and it provides zero
contribution on the closed circuit. According to the hypotheses, the acceleration is
given by the Euler equation (10.15). If the flow is isentropic, the Lagrangian variation

of the entropy of the unit ofmass of the fluid is zero, d

(
S
m

)
= ds = 0. Consequently,

we can write the variation of the enthalpy of the unit of mass

dh = VdP + TdS

m
= 1

ρ
dP, (10.26)

where P is the pressure. In thisway the acceleration becomes a gradient a = −∇(h +
U ), and the first integral in (10.25) is also zero. The circulation of velocity on any
closed circuit moving with the fluid is indeed constant. �

In other approaches (for example [1]) Theorem 24 is formulated with a different
hypothesis. It is stated that in the inviscid fluid the density is either constant or
function of pressure only (barotropic flow). The equivalence of the two formulations
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is obvious: if thefluid is isentropic, then the constancyof entropyprovides an equation
of state in terms of density and pressure only, s = s(p, ρ), from where the requested
dependence [14].

It is interesting to observe that, for inviscid fluids which are not isentropic (not
barotropic fluids) and for which the circulation is not conserved, the acceleration has
the property

∇ × a = ∇P × ∇ 1

ρ
. (10.27)

This means that the rate of change of circulation can be expressed through the Stokes
theorem in the form

dCv,Γ

dt
=

∫
Σ

(
∇P × ∇ 1

ρ

)
· NdA, (10.28)

where Σ is a surface bounded by the circuit Γ . That means that the average (over
a small surface) rate of change of the circulation is directed along the intersection
between isobaric surfaces and surfaces of constant density.A lot of convection effects,
including for example the surface vs. bottom salted water current between the Black
Sea and the Mediterranean Sea, are generated by this mechanism [1].

On the other hand, the circulation Theorem 24 helps to understand the permanent
character of the potential flow: once the curl of velocity is zero in some region and
at some initial moment of time, the velocity will be irrotational in any region of the
space and at any later moment, by circulation (zero in this case) conservation. The
irrotational character of the flow is transported by physical fluid particles in all the
flow region.

Proof 2 (Free Surface Approach) The physical hypotheses are the same: ideal invis-
cid isentropic fluid with potential external forces. We need to work with the concept
of moving particle circuit, i.e., the closed curve of particles moving with the fluid.
In other words a closed contour always consists of the same fluid particles. For a
rigorous geometric definition of particle lines and circuits in terms of fiber bundles,
the reader can return to the Sects. 9.2, 9.2.2, 9.2.4, and 9.2.5.

We prepare the proof of the Kelvin theorem by using traditional definitions of path
lines and particle contours, like those introduced in Sects. 9.1.2, 9.2.3, and 9.3. Later
on we reformulate the theorem in terms of differential geometry. Let us choose at
t = 0 a compact, connected, and simply connected surfaceΣ made by fluid particles,
and consider its boundary the closed curveΓ = ∂Σ .We callΓ a particle circuit. The
existence and stability in time of such a curve are discussed in the above-mentioned
sections. We parametrize this curve with the equation r0(s), where s labels the fluid
particles in the circuit. At a later moment of time, within some finite time interval
t ∈ [0, T ], we construct a diffeomorphic deformation of Σ into Σ ′, i.e., the fluid
flow. This mapping induces a diffeomorphic deformation of Γ into Γ ′, described by
r0(s) → r(t, s). The r(t, s) function represents the position of the s fluid particle at
moment t .When time runs, the diffeomorphism generates a family of curves (particle
circuits moving with the fluid) each one parameterized by the same label s. The set
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Fig. 10.1 Left: particle circuit Γ (horizontal circle) and corresponding particle paths (Γs , arrows).
Right: resulting tube of flow ΣΓ[0,σmax ]. Top: the regularity condition in Theorem 25 is fulfilled, i.e.,
a(r(σ, s)) × r ′

Γ (s) �= 0

of these closed curves is called a tube of flow based on the particle sheets Σ and
Σ ′. The question is if this tube of flow described by the curves r(t, s) is a regular
surface. The answer is given by Theorem 25.

Theorem 25 Let a(r) be a differential vector field on an open domainD ⊂ R
3 and

Γ ⊂ D beanarc-length parameterized regular simple closed curve of equation rΓ (s)
with s ∈ [0, LΓ ] and rΓ (0) = rΓ (LΓ ). For every s ∈ [0, LΓ ] we build a regular
simple parameterized curve Γs of equation r(σ, s) with σ ∈ [0,σmax ] as follows:
1. The equation r(σ, s) = rΓ (s) has one and only one solution σ = 0.
2. If tΓs (σ) is the unit tangent for each Γs curve, then ∀σ ∈ [0,σmax ]

∂r
∂σ

(σ, s) ≡ tΓs (σ) = a(r(σ, s)),

a(r(σ, s)) × d rΓ

ds
(s) �= 0.

r(σ, s) is a regular parameterized surface ΣΓ
[0,σmax ] for σ ∈ [0,σmax ], s ∈ [0, LΓ ].

Proof See Fig. 10.1. Since the field a is differentiable, the curves Γs are its integral
curves and depend smoothly on their natural arc-length parameter σ. Also, from the
Frobenius existence and uniqueness theorem (Theorem 3), all these curves depend
smoothly on their initial data, i.e., the s parameter (see also [15, Theorem 1, p. 176]).
Consequently r(σ, s) is a differentiable function. From the hypotheses each integral
curve intersects the contour only one time. The Jacobian matrix
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Ĵ r(σ, s) =
(

∂xi

∂σ
,

∂xi

∂x j
Γ

dx j
Γ

ds

)
= (ai (r(σ, s)), δi j t

j
Γ (s)) �= 0

is nonzero by hypothesis. The Jacobian has rank 2 and hence the tangent map d r is
one-to-one. Consequently r(σ, s) is a regular parametrized surface. �

From Theorem 25 we know that moving particles arranged in a closed contour
Γ generate a tube of flow r(t, s) based on Γ and Γ ′. Now we can come back to the
second proof of the Kelvin circulation theorem. We write (10.23) in the form

∮
Γ

v · tds =
∮

Γ ′
v · tds,

where Γ, Γ ′ represent the particle contour at two different moments of time.
The vorticity ω = ∇ × v has the property ∇ · ω = 0 which means that, for any

domain D, we have ∫
D

∇ · ωdV =
∮

∂D
ω · NdA = 0,

where dV , dA are the volume and area elements and N is the unit normal to Σ .
We choose D to be the inside of a tube of flow bounded by Σ,Σ ′ and a side area
described by the flows r(t, s), denoted in the following Σ f . We have

0 =
∮

Σ∪Σ ′∪Σ f

ω · NdA =
∫

Σ f

ω · NdA +
∫

Σ∪Σ ′
ω · NdA. (10.29)

Because Σ,Σ ′ are particle surfaces, we have

v|Σ × NΣ = 0, v|Σ ′ × NΣ ′ = 0, (10.30)

and hence we have v|Γ · tΓ = v|Γ ′ · tΓ ′ = 0.1 Consequently

0 =
∮

Γ

v · tds =
∫

Σ

ω · NdA

0 =
∮

Γ ′
v · t ′ds =

∫
Σ ′

ω · N ′dA′, (10.31)

which cancel the second term on the RHS of (10.29). So, we have

∫
Σ f

ω · NdA = 0, (10.32)

1 For the proof of these relations, see Problem 5 at the end of this chapter.
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Fig. 10.2 Closed contour of integration on a tube of flow

i.e., the flux of vorticity through the side surface is zero.2 Now we choose t = 0
and another moment of time t , and s0, s0 + δs two close points on Γ and Γ ′. We
integrate v along a closed curve lying in Σ f , composed by rΓ |s∈[s0+δs,s0], connected
to r|[0,t]×{s0}, connected to rΓ ′ |s∈[s0,s0+δs], and finally connected to r|[t,0]×{s0+δs}, like
in Fig. 10.2. We integrate v along the curve in Fig. 10.2 in the limit δs → 0, and from
(10.32) we have

lim
δs=0

∮
v · tds =

∫
Σ f

ω · NdA = 0. (10.33)

But

∮
v · tds =

∫
Γ

v · tds +
∫ r(s0,t)

r(s0,0)
v · tds −

∫
Γ ′
v · tds +

∫ r(s0+δs,0)

r(s0+δs,t)
v · tds.

(10.34)
In the limit limδs=0, the second and the fourth terms in the RHS of (10.34) cancel
each other, and by using (10.33) we prove the Kelvin circulation theorem.

Traditional proofs of the same theorem can be found, for example, in Article 146
from [3], in Sect. 3.51 from [1], or in Sect. 8 from [14].

Proof 3 (Comment) There is a geometrical way to prove (10.32). Since we work
only on the fluid particle surface, it is natural to use the surface differential operators
instead of the full three-dimensional ones. We apply the surface divergence theo-
rem (6.61), wherewe substitute A = v × N . From the formula (6.69) in the problems
at the end of Chap. 6, we have∇Σ f · (v × N) = N · (∇Σ f × v) − v · (∇Σ f × N) and

2 The fact that the flux of vorticity is zero on a tube of flow surface is an interesting result by itself.
For more discussions, also see Problem 5 at the end of this chapter.
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this reduces to N · (∇Σ f × v) because of the property of the normal from in (6.54).
It results ∫∫

Σ f

∇Σ f · (v × N)dA =
∮

ω · NdA,

where the contour integral is taken along the curve in Fig. 10.2. Both RHS terms in
the surface divergence theorem formula cancel. On one hand we have

∮
(v × N) · t⊥ds =

∮
(t⊥ × v) · Nds = 0,

because v ‖ t⊥ by the definition ofΣ f . The second termon theRHSof the divergence
theorem formula cancels by construction

−2
∫∫

H(v × N) · NdA = 0,

so it results (10.32). The reason we wanted to mention this geometric amendment is
related to (10.30). In Proof 2, these equations are somehow postulated on physical
grounds (i.e., particles contained in the surface move together with the surface),
however in this comment they result automatically as a rigorous consequence.

10.4 Surface Tension

10.4.1 Physical Problem

In this section, we study certain phenomena that occur in the neighborhood of a
closed surface of separation between two continuous media that do not mix. In
reality, the two systems in contact are separated by a thin boundary layer having
special properties. However, in the following, we neglect the internal structure of
this transition layer, and we assimilate it with an infinite thin geometric surface. In
the neighborhood of a curved surface of separation, the pressure in the two media is
different, andwe call this pressure difference surface tension. In Sect. 8.4 (see (8.32)),
we introduce the same surface tension in another manner, starting from dynamical
considerations. Here, we assume that the free energy of this state of tension (the
stress between two adjacent elements of surface) depends only on the area of the
common boundary, on the nature of the two media, and on temperature. The special
case of additional electric, acoustic, etc., fields, or presence of surfactants will be
discussed later in another chapter. For a more detailed discussion on the topic, see
Article 265 in [3]. Although, the original first treatment of the problem belongs to
Lagrange who first determined a minimal surface in 1760. A review on the topics of
capillarity is presented in [16] and references herein.
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In the stationary case v = 0 for a fluid with free boundary S, the Euler equation
reads

− 1

ρ
∇P + f = 0, (10.35)

where ρ is the fluid density, P is the pressure, and f is the mass density of the force
field acting inside the fluid. If the force field is potential, f = −�u, the stationary
Euler equation reduces to the simplest Bernoulli type of equation, namely P =
P0 − ρu. However, this equation cannot predict the pressure infinitesimally close to
the surface, where stronger nonlinear effects occur. To obtain the pressure next to
the fluid surface, we have to use other approach [14].

The expression of surface tension can be obtained by using the equations of
thermodynamic equilibrium. Let us assume that locally the surface of separation
suffers a variation in the formof an infinitesimal displacement. The only displacement
that counts physically is that one normal to the surface, becauseweneglect the internal
structure of the surface, and we consider it to be homogenous from the physical
point of view. Let us describe the surface of separation as a parameterized regular
geometrical surface r(u, v) : U → S (see Chap.19) with unit normal N(u, v). We
define the normal variation of the surface S as the function

r t (u, v, t) = r(u, v) + t h(u, v)N(u, v), (10.36)

where (u, v) ∈ U , t ∈ (−ε, ε) is a parameter, and h(u, v) is a differential real function
defined on U . For each t , the map r t : U × (−ε, ε) → R

3 is a regular parametrized
surface (see Fig. 10.3). For t = 0, the normal variation reduces to the original surface.

Fig. 10.3 A normal variation of r(U )
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We assume that the original surface suffered a normal variation determined by the
h(u, v) function, and it is not anymore in thermodynamic equilibrium. The elemen-
tary volume of an infinitesimal element of space bounded by the original surface and
by the graphs of the function r t is t h(u, v)d A(u, v), where d A is the elementary area
of the original surface, d A = √

EG − F2dudv (from Definition 52). We denote by
P1 and P2 the pressures in the medium 1 and medium 2, respectively, separated by
S, in the neighborhood of the surface, and we choose the direction from 1 to 2 in
the direction of the unit normal N . The work produced by a compression upon this
elementary volume, which is also the change in its free energy F , is

Wvol = δFvol = t
∫∫

Ū
(P2 − P1)h

√
EG − F2dudv. (10.37)

The total change in the free energy of the system is given by δWvol plus the work
associated with the variation of the area of the separation surface, i.e., the superficial
(or surface) energy. In a simple model, this second part of the free energy is given
by the product between a constant σ and the variation of the area δA. The constant
σ is called surface tension coefficient and depends on the nature of the two media,
and on temperature. The total variation in the free energy becomes

δF = t
∫∫

Ū
(P2 − P1)h

√
EG − F2dudv + σδA. (10.38)

The equilibrium condition is δF = 0, and from here we obtain the expression of the
surface tension, P|S = P2 − P1. We prove in Sect. 10.4.2 that the expression of the
surface tension at a point r on the surface is

P2 − P1 = Pr∈S = σ(κ1 + κ2),

where κ1,2 are the two principal curvatures of the surface at p. In all our examples, we
choose the orientation of the surfaces such that the normal is toward the convexity
of the curve, and the direction from medium 1 to medium 2 is chosen along this
normal. To check the correct sign of the surface pressure expression, we choose
for the surface the graphics of a differential function z = η(x). The profile depends
only on x , and we have full symmetry along the other coordinate y. In this one-
dimensional case, we have just one principal curvature nonzero, this κ1 = κ (κ2 = 0)
is called the curvature of the function η, and it has the expression κ = η′′

(1+η′2)
3
2
. If we

choose a convex function with η′′ < 0, we have κ < 0 and consequently P1 > P2.
That pressure P1 inside the concavity is larger, as it should be. A more geometrical
definition of the surface tension can be found in Sect. 8.4 or in [6, 17].
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10.4.2 Minimal Surfaces

Tofind the explicit expression for the surface tension in themost general situation, we
need to calculate the RHS term in (10.38). The coefficients of the first fundamental
form of the modified surface r t are

Et = E + 2thru · Nu + t2h2Nu · Nu + t2(hu)
2,

Ft = F + th(ru · Nv + rv · Nu) + t2h2Nu · Nv + t2huhv,

Gt = G + 2thrv · Nv + t2h2Nv · Nv + t2(hv)
2. (10.39)

By using the definition relations for the second fundamental form of the surface (see
Chap.19)

e = −ru · Nu, f = −(ru · Nv + rv · Nu)/2, g = −rv · Nv

and the definition of the mean curvature of a surface (6.10)

H = Eg − 2 f F + Ge

2(EG − F2)
, (10.40)

we obtain

EtGt − (Ft )2 = EG − F2 − 2th(Eg − 2 f F + Ge) + O(t)

= (EG − F2)(1 − 4thH) + O(t), (10.41)

where O(t) is a term that approaches zero more rapidly than t when t → 0. From
(10.41), it results that, if ε is small enough, the surface r t is a regular parameterized
surface. Just now we can use r t as the equation of a surface in the calculation of the
free energy and surface tension. The area A(t) of r t (Ū ) is given by

A(t) =
∫∫

Ū

√
EtGt − (Ft )2dudv

=
∫∫

Ū

√
1 − 4thH + O(t)

EG − F2

√
EG − F2dudv. (10.42)

It follows that, in the limit of small ε, A(t) is differentiable with respect to t , and its
derivative at t = 0 is

d A

dt
(0) = −2

∫∫
Ū
hH

√
EG − F2dudv = −

∫
hHdA. (10.43)
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So, the variation of the area during this deformation parameterized by the parameter
t is δA = (d A/dt)dt . At t = 0 we have

δA = −2
∫∫

Ū
h H

√
EG − F2du dv dt = −

∫
(κ1 + κ2)hd Adt, (10.44)

whereκ1,2 are the principal curvatures of the surface at the point of coordinates (u, v)

(see Chap.19). Equation (10.44) can provide an interesting interpretation of themean
curvature, in terms of the minimal surfaces. We can define themean curvature vector
by H = HN , and by choosing h = H in (10.44) we can write

δA = −2
∫∫

Ū
H · H

√
EG − F2du dv dt. (10.45)

Equation (10.45)means that the area of the deformed surface r t (U ) always decreases
if we deform it in every point toward the direction of the mean curvature vector. For
a given surface, the mean curvature vector points toward the direction where this
surface tends to becomeaminimal surface. For example, in the case of an infinitesimal
normal variation of a spherical surface, the mean curvature is still negative (the
corrections in the first order in ε are smaller than 1) and since the normal is directed
outside the sphere and H < 0, the vector H points toward the center. This is indeed
the direction along which the area of an elementary spherical surface would become
smaller, by flattening toward a plane.

The unit normal field for S is a divergence-free vector field. This comes from the
fact that the mean curvature is related to the normal direction of the surface by the
equation

H = −1

2
∇S · N,

from Proposition 5 (Sect. 6.5.2), where ∇S· is the surface divergence operator. From
here it results

Proposition 9 For a minimal surface the normal vector field is surface divergence
free.

Coming back to the dynamics of the surface, if we consider the variation of the
original area from t = 0 to a certain small value of t , we have dt = t , and introducing
(10.44) in (10.38), we have the condition of equilibrium in the form

∫∫
Ū
(P2 − P1 − σ(κ1 + κ2))t h

√
EG − F2dudv = 0.

Since the function h is arbitrary, we have to fulfill

P2 − P1 = σ(κ1 + κ2) = 2σH (10.46)
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which determines the expression of the surface pressure (Laplace formula for cap-
illarity). H is the mean curvature. For a more physical proof the reader can check
(8.55). If, for example, the principal curvatures are positive, it results that P1 > P2,
i.e., the pressure is larger in the medium located inside the concavity of the surface.

We end this section with a property of minimal surfaces which results as a con-
sequence of the divergence integral theorem (6.61). From the relation

∇S × r = 0,

where ∇S× is the surface curl and r is the position vector, we can write two integral
conditions valid for any closed curve Γ on any minimal surface S

∮
Γ

t⊥ds = 0 (10.47)
∮

Γ

r × t⊥ds = 0, (10.48)

where t⊥ = N × t with t, r having their regular interpretation and s being the arc-
length along Γ . These two equations can be regarded as the dynamical equilibrium
conditions for the minimal surface. The first one represents force balance, and the
second one represents the momentum balance of a domain of S surrounded by Γ .

10.4.3 Application

To have a better intuition of the direction of the surface tension gradient, we present
in the following a simpler example. Let us choose a parameterized surface S as the
graph of a differential function z = h(x, y) and U is an open set of the xOy R

2

plane. The parameterizations of the surface are r = (u, v, h(u, v)) with u = x and
v = y. We have

N(x, y) = (−hx ,−hy, 1)

(1 + h2x + h2y)
1/2

(10.49)

and

H = (1 + h2x )hyy − 2hxhyhxy + (1 + h2y)hxx

(1 + h2x + h2y)
1/2

. (10.50)

For a more concrete example, we consider the surface of a semicylinder having the
axis along Ox and its points at z = f (x, y) > 0. If it rains from above, this cylinder
will not keep the water. Close to the top of the cylinder, we have N � (0, 0, 1), and
the normal is oriented upward, toward positive z. It means medium 1 (we choose
medium 1 to be liquid) is under the cylinder, inside its concavity, and medium 2 (we
choose medium 2 to be air) is above the cylinder. We also assume that the cylinder
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radius R is large enough so we can neglect nonlinear terms in the expression of the
mean curvature. At points close to the top of this cylinder (x � 0, z � R), we have,
according to (10.46) and (10.50)

P2 − P1 = σ(κ1 + κ2) � hyy, (10.51)

and because at this points hyy < 0 it results P2 < P1, so the liquid is under more
pressure than the ambient atmosphere, which is in agreement with the Laplace law
of capillarity.

We can use the condition (10.46) to find the equilibrium free surface S for P1 =
P2 = constant. This is a system subjected to the same internal and external pressure
in all its points, i.e., a system consisting only in free surfaces, like soap films in
microgravity. The total free energy of this system is proportional to the area of the
surface, and attains its minimum when the area is minimal. The surface equation r
is a minimal surface (i.e., H = 0) if and only if δA = 0, i.e., when A′(t = 0) = 0,
for all normal variations of the surface S. Indeed, if the surface is minimal, H = 0
and according to (10.43), A′ = 0. Conversely, let us assume that A′ = 0 but let us
make the hypothesis that H �= 0, at least in a certain open subset ofU . Then, we can
always choose h = H in that open set, and zero elsewhere, and it results that A′ < 0
which contradicts the hypothesis.

To understand the role of surface tension in the geometry of the free surface,
we analyze a region of fluid, in the stationary case, and in absence of any external
(bulk) forces. The Euler equation reduces to ∇P = 0, so the pressure is the same
everywhere inside the fluid (Pascal principle). Because the pressure outside of the
liquid P0 is also considered to be the same, we find the equilibrium condition

P − P0 = (P − P0)S = −2σH = −2σ(κ1 + κ2) = const. (10.52)

Consequently, the free boundary of a stationary, isolated (no external forces) drop of
liquid should have the mean curvature constant all over it. If the mean curvature is
constant and there are no other superficial constraints, the surface is spherical. The
H = const. condition is not dependent on the compressibility of the fluid, as far as
the forces are absent. However, if the free surface is supported by a fixed curve, the
shape is much more complicated (see for example Fig. 10.4). In the case of rigid
boundaries for the free surface, the parameterized surface is not anymore regular. In
the general case there will be singularities along the rigid boundaries. This problem
was first formulated in the following form: for any given closed curve α ∈ R

3, there
is a surface S of minimum area with α as boundary. There is a special case when
this problem becomes simpler, namely when the liquid forms itself one or more
very thin layers, like the above-mentioned soap films, suspended by some closed
rigid curves, and exposed to the same external pressure P0 in every point. Actually,
no matter how thin the films are, there are always three-dimensional regions of
liquid bounded by these surfaces. Because the liquid region is very thin compared
to its overall dimensions, we can describe the liquid film as being bounded by two
identical surfaces, separated by a very small distance along the common unit normal.
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Fig. 10.4 Simulation of an
experimental minimal
surface produced by dipping
a 4-circles wire frame into a
soap solution

We consider locally these two surfaces as two identical copies of the same surface,
separated by a very small normal displacement. By local we mean here any open
domain of the surfaces which do not intersect the boundary curves. On every such
open domain, the unit normals H1,2 of these two surfaces have the same support,
except they point in opposite directions (Fig. 10.5). Any point inside the fluid is
infinitesimally close to any of these two identical surfaces, so we can write the
surface tension condition as

P − P0 = −2σH1 = −2σH2 = 2σH1. (10.53)

It results that the only possibility is to have zero mean curvature in all points. In
conclusion, in the absence of forces and in the stationary case, the surface tension
and themean curvature of the free surface are either constant for a free regular surface
surrounding the liquid or zero for a thin liquid film.When H = 0we call these surface
minimal, because they have indeed the minimum area under given constraints. Some
of the properties of the minimal surfaces also apply to surfaces of constant mean
curvature [18].
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Fig. 10.5 The pressure
inside a thin liquid film

10.4.4 Isothermal Parametrization

According to (10.40) and (10.44), the local criterium for the existence of minimal
surfaces is played by the PDE H = Eg − 2 f F + Ge = 0. The structure of this
equation simplifies considerably if the coordinate system on the surface S is orthog-
onal, namely F = ru · rv = 0. It is always possible to choose such an orthogonal
parametrization (also called orthogonal curvilinear system of coordinates) for a reg-
ular surface. Indeed, for any point p ∈ S there is a parametrization r(u, v) in a
neighborhood of p, V(p), with the property that the curves u = const. and v = const.
are perpendicular. For example, if we choose two differentiable vector fields on S
defined by w1 = ru and w2 = − F

E ru + rv . Moreover, if the vectors of the local
basis have equal norms, E = G, then the minimal surface local condition reduces to
a Laplace equation.

We call isothermal [15], a parameterized surface r(u, v) fulfilling the conditions

ru · ru = rv · rv, ru · rv = 0, (10.54)

which basically means E = G and F = 0. Isothermal parameterized surfaces
are endowed with orthogonal, yet not normalized, curvilinear coordinates.
Orthonormality would imply E = G = const. In the isothermal case the norms of the
local basis vectors are equal, but not constant on the surface. It is not easy to parame-
terize surfaces with isothermal or orthonormal coordinates. For example, the graphs
of a differentiable function as a parameterized surface in the independent variable
parametrization, (u, v, f (u, v)), can never be an isothermal surfaces, because, by
using (10.50), we would need fu = fv = 0 (the only isothermal surface emerging
from a graphics is the plane). However, we can provide the following result.
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Theorem 26 Given a parameterized surface r(u, v), we can change the
parametrization (u, v) → (α,β) by the map (u, v) = Φ(α,β) : W ⊂ R

2 → U ⊂
R

2 such that (r̃ ◦ Φ)(α,β) is isothermal.

Proof We have Φ(u(α,β), v(α,β)) and

r̃α = r̃uuα + r̃vvα, r̃β = r̃uuβ + r̃vvβ,

and we request r̃α · r̃β = 0 and r̃α · r̃α = r̃β · r̃β . These conditions are equivalent
with the following system of two nonlinear PDE

{
Euαuβ + F(uαvβ + uβvα) + Gvαvβ = 0
Eu2α + 2Fuαuβ + Gu2β = Ev2

α + 2Fvαvβ + Gv2
β

(10.55)

The two solutions of this PD system of equations u(α,β), v(α,β) should also ful-
fill the compatibility conditions uα,β = uβ,α, vα,β = vβ,α. By using the theorem of
existence and uniqueness from Sect. 3.3, we can always find solutions for (10.55)
defined in a neighborhood, under Cauchy arbitrary conditions. Consequently, we
can always provide the given parameterized surface with new isothermal curvilinear
coordinates. �

For example, if S = {(x, y, z) ∈ S2 ⊂ R
3|z > 0}, x = u, y = v, originally param-

eterized as the graphics of the function z = f (u, v) = √
1 − u2 − v2, we have

r = (u, v, f (u, v))

ru = (1, 0, fu), rv = (0, 1, fv), N = (− fu,− fv, 1)√
1 + f 2u + f 2v

,

and E = 1 + f 2u , G = 1 + f 2v , and F = fu fv . Obviously this surface is not isother-
mal, but if we map u, v into spherical coordinates θ,ϕ we have r̃ = (sin(θ) cos(ϕ),

sin(θ) sinϕ, cos(θ)). The new first fundamental form reads Ẽ = 1, F̃ = 0, and
G̃ = sin2 θ. We need to map these new coordinates into a new set of curvilinear
coordinates, α,β, which have to fulfill again the isothermal conditions (10.54), i.e.,

{
θαθβ + sin2 θϕαϕβ = 0
θ2α + sin2 θθ2β = ϕ2

α + sin2 θϕ2
β

A possible solution of the above system is provided by ϕ = β and θ(α) =
2 arctanC0e±α, with arbitrary constant C0. In Fig. 10.6 we present a subset of the
surface S in all these three parameterizations.

The main result of this section can be expressed by the following affirmation
regarding minimal isothermal surfaces.

Theorem 27 If the parameterized surface r(u, v) is isothermal, we can write

H = HN = 1

2E
�r, (10.56)
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Fig. 10.6 From left to right: a domain of a sphere represented in cartesian coordinates, in spherical
coordinates, and in the α,β coordinates

where� = ∂uu + ∂vv is the Laplace operator in the surface curvilinear coordinates,
and we introduce the mean curvature vector H .

Proof By differentiating ru · rv = 0 and ru · ru = rv · rv with respect to u and v,
we obtain rv · �r = ru · �r , so �r is parallel to N . On the other side, we have
H = (e + g)/(2E) = N · �r/(2E) so H = N(N · �r)/(2E). �

Theorem 27 has a different expression if instead of the full three-
dimensional Laplace operator we use the surface Laplace operator �S defined in
Sect. 6.5.3. In the surface differential operator case, we have

Proposition 10 On a surface Σ parameterized with orthogonal coordinates, we
have

�S r = 2HN,

and the Laplacian of the position vector is zero for minimal surfaces.

The proof follows from (6.47). In case of orthogonal coordinates (F = 0) this relation
becomes (6.48). Even more interesting, in the case of a minimal surface, the normal
component of the position vector of the surface rn = r · N is given by (6.51), namely
�S(rn) = 2rnK .

As a direct consequence of Theorem 27, an isothermal parameterized surface
is minimal if and only if its parametrization function is harmonic (i.e., �r =
(�x(u, v),�y(u, v),�z(u, v)) = 0). Theorem 27 provides an invaluable tool to
find minimal surfaces through a very well-studied PDE. For example, if we iden-
tify the parameter space with the complex plane by setting z = u + iv ∈ C, (u, v) ∈
U ⊂ R

2 and if we express the regular parameterized surface r through the equations
ϕ j = ∂x j

∂u − i ∂x j

∂v
, j = 1, 2, 3, then, the parameterized surface r is isothermal if and

only ifϕ1 + ϕ2 + ϕ3 = 0 and this surface is minimal if and only if the three complex
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functions ϕ j are analytic. Indeed, analyticity implies harmonicity of the coordinate
functions by the Cauchy–Riemann conditions. In Fig. 10.7 we present some tradi-
tional examples of minimal surfaces. The Scherk’s surface [15] is such an example
of complex surface.

In addition to their simplification over the minimal surfaces equation, the isother-
mal surfaces (E = G, F = 0) have another interesting property related to theLaplace
operator. The Gaussian curvature is K = 1

2E � log E [19].

10.4.5 Topological Properties of Minimal Surfaces

Minimal surfaces have a lot of interesting topological properties. The zeros of the
Gaussian of a minimal surface are isolated, meaning that if a minimal surface has
planar or parabolic points, they are isolated. In other words, there is no straight
escaping line along a minimal surfaces, they are really “very twisted.” Also, there
are no compact minimal surfaces. This is easy to prove, because all the points of a
regular minimal surface are hyperbolic. If a minimal surface S is compact (bounded
and closed), we can find an S2 sphere of radius R containing S.We can choose R such
that S2 ∩ S = ∅. Then, we decrease R continuously until the intersection between S
and the sphere becomes nonempty. If the intersection is an open set for the first time,
this set should be homeomorphic to an open part of S2, having all its points elliptic
points, which is forbidden by H = 0. If the intersection consists in only isolated
points q ∈ S ∩ S2, we can find neighborhoods of these points V(q) ⊂ S lying both
inside and outside S2, contradicting hence the hypothesis. So, all (regular) minimal
surfaces are unbounded, hence noncompact.We remember here that compact regular
surfaces have at least one elliptic (K > 0) point.

If S is a regular closed minimal surface which is not a plane, the image of the
Gauss map is dense in the sphere S2. When a point moves along the surface, the
normal N takes “almost” all possible orientations in R

3. That is, for every arbitrary
direction N0, there are open sets of points on S, such that the corresponding normal
of these points approaches the given direction as close as we want.

We alsomention another property of the minimal surfaces. If S is minimal and has
no planar points (K �= 0 on S), then the angle of intersection of any two curves on S
and the angle of intersection of their spherical images (images through the tangent
map of theGaussmap) are equal up to a sign. In terms of equation this fact reads ∀p ∈
S,∀v,w ∈ TpS, dN p(v) · dN p(w) = −Kpv · w. In terms of thin layers of fluid, this
behavior of the free minimal surface means that the two variations of the gradient of
pressure,whenwemove toward two perpendicular directions of the tangent plane, are
perpendicular.
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Fig. 10.7 Examples of minimal surfaces.Upper line: catenoid and helicoid.Middle line: Enneper’s
polynomial surface. Lower line: Scherk’s periodical surface from complex analysis
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10.4.6 General Condition for Minimal Surfaces

In the following we want to provide a general expression for the local condi-
tion H = 0 for a minimal surface, expressed in different systems of curvilinear
coordinates. In such systemswe use for the surface parameters two of the three curvi-
linear coordinates, and one free function (the shape function) depending on these two
coordinates. In the cartesian case (u, v) = (x, y), we have r = u, v, h(u, v) where
h(u, v) is the shape function. The mean curvature is

H = huu + hvv + h2vhuu − 2huhvhuv + h2uhvv

(1 + h2u + h2v)
3
2

. (10.57)

In cylindrical symmetry, the surface can be parameterized in cylindrical coordinates
((u, v) = (ϕ, z)) in the form r = (ρ(u) cos u, ρ(u) sin u, v)with shape functionρ(u).
The mean curvature is

H = ρ3 + 2ρρ2u − ρ2ρuu

(ρ2 + ρ2u)
2

. (10.58)

In spherical symmetry (u, v) = (θ,ϕ), the surface becomes r = ((R + ρ(θ,ϕ))

sin θ cosϕ, (R + ρ(θ,ϕ)) sin θ sinϕ, (R + ρ(θ,ϕ)) cos θ) and, in terms of the shape
function ρ(u, v), the mean curvature is

H = B − ((R + ρ)2 + ρ2θ)ρθ sin θ cos θ + C sin2 θ

2

(
(R + ρ)2 + ρ2θ + ρ2ϕ

sin2 θ

)2

sin2 θ

, (10.59)

where

B = 3Rρ2ϕ + 3ρρ2ϕ − R2ρϕϕ − 2Rρρϕϕ − ρ2ρϕϕ − ρ2θρϕϕ

+2ρθρϕρθϕ − ρθθρ
2
ϕ − 2ρθρ

2
ϕ cot θ,

C = (R + ρ)(2(R + ρ)2 + 3ρ2θ − Rρθθ − ρρθθ).

If the shape function is small compared to the radius, ρ � R, we have the following
hierarchy of orders of smallness in ρ/R for H

O(0) = − 1

R
,

O(1) = ρ

R2
+ 1

2R2
�Ωρ,

O(2) = − ρ2

R3
+ ρ2θ

2R3
− ρρθ

R3
+ ρ2ϕ

2R3 sin2 θ
− ρρϕϕ

R3 sin2 θ
− ρρθ cot θ

R3
, (10.60)
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where
�Ω = ρθθ + cot θρθ + ρϕϕ

sin2 θ

is the angular part of the Laplace operator in spherical coordinates.
In all these examples, the expression of H is very close to the Laplacian of the

free function describing the surface in the corresponding curvilinear coordinates. If
the curvilinear coordinates are isothermal, the mean curvature equation is precisely
the Laplace equation, and this behavior is natural in view of (10.56). It is interesting
to check how does the Laplacian of �r reduce to the Laplacian of the shape scalar
function, �h or �ρ, like in the examples above. In general, orthogonal curvilinear
coordinates are not isothermal, so we expect H to contain in addition to the Laplacian
of the free function, also some other terms. The question is: to what extent, in some
given curvilinear coordinates,we can approximate theminimal surface equation H =
0 and the surface pressure expression, with the Laplace equation of the curvilinear
coordinates? It would be of practical application to find the approximate expression
of the surface tension for surfaces that are small deviation from an isothermal, or at
least orthogonally parameterized surface.

10.4.7 Surface Tension for Almost Isothermal
Parametrization

We consider a thin liquid surface S, initially in “equilibrium,” parameterized
by isothermal coordinates, r0(u, v) defined in an open set (u, v) ∈ U , with E = G,

F = 0. Next to this surface, the pressure is the surface tension and it has the
expression provided by (10.52) and (10.56)

P = 2σ

2E
|�r|.

We consider that some external interaction occurs (like the presence of a force
field or a nonuniform change in temperature) and produces a deformation of this
surface. This deformation, or variation, is defined as a new parameterized surface
r(u, v) = r0(u, v) + ερ(u, v). We consider this new surface to be a small variation
of the original isothermal one if εmax(u,v)∈U {|ρ|} � |r0|. In the following we denote
any quantity that refers to the original isothermal surface with a zero label, like for
example r0u · r0u = r0v · r0v = E0 = G0 and r0u · r0v = F0 = 0. The surface ten-
sion expression

P(u, v, ε, ρ(u, v)) = σ
Eg − 2 f F + Ge

(EG − F2)
(10.61)

reduces in the limit limε=0 P = P0 = 2σH0 = σ(g0 + e0)/E0. For small variations
we work in the first linear approximation of ε and we neglect O(ε2).
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In the following we choose a normal variation ρ = ρ(u, v)N0(u, v). There
is no loss of generality in this choice, because any arbitrary deformation can
be reduced to a normal one by a reparameterization. Besides, in the case of
orthogonal curvilinear coordinates, the deformed surface is always normal, since
the deformation occurs along the orthogonal parameter. For example in the spherical
case, r0 = (R sin u cos v, R sin u sin v, R cos u)with R = const., the usual variation
of the coordinate surface has the form ρ = ερ(u, v)(sin u cos v, sin u sin v, cos u),
which means r0 ⊥ ρ, and consequently the variation is normal.

Since we are interested in surfaces close to the isothermal one, we follow the
calculations just in the first order in ε. From the definition of the normal variation,
and from E0 = G0, F0 = 0, we obtain

ru = r0u + ερuN0 + ερN0u,

rv = r0v + ερvN0 + ερN0v,

and consequently we have the coefficients of the first fundamental form of the
deformed surface in the first order in ε

E = E0 − 2ερe0, G = E0 − 2ερg0, F = −2ερ f0. (10.62)

We notice that it is impossible to have, in general, a surface and its infinitesimal
normal variation, simultaneously isothermal, F0 = F = 0. This is possible in the
linear approximation only if f0 = 0. The unit normal has the form

N = N0 − ε

E0
(ρu r0u + ρv r0v) + O(ε2).

The second fundamental form has the coefficients

e = e0 + ε

(
ρuu − 1

2E0
(ρu E0u − ρvE0v) − ρ

E0
(e20 + f 20 )

)
,

g = g0 + ε

(
ρvv − 1

2E0
(ρvE0v − ρu E0u) − ρ

E0
(g20 + f 20 )

)
,

f = f0 + ε

(
ρuv − 1

2E0
(ρu E0v + ρvE0u) − ρ f0

E0
(e0 + g0)

)
.

By introducing all these coefficients in (10.40), we obtain

H = e0 + g0

2E0
+ ε

ρ(e20 + g20)

2E2
0

+ ε
�ρ

2E0
+ O(ε2), (10.63)

which describes themean curvature of the infinitesimal normal variation of an isother-
mal surface in the linear approximation. This form is a linear operator in ρ with
variable coefficients, and the surface tension may be written as
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PS = −2σ(A + εBρ + εC�ρ) + O(ε2), (10.64)

where the three variable coefficients A, B, and C can be identified from (10.63).
Such a simple form as (10.63) for the surface pressure is not always available.

In practical situations one uses orthogonal curvilinear coordinates which are not
necessarily isothermal,mainly because E0 �= G0. In the followingweobtain a similar
first-order approximation of the mean curvature for a normal deviation starting from
an orthogonal parameterized surface.

Definition 62 Three families of smooth (of rank 3) surfaces are a triply orthogonal
system in an open U ⊂ R

3 if one unique surface of each family passes through
any point P ∈ U , and if the three surfaces that pass through each point p ∈ U are
pairwise orthogonal.

The second constraint means that ru, rv , and rw are always orthogonal. The curves of
intersection of any pair of surfaces fromdifferent system are lines of curvature in each
of the respective surfaces, i.e., the intersection lines are principal directions. The tra-
ditional 12 systems of curvilinear coordinates are the examples (cartesian, cylindric,
spherical, elliptic, parabolic, bowls, etc.). In the case of orthogonal parametrization,
the coefficients of the first fundamental form are similar to (10.62). The normal is
different

N = N0 − ε

(
ρu r0u
ρv r0v

)
.

The coefficients of the second fundamental form are different

e = e0 + ε

(
ρuu − 1

2E0G0
(ρu E0uG0 − ρvE0vE0) − ρ

e20G0 + f 20 E0

E0G0

)
+ O(ε2),

g = g0 + ε

(
ρvv − 1

2E0G0
(ρvG0vE0 − ρuG0uG0) − ρ

f 20 G0 + g20E0

E0G0

)
+ O(ε2),

f = f0 + ε

(
ρuv − 1

2E0G0
(ρvG0u E0+ρu E0vG0)−ρ f0

e0G0 + g0E0

E0G0

)
+ O(ε2).

In the end, the form for the mean curvature of the deformed surface in the first order
of approximation is

H = e0G − 0 + g0E0

2E0G0
+ ε

(
G0ρuu + E0ρvv

2E0G0
− ρu E0u

4E2
0

− ρvG0v

4G2
0

+ ρuG0u + ρvE0v

4E0G0
+ ρg20

2G2
0

+ ρe20
2E2

0

+ 3ρ f 20
2E0G0

)
+ O(ε2).

It is easy to check that (10.65) reduces to the particular cases discussed above for
spherical, cartesian, etc., coordinates. Still this expression is a linear second-order
differential operator acting on ρ with variable coefficients.
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10.5 Special Fluids

There are important differences between Newtonian (traditional or small molecule)
fluids obeying Newtonian fluid dynamics and “polymeric” (macromolecular) fluids.
The features of the macromolecular architecture influence the flow behavior. Poly-
meric fluids have molecular weights several orders of magnitude higher than normal
fluids, and besides, this molecular weight is not uniformly distributed in the mass
of the fluid. In addition, the polymers have a huge number of metastable config-
urations at equilibrium, and consequently the flow is altered in time and space by
the local stretching and alignment of macromolecules. In high concentration poly-
mers (melts), the macromolecules can form entanglement networks, and the number
of entanglement junctions can change with the flow conditions. In [20] there is a
detailed discussion of such types of flow. The most important property of macro-
molecular fluids is the non-Newtonian viscosity, i.e., the fact that the viscosity of the
fluid changes with the shear rate. In viscoplastic (or dilatant) fluids, there is present
the phenomenon of shear thickening, namely the viscosity of the fluid increases
with the shear rate. Such fluids will not flow at all unless acted on by at least
some critical shear stress, called yield stress. In some other polymeric fluids, we
have the phenomenon of elasticity and memory of the flow, called the viscoelastic
property. After the external pressure is removed, the fluid begins retreating in the
direction from which it came. The fluid, however, does not return all the way to its
original position (like an ideal rubber band for example), since its temporary entan-
glement junctions have a finite lifetime, and they are continuously being created
and destroyed by the flow. Such a viscoelastic fluid behaves like having a fading
memory.

10.6 Representation Theorems in Fluid Dynamics

10.6.1 Helmholtz Decomposition Theorem in R
3

Theorem 28 (Helmholtz Theorem for the Whole Space) Any single-valued contin-
uous vector field v(r) : R

3 → R
3 satisfying

∇ · v → 0, ∇ × v → 0, when r → ∞,

∃ε > 0, |v| <
1

r1+ε
, when r → ∞,

may be written as the sum of an irrotational (or conservative or lamellar) part and
a solenoidal part

v = ∇Φ + ∇ × A,

such that
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Φ(r) = 1

4π

∫∫∫
R

3

∇′ · v(r ′)
|r − r ′| d3r ′

A(r) = 1

4π

∫∫∫
R

3

∇′ × v(r ′)
|r − r ′| d3r ′ and ∇ · A = 0.

For a proof of the theorem see [5, 6, 21].
Usually, the Helmholtz theorem is formulated as “source plus condition at infin-

ity” problem. Given the source fields ρ(r), j(r) defined on R
3 with the regularity

propriety at |r| → ∞, ρ, j → 0, and the vector field equation

∇ · v = ρ, ∇ × v = j ,

there is a unique solution for the unknown vector field v = ∇Φ + ∇ × A, with the
potentialsρ, A solutions of the equations

�Φ = ρ, �A = j , ∇ · A = 0.

Also, the potentials are not uniquely determined up to their gauge transformations.
Namely, Φ is defined modulo addition of an arbitrary harmonic function Φ → Φ +
f (r), � f = 0, and A is defined modulo addition of the gradient of an arbitrary
function A → A + ∇g(r).

The Helmholtz theorem (Theorem 28) can be extended by using a
Neumann–Debye decomposition [21]. Instead of using one scalar Φ and one vector
function A plus the divergence constraint (i.e., 1 + 3 − 1 = 3 degrees of freedom),
we can use three scalar functions. If the field v is continuous and single-valued, and
it fulfills the same regularity conditions at ∞ as in the Helmholtz theorem, we have
the following decomposition

v = ∇Φ + ∇ × (rΨ ) + ∇ × (∇ × rχ) = ∇Φ + LΨ + Qχ, (10.65)

where the operators are L = −r × ∇ (angular momentum) and Q = ∇ × L. The
functions Ψ,χ are the so-called Debye potentials and are related to the operators by
the equations

Φ(r) = 1

4π

∫∫∫
R

3

∇′ · vd3r ′

|r − r ′|
Ψ (r) = 1

4π

∫∫∫
R

3
r ′ · (∇′ × v) ln(1 − r ′ · r)d3r ′

χ(r) = 1

16π2

∫∫∫
R

3
d3r ′ln(1 − r · r ′)(r ′ · ∇′)

∫∫∫
R

3

∇′′ · v(r ′′)
|r ′ − r ′′| d3r ′′

− 1

4π

∫∫∫
R

3
ln(1 − r · r ′)r ′ · vd3r ′.
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The operators involved in this generalized Helmholtz theorem fulfill interesting alge-
braic relations. The angular momentum operator is closed under commutation rela-
tion and spans the su(1, 1) Lie algebra by [Li , L j ] = Ei jk Lk . The operator Q is a
left ideal of this algebra [Li , QJ ] = Ei jk Qk , and the Laplace operator is the Casimir
element of this algebra [L,�] = [Q,�] = 0.

A very useful version of the Neumann–Debye (10.65) is related to the linear
Navier–Stokes fluid dynamics equation in absence of external forces

∂V
∂t

= −1

ρ
∇P − ν∇ × (∇ × V ), (10.66)

where the fluid velocity field V (r, t) is a smooth nonsingular time-dependent
(Euclidean) vector field defined on a domain D ⊂ R

3 with values in TR
3; ρ and

ν are positive constants, density and viscosity, respectively, and P(r, t) is the pres-
sure scalar field, also defined on D ⊂ R

3. If we ask for the velocity field to be
divergence free on D, i.e., to have no net sources of fluid,

∇ · V = 0, (10.67)

it is possible to apply the representation theorem (10.65) for solutions of (10.67) in
D. We have

Theorem 29 Let us define a vector field

V = ∇ × (Qβ) + ∇ × ∇ × (Qb) + ∇c

and the scalar field

P = −ρ
∂c

∂t
,

where Q(r, t) is an arbitrary smooth vector field on D × R, and β, b, c are arbi-
trary smooth scalar fields depending on (r, t) ∈ D × R. Then V , P defined above
are solutions for the Navier–Stokes equations (10.66) in the divergence-free condi-
tion (10.67) if the following conditions are fulfilled on D × R

ν�β = ∂β

∂t
, ν�b = ∂b

∂t
, �c = 0, Q = C0r,

with C0 an arbitrary constant.

The proof of the theorem is by direct calculation. Details and applications can be
found in [22, 23].

An interesting version of the Helmholtz theorem in a domain D with bound-
ary ∂D �= ∅ is presented in Chorin and Marsden’s book [24], under the name of
Helmholtz–Hodge theorem. In this formalism, a vector field v is decomposed into
a potential field ∇Φ and an incompressible vector field u, divu = 0 which is par-
allel to the boundary of D, (u · N)∂D = 0. The existence of the Helmholtz–Hodge
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decomposition is guaranteedby the existence of a solution to theNeumann-associated
problem forΦ. Uniqueness is guarantied by the fact that the two terms of the decom-
position are orthogonal in an average taken through an integration over D. Indeed,∫
D u · gradΦ = 0 through Gauss formula and because of the properties of u. Con-
sequently, any two distinct Helmholtz–Hodge decompositions must have same u
and same Φ, up to an additive constant. In this form the theorem is more adapted to
hydrodynamics problems where one has incompressible fluid in a bounded region.
Because the velocity is divergence free and vanishes on the boundary, the Navier–
Stokes equation can be projected into a divergence-free component which does not
contain the pressure, i.e., the gradient term.

Hydrodynamics is perhaps one of the best-studied fields of application of nonlin-
ear equations, waves, and their solutions, and we have barely touched the subject.
A very comprehensive and extended treatment of hydrodynamics in general, toward
the nonlinear problems open at the time when the book was written, is [3]. The book
is dense in solved examples and problems in almost any field of basic hydrodynam-
ics. The book goes hand in hand with mathematical physics text books like [25, 26]
or in the same style. The calculations are detailed and comprehensive, very much
relying on expansions in series of functions and independent mode analysis. A book
which complements Lamb’s book on hydrodynamics and is written in the same
grand style is [5], especially for magnetohydrodynamics and fluid and plasma sta-
bility problems. Another comprehensive book on hydrodynamics, where very special
problems are solved in very original ways, is [14]. If the reader is more concerned
about mathematical rigorousness, toward functional analysis and operator approach
in hydrodynamics, a good lecture would be [4]. More restrictive topics, yet presented
on a fundamental basis and mathematical rigorous, are approached in [2, 6, 27]. In
this last mentioned spectrum, more oriented toward mathematics is the attractive and
clear book of Chorin and Marsden [24], or more toward applied mathematics [11].
For specific topics on waves in general and nonlinear waves in fluids, the reader may
consider to consult [28, 29].

10.6.2 Decomposition Formula for Transversal Isotropic
Vector Fields

This special decomposition works for axially and/or translational symmetric vector
fields. It is particularly useful in convective hydrodynamics stability calculations, and
in general in physical systems exhibiting transport and transformation processes. It
is also useful in the dynamics of viscous drops submerged in viscous fluids [30].
This decomposition formula was introduced for a particular axisymmetric field in
[5, Sect. 61], and later, for spherical surfaces and even for more general situations
in [31]. The big advantage of this decomposition consists in the fact that the vector
field v can be expressed as function of the radial component vr , the divergence divv
and the radial component of the vorticity, ωr , where ω = ∇ × v. When the flow is
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incompressible, and the velocity field has spherical symmetry, this decomposition
becomes very useful because of its simplicity. Moreover, for solenoidal fields, like
vorticity, this divergence term is also canceled and the vector field can be constructed
from the radial components only.

In general, the formulaworks for any curvilinear orthogonal systemof coordinates
of the form (r, q1, q2)with a local basis {er , q1, q2}, where r = const. describes closed
coordinate surface homotopic to the sphere S2. At the same time, we can expand any
vector field v(r, q1, q2) in an orthogonal basis of functions defined on the compact
surface r = const. This surface S, being homotopic to S2, allows the existence of an
L2(S) Hilbert space with countable basis of harmonic polynomials defined on S2.
In the case of spherical coordinates, these are the spherical harmonics Yl,m . In the
following we introduce this vector decomposition in spherical coordinates (r, θ,ϕ).
For the calculation of components and operator action, we refer to Sect. 19.3.

Any vector field, like for example the velocity field v, can be decomposed in its
normal (radial for spherical) and parallel components

v = vr er + v‖, (10.68)

and also the gradient and Laplace operators can be decomposed in a similar way

∇‖ = ∇ − er (er · ∇) = ∇ − er
∂

∂r
, � = �r (r, ∂/∂r) + �‖(θ, ∂/∂θ,ϕ, ∂/∂ϕ, ).

(10.69)
From vector analysis we have the formula

�v‖ = ∇(∇ · v‖) − ∇ × (∇ × v‖)
= ∇‖(∇ · v‖) − [∇ × (∇ × v‖)]‖, (10.70)

where we retain on the RHS only the parallel terms (the normal terms cancel each
other), because the LHS in (10.70) contains by definition only parallel terms. We
have

�v‖ = ∇‖(∇ · v) − ∇‖Dvr − [∇ × (∇ × v‖)]‖, (10.71)

where D = 1
r2

∂
∂r (r

2), i.e., the radial part of the div operator in the curvilinear coor-
dinates.

We can expand the vector field v(r, θ,ϕ) in spherical harmonics. We have

v = vr er + v‖ =
∑
l,m

vl,m(r, t)Yl,m(θ,ϕ), (10.72)

where vl,m = ervr,lm + v‖,lm . With these notations we obtain

�v‖ = �rv‖ + �‖v‖ = 1

r2
∂

∂r

(
r2

∂

∂r
v‖

)
+ �Ωv‖, (10.73)
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where Ω is the angular (parallel) part of the Laplace operator (see Sect. 19.3). For
any l,m component we can write

�v‖,lm = 1

r2
∂

∂r

(
r2

∂

∂r
v‖,lm

)
− l(l + 1)

r2
v‖,lm, (10.74)

accordingly to the action of the angular Laplacian operator on spherical harmonics.
It results

v‖,lm = r2

l(l + 1)
(�rv‖ − �v‖). (10.75)

In the following equations, we skip the labels l,m, butwe refer to the l,m component,
unless otherwise stated. From (10.68), (10.71), and (10.75), we have the following
preliminary form for the decomposition

v = vr er + r2

l(l + 1)

(
�rv‖ + ∇‖Dvr − ∇‖(∇ · v) + [∇ × (∇ × v‖)]‖

)
. (10.76)

In the following, we focus on the first and fourth term in the RHS parenthesis in
(10.76). We have

�rv‖ + [∇ × (∇ × v‖)]‖ = �rv‖ + (∇ × ω)‖ − [∇ × (∇ × ur er )]‖, (10.77)

whereω = ∇ × v is the vorticity field. We also notice that ωr = er · (∇‖ × v‖). This
is possible because of the relation

∇ × v = ∇‖ × v‖ + er (er · ∇) × v‖ − ∇‖ × ervr − er (er · ∇) × ervr ,

where all the last three terms are perpendicular on er , hence they have only paral-
lel components. The only normal component in the RHS of the equation above is
contained the first term. We also notice the identity [31, (H1.12)]

∇ × v = erωr + er ×
(
1

r

∂

∂r
(rv‖) − ∇‖ur

)
. (10.78)

From (10.77) and (10.78), we have

�rv‖ + (er (er · (∇‖ × ω‖))) + er

[
1
r

∂
∂r (rω‖) − ∇‖ωr

]
‖
− [∇ × (∇ × vr er )]‖

= �rv‖ + er ×
[
1
r

∂
∂r (rω‖)

]
− [∇ × (∇ × vr er )]‖ − er × ∇‖ωr

= −er × ∇‖ωr .

(10.79)
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The last equality holds because the first three terms in the second line of (10.79)
cancel each other, as one can check by direct calculations in spherical coordinates
components. Consequently we have

�rv‖ + [∇ × (∇ × v‖)]‖ = −er × ∇‖ωr . (10.80)

From (10.76) to (10.80), we can write the final decomposition formula

v = vr er + r2

l(l + 1)

[
∇‖Dvr − ∇‖(∇ · v) − er × ∇‖ωr

]
. (10.81)

That is, we can express the velocity field function of its radial component, and
function of the radial component of the vorticity and the divergence of velocity.

10.6.3 Solenoidal–Toroidal Decomposition Formulas

Another version of the above decomposition formula can be obtained for an axisym-
metric solenoidal vector field. We use a cylindrical system of coordinates (rc,ϕ, z),
and the axis of symmetry is taken in the z-direction. In this case the field can be
expressed as a superposition of a poloidal and toroidal field in terms of two azimuth-
independent scalar functions U (rc, z) and V (rc, z) [5]

v = −rc
∂U

∂z
erc + rcV eϕ + 1

rc

∂

∂rc
(r2c U )ez . (10.82)

An equivalent and unified way of writing (10.82) and the curl of velocity is

u = ez × rV + ∇ × (ez × rU ), and
∇ × u = −ez × r�5U + ∇ × (ez × rV ),

(10.83)

where �5 is the Laplacian operator in a five-dimensional Euclidean space in cylin-
drical coordinates. According to Chandrasekhar [5, Sect. 61], there is a particular
advantage of this representation in that no matter of howmany times one applies curl
operator to the velocity and vorticity fields, the representations in (10.83) have the
same type of expression.

In spherical coordinates, the Chandrasekhar poloidal–toroidal decomposition of
an axisymmetric solenoidal field has the form

u = − 1

sin θ

∂

∂θ
(sin2 θU )er − sin θ

r

∂

∂r
(r2U )eθ + r sin θV eϕ. (10.84)

The interpretation of the scalars U, V is straightforward. Since fields derived only
from the scalar U have components only in the meridional planes, it results that
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the U field is nothing but the Stokes’ stream function for motions in these planes
(meridional motions). The field V defines motions which are entirely rotational.
Another advantage is this types of representations reciprocity: a poloidal field has
toroidal vorticity and, conversely, a toroidal field has poloidal vorticity.

10.7 Problems

1. In Sect. 10.3 we conjecture (10.30) and (10.32) by using the physical intuition that
particles contained in particle surface move together with the surface, and never
tangent to it. Prove this affirmation on a more geometrical background. Hint: use
the integral formulas in Sect. 6.5.

2. Monge’s potential representation: show that an arbitrary differentiable vector field
v can be always represented as

v = ∇ϕ + ψ∇χ,

where the first term on the RHS is irrotational field, and the second term has the
property of being perpendicular to its curl, (ψ∇χ) · (∇ × ψ∇χ). Such fields are
called complex lamellar fields [6].
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