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In this work, we develop a mathematical model for transport and growth of microbes by natural (rain) water infiltration and flow
through unsaturated porous soil along the vertical direction under gravity and capillarity by coupling a system of advection
diffusion equations (for concentration of microbes and their growth-limiting substrate) with the Richards equation. (e model
takes into consideration several major physical, chemical, and biological mechanisms. (e resulting coupled system of PDEs
together with their boundary conditions is highly nonlinear and complicated to solve analytically. We present both a partial
analytic approach towards solving the nonlinear system and finding the main type of dynamics of microbes, and a full-scale
numerical simulation. Following the auxiliary equation method for nonlinear reaction-diffusion equations, we obtain a closed
form traveling wave solution for the Richards equation. Using the propagating front solution for the pressure head, we reduce the
transport equation to an ODE along the moving frame and obtain an analytic solution for the history of bacteria concentration for
a specific test case. To solve the system numerically, we employ upwind finite volume method for the transport equations and
stabilized explicit Runge–Kutta–Legendre super-time-stepping scheme for the Richards equation. Finally, some numerical
simulation results of an infiltration experiment are presented, providing a validation and backup to the analytic partial solutions
for the transport and growth of bacteria in the soil, stressing the occurrence of front moving solitons in the nonlinear dynamics.

1. Introduction

(e flow of water through unsaturated porous soil is of great
interest for hydrogeology and water wells monitoring, es-
pecially when water flows with contaminated pollutants [1].
With these contaminants, microbial transport in unsatu-
rated porous media is an important aspect from scientific,
industrial, and environmental point of view, especially for
the water-borne diseases with pathogenic microbes [2]. It is
also important for controlling the mass spreading of plant
root diseases [3]. (e ground water reservoir is recharged
from above by infiltrating water coming from various
sources [4]. In this stage, water moves downward, from
ground surface to the water table, through unsaturated zone.
If the surface water contains dissolved contaminants and
pollutants, they move downward into the water table by

infiltration processes like dispersion and adsorption. (ese
phenomena affect the concentration of pollutants, which
move from the surface to the water table [4, 5].

Important processes have been identified, and mathe-
matical formulations are developed, enabling scientists to
incorporate microbial transport models in flow through
porous media [6, 7]. Results of different experiments con-
ducted on soils and other subsurface materials have shown
that many environmental factors affect the transport and
outcome of microbes in porous media, for example, the
chemical composition of interstitial solution, water flow
velocity, and physical properties of the solid matrix [6, 8].
Physical processes such as growth, decay, adsorption,
straining, advection, motility, diffusion, and dispersion are
also known to be involved with the transport and outcome of
microbes [9].
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(e transport of microbes in the water phase depends on
the flow of water corresponding with advective transport,
hydrodynamic dispersion, Brownian diffusion, and motility
of some microbes. Microbe movement through a porous
medium is also imposed by physical and physicochemical
forces, which makes the flow of microbes slow relative to the
flow of water. Besides, microbes are subject to decay or
death, or their concentration may increase by growth or
multiplication, at rates controlled by availability of sub-
stances (substrates) that provide nutrients to microbes [9].
Since the consumption of substrate and transport of mi-
crobes occur simultaneously, this may also affect the
transport phenomenon. To these natural phenomena, we
can add human induced mechanisms for retention of mi-
crobes, like filtering, adsorption, interception, and sedi-
mentation, the relative importance of which depends on the
type of microbes and environmental factors such as ionic
strength of solution, toxic chemicals, and properties of the
porous medium. By taking into account all these processes, a
comprehensive mathematical description for the transport
of microbes in unsaturated porous medium can be con-
structed [10].

In this paper, we develop and solve a one-dimensional
mathematical model for simulating growth and transport of
microbes in unsaturated soil, consisting in a coupled system
of four nonlinear partial differential equations. In Section 2,
we describe the mathematical model for microbial transport
and growth through porous medium by coupling a system of
convection diffusion equations with Richards equation
adopting Darcy’s law. Moreover, the equation for the
transport of fluids through unsaturated soils can be derived
from the law of mass conservation, by balancing the rate of
change of saturation in a closed volume with the rate of
change of net flux of fluid into that volume. If the flux of fluid
is given by Darcy’s law for flow through a porous medium,
the transport equation becomes the Richards equation.
(ere are differences between these two equations. On the
one hand, Darcy’s law is valid for any porous medium and
any type of pressure drop, while the Richards equation is
mainly used for soil fluid dynamics. On the other hand, the
hydraulic conductivity parameter K from Richards equation
is a function depending on the degree of soil saturation θ
(water content in the porous medium) and describes the ease
with which the fluid can move through pores under capillary
head and gravity. In Darcy’s law, the constant of pro-
portionality is solely a material constant, the porous medium
permeability k. If one assumes gravity (g) as the only driving
force of the flow, one maps k⟶ K � kg/v into the
Richards equation, with ] being the kinematic viscosity.

We attempt to solve the resulting system of highly
nonlinear partial differential equations both analytically and
numerically.

In Section 3, we study the occurrence of front propa-
gating analytic solutions of the main dynamical equation of
the model, the Richards nonlinear diffusion equation, which
is the only independent equation of the model, in one de-
pendent variable ψ. (e other three equations of the model
couple all the dynamical variables. Once, the solutions for
the volumetric moisture content θ(z, t) and the same thing

for the pressure head ψ(z, t) is obtained, one can predict
pretty much the dynamics of the rest of the processes and
concentrations because the other three dynamical equations
of the model functionally depend on ψ. By using several
changes of the variable and some linear approximations in
the constitutive and material constant equations, we have a
weakly dispersive weakly diffusive Burgers type of wave
equation for the pressure head ψ and traveling solutions as
nontopological solitary waves.

For the numerical approximation, we employ finite
difference method for the Richards equation and finite
volume method for the transport equations. In our earlier
work [11], we studied performance of various explicit and
implicit finite difference schemes for the Richards equation.
A numerical procedure based on upwind finite volume
discretization of the transport equations and their boundary
conditions is developed in Section 4. (e closed form an-
alytic solution obtained in Section 3 contains several pa-
rameters (constants of integration). Variations in these
parameters correspond to variations in the physical con-
stants (material properties) present in the mathematical
model, thereby representing change in different experi-
mental setup. By hits and trial approach, we obtained one
traveling wave solution with a specific wave front velocity
which mimics the qualitative behavior of the solution of the
nonlinear system. (e authors believe that this soliton-like
solution for the transport model raises an interesting
problem for the researchers to look at the solution using data
science/machine learning approach and try to find the
optimal values for the constants in the analytic solution that
represents a given set of physical parameters of the model.
Some numerical simulation results are presented in Section
5. Finally in Section 6, we conclude our results.

2. The Mathematical Model

2.1. Flow in Unsaturated Porous Medium. Flow in unsatu-
rated soils is a special type of flow in porous media when the
void spaces are not completely filled with fluid. Hydraulic
processes at land surface and subsurface, such as infiltra-
tion, drainage, evaporation, capillary elevation of deep-
level water, and absorption of soil-water by plant roots
zone, all can be reduced to unsaturated flow problems [4].
Virtually, in all studies performed for unsaturated regime,
the flow is assumed to obey the classical Richards equation
[12], which has been directly obtained from applying the
equation of continuity to the Darcy-Buckingham flow law
[13]. (e Richards equation in one-dimensional vertical z−

direction (z> 0 downward) with no source/sink term has
the form

zθ
zt

�
z

zz
K

zψ
zz

􏼠 􏼡 −
zK

zz
, (1)

where θ(z, t) is the volumetric moisture content, ψ(z, t) is
the pressure head, and K(ψ) is the unsaturated hydraulic
conductivity. To solve (1), we use two empirical constitutive
relations, one for the moisture content and the other for the
hydraulic conductivity [14]:
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θ(ψ) � θr +
α θs − θr( 􏼁

α +|ψ|
β ,

K(ψ) �
KsA

A +|ψ|
c,

(2)

where θs and θr represent the saturated and residual
moisture content, respectively; Ks corresponds to the sat-
urated hydraulic conductivity; and A, α, β, and c are di-
mensionless soil parameters.

2.2. Microbial Transport in the Porous Medium. (e math-
ematical equation for transport of microbes in unsaturated
porous media is based on the continuity or mass balance
equation. In an elementary volume of porous medium, it
states that the rate of change of the total biomass equals the
divergence of flux plus the rate of contribution to the
biomass (growth) minus the rate of removal of the biomass
(decay) [9].

Let M(z, t) denote the concentration of microbes in the
water phase defined as the mass of microbial cells per unit
volume of water, ρs the bulk density of the porous medium,
and Ma(z, t) the mass of microbes attached to the solid
phase. At moment t, the total biomass in the elementary
volume is the sum of the mass in the water phase (θM) plus
the mass in the attached phase (ρsM

a) [6, 8]. (e governing
equation for microbial transport in the porous media in one
dimension is given by the following partial differential
equation:

z θM + ρsM
a

( 􏼁

zt
�

z

zz
− vwθM − vθM + τθD

zM

zz
􏼠 􏼡 + Rg − Rd,

(3)

where vw is the velocity of water flow, v is the chemostatic
velocity of the microbes, τ is the tortuosity of the pore space,
D is a diffusion coefficient, Rg is the growth rate of microbes
combined for water and attached biomass phase (mass of
microbes per unit volume and time), and Rd is the decay rate
of the microbes combined for water and attached biomass
phase.

2.3. Transport Equation for Growth-Limiting Substrate. In a
porous medium, the transport of growth-limiting substrate
and transport of microbes occur simultaneously. (erefore,
the growth of microbes depends upon the flow of substrate.
Moreover, the microbe transport and substrate transport
also occur at the same time, so there is a continuous change
of substrate concentration [9]. (us, it is necessary to derive
and solve the substrate transport equation with that for
microbial transport to obtain the substrate concentration.
Processes such as advection with the flowing water, diffusion
and dispersion phenomena relative to water in response to
concentration gradients, sorption by specific adsorption
reactions, and consumption of substrate by microbes affect
the transport of substrate in porous media [6, 8]. Including
all these, the transport equation in one dimension for bi-
ologically reactive substrate can be written as

z θS + ρsS
a

( 􏼁

zt
�

z

zz
− θvwS + θDs

zS

zz
􏼠 􏼡 − Rb, (4)

where S(z, t) is the mass of substrate per unit volume of
water, Sa(z, t) is the mass of substrate adsorbed per unit
mass of solid matrix, Ds is the diffusion-dispersion coeffi-
cient of the substrate, and Rb is the rate at which the mi-
crobes consume substrate combined for the water and
attached biomass phases [9].

2.4.Microbial Behavior in PorousMedia. We use the Monod
model [15] for microbial growth and substrate consumption.
Let Rw

g , Ra
g, Rw

d , and Ra
d denote the growth and decay rates of

microbes in water and attached biomass, respectively. (en,
the growth rate of microbes combined for water and at-
tached biomass phase (mass of microbes per unit volume
and time) is defined as

Rg � R
w
g + R

a
g

� μθM + μρsM
a
,

(5)

where μ is the specific growth rate of microbes given in [15]
in the form

μ �
μmS

ks + S
, (6)

where μm is specific growth rate of microbes and ks is
saturation constant. (e decay rate of microbes is defined as

Rd � R
w
d + R

a
d

� bθM + bρsM
a
,

(7)

where b is the decay or inactivation constant. (e substrate
consumption Rb is given by

Rb �
μ
Y

θM + ρsM
a

( 􏼁, (8)

where Y is defined as the maximum yield coefficient, that is,
the amount of biomass produced per unit mass of substrate
consumed.

Various absorption models can be used to eliminate one
of the dependent variables (M, Ma) in (2.4) and (S, Sa) in
(4). For the substrate in the attached biomass, we assume
equilibrium adsorption isotherm (Freundlich) [16] as

S
a

� ρsk
s
fS

Ns , (9)

where ks
f is Freundlich isotherm slope parameter. For the

microbial growth in the attached biomass phase, we use the
following nonequilibrium microbial kinetics:

z ρsM
a

( 􏼁

zt
� Ra − Ry + R

a
g − R

a
d, (10)

where Ra is the rate of microbial attachment and Ry is the
rate of microbial detachment. Following [6], we define

Ra � ka 1 −
M

a

M
a
m

􏼠 􏼡θM, Ry � kyρsM
a
, (11)
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where Ma
m is the maximum concentration of microbes in

attached phase, ka is attachment coefficient, and ky is de-
tachment coefficient.

2.5. Mathematical Model. By taking Ns � 1 in (9) and
coupling Richards (1) for porous flow, with (4) for the

transport of biologically reactive solutes, with (10) for the
microbial kinetics, and with (3) for microbial transport in
porous media, we can write our model as a 4 × 4 nonlinear
PDE system in the functions Ψ, M, Ma, and S in a bounded
region 0< z< L as follows:

zθ
zt

�
z

zz
K(ψ)

zψ
zz

􏼠 􏼡 −
zK

zz
, (12)

z θ + ρsk
s
f􏼐 􏼑S

zt
�

z

zz
− vwθS + θDs

zS

zz
􏼠 􏼡 −

μmS

ks + S( 􏼁Y
􏼠 􏼡 θM + ρsM

a
( 􏼁, (13)

zM
a

zt
� ka

M
a
m − M

a
( 􏼁

ρsM
a
m

θM − kyM
a

+
μmS

ks + S
− b􏼠 􏼡M

a
, (14)

zθM

zt
�

z

zz
− vwθM − vθM + τθD

zM

zz
􏼠 􏼡 + kyρsM

a
− ka 1 −

M
a

M
a
m

􏼠 􏼡θM +
μmS

ks + S
− b􏼠 􏼡θM,

(15)

subject to the following initial and boundary conditions:

(i) Initial condition: ψ(z, 0) � ψ0(z), M(z, 0)

� M0(z), Ma(z, 0) � Ma(z), S(z, 0) � S0(z).
(ii) Lower boundary condition: ψ(L, t) � β(t), (zM

/zz)(L, t) � 0, (zS/zz)(L, t) � 0.
(iii) Upper boundary condition:

zψ
zz

(0, t) �

q(t), if 0< t< tα,

0, if t> tα,

⎧⎪⎨

⎪⎩
(16)

where the functions of the initial condition and
boundary conditions are chosen correspondingly.

3. Traveling Front Solutions for the
Richards Equation

(e nonlinear system equations (12)–(15) have a particular
feature which allows us to introduce some analytical con-
siderations. Richards’ equation (12) is independently
decoupled for the other three equations, and once we use a
certain porous fluid material model, for example, the con-
stitutive equations (2), (12) becomes a nonlinear PDE in one
functionψ(z, t). Once a solution is found for this equation, by
implementing it into the remaining three equations,
(13)–(15), they become a system of linear PDE with variable
coefficients for which a variety of solutions can be obtained.

Consequently, in this section, we study some properties
of the Richards equation. By dividing (12) by zθ/zψ, we can
rewrite this equation in the form

zψ
zt

� θ1K1
zψ
zz

􏼠 􏼡

2

+ θ1K
z
2ψ

zz
2 − θ1K1

zψ
zz

, (17)

where we consider K � K(ψ) and θ � θ(ψ) to be invertible
differentiable functions, at least for conveniently chosen
intervals for the K,ψ, θ variables, and where we denote

θ1(ψ) �
zψ
zθ

􏼠 􏼡

− 1

,

K1(ψ) �
zK

zψ
.

(18)

Equation (17) is a Hamilton–Jacobi type of equation, and
under corresponding Cauchy initial conditions and ap-
propriate boundary conditions, it has a unique solution [17].
To understandmore about such a solution, we notice that for
slow variation coefficient functions, like the linear ap-
proximations θ ≃ C1 + C2ψ and K≃ C3 + C4ψ, (17) be-
comes a Burgers equation:

ηt + C2C4ηz � 3C2C4ηηz + C2C3ηzz + C2C4ηηzz, (19)

in η � ψz, where suffixes represent derivations. (is result
arrives somehow in a natural way because (17) is a Richards
(or Darcy) equation which is a particular case of the
Navier–Stokes equation, and in the limit of a porous ho-
mogeneous medium, the Navier–Stokes equation turns into
some type of nonlinear evolution equation like Burgers,
Korteweg-de Vries, or generalizations of these depending on
the boundary conditions. Usually, the analytical solutions of
the Burgers equations evolve into shock formation and
blow-up solutions. In the case of the Richards equation, the
sign in front of the time derivative is opposite to the sign of
the corresponding term in the Burgers equation, so the front
solutions tend to stabilize in time.

In the following, we introduce a transformation
ψ � ψ(σ) fulfilling the condition
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dψ
dσ

�
σ0

K(σ)
, (20)

where we assume the function K(ψ) � K(ψ(σ)) is invert-
ible, differentiable, and nonzero and where σ0 is an arbitrary
constant. With this type of mapping ψ⟶ σ, (17) becomes

zσ
zt

� θ1K
z
2σ

zz
2 − θ1K1

dψ
dσ

􏼠 􏼡

− 1
zσ
zz

, (21)

which is a diffusion equation with nonlinearity resulting
from its functional coefficients. For example, if K is given by
the material relation in (3), by integration of (20), we have

σ � σ1 +
KsAψ
σ0

, 2F1 1,
1
c

, 1 +
1
c

, − ψc
􏼠 􏼡, (22)

which is a strictly monotonic function. For small c> 0, (22)
generates a linear dependence σ ∼ ψ, and for larger
c⟶∞, (22) approaches a tanh function.

An exact solution for the Richards equation can be
obtained in the case of slow variation of the functional
coefficients with respect to the new variable σ. By using such
a linear approximation

θ1K≃c1 + c2σ, θ1K1
dψ
dσ

􏼠 􏼡

− 1

≃c3 + c4σ, (23)

we obtain for (21) an exact traveling front solution [18]:

z − Vt � z0 +
c
2
2

c3 − V
􏽚
σ

1
u0 +

c2c4

c3 − V
u + c2 ln

c1 + c2u

V − c3
􏼠 􏼡 +

c1c4

V − c3
ln

c1 + c2u

V − c3
􏼠 􏼡􏼢 􏼣

− 1

du, (24)

where ξ � z − Vt is the comoving coordinate; V is a free
parameter representing the velocity of the front; and z0, u0
are constants of integration. For example, if we choose a
simple case where β � c � 1, the following results:

σ � σ1 +
KsAψ
σ0

. (25)

Consequently, in the first order of their Taylor series, we
have

θ1K1 � −
AKsα θr − θs( 􏼁

A + σ0( 􏼁
2 α + σ0( 􏼁

2 +
2A

2
K

2
sα θr − θs( 􏼁 A + α + 2σ0( 􏼁

σ0 A + σ0( 􏼁
3 α + σ0( 􏼁

3 σ + O2(σ),

θ1K1
dψ
dσ

􏼠 􏼡

− 1

� −
α θr − θs( 􏼁σ0

A + σ0( 􏼁
2 α + σ0( 􏼁

2 +
2AKsα θr − θs( 􏼁 A + α + 2σ0( 􏼁

A + σ0( 􏼁
3 α + σ0( 􏼁

3 σ + O2(σ).

(26)

In continuation, we can choose the arbitrary parameters
σ0, σ1 so that (24) will match appropriate boundary and
initial conditions. In particular, we can always choose the
change of variable ψ(σ) such that the moisture θ has an
extremum at σ � 0 which would represent the choice of a
certain value for the pressure head ψ(0) generating maxi-
mum, or minimum, moisture content. Consequently,
θ1(0)K1(0) � 0 which means a choice c3 � 0. In this case,
the solution equation (24) of (21) has an even simple form:

z − Vt � z0 − e
c2σ0Ei − c2σ0 + ln c1 + c2σ( 􏼁􏼂 􏼃, (27)

where σ0 is constant of integration and Ei is the exponential
integral function. Because the inverse of the exponential
integral function is multivalued, the solutions σ(z − Vt)

from (27) can be classified into two types of traveling front
solutions: wetting fronts and dewatering fronts.

Equation (17) is a typical diffusion-reaction equation
[19], and it is integrable with soliton solutions. If we consider
a traveling front solution propagating with velocity V, (17)
can be written in the comoving frame ζ � z − Vt in the form

dψ
dζ

+ A
d2ψ
dζ2

+ B
dψ
dζ

􏼠 􏼡

2

� 0, (28)

with

A(ψ) �
θ1K

V − θ1K1
,

B(ψ) �
θ1K1

V − θ1K1
.

(29)

We can write the differential equation fulfilled by the
inverse function ζ � ζ(ψ) in the form

d2ζ
dψ2 −

1
A

dζ
dψ

+
B

A
� 0, (30)

which has solution

ζ(ψ) � C1 + 􏽚
ψ

0
ζ1(s) C2 − 􏽚

s

0

B(p)

A(p)ζ1(p)
dp􏼠 􏼡ds, (31)

where
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ζ1(s) � exp 􏽚
s

0

dp

A(p)
􏼠 􏼡, (32)

and the traveling solution ψ(z − Vt) is obtained by inversion
of (30).

In the following, we plug this propagating front solution
for the pressure head in (15) to obtain the evolution of the
concentration of microbes in water phase M(z, t). We
consider in a first approximation that Ma≃0, and we take a
realistic value for c � 4.75 (see Section 5) and for the other
constants of material. In the comoving frame ζ � z − Vt,
(15) becomes a linear ODE with variable coefficients.

4. Numerical Methods

4.1. Numerical Method for the Richards Equation. For the
numerical approximation to the solution of (12), following
[11, 20], we use the following equivalent Kirchhoff trans-
formed equation:

c(ϕ)
zϕ
zt

�
z
2ϕ

zz
2 , (33)

where the functional coefficient c is given by

c(ϕ) �
αβ θs − θr( 􏼁|h|

β− 1

K(h) α + |h|
β

􏼐 􏼑
2 , (34)

which depends on the pressure head ψ through the Kirchhoff
transformation defined as

ϕ(h) � 􏽚
h

0
K(λ)dλ, (35)

with h � ψ − z and K(h) � K(ψ). We solve the above one-
dimensional Kirchhoff transformed Richards equation (33)
numerically using a stabilized explicit Run-
ge–Kutta–Legendre super-time-stepping (RKL) finite dif-
ference scheme. Detailed description of the numerical
procedure and stability analysis can be found in our earlier
work [11]. (e numerical method is unconditionally stable
and easily parallelizable and can be implemented in 2D and
3D geometry.

4.2. Numerical Method for Microbial Transport and Growth
Equations. Now, we discretize the transport equations (13)

and (15) and the growth equation (14) using the finite
volume method [21, 22].

4.2.1. Finite Volume Discretization. We partition the com-
putational domain (the slab of length L) into Nz finite cells
Zj � [zj− 1/2, zj+1/2], j � 1, . . . , Nz, with length Δz � L/Nz

and define the nodes zj as themidpoint of the cell Zj.(at is,
the nodes zj and the faces zj±1/2 of the control volumes Zj

are given by

z0 � z
1−
1
2

� 0,

z
j−
1
2

� jΔz,

zj �
1
2

z
j−
1
2

+ z
j+
1
2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

j � 1, . . . , Nz,

zNz+1 � z
Nz+

1
2

� L.

(36)

Let Δt � T/Nt be the time increments and define the
discrete time-steps tn � nΔt, n � 0, 1, 2, . . . , Nt.

(e initial time is denoted by n � 0, and the discrete
approximation for S at the grid (zj, tn) is denoted by Sn

j . We
also regard Sn

j as an approximation to mean value of S(z, t)

in the cell Zj at time tn as

S
n
j �

1
Δz

􏽚
zj+(1/2)

zj−(1/2)

S z, tn( 􏼁dz. (37)

(e variables Mn
j and θn

j can be derived in similar
manner (13)

If an approximate solution Sn
j is assumed to be known at

all grid points at time tn, a method must be specified to
advance the solution to time tn+1, subject to the boundary
conditions. For this, in finite volume method, we integrate
equation (14) into the finite cell Zj and approximate the
integral to get the numerical scheme.

􏽚
zj+(1/2)

zj−(1/2)

z

zt
θ + ρsk

s
f􏼐 􏼑S􏼐 􏼑 −

z

zz
− vwθS + θDs

zS

zz
􏼠 􏼡 +

μmS

ks + S( 􏼁Y
􏼠 􏼡 θM + ρsM

a
( 􏼁􏼨 􏼩dz � 0. (38)

(e first term in the integral (38) is approximated using
forward difference in time as

􏽚
zj+(1/2)

zj−(1/2)

z θ + ρskf􏼐 􏼑S

zt
dz ≈ Δz

θn+1
j + ρskf􏼐 􏼑S

n+1
j − θn

j + ρskf􏼐 􏼑S
n
j

Δt
. (39)
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By applying the Gauss divergence theorem, the second
term in the integral (38) can be reduced to sum fluxes at the
boundary faces of the finite volume Zj. Clearly, these fluxes

do have two parts, advection and diffusion. For the advective
fluxes we use upwind approximation.

􏽚
zj+(1/2)

zj−(1/2)

z

zz
− vwθS( 􏼁dz ≈ − vw (θS)

n
j+(1/2) − (θS)

n
j− (1/2)􏼐 􏼑 ≈ − vw

(θS)
n
j+1 − (θS)

n
j

2
−

(θS)
n
j− 1 − (θS)

n
j

2
􏼠 􏼡,

􏽚
zj+(1/2)

zj−(1/2)

z

zz
θDs

zS

zz
􏼠 􏼡dz ≈ Ds θ

zS

zz
􏼠 􏼡

n

j+(1/2)

− θ
zS

zz
􏼠 􏼡

n

j− (1/2)

⎛⎝ ⎞⎠ ≈ Ds

θn
j+1 + θn

j

2
S

n
j+1 + S

n
j

Δz
−
θn

j− 1 + θn
j

2
S

n
j + S

n
j− 1

Δz
􏼠 􏼡.

(40)

Approximating the third term as

􏽚
zj+(1/2)

zj−(1/2)

μmS

Y ks + S( 􏼁
θM + ρsM

a
( 􏼁dz ≈ Δz

μmS
n
j θn

jM
n
j + ρsM

an
j􏼐 􏼑

Y ks + S
n
j􏼐 􏼑

,

(41)

yields the following scheme:

S
n+1
j �

1
θn+1

j + ρskf

⎛⎝ ⎞⎠ θn
j + ρskf􏼐 􏼑S

n
j +
Δt
Δz

− vw

(θS)
n
j+1 − (θS)

n
j

2
−

(θS)
n
j− 1 − (θS)

n
j

2
􏼠 􏼡􏼠􏼠

+ Ds

θn
j+1 + θn

j

2
S

n
j+1 + S

n
j

Δz
−
θn

j− 1 + θn
j

2
S

n
j + S

n
j− 1

Δz
􏼠 􏼡 + Δz

μmS
n
j θn

jM
n
j + ρsM

an
j􏼐 􏼑

Y ks + S
n
j􏼐 􏼑

⎞⎠⎞⎠.

(42)

Similarly, we write the finite volume discretization for
(14) and (15).

Discretization of the growth model equation (14) is as
follows:

M
an+1
j � M

an
j + Δt

ka

ρs

1 −
M

an
j

M
a
m

􏼠 􏼡(θM)
n
j − kyM

an
j +

μmS
n
j

ks + S
n
j

− b⎛⎝ ⎞⎠M
an
j

⎛⎝ ⎞⎠. (43)

Discretization of the microbial transport equation (15) is
as follows:

M
n+1
j �

1
θn+1

j

θn
jM

n
j +
Δt
Δz

− vw − vx( 􏼁
(θM)

n
j+1 − (θM)

n
j

2
−

(θM)
n
j− 1 − (θM)

n
j

2
􏼠 􏼡 +􏼠􏼠

τD
θn

j+1 + θn
j

2
M

n
j+1 − M

n
j

Δz
−
θn

j− 1 + θn
j

2
M

n
j − M

n
j− 1

Δz
􏼠 􏼡􏼡+

Δt kyρsM
an+1
j − ka 1 −

M
an+1
j

M
a
m

⎛⎝ ⎞⎠θn
jM

n
j +

μmS
n
j

ks + S
n
j

⎛⎝ ⎞⎠θn
jM

n
j

⎛⎝ ⎞⎠⎞⎠.

(44)
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5. Numerical Results

5.1. Simulation Setup. Richards equation for unsaturated
flow was linked to the microbial transport equation along
with transport of growth-limiting substrate. In this simu-
lation, we consider a vertical soil column of depth L � 70 cm
in a time period of tmax � 1hr hr.(e simulation starts with a
uniform saturation θ � 0.1 cm 3/cm3, and a constant water
head ψ � − 61.5 cm is maintained at the bottom boundary
z � L. At the upper boundary z � 0 (the soil surface), a
constant flux q(t) � 13.69 cm/hr for t< 0.3 hr and zero
normal flux condition for t> 0.3 hr is adopted. Equal
amounts of 103 cfu/ml microbial concentration in water
phase and attached to solid matrix with 10mg/100ml of
substrate concentration were set through column at 0.34 cm/
sec of water flow velocity. Since no experimental evidence of
the model is reported, all fixed model parameter values for
soil characteristic used for model simulation are taken from
Haverkamp et al. (1977). (e values for the empirical pa-
rameters θs, θr, ks, ψ for soil type are adopted from [14]. In
addition, the parameters related to the microbial transport
and fate are listed in Table 1 ([6, 8]).

(e moisture content has been taken as a function of the
pressure head (suction); the constitutive relationship be-
tween θ(z, t) and ψ(z, t) is

θ(ψ) � θr +
α θs − θr( 􏼁

α +|ψ|
β

� 0.075 +
1.611 × 106(.287 − 0.075)

1.611 × 106 +|ψ|
3.96 ,

K(ψ) � Ks

A

A +|ψ|
c

�
34 × 1.175 × 106

1.175 × 106 +|ψ|
4.74.

(45)

(e simulation results are illustrated in Figures 1–7. We
show the variation trend of microbial concentration sus-
pended in water M(z, t) and attached to solid matrix
Ma(z, t) and the growth-limiting substrate S(z, t) in depth.

(e numerical procedure developed in the previous
section is written in Python 3.7 Compiler with Intel® Core™i5-2450M CPU @ 2.50GHz.

5.2. Results andDiscussion. (e proposed model was applied
to simulate the transport and growth of microbes with the
transport of growth-limiting substrate through an unsatu-
rated finite column. (e growth of microorganisms is often
controlled by a single substrate and the specific growth rate
is assumed to be a function of the concentration of that rate
limiting substrate. It also depends on the behavior of
moisture, i.e., wetting and drainage, and the available
substrate property, i.e., water activity aw of substrate. (e aw

of substrate is the ratio of vapor pressure of the substrate to

the vapor pressure of pure water. Decrease in moisture
content leads to decrease in aw value of the substrate that
either decreases or ceases the microbial growth. (e
movement of microorganisms depends on the flow velocity,
dispersion, diffusion, Brownian motion, and also chemo-
static and tumbling motion of microbes. Here, in our
mathematical model, we used the hypothetical values for
microbes and growth-limiting substrate at the top of the soil
column, and then the total microbial count, moisture
content count, and substrate content count down the soil
column were calculated. (e model shows that the initial
bacterial count, i.e., 1.1 × 103 cfu/ml, increases down the soil
column in presence of substrate, i.e., 10mg/100ml, with the
moisture of the porous medium. However, as the microbes
and nutrients percolate down the column, there is steady
decrease in moisture. (e decrease in moisture showed
direct influence on microbial growth, and the total microbial
count decreased overall. Likewise, the substrate concen-
tration showed decrease in concentration at the upper part
of the column; however, the substrate appears to apparently
increase towards the end due to reduction of moisture in
soil. (e decrease in microbial count down the column by
continuous decrease in moisture results in adverse condition
for microbial growth. Likewise, the apparent increase in
substrate down the column is caused by decrease in moisture
that concentrates the substrate in a limited amount of
moisture. (ese phenomena are interpreted in the figures.

Figure 8 shows the front propagation analytic solution
for the time evolution of the concentration of microbes in
water phase. Figure 1 explains the growth of microbes in
aqueous phase with respect to depth for flow velocity,
whereas Figure 2 explains the growth of microorganisms
attached to solid matrix with respect to depth for flow ve-
locity. Furthermore, Figure 3 shows the consumption be-
havior of substrate. Figure 4 explains the transport of
microbes and substrate for different time in aqueous and
attached phase, and Figures 5–7 describe the variational
trend of microbes and substrate in aqueous phase and at-
tached phase in depth and time. (e continuous decrease in
moisture thus decreases the aw value of available substrate.
Initially, in presence of substrate in the upper column, there
is rise in total microbial count. However, with time, there is
reduction of moisture which leads to themicrobial growth in
stationary phase, and with further reduction of moisture, the
aw value reaches a point where the microbial growth cannot
occur and the microbial growth curve enters the decline
phase. Initially, there is rapid decrease in substrate by the
high rate of consumption by growing microbes, but with
time as moisture decreases continuously, microorganisms
are unable to utilize it and the substrate does not decrease
with lapse of time. Furthermore, the number of microbes
reaching the higher depth is highly influenced by solid
matrix of the soil column, which is indicated by decrease in
total count of bacteria at higher depth. In addition, the
amount of substrate appears to increase down the depth
apparently due to reduction of moisture of soil.
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Table 1: Kinetic parameters.

Parameter Value Description
D 1.51 × 10− 10m2/s Diffusion coefficient
τ 2.0/3.0 Tortuosity
vw 0.34 cm/s Speed of water flow
v 0.66 cm/s Speed of microbe flow
μm 0.94 microbes/s Specific growth rate of microbes
ks 100 cm/s Saturation constant
Ys 6.5 g/mol ATP Biomass produced per unit mass of substrate consumed
B 1.5 × 10− 7microbes/hr Death rate of bacteria
Ma

m 1100 Maximum concentration of microorganisms in attached phase
ka 0.85 Attachment coefficient
kf 0.95 Freundlich isotherm slope parameter
ky 0.37 Detachment coefficient
ρs 1 Density of solid matrix
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Figure 1: Front propagation analytic solution for the time evolution of the concentration of microbes in water phase M(z, t), plotted in
relative units for several equidistantly separated depths z. (e solution is obtained by solving (15) for M with θ given by the solution in (31),
Ma approximated zero, c � 4.75, and the constants of material conveniently chosen. In the inset, we present the corresponding solutions
σ(ψ) of (27) for several values for c for comparison.
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Figure 5: Continued.
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Figure 6: Variational trend of microbes in aqueous phase in depth and time.
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Figure 7: Variational trend of substrate in aqueous phase in depth and time.
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6. Conclusion

In this work, we developed a mathematical model to predict
the transport and growth of microorganisms in unsaturated
porous medium (soil). (e governing equation for microbial
transport of microbes is coupled with another transport
equation of substrate and the equation for the infiltration of
water into a porous medium. Fully coupled numerical so-
lutions of the governing equations have been obtained using
finite difference and finite volume methods. Due to the
stiffness of the Richards equation, we solved it using a
stabilized explicit Runge–Kutta–Legendre super-time-step-
ping scheme [11]. For the transport equations, being hy-
perbolic in nature, we employed an upwind finite volume
method for the advection terms. (e numerical simulations
offer realistic solutions to the mathematical model as shown
in Figures 1–4 and thus open up the possibilities of pre-
diction and understanding of the described phenomena and
comparison with the experimental data. Following the
auxiliary equation method for nonlinear diffusion-reaction
equations, we also obtained a closed form traveling wave
solution for the Richards equation. (e closed form analytic
solution contains several parameters (constants of integra-
tion). Variation in these parameters corresponds to variation
in the physical constants (material property) present in the
mathematical model, thereby representing change in dif-
ferent experimental setup. After many hit-and-trial exper-
iments, we obtained a traveling wave solution with a specific
wave front velocity which mimics the qualitative behavior of
the solution of the nonlinear system.(e authors believe that
the occurrence of these (analytically obtained and numer-
ically validated) front moving solitons for the transport
model raises an interesting problem for the researchers to
look at the solution using the data science/machine learning
approach.
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