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ABSTRACT
We present experimental evidence of formation and persistence of localized waves, breathers, and solitons, occurring in a random sea state and
uniformly traveling over non-uniform bathymetry. Recent studies suggest connections between breather dynamics and irregular sea states and
between extreme wave formation and breathers, random sea states, or non-uniform bathymetry individually. In this paper, we investigate the
joint connection between these phenomena, and we found that breathers and deep-water solitons can persist in more complex environments.
Three different sets of significant heights have been generated within a Joint North Sea Wave Observation Project wave spectrum, and the
wave heights were recorded with gauges in a wave tank. Statistical analysis was applied to the experimental data, including the space and
time distribution of kurtosis, skewness, Benjamin–Feir index, moving Fourier spectra, and probability distribution of wave heights. Stable
wave packages formed out of the random wave field and traveling over shoals, valleys, and slopes were compared with exact solutions of the
nonlinear Schrödinger equation with a good match, demonstrating that these localized waves have the same structure as deep-water breathers.
We identify the formation of rogue waves at moments and over regions where the kurtosis and skewness have local maxima. These results
provide insights for understanding of the robustness of Peregrine and higher-order Akhmediev breathers, Kuznetsov–Ma solitons, and rogue
waves, and their occurrence in realistic oceanic conditions, and may motivate analogous studies in other fields of physics to identify limitations
of exact weakly nonlinear models in non-homogeneous media.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0016379., s

I. INTRODUCTION

It is very important to predict with greatest accuracy ocean
waves for the safety of ships and offshore structures, especially when
operating in rough sea conditions where extreme events could arise.
Ocean extreme waves, also known as rogue waves (RWs), occur

without apparent warning and have a disastrous impact, mainly
because of their large wave heights.1,2 These highly destructive phe-
nomena have been observed frequently enough to justify advanced
studies. Possible candidates to explain the formation of RWs in the
ocean are presently under intense discussion.3,4 This topic attracted
recently a great deal of scientific interest not only because of the
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accurate modeling and prediction of these extremes and similar
structures2,5,6 but also because of the interdisciplinary nature of the
weakly nonlinear localized waves present in nonlinear dispersive
media.7,8 Explanations solely based on linear wave dynamical the-
ories (constructive interference of multiple small amplitude waves)
cannot grasp the nonlinear coupling between modes, a phenomenon
that becomes important when the amplitude of the waves increases.
A successful approach for the nonlinear surface gravity localized
wave propagation and RW formation explanation is the modulation
instability (MI).8 Such a phenomenon can be described by the evo-
lution of an unstable wave packet that absorbs energy from neigh-
bor waves and increases its amplitude, reaches a maximum, and
then transfers its energy back to the other waves.9 The mathemat-
ical model for such unstable modes is the nonlinear Schrödinger
(NLS) equation7,10–12 or modified versions of it [modified NLS
(MNLS)].13,14 Exact solutions of the NLS equation provide feasible
models that were successfully used to provide deterministic numer-
ical and laboratory prototypes both to reveal novel insights of MI15

and to describe RW.16 The reason for the efficiency of the NLS model
is that through its balance between nonlinearity and linear disper-
sion, it can describe well the occurrence of Benjamin–Feir instability
and the associated nonlinear wave dynamics.17 Experimental stud-
ies confirmed the validity of the NLS for deep-water waves.18 One
other advantage of using the NLS is its integrability19 and the ana-
lytic form for solutions, especially useful when compared to experi-
mental results. In NLS models, the instability corresponds to various
breather solutions of this equation.12 The NLS equation is charac-
terized by a richer family of coherent structures, namely breather
solutions.3,9,10,14,20–22 Even if the breathers change their shape dur-
ing their evolution and hence are not traveling solitons, they main-
tain their identity against perturbations and collisions. Breathers are
exact solutions of the nonlinear Schrödinger equation (NLS)7,12 and
describe the dynamics of modulation unstable Stokes waves23 in
deep water.2,24 Some of the exact solutions for the NLS equation are
rational expressions of hyperbolic and trigonometric functions of
space and time and are known as Akhmediev breathers (ABs).25 The
AB solutions are space-periodic models to study the Benjamin–Feir
MI initiated by periodic modulation of Stokes waves.8 Infinitesimal
perturbation of the periodic carrier wave grows exponentially and
after reaching a highest amplitude decays back in the background
wave field.11 Another commonly used model solution, a limiting
situation for the AB for an infinite modulation period, is a ratio-
nal function called the Peregrine breather (PB).8,25,26 In addition
to modeling the Benjamin–Feir MI, the NLS equation has time-
periodic solutions in the form of envelope solitons traveling on
a finite background of ocean waves of various frequencies, with
the algebraic growth rate larger than three.11 These solutions not
corresponding to the MI phenomenon, so the unexpectedness is
not their feature, are called Kuznetsov–Ma (KM) solitons.7,27 Both
AB and PB have been considered as possible ocean RW mod-
els,28 and their features have been investigated experimentally and
numerically.18,29,30

It is natural to apply such successful NLS breather deep-water
models in realistic oceanographic situations where the underlying
field is irregular and random.31 Even if initially the ocean sur-
face dynamics is narrow-banded, winds, swell,32 currents, and wave
breaking may induce strong irregularities. Recently, the possibil-
ity of extending NLS models to such broad-banded processes was

demonstrated, a fact that becomes valuable in the prediction of
extreme events and in extending the range of applicability of coher-
ent structures in ocean engineering.4,9 There has been a lot of
progress lately in this direction,9,10,14,22 both in numerical and exper-
imental analyses. Recently, by using integrable turbulence theory,
the appearance of RW in a chaotic wave state was demonstrated.33 In
Ref. 34, the possibility for exact breather solutions to trigger extreme
events in realistic oceanic conditions was reported. By embedding
the PB into an irregular ocean configuration with random phases,
for example, a JONSWAP spectrum,34 the unstable PB wave packet
perturbation initiates the focusing of an extreme event of RW type,
in good agreement with NLS and even modified NLS (MNLS) pre-
dictions.10 In this study, rigorous numerical simulations based on
the fully nonlinear enhanced spectral boundary integral method
show that weakly nonlinear localized PB-type packets propagate
in random seas for a long enough time, within a certain range of
steepness and spectral bandwidth of the nonlinear dynamical pro-
cess, somehow in opposition to what the weakly nonlinear the-
ory for narrow-banded wave trains with moderate steepness would
predict. These results are also backed up by recent hydrodynamic
laboratory experiments, which also show that PB breathers per-
sist even under wind forcing.31 In the last decade, the dynamics of
gravity waves and their statistical properties while traveling over
non-uniform bathymetry were considered as an enhancing factor
for generation of solitons, breathers, and RWs. Both experimental
and numerical studies were involved, including Korteweg–de Vries
(KdV) models,35 MNLS and Boussinesq models,36 or fully nonlin-
ear flow solvers.37,38 Trulsen et al. showed36 that the change in the
depth can provoke increased likelihood of RWs as waves propagate
from deeper to shallower water. In these shallower regions, the lin-
ear refraction induces shorter wavelength, while the amplitude and
the steepness become larger. The study of the dependence on the
depth h of some of the statistical parameters [spectrum, variance,
skewness, kurtosis, Benjamin–Feir index (BFI), etc.] for long unidi-
rectional waves over a flat bottom shows the existence of interactions
between several competing processes within the nonlinear waves.
On the one hand, Whitham theory for nonlinear waves predicts that
in shallower bathymetry, long-crested waves become modulation-
ally stable; hence, MI tends to decrease with the decrease in kh, and
actually, it annihilates when kh < 1.363 because the coefficient of
the cubic nonlinear term in the NLS vanishes at this threshold.39

On the other hand, the Zakharov equation36 predicts the increase
in MI through the increase in the wave steepness ε by linear refrac-
tion and by static nonlinear second-order effects with the decrease
in the depth. Numerical studies by Xia et al.40 have shown that shal-
lower water involves the decrease of kurtosis all together by these
effects. Numerical studies of the NLS performed by Lawrence et al.41

show that the combination of focusing and nonlinear effects result
in increase of kurtosis when waves run over shallower depths, for
example, when kh: 20 → 0.2. The same strong non-Gaussian devia-
tion toward a shallower bottom was confirmed in numerical studies
by Tian et al.35 More interesting though, the change in waves’ kur-
tosis with the depth depends on what side of the slope the waves are
investigated. In experiments over a sloped bottom, Trulsen et al.36

showed that waves propagating over a sloping bottom from a deeper
to a shallower domain present a local maximum of kurtosis and
skewness close to the shallower side of the slope and a local maxi-
mum of probability of a large wave envelope at the same location,
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FIG. 1. Experiment measurement setup.
Positions of the wave gauges with
respect to the wave maker and bot-
tom topography. The upper numbers are
gauge numbers, and the bottom num-
bers represent centimeters, e.g., 30 ∗ 17
means 17 gauges separated equidis-
tantly by 30 cm.

that can generate a local maximum of RW formation probability
at that point, results backed by NLS numerical solutions in Ref. 42.
In the present work, we provide a detailed analysis of experimental
data obtained in a wave tank concerning the occurrence of breathers,
solitons, and RWs out of a random wave field and their survival
over non-uniform bathymetry. In our analysis, we rely on the indi-
vidual successful modeling or observation of RW occurrence from
breathers and solitons,28 confirmations of the occurrence of RWs
from random sea states,4,9 the occurrence of breathers and solitons
from random sea states,10,32,34,35,43 or breather and soliton occur-
rence from non-uniform bathymetry.36–38,42 Our goal is to present
the survival of such localized traveling coherent structures through
a random wave field and over non-uniform bathymetry simultane-
ously, a new configuration not yet investigated to our present knowl-
edge. Nonlinear localized waves over non-uniform bathymetry have
a different dynamical behavior. The nonlinear waves reach an equi-
librium at some depth, but they tend to lose this equilibrium when
traveling over different depths, and it takes time and space extension
for the waves to reach another state of equilibrium. Our experi-
mental measurements provide evidence of the numerical predictions
for long-crested waves propagating over non-uniform bathymetry
described above and also confirm the experimental results obtained
by Trulsen et al. in Ref. 36. This paper is organized as follows: In
Sec. II, we present the experimental setup, the types of waves and
physical parameters we generated, and how the time series were
collected and analyzed. In Sec. III, we analyze the experimental
results with respect to the wave steepness, the Ursell number, and
MI characteristics such as the BFI, skewness, kurtosis, Fourier spec-
tra, and wave heights that condition the formation and persistence of
breathers, solitons, and RWs. In Sec. IV, we present the NLS theoret-
ical formalism for a flat bottom and MNLS for non-uniform depth
and compare our experimental results with the corresponding PB,
AB, and higher-order breathers and KM solitons, and we also deter-
mine the limits of applicability of these exact models to deep-water
random waves over non-uniform bathymetry.

II. EXPERIMENTAL SETUP FOR RANDOM WAVE
GENERATION OVER NON-UNIFORM BATHYMETRY

The experiments have been performed in the wave tank of the
State Key Laboratory of Coastal and Offshore Engineering in Dalian
University of Technology. The wave tank is Ltank = 50 m long, 3 m
wide, and 1 m deep. The wave tank is provided with a hydraulic
servo wave maker, which can generate waves of arbitrary shape
with a minimum period of 0.66 s at 15 cm wave maximum height.
An absorbing beach is installed at the opposite end to avoid wave

reflections (Fig. 1). In the experiments described in this paper, the
bottom has non-uniform shape with the maximum depth of water
in the tank h = 0.76 m. To ensure a unidirectional wave field and
long-crested waves, the wave tank was divided in two sections along
its length: one of 2 m wide with non-uniform bathymetry and one
with flat bottom of 1 m wide for reference. A number of 45 resis-
tive wave probes (gauges) were aligned along the wave propagation
direction to measure the wave height. The surface height of the
water at these specified positions is measured with an accuracy of
up to six significant digits at a sampling δt = 0.02 s, with 170 s time

FIG. 2. (Top) Bathymetry profile in the wave tank, placement of some key gauges,
and the quiescent water level (blue line). (Bottom) Water depth h(x) (gray solid
line), expression kp(x)h(x) (black dotted line with error bars), and MI extinction
threshold 1.363 (red line).
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FIG. 3. Longitudinal section in the wave tank with variable bathymetry. The wave
maker is at the left of the frame, the dots represent gauges, and the vertical axis
shows depth in meters. The quiescent water level is the blue dashed line, and
several of our waves are presented to visualize relations between the specific
wave heights, wavelengths, and depth. We chose moments t = 75 s (solid line),
80 s (dotted line), and 86 s (dashed line) when coherent spontaneous structures
(matched with Peregrine breathers) form over gauge numbers 5 and 6 (solid line),
24–27 (dotted line), and 30–34 (dashed line), respectively. In the upper inset, the
same picture is present at real scale.

series length memory. The gauges are placed as shown in Figs. 1–4,
namely: first two control gauges, beginning at 9 m from the wave
maker, then 17 equidistant gauges with 30 cm separation, then four
gauges with 50 cm separation, then six gauges separated by 1 m each,
and finally, 16 gauges separated by 40 m. Since the width of the basin
is large compared with the characteristic wavelength of our experi-
ments, viscous energy dissipation that occurs mostly on sidewalls is
assumed to be negligible at the center of the basin where our wave
probes are located.14

The bottom shape is inspired by some specific sea floor
bathymetry. At the wave maker end, the bottom is deep and then
gradually increases its heights toward a shoal where we have a min-
imum depth hmin = 0.34 m at gauge 16 at x = 13 m from the wave
maker. From this point, the bottom height drops at a larger slope and
it reaches its deepest region at x = 20 m at gauge 28. Then, the bottom
gradually becomes shallower, increasing its height toward a run-up
beach all the way to the water surface (see Figs. 1–4). We have carried
40 different experiments by changing the significant wave height Hs
and significant period Ts (see Table I), but in order to keep a rea-
sonable article length, we present here only one Ts value and three
relevant cases ofHs. The duration of time series recorded for all cases
B1–B4, J was 171 s. The JONSWAP spectrum was chosen for the
irregular wave simulation, described by the following parameters:44

FIG. 4. Random wave field of significant wave height Hs = 3.22 cm, significant
period Ts = 0.95 s, and variable bottom with depth h ≤ 0.76 m. The horizontal axis
is time evolution (0 s–160 s), and the 45 gauge signals (Nos. 1, 3, 24, 29, and 45
indicated in the figure) are lined up along the vertical axis from the wave maker
(bottom) to the run-up (zero water depth on top of the frame). The blue shape
represents the bottom profile, which is artificially overlapped in the figure for visual
reference, and the dots placed on it represent the gauge positions. We identify at
least three coherent, stable, and almost uniformly traveling packages, highlighted
with red stripes.

S( f ) =
βJH2

s γδ

T4
p f 5 Exp[−

1.25
(Tpf )4 ], (1)

δ = Exp

⎡
⎢
⎢
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⎢
⎢
⎣

−

(
f
fp
− 1)

2

2σ2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2)

TABLE I. Experimental settings and parameters.

Case Hs (cm) Ts (s)

B1 3.22 0.95, 1.03, 1.23, 1.32, 1.41, 1.51
B2 5.20 The same
B3 6.20 The same
B4 1.60; 2; 3; 4; 5; 6; 7; 8 1.23
J 5.20; 7.18; 9.20 0.75

3.22; 5.20; 7.18; 9.20 0.85
3.22; 6.20; 8.20; 9.20 0.95
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with

βJ ≃
0.062 38(1.094 − 0.019 15 ln γ)

0.230 + 0.0336γ − 0.185(1.9 + γ)−1 , (3)

Tp ≃
Ts

1 − 0.132(γ + 0.2)−0.559 , (4)

and the function of wave frequency given by

σ = {
0.07, f ≤ fp
0.09, f > fp,

where fp is the spectrum peak frequency, Tp is the spectrum peak
frequency, Ts is the significant period, and γ is the spectrum peak
elevation parameter, which we set γ = 3.3. Given the geometry of
the tank and dynamics of the wave maker, ranges of the random
wave parameters are limited by three physical constraints: deep-
water condition,45 neglecting capillary waves, and giving the waves
enough room to form breathers and eventually rogue waves. These
constraints request λcapillary < λ <min{Ltank, 2πh}. The wave number
for the carrier wave kp is derived from the linear dispersion rela-
tion kp = 4π2

/(gT2
p). Under these constraints and according to the

parameters chosen in Table I, the range of peak wavelength that can
be excited in the tank becomes 0.85 m < λp < 3.55 m.

In our experiments, the wavelength and group velocity of the
carrier wave slightly change along the tank because of the non-
uniform bottom. In the deep regions at gauge 2–7 and 22–29
(h = 0.65 m–0.76 m) or at x = 5 m–12 m and 14 m–22 m
from the wave maker (see Figs. 2 and 3), we have for the carrier
wave period Tp = 0.95 s, deep-water long-waves with parameters
λp = 1.407 m, kp = 4.49 m−1, and vg = 0.76 m/s. In the inter-
mediate region over the shoal (h ≃ 0.35 m) at gauge 11–19 or at
x = 12 m–14 m from the wave maker, we still have deep-water long-
waves with parameters λp = 1.31 m, kp = 4.79 m−1, and vg = 0.85 m/s.
Only toward the right end of the beach (h ≥ 0.2 m) at gauge 36–45
or at x > 25 m from the wave maker, we have shallow water and
waves with parameters λp = 1.13 m, kp = 5.55 m−1, and vg = 0.89 m/s.
In the upper frame of Fig. 2, we present the bathymetry and gauge
placement. In the bottom frame, we present also with respect to the
distance to the wave maker, the water depth h and the calculated val-
ues of kph depending on the depth and corresponding wavelength
for fixed Tp. It appears that everywhere along the tank, the condi-
tion1,7,8,46 for developing MI is fulfilled, kph > 1.363; the deep-water
NLS equation model is valid for the self-focusing regime of solutions;
and wave train modulations will experience exponential growth (see,
for example, Figs. 7 and 8).

The physical parameters that characterize the evolution of
irregular waves are characteristic wave steepness εp = kpHs/2, which
in our experiments is ranged between 0.015 and 0.33, and the band-
width. The spectral bandwidth is determined by choosing the peak
enhancement factor, which in our case of γ = 3.3 induces Δf /f p
= 0.095. The Benjamin–Feir index (BFI) for the theory of Stokes
waves,8,9 which measures the nonlinear and dispersive effects of
wave groups, is given by

BFI =
εpfp
√

2Δf
. (5)

Beyond a critical value of BFI = 1,14 an irregular wave field is
expected to be unstable and wave focusing can occur. In our exper-
iments, we can cover the range 0.11 < BFI < 2.2, namely, cover-
ing all types of sea, from linear waves to stronger MI with devel-
opment of a rogue sea state, especially since the total length of
the measurements covers 28 m, which is larger than the distance
over which the MI is expected to appear.14 Since the waves in
our experiments may enter occasionally into a strongly nonlin-
ear wave regime, the NLS equation may provide only a very good
fit with these experiments, as we will see in Sec. IV. We first
consider irregular JONSWAP waves with significant wave height
Hs = 3.22 cm and significant period Ts = 0.95 s over this complex
bathymetry.

In Fig. 3, we present a typical experimental result. In this ver-
tical longitudinal section of the wave tank with variable bathymetry
(the gray shape at the bottom) and a wave maker placed at the left of
the frame, we show the level of quiescent water by a blue dashed line,
on which we overlapped several waves obtained at t = 75 (solid line
showing a nonlinear coherent wave package on top of the shoal),
at 80 s (dotted line showing the same structure that traveled now
over the deepest valley), and at t = 86 s (dashed line, when the same
coherent package travels up the slope of the run-up). The behavior
of the waves shown in Fig. 3 is in agreement with the Djorddjevicć–
Redekopp model for deep water with variable bathymetry, using
a modified NLS equation with variable coefficients,46 as we will
notice later [Eq. (15)]. Indeed, in all our experiments, the ampli-
tudes and wavelengths of the waves slightly decrease, while vg
slightly increases, over the shoaling region (about gauge 16), and the

FIG. 5. Same configuration and parameters as in Fig. 4, except here Hs = 5.2 cm.
We still identify at least two coherent and stable traveling packages, highlighted
with red stripes.
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FIG. 6. Same configuration and parameters as in Fig. 4, except here Hs = 6.2 cm.
We still identify at least two coherent and stable traveling packages, highlighted
with red stripes.

situation reverses when waves advance over deeper regions (gauges
27–29).

In the upper inset of Fig. 3, we present the longitudinal sec-
tion at real scale, and the same waves, to stress that all our wave
amplitudes are negligible compared to the variations in bathymetry.
For every experiment of generation of random waves, we noted
the formation of some localized traveling coherent wave packages.
These structures, once formed, keep traveling with almost the same
group velocity over the variable bathymetry over the shoal and tend
to disintegrate when the kh = 1.363 criterion for MI is not ful-
filled anymore, which is around gauge Nos. 39–41. In Figs. 4–6,
we present such an example of a 164 s long time series (horizon-
tal axis time) as measured by different gauges whose outputs are
stacked along the vertical axis. The traveling coherent structures
(three of them, for example) are highlighted in red stripes in the

FIG. 7. Time series of gauge 3–23 for Tp = 0.9 s and Hs = 3.22 cm in the region
where gauges are equidistant but run over the shoal. The coherent structures,
possible breathers, appear traveling with stable shape and group velocity (slope
of the line of traveling patterns representing the wave packages) over the variable
bathymetry.

figure, and the bathymetry shape is artificially overlapped in the
figure for visual reference. These coherent wave packages propa-
gate approximately uniformly with the peak group velocity of order
vg ≃ 0.815 m/s.

A larger image for such a typical time series only for gauges
1–23 is given in Fig. 7 where one can detect better the occurrence
and stability over the shoal of the nonlinear coherent packages: one
begins at t = 27 s and another larger one begins at t = 68 s. In Fig. 8,
we present in more extended detail wave profiles for Hs = 3.22 cm
and 160 s duration time series measured at five locations (gauges 1, 2,
23, 30, and 41) to observe better the nonlinear coherent formations
that are spontaneously formed in the random waves and that travel
for as long as 20 m.

FIG. 8. Steepness effect on coherent wave packages. The wave profiles from gauge 10 (at x = 11.1 m) and 20 (at x = 14.1 m) for three cases: Hs = 3.22 cm (first two bottom
signals, black signals), Hs = 5.2 cm (middle two signals, blue signals), and Hs = 6.2 cm (upper two, magenta signals) vs time. Coherent wave packages, most likely Peregrine
breathers, are spontaneously formed in the random waves and can be observed traveling for as long as 20 m. Vertical tick on the left represents 20 cm wave height.
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III. ANALYSIS OF EXPERIMENTAL RESULTS

In the analysis of our experiments over variable bathymetry, we
follow the approach of Trulsen et al.,36,42,47 by performing statistics
over the time series (and not over the space wave field) for the deter-
mination of the reference wave and to discern the extreme waves or
other coherent structures. In this procedure, Hs = Hs(x) becomes
a function of space, and the criteria for identifying breather solu-
tions or RWs become local. This approach, supported by numerical
studies,38,42 allows us to isolate the situation favorable for initia-
tion of RW because linear refraction itself at variable bathymetry
points cannot change the probability of RW unless such local cri-
teria for RW are not employed.36 Random long-crested waves were
propagated over the non-uniform bathymetry. The slope of the
bathymetry is 1:10 at the beginning of the shoal (gauge 3), followed
by a sudden drop−1:240 (gauge 19), and then followed by a region of
oscillating slopes between −1:16 and +1:16. After gauge 28, we have
a raising beach with slope ranging from 1:35 at gauge 30 to 1:10 over
its last 5 m. The gauges are placed as shown in Figs. 1–4. Three cases
of long-crested random waves were generated with different nomi-
nal significant wave heights Hs and constant nominal peak periods
Tp, as shown in Table I. The peak wave number kp has been com-
puted from the linear wave dispersion relation ω2

p = gkp tanh kph,
where ωp = 2π/Tp, g = 9.81 m/s2. The characteristic amplitude is cal-
culated as in Ref. 36 as ac = Hs/

√

8 corresponding to a uniform wave
of the same mean power. The Ursell number is Ur = kpac/(kph)3.

The three Hs cases for 45 recording gauges times 8192 samples
taken at δt = 0.02 s intervals minus the startup effects provide about
7000 peak periods, which provide sufficiently reasonable estimates of
kurtosis, skewness, and overall distribution functions.36 In Table II,
we present some wave parameters for the three Hs cases investigated
and for four regions of bathymetry, namely, deep water, the deepest
region, shoal, and toward the upper parts of the run-up beach. In
all these regions, the NLS theory derived by Zakharov12 applies and
the MI develops in all cases with kph > 1.363 for the self-focusing
regime. The steepness is ε = kpac, and the Ursell number was also
calculated for all the cases (Table II), and it shows a very good agree-
ment with the similar cases investigated in Ref. 36. Ur has a small
value in almost all deep regions, with moderate increased values
above the shoal but still in the range of Stokes third and NLS equa-
tion modeling, and larger values of Ur above the beach where the
waves cannot be considered anymore nonlinear deep water, and the
character shifts from Stokes fourth to fifth order to cnoidal behav-
ior, toward breakers in the end of the slope. In shallower water, the

second-order nonlinearity of KdV dynamics becomes responsible
for the strong correlation observed between skewness, kurtosis, and
Ur (see also Fig. 16).

Some further insight into understanding the waves obtained in
these experiments can be obtained by looking at the wave spectrum
at different positions along the wave tank. The spectra at five rep-
resentative points for the three cases of significant wave heights are
shown in Fig. 9 with linear scales. The signal peaks and the Fourier
spectra were obtained by using automatic multiscale peak detection
based on the Savitzky–Golay method. All the nominal peaks are
centered around the carrier frequency Tp = 0.9 s. There is a slight
spectral development leading to a downshift of the peak, but not very
visible, which means that the MI is present almost all over the mea-
surements, except the last few gauges. The spectra corresponding to
the deeper sides independently if this deep region was before and
after the shoal are almost identical (solid lines in Fig. 9). The spectra
of waves on top of the shoal (dashed line) and the spectra at gauges
on the ramp about the same height as the shoal (dotted line) are not
too different from the deep region ones. However, visible changes
in the spectrum show when the waves propagate toward more shal-
lower regions on the final beach (gray line). At these points, where
skewness and kurtosis attain maximum values (see Fig. 10), the spec-
trum tends to show a second maximum around frequencies dou-
bling the carrier frequency, most likely because of the growth of
second-order bound harmonics caused by the increased nonlinear-
ity at shallower depth. Further into the shallow region, the spectrum
significantly broadens and becomes noisier since energy is shared
to lower and higher frequencies. This situation becomes evident for
regions with kph ≥ 1.363 in agreement with the results obtained in
Refs. 36 and 38.

Nonlinear transfer of energy between modes gives rise to devi-
ations from statistical normality of random waves (e.g., Gaussian).
The most convenient statistical properties intended to characterize
nonlinear coherent wave packages or extreme wave occurrence are
the third- and fourth-order moments of the free surface elevation
η(x, t),36,38 namely, the skewness and the kurtosis defined as

skewness = λ3 =
⟨η − ⟨η⟩3⟩

σ3 ,

kurtosis = λ4 =
⟨η − ⟨η⟩4⟩

σ4 =
⟨η4
⟩

3⟨η2
⟩

2 − 1,

where ⟨, ⟩ stands for the average over time and σ is the standard
deviation of η, directly related to the significant wave height Hs = 4σ.

TABLE II. Three significant heights at following depths: deep (gauges 3–7, 22–24, and 30), deepest (gauges 26–28), shoal
(gauges 15–18), and beach (gauges 42–44).

Tp = 0.95 s
Deep Deepest Shoal Beach

h = 0.6 m h = 0.66 m h = 0.33 m h = 0.2 m
kph = 2.7 kph = 3 kph = 1.6 kph = 1.1

Hs (cm) kpac Ur kpac Ur kpac Ur kpac Ur

3.22 0.055 0.29 0.051 0.21 0.055 1.3 0.063 4.6
5.2 0.083 0.47 0.082 0.35 0.089 2.4 0.103 7.5
6.2 0.098 0.56 0.097 0.41 0.106 2.9 0.123 9
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FIG. 9. Linear scale Fourier spectra for Hs = 3.22 cm (upper frame), Hs = 5.2
cm (middle frame), and Hs = 6.2 cm (bottom frame), all at Tp = 0.95 s, for five
representative points at gauge Nos. 5, 11, 16, 22, and 39. The spectrum for the
deeper sides before and after the shoal is represented with a solid line; the spectra
of waves on top of the shoal are presented with a dashed line; the spectra at
gauges on the ramp about the same height as the shoal is presented with a dotted
line, and the spectra for regions with kph ≥ 1.363 are presented with gray lines.
Error bars (blue) are added at the spectra for the top of shoal (dashed line) where
errors are maximal.

The skewness characterizes the asymmetry of the distribution with
respect to the mean, while the kurtosis measures the importance of
the tails. The kurtosis of the wave field is a relevant parameter in the
detection of extreme sea states.40

In Fig. 10, we present the kurtosis of the surface elevation in
the left frame and the skewness of the surface elevation in the right
frame for the three significant wave heights experimented. The sta-
tistical estimates indicate 98% confidence intervals obtained from
16 500 selected samples from the original data.

For smaller wave amplitudes, there is a local maximum of kur-
tosis and skewness on top of the shallower edge of the shoal. For
larger amplitude waves, this kurtosis local maximum shifts toward
the beginning of the slope, toward the deeper region. All waves of
all heights record a global maximum of the kurtosis in the deepest
region, over gauges 24–30, similar to the numerical simulations in
Refs. 35 and 41 and experiments described in Refs. 36, 42, and 47.
This effect is related to the fact that deeper means kh greater than
1.363, as given in Table II, and is also related to the spectral evolution
leading to a slight downshift of the shallow spectrum with dotted,
dashed, and gray lines in Fig. 9. For all cases, the global maximum of
these two statistical quantities is most prominent at the beginning of
the shoal, that is, at the positive slope edges of the shoals. In all three
cases of different Hs values representing different steepness degrees
of the waves, except the end of the run-up beach, the depth is every-
where larger than the threshold value for MI, and no significant shift
of the spectral peak can be easily seen.

Over deep-water regions with kh ≥ 1.363, higher initial BFI
(like the waves with Hs = 5.2 cm or 6.2 cm; see the red and
blue upper curves in Fig. 14), the kurtosis tends to be stabilized
at higher values, as can be seen in the left column in Fig. 10 for
x = 3 m–8 m and x = 25 m–30 m, for waves with Hs = 3.22 cm,
for x = 7 m–10 m and x = 25 m–28 m, for waves with Hs = 5.2 cm,
and for waves with Hs = 6.2 cm. This result agrees well with previous
publications, demonstrating that stabilized kurtosis is larger in deep
water and smaller in shallower water.42

However, when kh → 1.363 beginning at x ≃ 35 m, nonlinear
effects diminish and the kurtosis decreases toward 3. This is also
visible in Fig. 10: for smaller steepness waves with Hs = 3.22 cm,
kurtosis tends to drop slightly around x ≃ 36 m just before the gray
vertical stripe in the figure. The dropping effect is more visible at
higher steepness, Hs = 5.2 cm at 36 m, and again less intense for the
steepest waves, Hs = 6.2 cm. After the 1.363 threshold, the observed
oscillations in kurtosis and skewness may be generated by other shal-
low water effects, Bragg effect, reflection, or linear diffraction. Our
results make evident that when a wave field travels over a bottom
slope into shallower water, a wake-like structure may be anticipated
on the shallower side for the skewness and the kurtosis, as was previ-
ously confirmed in Ref. 42. The general expressions for the skewness
and the kurtosis of the deep-water surface evaluated with Krasitskii’s
canonical transformation in the Hamiltonian40 apply to our cases
with ε ≃ 0.1 (shallower regions for Hs = 5.2 cm and all regions for
Hs = 6.2 cm; see Table II), and our experimental results line up well
with this theory when correlating the values of kurtosis and skewness
from Fig. 10 with the kph values from Fig. 2 (bottom).

Noting that the value of the BFI decreases with the decrease in
the water depth, as we can see it happening for x > 23 m (or after
gauge 33) in Fig. 14, while the nonlinear coherent structures (which
we identified with Peregrine or higher-order NLS breathers) keep
propagating stably up to shallow water regions, we infer that the
probability of RWs occurring near the edge of a continental shelf
may exhibit a different spatial structure than for wave fields entering
from deep sea and BFI deep-water criteria may not apply the same
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FIG. 10. Kurtosis (left frames) and skewness (right frames) plotted vs the gauge number, next to the re-scaled bottom profile (solid line). The upper row represents the waves
with Hs = 3.22 cm; the middle row represents steeper waves with Hs = 5.2 cm; and the bottom row represents the steepest waves with Hs = 6.2 cm. All have the same
Tp = 0.95 s, and the wave maker is to the left. The vertical grid lines separate different regimes, namely, deep, slope, shoal, quick drop, deep bottom, the deepest, and the
run-up beach. The thick gray vertical band represents the position x where MI theoretically vanishes, i.e., kh→ 1.363. Error bars are included.

way. In addition to the analysis of the BFI vs position, bathymetry,
and the slope of bathymetry in Fig. 14, we also present in Fig. 15 a
distribution of the BFI vs time for a selection of gauges (positions
in the tank). Even early in the setting of nonlinear wave packages
in the first 16 s, the BFI values are manifestly larger (∼1.3, the gray
curves) at the positions and moments where the localized packages
(breathers) travel through, compared to the BFI values (∼0.2 to 0.5)
for the rest of the random wave field (the solid blue background).
We will discuss in more detail the space–time distribution of BFI in
Sec. IV A.

Right after the shoal, both the kurtosis and skewness show
oscillations in the values because of a combination between nonlin-
ear effects and linear refraction. One interesting observation result-
ing from Fig. 10 is that for small steepness ε < 0.08 waves, the

kurtosis and skewness are larger above the extreme depths h (very
deep or h ≃ hmax or very shallow or h ≪ hmax), while for larger
steepness waves, these two statistical moments tend to acquire their
largest values above the sloppy regions of the bottom. This obser-
vation can be expressed in a phenomenological relation of the
form

λ3,4 ∼ C1(h −
hmax

2
)

2

+ εC2∣
dh
dx
∣ (6)

for some empirically determined constants C1,2. The conclusions
obtained from our experimental results and our statistical analy-
sis of kurtosis and skewness coincide with the statistical behav-
ior suggested in the numerical studies from Ref. 38 and with the
experimental results obtained for sloped bottom in Ref. 36. We
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have thus shown that as waves propagate over a shoal and vari-
able bathymetry in general, local maxima in kurtosis and skewness
occur closer to the beginning and to the end of the slope, mainly
on the shallower side of the slope.35 These regions can provide
larger probability for the formation of high-amplitude breathers,41,42

multiple breathers, or higher-order breathers, and possibly RW
formation.47

A. Rogue waves from random background
In deep-water, long-crested waves are subject to MI,8,11 which

is known to generate conditions for RW formation.2,7,10,11,28,46,48

It was also found that nonlinear modulations during the evo-
lution of irregular waves cause spectral development and fre-
quency down-shift, suspected to be related to the occurrence of
RW.36,49 In this subsection, we investigate the occurrence of higher
amplitude waves, out of the random background, as candidates
for RWs.

Extreme height waves isolated in time and space from the typ-
ical background reference wave field is considered to be a RW if it
satisfies some common criteria such as η/Hs > 1.25 or H/Hs > 2,
where η is the crest elevation and H is the wave height.36 In Fig. 11,
we present an example of two time series recorded in our experi-
ments at two locations, 19 m (left frame) and 26.5 m (right frame)
from the wave maker. The vertical axis shows the wave amplitude
η(t) normalized to the characteristic wave height Hs = 3.22 cm. We
recorded such large amplitudes at 19 m, 22 m, 23.5 m, and 26.5 m
(gauges 27, 30, 33, and 41, respectively) from the wave maker. The
horizontal grid lines represent, in the order of their heights, mini-
mum surface (blue), standard deviation (black), and maximum wave
(red). The maximum height recorded is 2.1–2.42Hs, which quali-
fies them as RWs. These events happen over the deep-water parts
at the locations where kurtosis and skewness have local maxima
(Fig. 10).

For a system composed of a large number of independent
waves, such as the random generation, the surface elevation is
expected to be described by a Gaussian probability density func-
tion. Under this hypothesis, Longuet-Higgins9,20,21 showed that if the
wave spectrum is narrow banded, then the probability distribution
of crest-to-trough wave heights is given by the Rayleigh distribution.
The distribution was found to agree well with many field observa-
tions.9 Nevertheless, recently,20,21 it was shown numerically and the-
oretically that if the ratio between the wave steepness and the spectral
bandwidth (BFI) is large, a departure from the Rayleigh distribu-
tion is observed. This departure from the Rayleigh distribution was
attributed to the MI mechanism. Moreover, from numerical simula-
tions of the NLS equation, it was found9 that, as a result of the MI,
oscillating coherent structures may be excited from random spectra.
In our experiments, we obtained a very good correlation between
the waves at regions and during time intervals producing a narrower
width spectrum and the corresponding detection (at the same loca-
tions and moments of time) of coherent stable, traveling structures,
most likely NLS breathers (AB, KM, and Peregrine of higher-order
breathers; Sec. IV).

In Figs. 12 and 13, we present examples of Fourier spec-
tra in the time-frequency domain calculated with a 4 s mov-
ing window at different locations and different moments of time.
In these figures, the combined relative errors from wave profile

FIG. 11. Time series of the recorded wave amplitudes η(t) normalized to their char-
acteristic wave height Hs = 3.22 cm, measured at 19 m and 26.5 m (gauge 27 and
41). The horizontal grid lines represent, from bottom to top, the minimum surface
(blue), standard deviation (black), and maximum wave (red). The maximum height
recorded is 2.1–2.42Hs, which qualifies them as RWs.

measurements and numerical evaluation do not exceed 5%. In these
figures, the red curves represent narrower bandwidth wave spec-
tra measured at points where also the coherent packages were
detected and assimilated with breathers/solitons/RWs, wave pack-
ages described in Sec. III. Namely, the red curves in Figs. 12 and 13
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FIG. 12. Moving Fourier spectra in the
time–frequency domain, calculated at
different moments with a 4 s integration
window for Hs = 3.22 cm. The spectra
are ordered vertically vs the moment of
time they are centered. The horizontal
axis represents frequency in Hz. From
the left upper corner CW, the frames
represent spectra of waves measured
at gauge 3 (at 9 m), 10 (at 12 m), 23
(at 14.1 m), and 41 (at 22.1 m).
The selected red curves are taken at
moments and points where localized sta-
ble packages were detected and assimi-
lated with breathers/solitons/RWs: these
spectra have obviously narrower band-
widths.

coincide with a good coefficient of correlation (c = 0.76 Pearson cor-
relation) with the structures highlighted with red stripes in Figs. 4–6
and with the coherent packages in uniform motion identified in the
mapping of Figs. 7, 8, 19, and 20; they also coincide with the packages
chosen for theoretical match with breathers, shown in Figs. 21 and
23–25, and they are closely related to the extreme amplitude waves
shown in Fig. 11.

These positive correlations represent the evidence that the MI
process takes place in our experimental real long-crested water
waves, with high values for the BFI index (the ratio between
the wave steepness and the spectral bandwidth) at various depths
on the top of the shoal and equally in the deep regions around
the shoal. In the case of our random waves, the large values for
BFI and the narrower width of the spectra lead to MI evolution
and to a “rogue sea” state, that is, a highly intermittent sea state
characterized by a high density of unstable modes (see Figs. 14

and 15). Our results are very similar with the same types of studies
reported.9

By using the calculations of the spectral bandwidths for all our
experimental time series at different locations and for the three types
of significant wave heights (steepness), we can correlate these data
with the mean wave height. The result is presented in Fig. 16. We
note the formation of two separate clusters of higher positive cor-
relation: one for small waves with a large spectral bandwidth and
the other localized for the breather/soliton/RW events described by
large wave heights and narrower spectra.

Another statistical feature that can confirm the formation of
coherent traveling packages of breather/soliton types (KM, Pere-
grine, and AB solutions) is the distribution of the probability for
the wave heights, which we present in Fig. 17. The middle frame,
representing regions with coherent package formation, shows evi-
dence of a cluster of narrow bandwidth spectra associated with

FIG. 13. Same type of spectral representation as in Fig. 12 for Hs = 5.2 cm (left frame) and Hs = 6.2 cm (right frames) for gauge 3 (9 m). In addition, we present in the
insets the details of the Fourier spectrum of nine wave series centered at the moment of time indicated by the arrow: the red spectra are associated with coherent packages
identified as breathers/solitons, and the gray spectra are the random background waves at nearby points and neighbor moments. The horizontal scale of the insets is in 10× s,
and the highest red peak is centered at 1.16 s. Combined relative errors from wave profile measurements and numerical evaluation do not exceed 5%.
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FIG. 14. Plot of the average BFI values over 16 s duration vs space along the wave
tank. Legend: Hs = 3.22 cm (black curve), Hs = 5.2 cm (red curve), and Hs = 6.2 cm
(blue curve) for the upper curves. The bottom profile and some gauge numbers are
represented by the lowest gray curve, and the slope of the water depth (dh/dx) is
represented by the green curve. The MI threshold kh = 1.363 happens around
gauges 33–34 at x ≃ 24 m from the wave maker.

these breathers. In Fig. 18, we present the wave height probability
distributions for different moments of time over 5 m length. We
observe the formation of three main modes: a dominant low-
amplitude mode, a dominant high-amplitude mode, and a flat prob-
ability distribution, which occasionally tends to shift into a bi-modal
unstable mode as predicted by the Soares model.32

Our experimental results, mainly gathered in Figs. 9, 10, 12–15,
17, and 18, are in good agreement with the numerical calcula-
tion obtained by Trulsen et al.36 from the Boussinesq model with
improved linear dispersion and with the experiments presented by
Trulsen et al.36 Indeed, a significantly increased BFI value and, con-
sequently, an increase in the probability of RW occur as waves

FIG. 15. The gray upper curves represent interpolation of the BFI vs time for six
selected gauges. The large central peak of BFI > 1 coincides with the formation
of breathers at that position/moment. All five curves show the same reproducible
behavior. The blue profiles at the bottom represent the relative value of the peak
frequency in the time series recorded at the six selected gauges (1, 5, 9, 13, 17,
and 22). Error bars are presented for the BFI of gauge 1 as an example for all
results.

FIG. 16. Correlation between the spectral bandwidth (vertical axis in mHz) and the
mean wave height (in meters) measured at each gauge from 1 to 22 for all Hs.
The points represent a set of 15 mean values of wave spectra, and wave heights
are evaluated across 150 s time series in samples of 10 s each for 22 gauges.
The two resulting clusters describe random waves (low wave heights and higher
frequencies) and breathers (higher waves and lower frequencies). The semi-axes
of the ellipsoidal markers represent the error bars.

propagate into shallower water. For smaller Hs and ε = Hskp, the
maximum is smaller and delayed, while for larger steepness, the
maximum occurs earlier and is larger (Fig. 14). Increased values of
skewness, kurtosis, and BFI are found on the shallower side of a bot-
tom slope, with a maximum close to or slightly after the end of the
slope (Figs. 10 and 14). The maxima of the statistical parameters are
also observed where the uphill slope is immediately followed by a
downhill slope. In the case that waves propagate over a slope from
shallower to deeper water, in the theoretical evaluations from Ref.
36, it was not found on an increase in RW wave occurrence where
the wave parameters were akp = 0.038, a/h = 0.035, andUr = 0.031. In
our experiments, however, we noted this increase in the BFI, kurto-
sis, and steepness when traveling deeper, probably because our wave
parameters, shown in Table II, are different: akp > 0.05, a/h = 0.04,
and Ur > 0.2.

IV. COMPARISON WITH EXACT SOLUTIONS
In this section, we present some current theoretical models that

can fit our experiments with random waves generated in a L = 50 m
long, 2 m wide wave tank with variable bottom and maximum depth
hmax = 0.76 m presented by the wave maker and at two-thirds of
the length (see Figs. 1 and 3). Since in all experiments described
in Sec. II we note the formation of stable, traveling coherent wave
packages, we present in Sec. IV A the match between these waves
and deep-water breathers. All our results put in evidence such trav-
eling localized waves, such as the cases Hs = 5.2 cm and 6.2 cm from
Figs. 19 and 20. The denser double traces in these figures are evi-
dence of formation and survival of such localized nonlinear waves,
most likely breathers or even higher-order (doublets) breathers, as
we will discuss below. We divide this section in two parts: in the
first part, we present the corresponding theoretical results for uni-
form bottom, and in the second part, we extend this case to variable
bathymetry.
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FIG. 17. Probability distributions for the wave heights for Hs = 5.2 cm. Top: mean
values calculated across 160 s time series and 10.1 m fetch for gauges 1–22.
Center: mean values calculated for the interval 30 s–36 s and 5 m fetch for
gauges 1–22. We note the cluster of narrow bandwidth spectra associated with
the breathers present within this time interval and location. Bottom: mean values
for the interval 88 s–98 s and 7 m fetch for gauges 30–46 at 22 m–29 m from
the wave maker. This spectrum contains mainly unstable structures resembling
peakons and breaking waves.

In the uniform bottom case, for an ideal (incompressible and
inviscid) liquid under the hypothesis of irrotational flow, the dynam-
ics of a free surface flow is described by the Laplace equation for
the velocity potential and two boundary conditions: a nonlinear one
(kinetic) on the free surface and a zero vertical velocity compo-
nent at the rigid bottom.1,11 Under the assumption of very small
amplitude waves (or steepness), the problem can be considered
a weakly nonlinear one, and the standard way of modeling is to

derive the NLS equation by expanding the surface elevation and
the velocity potential in power series and using the multiple scale
method.1,2,11,12,46

The procedure is to introduce slow independent variables (both
for time and space) and treat each of them as independent. The extra
degrees of freedom arising from such variables allow one to remove
the secular terms that may appear in the standard expansion. The
multiple scale expansion is usually performed in physical space, and
a simplification of the procedure is the requirement that the waves
are quasi-monochromatic. In the approximation of infinite water
depth, for two-dimensional waves, the surface elevation, up to third
order in nonlinearity, takes the form

η(x, t) = (∣A(x, t)∣ −
1
8
k2
p∣A(x, t)∣3) cos θ +

1
2
kp∣A(x, t)∣2 cos(2θ)

+
3
8
k2
p∣A(x, t)∣3 cos(3θ) + ⋯, (7)

where A(x, t) is a complex wave envelope, kp is the wave number of
the carrier wave, η(x, t) is the water elevation, θ = (kpx − Ω0t + ϕ)
is the phase, and ϕ is a constant phase. In addition, we know that
Ω0 = ωp(1+k2

p∣A(x, t)∣2/2) is the nonlinear dispersion relation, with
ωp =

√

gkp. The complex envelope obeys the NLS equation

i(
∂A
∂t

+ cg
∂A
∂x
) −

ωp

8k2
p

∂2A
∂x2 −

1
2
ωpk2

p∣A∣
2A = 0, (8)

with cg = ∂ω/∂k being the group velocity. The NLS equation (8)
has various types of traveling solutions known as breathers or soli-
tons. One analytic solution with major impact in the literature is a
combined one-parameter α family given by2

A(X,T) = A0e2iT
(1 +

2(1 − 2α) cosh(2RT) + iR sinh(2RT)
√

2α cos(ΩX) − cosh(2RT)
), (9)

where X, T are arbitrary variables scaled by a factor s and the solu-
tion A(x, t) = sA(sX, s2T), R =

√

8α(1 − 2α), and Ω = 2
√

1 − 2α.
When the parameter α ∈ (0, 0.5), Eq. (9) describes the space-periodic
Akhmediev Breather (AB) family, and when α > 0.5, Eq. (9) describes
the time-periodic Kuznetsov–Ma (KM) soliton.2,11 Moreover, in the
singular value for the parameter α = 0.5, Eq. (9) describes a rational
solution known as the Peregrine (P) solution,26

A(X,T) = A0e2iT
(−1 +

4 + 16iT
1 + 4X2 + 16T2 ). (10)

The Peregrine solution in Eq. (10) only represents the lowest-order
solution of a family of doubly localized Akhmediev–Peregrine (AP)
breathers,16,28 also called higher-order breathers,2

Aj(X,T) = e2iT
((−1)j +

Gj + iHj

Dj
), (11)

where the terms Gj, Hj, Dj are polynomials, which can be generated
by a recursion procedure.16

A. Non-uniform bathymetry
While in deeper water, third-order nonlinearity causes focus-

ing of long-crested and narrow-banded waves and hence possibil-
ity of occurrence of freak waves, in shallower water, the nonlinear
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FIG. 18. Wave height probability distributions for different moments of time, from upper left corner CW: t = 1 s, 2 s, 15 s, 20 s, 35 s, 50 s, 60 s, and 75 s. Each distribution
calculated over 2 s interval (100 samples) over the fetch 9 m–14 m (gauges 3–22) for Hs = 5.2 cm. Three main modes are present: dominant low-amplitude waves at t = 15
s and 35 s, dominant high-amplitude waves at t = 1 s, 2 s, 20 s, and 60 s, and flat PDF distribution at t = 35 s. Occasionally, the distribution becomes bi-modal. We also note
a cyclic behavior since certain types of PDF tend to repeat.

FIG. 19. Density plot of the space–time
wave field for Hs = 5.2 cm waves (wave
amplitude scale in cm to the right). The
gauges from 3–20 with 30 cm separa-
tion, the gauges from 20–24 with 50
cm separation, the gauges from 24–30
with 100 cm separation, and the gauges
from 30–33 with 40 cm separation.
Higher-order breathers (doublets) can be
observed by their red-blue color while
propagating uniformly.

FIG. 20. Density plot of the space–time
wave field for the Hs = 6.2 cm waves.
Legend for wave amplitude in cm to the
right.
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dynamics are dominated by second-order nonlinearity. Waves over
variable water depth can be modeled for irrotational, inviscid, and
incompressible flow with a variable coefficient NLS equation.13,46

In the approximation of finite depth (kh)−1
= O(1), mild slope

∂h/∂x = O(2), and small steepness ε = O(3), the authors of Ref.
42 presented a NLS model with variable coefficients plus a shoal-
ing term. In this model, water surface displacement η [Eq. (7)] and
velocity potential Φ can be written as third-order perturbation series
normalized to g and ωp, respectively,

η = ε2η̄ +
1
2
(εAeiθ + ε2A2e2iθ +⋯ + c.c.), (12)

Φ = εϕ̄ +
1
2
(εA′1e

iθ + ε2A′2e
2iθ +⋯ + c.c.), (13)

where εθ = ∫xk(ξ)dξ − t and c.c. means complex conjugation. The
resulting NLS modified [with respect to Eq. (8)] equation in terms of
the first harmonic amplitude A of the surface displacement is

iμ
dh
dx

A + i(
∂A
∂x

+
1
vg

∂A
∂t
) + λ

∂2A
∂t2 = ν∣A∣

2A, (14)

where the coefficients μ, λ, ν, ω̄ depending on k, h, and vg at constant
imposed ω are defined in Ref. 42. In particular, the extra shoaling
term iμhx generalizing the traditional NLS equation (8) comes from
the conservation of wave action flux.39 For the specific bathymetry
in our experiments (Figs. 1–3), when the waves travel over the shoal
(at x ∼ 11–15 m from the wave maker), the dispersion coefficient
λ(h) has only a slow variation of maximum 12% of its value. The

nonlinear term coefficient ν(h) decreases on top of the shoal with
54% of its deep-water value, while the shoaling term coefficient μ(h)
has a local increase of 140% on top of the island. The effect of the
shoaling term, similar mathematically to the linear dissipative terms
occurring in a non-homogeneous medium or to the boundary-layer
induced dissipation term in uniform depth, is a change in wave’s
amplitude. Actually, it was found46 that such damping terms can
stabilize the BF instabilities, especially since the nonlinear term con-
tribution decreases in the shoaling regions. This effect is visible in
our experiments, manifesting as a decrease in the BFI over the shal-
lower region for any Hs value (Fig. 14). Analyzing Eq. (14) with the
Djorddjevicć–Redekopp model46 results in

dh
dx
∼ −

dkp
dx
∼
d∣A∣
dx

, (15)

where these relationships are in effect because the shoaling term
coefficient can be absorbed in the relation μ ∼ dvg/dx. Equation (15)
implies that waves entering a shallower region experience a decreas-
ing amplitude and wavelength, while waves expanding over deeper
regions experience amplitude and wavelength growth. This effect is
clearly visible in our results; see, for example, Figs. 3–6 and 8. Such
effects, including the enhancement of the RW probability of for-
mation, were also predicted by using an exact Hamiltonian formal-
ism, inducing a fully nonlinear refocusing of transient wave groups
traveling over a sloping bottom of finite depth.50

In the following, we return to Figs. 14 and 15 for the BFI space–
time distribution for the three different wave steepness. Where the
water depth is larger (gauges 3–8 and 21–28), BFI has larger values,

FIG. 21. Black curves in the main frames are the experimental wave profiles for Hs = 3.22 cm, measured at gauges 3, 13, 20, 21, 22, 23, 24, 26, 44 (from upper left corner
clockwise), thus covering a fetch of 21 m beginning at 9 m from the wave maker. The time interval is shown in the upper inset highlighted in red. Red curves are theoretical
KM breather solutions of the NLS equation for deep water. The only parameters changing from one frame to another are the origin time, while the rest of the KM breather
parameters (A0, α) are the same for all frames, the fact that validates the correctness of our model.
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and this value increases with the steepness as we can see from the
red and blue curve spikes at gauges 7, 22, and 27. For example, this
effect is quite visible over gauges 23–28 where BFI increases mono-
tonically with water depth and again over gauges 27–30 where BFI
decreases monotonically with the decrease in the water depth. Over
regions with shallower water depth (kh is closer to the MI thresh-
old), the BFI decreases irrespective of the steepness (see black, red,
and blue curves over gauges 11–20 in Fig. 14). However, the dynamic
response of the waves depends on a combination of water depth
(gray curve with circles), bottom slope (green thick curve), and wave
steepness (in order of its increasing upper curves: black, red, blue).
At a sudden drop in the water depth, higher steepness tends to reveal
a higher BFI; hence, steeper waves are more likely to build RW after
shoals and islands (gauge 21).

Over regions where water becomes permanently shallower
(gauges 30–40), the relaxation distance for decreasing and stabiliz-
ing the BFI, kurtosis, and skewness depends on the wave steepness.
While at Hs = 3.22 cm, the BFI variation is almost monotonically
correlated with the water depth variation, for larger waves with
Hs = 5.2 cm–6.2 cm, the BFI spikes back to larger values and is not
stabilized for a length of about 8 m–10 m ≫ λp, as mentioned in
Ref. 42.

We also noted that for small values of the bottom slope in abso-
lute values on the shallow side of the slope, kurtosis and skewness
can stabilize almost at the same location as the change in depth.
Large local values of the absolute value of the bottom slope (such as
fast drops or steep increases of the bottom represented by the spikes
of the green curve in Fig. 14 over gauges 20–21 or 31–32) induce
spikes in the BFI, and this effect is stronger for larger wave steepness
and less prominent for smoother waves such as in the case of Hs
= 3.22 cm. This effect can be correlated with the observation
of similar spikes in kurtosis and skewness at the same loca-
tions (Fig. 10), and these observations are in agreement with
the experiments in Ref. 36 and numerical evaluations in Ref. 38.
The increase in skewness and kurtosis over shallowing regions,
especially in the transition zone, was also correlated with devi-
ations of the wave states from the Gaussian distribution and
the increase in the probability of RW occurrence. These changes
in the statistical parameters of the wave field over the transi-
tion zone depend on the wave steepness (and, consequently, on
the Ursell number and Hs), but not necessarily on the length
of the transitional zone, as we noted the occurrence of localized
spikes at the beginning of any high bottom slope region that do
not necessarily continue along the shallower region. The results

FIG. 22. From upper left CW: black curves in the first seven frames are experimental wave profiles measured at gauges 3, 12, 19, 20, 21, 22, 23, 25, 43, thus covering a
fetch of 21 m beginning at 9 m from the wave maker. The gray stripes are error bars around mean values. The time interval is shown in the upper inset highlighted in red.
The last frame represents an overlap of all seven frames, shifted in time correspondingly. The final frame shows a clear match of the same type of behavior for this coherent
traveling group and the likeliness to be described as a breather, possibly a higher-order breather.
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obtained confirm the conclusion made13,35,36 in the framework
of the nonlinear Schrodinger equation for a narrow-banded wind
wave field that the kurtosis and the number of freak waves may sig-
nificantly differ from the values expected for a flat bottom of a given
depth.

While the wave propagates over the uphill slope from deeper
to shallower water, it becomes evidence from Figs. 10 and 14 that
as long as the shallower side of the slope is sufficiently shallow and
the slope length is small enough, we observe local maxima (spikes)
of kurtosis, skewness, and BFI. These localized maxima are placed at
the shallower end of the slopes in agreement with the results from
Ref. 36. In our experiments, the bottom mimics a realistic ocean
floor, and the regions with almost constant water depth are not very
long, so we do not observe the asymptotic stabilization of kurtosis
and skewness.

B. Exact solution match for experiments
We fit the traveling coherent wave packages obtained in our

experiments; see, for example, the red stripes in Figs. 4–6 or the wave
packages easily visible in Figs. 7 and 8, with all the above solutions
trying to identify which one best describes our results.

In Fig. 21, we fit the earliest coherent package formed in small
steepness waves with KM solitons. In the experiment, this group
travels as a doublet of stable localized waves, and it is not obvi-
ous whether this is a bound group of two independent KM solitons
or it is one AB double-breather (higher-order Peregrine breather).
All theoretical breathers presented in Fig. 21 have the same set of
parameters, except being translated in space and time according to
the gauge position and chosen interval of time. It is very interest-
ing that the match keeps being good enough while the group travels
over variable bottom, over a shoal, and the deep valley following, and
even up the beach when the waves increase in amplitude and become
pretty sharp (see the eighth frame, for example) and ready to break.

In Fig. 22, we do not show the theory but instead present an
overlap of seven instants of the same wave group, shifted in time cor-
respondingly. The eighth frame shows an obvious match of the same
type of behavior for this coherent traveling group and the likeliness
to a breather, possibly a higher-order breather

We also present the match of the stable traveling doublet with
two KM solitons bound together [Fig. 23 (left)] as compared to a best
fit with a single KM soliton, presented in the right frame. In Fig. 24,
we fit the experiment with Peregrine breathers (red curves) and soli-
tons, and for comparison, the same experimental instants were fitted
with KM solitons (blue curves). In Figs. 25 and 26, we present com-
parison with double AB breathers [Eq. (11)]. This modeling repre-
sents the best match, so we believe that the stable, oscillating, and
traveling doublets are actually higher-order AB submerged in a ran-
dom wave background. There is also a possibility to explain these
oscillating and breathing doublets as Satsuma–Yajima solitons and
the supercontinuum generation effect.2,11

The same qualitative results and the same percentage of match-
ing are obtained for the other two experiments of higher steepness,
but we do not present them here in detail, in order to keep a reason-
able length for this paper. In Figs. 19 and 20, we present density plots
of the wave heights, in space–time frames, for the steeper waves.
These plots show constant group velocity traveling breathers over
the shoal and deep valleys.

FIG. 23. Matching Hs = 3.22 cm waves, experimental data, and error represented
by gray stripes. Top: gauge 3 at t = 28 –37 s matched with two KM solitons (blue
and red). Bottom: gauge 13 at t = 30 s–44 s matched with one KM soliton (red).

In our experiments, the mean value of steepness is 0.0765 ± 4%,
and the theoretical one obtained from the match of experiments with
the same KM or Peregrine breather results in 0.078 03, showing a
good match between experiments and theory. The match was made
between the analytic form of the KM breather and the experiment
for gauges 4, 10, 12, 18, 19, 20, 23, 25, 28, 30, and 34. Since ocean
waves are usually characterized by an average steepness of about
ε ∼ 0.1 corresponding to the peak frequency of the spectrum, both
the experimental and theoretical match are plausible. From mea-
surement of the time interval when this structure arrives at various
gauges, we obtain a group velocity for the breather of Vg = 0.81 m/s.
The theory predicts the occurrence of maximum heights of these
breathers in the range Amax/A0 ∼ 3.92, which is in good agreement
with our experimental values of 3.41.
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FIG. 24. Hs = 3.22 cm waves. The thick gray bands centered on black experimental curves are the error bars, red curves are Peregrine solitons, and blue curves are KM
solitons. From left, first three frames represent matching an earlier formed coherent package: gauge 13 at t = 34 s–42 s, gauge 23 at t = 36 s–44 s, and gauge 44 at t = 48
s–58 s. Gauge 3 at t = 68 s–78 s matching a later formed coherent package.

FIG. 25. Hs = 3.22 cm experimental waves plotted with thick gray error bands and central black curves with their theoretical match (red curves) with double AB breathers.
From left: gauge 3 at t = 26 s–36 s, gauge 13 at t = 30 s–40 s, and gauge 23 at t = 34 s–44 s.

FIG. 26. Hs = 3.22 cm experimental waves plotted with thick gray error bands and central black curves with their theoretical match (red curves) with double AB breathers.
From left: gauge 26 at t = 26 s–46 s, gauge 31 at t = 43 s–49 s, and again gauge 3, the latest coherent group at t = 68 s–77 s.
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V. CONCLUSIONS
In this paper, we present experimental results describing the

dynamics of a random background of deep uni-directional, long-
crested, water waves over non-uniform bathymetry consisting in a
shoal and several deeper valleys, as well as a final run-up beach.
Experiments were performed with waves initially generated with a
JONSWAP spectrum, keeping the same carrier (central) frequency,
but for three different wave significant heights, involving three dif-
ferent wave steepness. The experimental results confirm the forma-
tion of very stable, coherent localized wave packages that travel with
almost uniform group velocity across the variable manifolds of the
bottom. By using well established statistical tools and by matching
experiments with some of the exact solutions of the NLS equation,
we proved that these coherent wave packages coming out of the ran-
dom background are actually deep-water breather/soliton solutions
(mainly Kuznetsov–Ma, Akhmediev, higher-order AB, and Pere-
grine breather/soliton types), and we put into evidence the forma-
tion of rogue waves around those regions where the BFI, kurtosis,
and skewness predict their formation by taking larger values. The
evolution and distribution of the statistical parameters, i.e., space
and time variation of kurtosis, skewness, and BFI, Fourier and mov-
ing Fourier spectra, and probability distribution of wave heights, are
interpreted in terms of the balance of the terms in a generalized NLS
equation for non-uniform bathymetry, having variable coefficients
and a shoaling extra term.
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