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2N-DIMENSIONAL CANONICAL SYSTEMS AND

APPLICATIONS

KESHAV RAJ ACHARYA, ANDREI LUDU

Abstract. We study the 2N-dimensional canonical systems and discuss some

properties of its fundamental solution. We then discuss the Floquet theory of
periodic canonical systems and observe the asymptotic behavior of its solution.

Some important physical applications of the systems are also discussed: linear

stability of periodic Hamiltonian systems, position-dependent effective mass,
pseudo-periodic nonlinear water waves, and Dirac systems.

1. Introduction

A 2N- dimensional canonical system is a system of 2N first order differential
equations of the form

Ju′(t) = zH(t)u(t), z ∈ C, t ∈ [0,∞) (1.1)

where J =

(
0 −I
I 0

)
, I is an N×N identity matrix and H(t) is a 2N×2N positive

semidefinite matrix whose entries are locally integrable. The complex number z ∈ C
involved in (1.1) is a spectral parameter and u(t) : [0,∞)→ C2N is a vector-valued
function. We also assume that there is no non-empty open interval I on whichH ≡ 0
almost everywhere. For fixed z, a vector valued function u(t, z) = (u1, u2, . . . u2N )t

defined on a bounded interval [0, N ] is called a solution of (1.1) if u satisfies (1.1)
and all the component functions u1, u2, . . . , u2N are absolutely continuous.

The theory of two dimensional canonical systems in which H(t) is a 2×2 positive
semidefinite matrix and J and u are similarly defined, has been an important tool
in the direct and inverse spectral theory of second order differential operators. The
systems is a generalization of the classical equations such as Schrödinger, Jacobi,
Dirac, and Sturm-Liouville. The origin of such systems goes back to 1960 when L.
de Branges studied the systems in connection with Hilbert spaces of entire functions
[1]. Since then, there have been numerous studies about such systems extending
the theory to many fields of mathematics, giving operator-theoretic point of view,
which can be found in a recent book [2] and references therein. In addition to the
applications in different fields of mathematics, these systems have direct physical
applications, some of which are mentioned in this paper [3]-[35].

The extension of the theory of two dimensional canonical systems to higher
dimensions has also been of general interest. For example, see [4] for the spec-
tral theory of canonical differential systems. The extended theory generalizes the
above mentioned classical equations in higher dimensions. In this paper, we have
considered the systems in 2N dimension. The goal is to discuss the properties of
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fundamental solution of (1.1) when the matrix H(t) is periodic and non periodic.
We also obtain the asymptotic behavior of a solution of (1.1) when H(t) is periodic.

We organize the paper as follow: In section 2, we discuss the existence of solution
of (1.1) and some properties of fundamental matrix solution. We then discuss about
the periodic canonical systems and obtain some important properties of solution.
In section 3, we present very interesting applications of these systems.

2. Preliminaries and Results

A canonical system (1.1) is called trace normed if trH(t) ≡ 1. A canonical system
can be transformed into a trace normed by the change of variable,

x(t) =

∫ t

0

trH(s)ds.

Let H̃(x) = (trH(x))−1H(x(t)). Then Ju′ = zH̃(x)u is trace normed. Moreover,

if u(t) is a solution of (1.1), then ũ(x, z) = u(t(x), z) is a solution to Ju′ = zH̃(x)u.
Therefore, we will consider (1.1) a trace normed which will make the situation
easier. In order to show the existence of a solution, we first write the equations as
an integral equation of the form

u(t) = u(0)− z
∫ t

0

JH(s)u(s) ds (2.1)

and associate the Eq. (2.1) by an operator on a Banach space to apply the Banach
fixed point theorem. For this, let z ∈ K a compact subset of C so that |z| < R, R 6=
0. Let I = [a, b] ⊂ [− 1

4R ,
1

4R ] and C(I, C2N ), the set of all continuous vector-valued

functions defined on the interval I. Then the space C(I,C2N ) is a Banach space
with the norm

‖u‖ = sup
t∈I
|u(t)|

where |u(t)| is the Euclidean norm in C2N . With this norm we have the following
lemma.

Lemma 2.1. If H(t) in (1.1) is positive semidefinite matrix with trH(t) ≡ 1, then
‖H(t)u(t)‖ ≤ ‖u‖ for all u ∈ C(I,C2N ) .

Proof. Note that if a matrix is positive semidefinite matrix the Euclidean norm of
the matrix is dominated by the trace of the matrix. Therefore, for any t ∈ I we
have

‖H(t)u(t)‖ = ‖H(t)‖‖u(t)‖
≤ trH(t)‖u‖.

Since trH(t) ≡ 1, we get ‖H(t)u(t)‖ ≤ ‖u‖.
�

Now we define an operator T on C(I, C2N ) by

(Tu)(t) = u(a)− z
∫ t

a

JH(s)u(s) ds. (2.2)

Clearly T is a bounded linear operator. We show that T is a contraction mapping
on C(I,C2N ). First we observe that
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‖Tu− Tv‖ ≤ |z|
∫ t

a

‖JH(s)(u(s)− v(s))‖ ds.

Since J is a unitary matrix

‖Tu− Tv‖ ≤ |z|
∫ t

a

‖H(s)(u(s)− v(s))‖ ds.

Since H is positive semidefinite with trH(t) ≡ 1, by lemma 2.1

‖Tu− Tv‖ ≤ |z|
∫ t

a

‖H(s)(u(s)− v(s))‖ ds ≤
∫ t

a

‖(u− v)‖ ds = (t− a)‖u− v‖.

Here I = [a, b] ⊂ [− 1
4R ,

1
4R ] , which imply that

‖Tu− Tv‖ ≤ 1

2
‖u− v‖. (2.3)

Hence T is a contraction mapping on the Banach space C(I,C2N ). Therefore T
has a fixed point say u. That is Tu = u in C(I,C2N ). So (2.1) has a solution
u in C(I,C2N ). The uniqueness follows from the fact that f(t, u) = zJH(t)u(t)
is Lipschitz in any compact subset of C(I,C2N ). By continuation of solutions, for
example see [5], we have the following theorem.

Theorem 2.2. For any z ∈ C, H(t) is a 2N×2N traced normed positive semidefi-
nite matrix, any bounded interval I ⊂ R , theere exists unique vector valued solution
to the canonical system

Ju′(t) = zH(t)u(t), z ∈ C, u(t0) = u0

for all t ∈ I and u0 ∈ R2N .

Theorem 2.3. For any z ∈ C, the set of solutions of (1.1) is a vector space of
dimensions 2N.

Proof. Let ui(t), i = 1, . . . , 2N be 2N solutions to(1.1) such that ui(t0) = ei, where
ei, i = 1, . . . , 2N are the basis vectors in C2N . Let ai, i = 1, . . . 2N be scalars and

u(t) = a1u
1(t) + . . . a2Nu

2N (t) (2.4)

Then

u(t0) = a1e
1 + . . . a2Ne

2N (2.5)

So, u(t0) = 0 if and only if ai = 0, i = 1, . . . 2N. Therefore ui(t), i = 1, . . . , 2N
are linearly independent. Furthermore, since any vector u(t0) can be written as
in (2.5), by uniqueness, each solution to (1.1) can be written (2.4). Therefore,
{ui(t), i = 1, . . . , 2N} is a basis of the solution space. �

2.1. Matrix Solution. An 2N × 2N matrix-valued function W (t, z) is called a
fundamental matrix solution of (1.1) if

JW ′(t, z) = zH(t)W (t, z) (2.6)

and for any fixed z ∈ C, the 2N columns of W (t, z) are linearly independent
solutions of (1.1).
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Theorem 2.4. Let W (t, z) be a fundamental solution of (1.1). Then the determi-
nant of W (t, z) is independent of t. That is

det(W (t, z)) = det(W (t0, z)). (2.7)

Proof. In order to prove this theorem we will use the Jacobi formula

det eA = etrA. (2.8)

Since W (t, z) is a solution of (1.1) we have

W (t, z)−1W ′(t, z) = −zJH(t). (2.9)

It follows that
d

dt
ln(W (t, z)) = −zJH(t). (2.10)

and on integration we get,

ln(W (t, z)) = ln(W (t0, z))− z
∫ t

t0

JH(s)ds. (2.11)

It follows that

W (t, z) = W (t0, z)e
−z

∫ t
t0
JH(s)ds

.

Then by (2.8) we get

det(W (t, z)) = det(W (t0, z))e
−z

∫ t
t0

tr(JH(s))ds

Since H(t) is symmetric, tr(JH(t)) ≡ 0. Hence

det(W (t, z)) = det(W (t0, z)).

�

Theorem 2.5. The fundamental solution W (t, z) of (1.1), with the initial values
W (t0, z) = J is symplectic for all t, t0 ∈ I and z ∈ C. Conversely, if W (t) is a
continuously differentiable symplectic real matrix-valued function such that W (t)
and W ′(t) commute, and JW ′ is positive semidefinite then W(t, z) = ezW (t) is a
matrix-valued solution of a canonical system.

Proof. Let W (t, z) be the fundamental solution of (1.1) with the initial values
W (t0, z) = J . Then

d

dt
(W (t, z)tJW (t, z)) = (W (t, z)t)′JW (t, z) +W (t, z)tJW ′(t, z)

= (W ′(t, z))tJW (t, z) +W (t, z)tzH(t)W (t, z)

= (−zJH(t)W (t, z))tJW (t, z) + zW (t, z)tH(t)W (t, z)

= −zW (t, z)H(t)J tJW (t, z) + zW (t, z)tH(t)W (t, z)

= −zW (t, z)H(t)W (t, z) + zW (t, z)tH(t)W (t, z)

= 0.

It follows that (W (t, z)tJW (t, z)) = C, a constant. Using the initial valueW (t0, z) =
J we bet C = J which shows (W (t, z)tJW (t, z)) = J which is a condition for
W (t, z) to be symplectic matrix. Conversely, suppose W (t) is a continuously dif-
ferentiable symplectic real matrix valued function. Then W(t) is a matrix solution
to a canonical system Ju′(t) = zH(t)u(t) where H(t) = JW ′(t).

�
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It follows from theorem 2.5 that if the fundamental matrix solution W (t, z) of
(1.1) has initial value W (t0, z) = J , then det(W (t, z)) = 1.

2.2. Periodic Canonical System and Floquet theory. In this section we dis-
cuss 2N dimensional periodic canonical system:

Ju′(t) = zH(t)u(t), z ∈ C (2.12)

where H(t) is a 2N × 2N positive semidefinite matrix and satisfy H(t+ p) = H(t)
for some p ∈ R and all t ∈ R.

Lemma 2.6. If W (t, z) is a fundamental matrix solution of (2.12) with initial
value W (t0, z) = J then

W (t+ p, z) = −W (t, z)JW (p, z).

Proof. Let U(t) = W (t + p) and V (t) = −W (t)JW (p). Then U(t) and V (t) are
matrix solutions of (2.12) with the same initial values U(0) = V (0) = W (p). Then
by theorem 2.2 we have U(t) ≡ V (t). Thus

W (t+ p, z) = −W (t, z)JW (p, z)

�

The matrix C = −JW (p) is called the monodromy matrix of (2.12), and the
eigenvalues λ of C are called the characteristic multiplier of (2.12).

The monodromy matrix C is symplectic being the product of two symplectic
matrice and if λ is an eigen value of C then 1

λ is also an eigen value of C. Therefore
we have,

detC = λ1, λ2 . . . λ2N = 1.

Note that if a matrix is non singular it has an exponential form. Indeed, we
can write C in its Jordan normal form, C = PJP−1, and build a new matrix J̃
with the same Jordan blocks structure as J , having µk instead of λk in the block
diagonals where λk = eµk , which is always possible since λk 6= 0. The matrix expJ̃
maintains the same Jordan blocks direct product structure, except its blocks are
upper triangular, hence each of them similar to the corresponding Jordan block of

J . It is obvious that C can be written as an exponential C = ePC̃P
−1

= eK so that
W (p) = JeK for some complex matrix K. Any µ such that λ = eµ is called the
Floquet exponent.

Theorem 2.7 (The Floquet-Lyapunov theorem). The fundamental matrix solution
W (t) of (2.12) that satisfies W (0) = J is of the form

W (t) = JU(t)e
1
pKt (2.13)

where U(t) is symplectic and p− periodic matrix-valued function and K ∈ C2N×2N .

Proof. Write U(t) = −JW (t)e−
1
pKt. Then U(t) is symplectic because of the product

of symplectic matrices. We show U(t) is p− periodic,

U(t+ p) = −JW (t+ p)e−
1
pK(t+p)

= JW (t)JW (p)e−Ke−
1
pKt

= JW (t)JJeKe−Ke−
1
pKt
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= −JW (t)e−
1
pKt

= U(t)

It follows that W (t) = JU(t)e
1
pKt �

Proposition 2.8. Let λ be a characteristic multiplier and µ be the corresponding
characteristic exponent so that λ = eµ, then there exists a solution u(t, z) of (2.12)
such that

(a) u(t+ p) = λu(t, z)

(b) u(t, z) = e
µ
p tv(t, z), for some periodic function v(t, z) with period p.

Proof. Let λ is an eigen value of C and c is an eigenvector corresponding to eigen-
value λ. Let u(t, z) = W (t, z)c where W (t, z) is the fundamental matrix solution of
(2.12). Then

Ju′(t, z) = zH(t)u(t, z).

(a) We show that u(t+ p, z) = λu(t, z).

u(t+ p, z) = W (t+ p, z)c

= W (t, z)Cc

= λW (t, z)c

= λu(t, z)

(b) Let v(t, z) = u(t, z)e−
µ
p t. We show that v(t, z) is p − periodic.

v(t+ p, z) = u(t+ p, z)e−
µ
p (t+p) = λu(t, z)e−

µ
p te−µ = u(t, z)e−

µ
p t = v(t, z)

�

Using the form (2.13) of the fundamental matrix of (2.12) we have,

− U ′(t)e
1
pKt − U(t)

1

p
Ke

1
pKt = zH(t)JU(t)e

1
pKt (2.14)

Multiplying from left on both sides by e−
1
pKt we get,

− U ′(t)− U(t)
1

p
K = zH(t)JU(t) (2.15)

Corollary 2.9. The symplectic periodic change of variable v(t, z) = JU(t, z)u(t, z)
transforms the periodic canonical system (2.12) to a constant linear system.

Proof. The symplectic periodic change of variable v(t, z) = JU(t, z)u(t, z) in the
periodic canonical system (2.12) yield,

− U ′(t)u(t)− U(t)u′(t) = zH(t)JU(t)u(t) (2.16)

Applying a vector u(t) from the right on (2.15) we get

− U ′(t)u(t)− U(t)
1

p
Ku(t) = zH(t)JU(t)u(t) (2.17)

Subtracting (2.16) from (2.17) we get,

u′(t) =
1

p
Ku(t) (2.18)
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�

Note that the fundamental matrix solution of (2.18) is W (t) = e
1
pKt.

Theorem 2.10. For any z ∈ C, there exists at least a solutions u(t, z) of (2.12)
that is either pseudo-periodic or satisfy u(t, z)→ 0 as t→∞.
Proof. If λ is an eigenvalue of C, 1

λ is also an eigenvalue of C. Therefore, there
exists an eigenvalue λ with the possibilities: |λ| < 1 , |λ| = 1.

If |λ| < 1, then the Floquet exponent is given by µ = ln(|λ|) + i arg (λ). By

proposition 2.8 there exists a solution of (2.12) of the form u(t, z) = e
µ
p tv(t, z), for

some periodic function v(t, z) with period p. Since the real part of µ, <(µ) < 0,
the solution satisfy u(t, z)→ 0 as t→∞.

If |λ| = 1, then λ = ±1 or λ = ±i, then µ is purely imaginary say λ = eiθ.
Therefore the solution u(t, z) = eiθtv(t, z), where v(t, z) is a p− periodic function.
So u(t, z) is pseudo-periodic solution.

�

3. Physical applications

The problem of solving linear differential equations with periodic coefficients,
which pretty much overlaps with the Floquet theory, is a century-old subject with
vast applications in several areas of science and technology, ranging from quantum
to classical physics, chemistry, control theory, dynamical systems and many more
[3]-[35]. It represents, for example, a powerful tool to study nonlinear perturbations,
noise, and stability of systems depending instantaneously on time, and admitting
periodic steady states. A very well-known application is the study of stability of
the inverted pendulum and the Hill equation. In this section we present only four
selected examples of physical models that use equations like (2.12): linear stabil-
ity of periodic Hamiltonian systems, position-dependent effective mass systems,
pseudo-periodic water waves, and higher dimensional Schrödinger equation. In all
these examples (2.12) describes a linear Hamiltonian system with J , the standard
symplectic matrix in 2N dimensions, belonging to Sp(N,R) symplectic group and
endowing the phase space with symplectic structure.

3.1. Linear stability of periodic Hamiltonian. If the components of the vector-
valued function u(t) ∈ C2N describe the (generalized: positions and momenta)
degrees of freedom of a classical finite-dimensional Hamiltonian system, the corre-
sponding Hamiltonian equation for the evolution of the state vector has the form

Ju′(t) = ∇uH(u), (3.1)

where H is the Hamiltonian smooth function of u, and ∇u is the gradient operator.
The solutions of (3.1) describe flows with conservation of energy because the skew-
symmetry property of J imposes the flow of u to be orthogonal to the gradient of
the energy. As a consequence, any solution u(t) of (3.1) corresponding to initial
conditions u(0) = u0 fulfills H(u(t)) = H(u0). A very useful problem is the study
of the dynamics of solutions with initial conditions in a bounded neighborhood of
the equilibrium points Φ(t) of (3.1), that is ||u0−Φ|| � 1, where ∇uH(Φ) = 0. The
stability of these critical points can be analyzed by expanding the Hamiltonian in
Taylor series around Φ + δΦ, [6], and analyzing the linearization of the flow around
Φ

J(δΦ)t = LδΦ +O(||δΦ||2), (3.2)
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where the linear operator Lij = −∂2H(Φ)/∂ui∂uj , i, j = 1, . . . 2N is the symmetric
Hessian matrix for H. This linearization is exactly our study case (1.1) so we
can assume H = L. The skew-symmetry properties of J and symmetry of H
guarantee that the point spectrum of J−1L is symmetric with respect to the real
and imaginary axes, λ ∈ Sp(JL)→ −λ,±λ∗ ∈ Sp(JL) and hence either the critical
points are linear exponentially unstable or the linear stability problem is irrelevant
(imaginary spectrum), [6], which means that the critical points of the linearized
equation (3.2) are not likely to be asymptotically stable. One possibility to ensure
the stability of a critical point is to ask for the critical point Φ to be a non-degenerate
minima of H. However, this would request for L to be a positive-definite matrix,
case which is not covered by our system (1.1) since H is requested to be positive
semidefinite only. Indeed, if we consider α− to be the lower bound of the point
spectrum of L, it results

||δΦ(t)||2 ≤ 2
H(u(t))−H(Φ)

α−
= 2

H(u0)−H(Φ)

α−
,

where equality is attained for the eigenvectors of L. If the point spectrum of
L contains however zeroes, the upper bound in the right hand side blows up to
infinity, consequently level sets for H infinitesimally closed to Φ become unbounded
hyperbolas, and the critical point becomes unstable.

A stronger result can be obtained if the linearization L of the Hamiltonian H is
a periodic function of time. In this case we can amend the linear stability problem
by using Theorem (2.10). We can write the parameter z = ρeiφ and interpret ρ as
a time re-scaling and the complex phase as a U(1) symmetry for H. We have

Corollary 3.1. If (2.12) describes a periodic linearization of a Hamiltonian equa-
tion (3.1) around any of its critical points, then for any complex z there is at least
one continuous perturbation which is either exponentially stable or marginally sta-
ble.

The proof results immediately by applying (2.10). The negative real part of the
Floquet exponent for cases with |λ| < 1 ensures that the perturbation approaches
zero in norm faster than, or at least as fast as an exponential, so we have an
exponentially stable critical point. For the cases with |λ| = 1 the perturbation
is pseudo-periodic, and being continuous it is bounded in norm, so we have a
marginally stable critical point [7]. An example from classical mechanics of such a
situation is given by the existence of pseudo-periodic solutions for the dynamics of
a satellite in a nearby of a geostationary orbit. Similar pseudo-periodic solutions
were obtained in [8] by using a generalized version of the Weinstein-Moser theorem.
In this example, instead of periodic linear Hamiltonians, the author uses the theory
of compact Lie group invariant Hamiltonian. The z−independence of our result in
(2.10), (3.1) provides in our case U(1)-invariance, fact which is in agreement with
Theorem 1.1 in [8] applied to compact groups. At the same time, our result is
distinct from the cases studied in [7, 8] because the periodicity of our L is a non-
compact symmetry, so it does not fall under the cases presented in this literature.

3.2. Position-dependent effective mass example. While position-dependent
(effective) mass quantum mechanical systems have repeatedly received attention in
many areas of physics due to their relevance in describing the physics of many micro-
structures of current interest such as, in the last decade, in problems of quantum
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Figure 1. First five curves from above: time dependence of the
periodic (p = 2s) entries of the N = 1 Hamiltonian matrix (3.3).
The bottom (black) four curves represent the absolute values of the
pseudo-periodic components of the solution u(t), for z = 0.9, θ =
8.54.

dots [3], intelligent states [9], Aharonov-Bohm-Coulomb systems [10], Fermi gas
[11], Dirac equation [12], and SUSY methods for superconductor systems [13], etc.
(see also [14]-[16] for theoretical developments and references therein), interest in
classical problems having a position-dependent variable mass is relatively recent
and rapidly developing subject [17]-[20]. The simplest case of a position-dependent
mass classical oscillator has been approached by [17, 18], for the analysis of a Duffing
oscillator which provides ground for interesting effects like bifurcations, and chaos.
We introduce a classic equivalent of the de Roos periodic time-dependent mass
Hamiltonian [14, 18], for two degrees of freedom N = 1, in the form

H(t) =


k1 + k12 −k12 0 0
−k12 k2 + k12 0 0

0 0 m−1
1 0

0 0 0 m−1
2

 . (3.3)

If this Hamiltonian is periodic, H(t) = H(t+p), it can describe the evolution of two
quasi-particles (impurities in super-fluid or Leidenfrost drops, or atomic clusters)
under the action of a time variable (periodic) potential, with secondary effect an
induced time-dependent relative interaction between the quasi-particles. In our
application we substitute the explicit position-dependence mass, with implicit time-
dependence of mass and the other entries of the Hamiltonian matrix. (3.3) describes
the evolution of the positions and momenta of two such quasi-particles u(t) =
(q1, q2, p1, p2). The periodic coefficients k1,2(t) and k12(t) are time-variable elastic
constants describing a linearized interaction between the quasi-particles and the
external potential, also their mutual interaction through q1 − q2, respectively, and
m1,2(t) are the periodic mass coefficients. To exemplify how our results apply to
this model, we build quasi-periodic solutions of the form u(t; θ) = eiθtv(t), with
periodic v(t) = v(t + p), where v does not dependent on θ. We write (3.3) in
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the form JH → θJH(t) + G0(t) and solve the eigenproblem JH(t)v(t) = λv(t)
asking the eigenvalue to be time- and θ−independent, i.e. λ = −iz−1 =const. We
notice that for any periodic coefficients k1,2,m1,2 the invariance of the spectrum is
guaranteed by the constraint

k12 =
z2k1k2 − k2m1 − k1m2 +m1m2z

−2

m1 +m2 − z2(k1 + k2)
.

By implementing this value for k12 in the eigenvectors v we can find solutions for
G0 from the condition v′ = −zG0v. For a Hamiltonian given by JH(t) + G0(t)
with G0 obtained as above, the corresponding u(t; θ) solution of the system (2.12) is
indeed pseudo-periodic. The exact expression of u is too long to be presented here,
but we show in Fig. (1) the time-dependence of the Hamiltonian matrix entries of
period p = 2s, and of the components of the solution u(t) whose period spectrum
has p± θ resonances. We mention that our construction is p− and θ−independent,
through Theorem (2.12), so it represents a general approach, demonstrating the
existence of the pseudo-periodic solutions for this type of Hamiltonians.

3.3. Nonlinear water waves. Nonlinear traveling waves on the free surface of an
ideal fluid are the focus of a huge number of papers on the subject. The strongest
verification of any analytic or numeric solution in terms of such waves is to show its
matching with numerical solutions of the Euler equations for ideal fluids. By using
a reformulation of the Euler equations for capillary gravity waves, involving surface
integrals and a variational argument inspired by the Weinstein-Moser theorem, the
authors in [21] were able to provide rigorous existence criteria for periodic traveling
wave solutions in two and three dimensions. In two dimensions this was proven by
a straightforward approach of the theorems of Levi-Civita-Struik [22]. For three
dimensions, on top of the existence of periodic traveling capillary gravity water
waves obtained in [21], the existence of pseudo-periodic waves was also proved in
[23]. These results were obtained by using of the resonant Lyapunov center theorem
coupled with the LyapunovSchmidt method.

However, the linearized Hamiltonians in both cases are constant. The periodicity
of the solutions in [21] occurs from the truncation of the space in periodic intervals,
using periodic boundary conditions and hence working the system, reduced now to
the dynamics of the free surface, on a torus manifold. The quasi-periodic waves
from [23] were obtained through the linearization of the Euler equation Hamil-
tonian by using a pseudo-periodic operator built in the KAM theory sense. Both
these directions however, avoided the situation in which the linearized operators
have zero eigenvalue of higher multiplicity, thus involving the occurrence of small
denominator problems. These are situations where more than one or two solutions
of the linearized equation have the same phase velocity, situations which actually
are common in real experiments, especially when the surface tension of the fluid
becomes very large (the Bond number approaches zero).

In our example we use a different approach towards the linearization of the Euler
equations, allowing the phase velocity of the waves to be time dependent, like for
example in long waves in the Benjamin-Fair Modulation Instability situations [24].
By using the results proved in section 2 we demonstrate the existence of pseudo-
periodic water waves, in agreement with cited literature. For a two dimensional
body of water with finite depth h Euler equations reduce the Bernoulli equation
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for the water velocity potential φ(x, y, t)

φt +
1

2
|∇φ|2 + gη − σ∇ ·

[
ηx√

1 + η2
x

]
= 0, at y = η(x, t), (3.4)

where the free surface of the water is described by η(x, t), σ is the surface tension

coefficient and g is gravitational acceleration. The water velocity is potential ~V =
∇φ, and we add to (3.4) boundary conditions at the rigid bottom φy = 0 at y = −h,
and nonlinear kinematic free surface boundary condition

ηt + φxηx − φy = 0, at y = η(x, t). (3.5)

When the free surface η(x, t) and Dirichlet boundary condition at water surface for

φ̃(x, t) = φ(x, η(x, t), t) are given, one can solve the full problem, since φ satisfies
Laplaces equation. In this way the water wave problem reduces to a Hamiltonian
system in the surface variables η and φ̃ which are canonically conjugate [21]. The
linearized Hamiltonian for the Fourier transform F [·] of the canonical variables
becomes (

F [η]t
F [φ̃]t

)
=

(
g + σk2 −i~c(t) · ~k
i~c(t) · ~k k tanhhk

)
=

(
F [η]

F [φ̃]

)
, (3.6)

where ~c = (cx, cy) is the wave phase velocity which is considered here time depen-

dent as in the most general situation of mixing of waves [24], and ~k = (kx, ky) is
the wave vector. The system (3.6) is a 2 × 2 linear Hamiltonian system like the
one in (2.12) if we assume periodic function for the phase velocity. In this case
(3.6) obeys Theorem (2.10), namely, for appropriate initial conditions it accepts
pseudo-periodic solutions in velocity potential and surface function. The role for
the arbitrary parameter z can be attributed to the surface tension coefficient σ, or
the wavelength k. This direct application is in agreement with the KAM theory
for capillary-gravity water waves presented in [21, 23]. Our example is rather gen-
eral, and not limited to water waves only, for it can be applied to other dynamical
systems like nonlinear waves on networks [25].

3.4. Dirac systems in semiconductors. The effect of the dimensions of space
upon physics laws is a modern question having its roots in the efforts of unification
of gravity with the standard model, and its potential future in understanding of
the dark matter and dark energy puzzles. Extra space dimensions (N > 3) must
be somehow of negligible ”size”, that is compactified, otherwise we would have
seen them already. Nevertheless, higher dimensions for Hamiltonian systems intro-
duce consequences for the stability of matter, question yet without an answer. A
similar higher dimensional approach uses the N−dimensional Schrödinger equation
[26], in the study of the hydrogen atom in five dimensions, the isotropic oscilla-
tor in eight dimensions, or the position and momentum information entropies of
N−dimensional systems. Recently, motivational problems towards investigating
n−dimensional Schrödinger equations are inspired by the dimensional expansion
technique used to obtain nonperturbative results in quantum field theory where
the space-time dimension is used as an expansion parameter, most specifically in
the case of renormalization for a self-interacting scalar quantum field theory in the
Ising limit [27]. The oscillatory properties of the solutions of equation (1.1) are in-
volved in a number of problems in quantum mechanics in the phase space (Wigner
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formulation) [28], and more recently in the fields of graphene[29, 30], electronic
materials and Dirac systems [12, 31], and black holes physics [32].

Since the advent of graphene as a 2−dimensional electronic material which can be
produced in the laboratory, the possibility of exploiting the valley degree of freedom
within it, [33, 29, 30], and other Dirac systems has been vigorously studied [28].
In order to optically-control electronic semiconductor structures one needs high
intensity light exposure of the sample. This light determines the electronic struture
to be represented by eigenvalues of a Floquet Hamiltonian. This new nano-science
field, vallytronics [34], is a procedure of quantum manipulation of energy valleys in
semiconductors, including quantum computation with valley-based qubits or other
forms of quantum electronics. In analogy to spintronics where the internal degree of
freedom of spin is harnessed to store, manipulate and read out bits of information,
in valleytronics similar tasks are performed using the multiple extrema of the band
structure, so that the information of 0s and 1s would be stored as different discrete
values of the crystal momentum. For appropriate choices of light beam amplitudes
and phase offset one can produce a Floquet energy spectrum which has a gap for
one valley but no gap for the other. If an electric current passes through this
probe from electrodes with chemical potentials tunned to have values in this gap
of quasi-energy, then the system becomes Floquet-engineered.

In the following example we focus on Two-dimensional Dirac system. In some
time-periodic potential the electronic states of the semiconductor are described by
the time-dependent Schrödinger equation. If we denote by α the multi-label of all
electronic quantum numbers the solutions obtained from the Floquet theorem have
the form

ψα(~r, t) = uα(~k, t)ei(
~k·~r−εαt),

where T is the period of the Hamiltonian H(t), the functions uα(t+T ) = uα(t) are
the periodic part of the Floquet solution and at the same time the eigenfunctions
of the Floque Hamiltonian HF (t) = H(t)− i∂t while εα are the quasi-energies levels
and the corresponding eigenvalues of HF (t). The parameters are actually the Flo-
quet characteristic exponents (unique modulo multiples of Ω). These wavefunctions
are two-component spinors encoding the wavefunction amplitudes on each of the
sublattices of the honeycomb lattice. The field is assumed uniform in the plane so

the electronic states are characterized by a two-dimensional wave vector ~k within
the hexagonal Brillouin zone. The Floquet Hamiltonian has the form (in ~ = 1
convention) [34]-[35]

HF (~k, t) =

(
−i∂t −γZ(~k, t)

−γZ∗(~k, t) −i∂t

)
,

where ~k is the wave vector of the state in the Brillouin zone, and γ is the hopping
amplitude for electrons in the graphene honeycomb lattice. The operator Z is given
by

Z(~k, t) =

3∑
n=1

exp

[
i

(
~k +

e

c
~A(t)

)
· ~an
]
,

where ~an are the nearest neighbors vector of a site on the lattice, and ~A(t) is the
oscillating vector potential for the electric field in the light beam and it represents

the periodic part of the Hamiltonian ~A(t) = A0(cos Ωt, sin Ωt) with Ω = 2π/T . The
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Floquet Hamiltonian fulfills the equation HF (~k, t)uα(~k, t) = εα(~k)uα(~k, t). More-
over, we notice that the Floquet modes obey the matching relation

uα′(~k, t) = uα(~k, t)einΩt = unα(~k, t), n ∈ Z,

while the shifted quasienergy values obey

εα → εα′ = εα + nΩ = εnα.

Hence the label α corresponds to a whole class of solutions indexed α′ = (α, n), n ∈
Z and thus the eigenvalues can be mapped into the first Brillouin zone obeying
−Ω/2 ≤ ε < Ω/2.

For some special values of the wave vector ~k, two symmetrically points placed
along y−axis in the Brillouin zone by the nearest neighbors, the lattice symmetry
combines with the time periodicity and hence the relevant frequency for the Floquet
problem is modified by a constant phase factor in front of Z. In such situations
distinct states can cross at the Floquet zone boundary εα = ±Ω/2 (shown above)
leading to topological transitions in the quasienergy band structure. This physical
situation is an example of occurrence of the pseudo-periodic solutions for this type
of Hamiltonian described in Theorem (2.10).

We mention that the full vector space of the electron states is needed to allow
matching of wavefunctions to external states at the boundary of the semiconductor
sample. Thus, to deal with such systems one must treat the time degree of freedom
as a genuine extra dimension, compactified via the periodic (temporal) boundary
condition, which is very much in the spirit of our comment in the beginning of
this section about the compactified (negligible ”size”) extra space dimensions. In
such composite Hilbert space R2 ⊗ T of square integrable functions on configura-
tion space and the space T of functions periodic of period 2π/Ω the quasienergy
does not depend on an extra constant phase in the electric field perturbation (the
phase is equivalent to a shift in time origin), while the time-dependent Floquet
functions depend on such phase at any given fixed time [33, 35]. Consequently, the
quasienergy eigenvalue equation has the form of the time independent Schrödinger
equation in the composite Hilbert space. This feature reveals the advantage of the
Floquet formalism.
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