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ABSTRACT OF DISSERTATION

Symbolic Computation of Squared Amplitudes in High Energy Physics with

Machine Learning

The calculation of particle interaction squared amplitudes is a key step in the calcula-

tion of cross sections in high-energy physics. These complex calculations are currently

performed using domain-specific symbolic algebra tools, where the computational

time escalates rapidly with an increase in the number of loops and final state particles.

This dissertation introduces an innovative approach: employing a transformer-based

sequence-to-sequence model capable of accurately predicting squared amplitudes of

Standard Model processes up to one-loop order when trained on symbolic sequence

pairs. The primary objective of this work is to significantly reduce the computational

time and, more importantly, develop a model that efficiently scales with the com-

plexity of the processes. To the best of our knowledge, this model is the first that

encapsulates a wide range of symbolic squared amplitude calculations and, there-

fore, represents a potentially significant advance in using symbolic machine learning

techniques for practical scientific computations.

Abdulhakim M. Alnuqaydan

December 20, 2023
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Chapter 1 Introduction

High-energy physics stands at the forefront of our quest to understand the funda-

mental constituents and laws of the universe. At its core, this field seeks to unravel

the complex behavior of particle interactions, providing insights into the underly-

ing principles that govern the universe at the microscopic level. Central to this

field is the calculation of the cross section, a fundamental quantity that describes

the probabilities of particle interactions. These calculations, often come with great

complexity, have historically posed challenges to physicists. The field of high-energy

physics is continually evolving, driven by advancements in theoretical models, exper-

imental techniques, and computational tools. In recent years, the rise of artificial

intelligence (AI) and machine learning (ML) has opened new avenues for addressing

longstanding challenges in the field. Among these, sequence-to-sequence transformer

models, inspired by the transformer architecture, have demonstrated remarkable suc-

cess in natural language processing and many other domains. Their ability to capture

complex dependencies in sequential data, coupled with their parallel processing capa-

bilities, makes them an excellent candidate for symbolic calculations in high-energy

physics.

In this dissertation, we embark on a pioneering journey at the intersection of high-

energy physics and artificial intelligence. Its focal point is the development and

application of sequence-to-sequence transformer models for symbolic calculations of

squared amplitudes in particle interactions—an innovative approach proposed to rev-

olutionize this domain. By harnessing the power of machine learning, we aim to

enhance the precision, efficiency, and accessibility of these crucial calculations. Dur-

ing this journey, we will address the unprecedented challenge we faced during the

development of this approach, and present a proof-of-concept for the symbolic calcu-
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lation of the squared amplitude, a key element of cross-section calculations.

In the chapters that follow, we start delving into this interdisciplinary area by present-

ing an introduction to the theoretical framework of high-energy physics and squared

amplitude calculations. Then, we introduce the basic concepts of machine learning

and its application to high-energy physics, where we discuss related works that em-

ploy the sequence-to-sequence model in symbolic mathematics and physics. Next, we

explore the architecture of transformers adjusted to the specific demands of symbolic

calculations, the generation and preprocessing of data, and the empirical evaluation

of our model’s performance. Through a comparative analyses of the results, we il-

luminate the strengths and limitations of our approach, shedding light on numerous

potential directions of improvement.

As we embark on this journey, we acknowledge the richness and beauty of scientific

inquiry that has preceded us. We stand on the shoulders of giants—those physi-

cists who have tirelessly striven to unravel the mysteries of the subatomic world and

develop clever and sophisticated computational tools. In the spirit of scientific explo-

ration, this dissertation seeks to forge new paths, guided by the belief that the fusion

of artificial intelligence and high-energy physics holds the promise of furthering our

understanding of the universe’s most fundamental building blocks.

In the chapters that follow, we invite the reader to traverse this intersection of two

dynamic disciplines—a convergence where artificial intelligence meets high-energy

physics, and where transformative insights await discovery.
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1.1 Motivation

In advancing our understanding of the universe and its elementary constituents and

forces, physicists have to create computational tools that enable the testing of their

theories, which they build to describe observations and experiments. These tools are

crucial for testing theoretical models constructed to interpret observations and ex-

perimental data. However, the complexity and computational intensity of these tools

can pose significant challenges. In high-energy physics, the calculation of squared

amplitudes and cross sections is essential for validating theoretical models and mea-

suring physical quantities. Unfortunately, these calculations often become extremely

resource-intensive the greater the number of final-state particles or the greater the or-

ders, hindering progress. Physicists frequently encounter computational bottlenecks.

Manual manipulation of large symbolic expressions tends to be error prone, leading

to the widespread adoption of domain-specific symbolic manipulation software tools,

such as FeynCalc [62], CompHep [11], and MARTY [66]. It is a testament to the high

mathematical sophistication and the depth of domain knowledge of the developers of

these symbolic manipulation tools that such analytical calculations have been auto-

mated. Despite the success of these tools in performing these calculations, the issue

of scalability, particularly in terms of managing the increase in computational time

required, remains a persistent and critical challenge. Here is an example of the com-

putational time required for squaring one amplitude of QED processes performed on

a personal computer:

Process FeynCalc MARTY

ee→ ee ∼ 1sec ∼ 1sec
ee→ eeγ ∼ 40sec ∼ 5sec
ee→ eeγγ > 10000sec > 1000sec

Table 1.1: computation time for the squaring one amplitude of QED processes per-
formed on a personal computer

The Table. 1.1 shows how increasing the number of final state particles in the interac-

3



tion dramatically increases the computation time. This trend is further exacerbated

when the complexity of the interaction is increased, particularly with the inclusion of

loops. This indicates the need for innovative computational tools that can gracefully

scale with both the increasing number of final state particles and the ascending orders

of interaction. The advent of such tools might potentially contribute to accelerating

advancements in high-energy theoretical calculations, and could perhaps play a role

in catalyzing a paradigm shift, possibly propelling the field into new territories and

areas of exploration that are not yet fully envisaged.

1.2 Why Symbolic Machine Learning?

The importance of symbolic forms of equations and physical quantities comes from

the fact that a symbol form provides more information about the behavior of the phys-

ical system, underlying laws or symmetry, interrelationships among various physical

quantities, which provides a clear and concise description of the physical system. The

generality of the symbolic form and its applicability to multiple cases and scenarios

enables physicists to make predictions about physical phenomena and explore limit-

ing cases, asymptotic behavior, and constraints, which can provide valuable physical

insights. Moreover, the symbolic form can be simplified algebraically and manipu-

lated, which helps to choose the most convenient or insightful form of the equation for

a particular problem, and makes the calculations more efficient. Moreover, symbolic

expressions facilitate collaboration and communication between researchers with dif-

ferent backgrounds.

Machine learning has proven to be a powerful tool that helps automate many com-

plex processes in science and technology and gives efficient ways of handling them.

As symbolic computation in high energy physics gets more complicated and more

time-consuming, it is worth exploring how machine learning could aid in this, since

it has the ability to process and generate sequences of symbolic data. The power

4



Figure 1.1: Amplitude and squared amplitude of the ee→ eeγ scattering process.

of machine learning to learn from context, recognize patterns, incorporate domain

knowledge, and its scalability makes it suitable for these tasks. Furthermore, in high-

energy physics, there is an abundance of data by nature. What is more important

here is that these data have many physical symmetries which makes the patterns

in the data more apparent, and there are constraints imposed by physical laws that

make the form of the data well-defined and in a fixed-structural form. As sequence-

to-sequence models in machine learning achieved remarkable success in performing

symbolic mathematics (see section 4.2), like solving calculus problems, solving dif-

ferential equations, and simplifying mathematical expression, there is a compelling

case for delving into their potential applications within high-energy physics calcula-

tions. This exploration could unveil new possibilities and enhance our computational

capabilities in this complex field.

1.3 Why Squared Amplitude?

Although machine learning can be utilized for a variety of symbolic calculations in

high-energy physics, we have opted to specifically focus on applying it to the task of

squaring the amplitude of particle interactions, which is related to the likelihood of

a particular interaction or process occurring. An example of amplitude and squared

amplitude is shown in Fig 1.1. Some of these reasons for this choice include:

5



- The squared amplitude is the main ingredient of cross sections, which are among

the most pivotal quantities for the high-energy physics community. Conse-

quently, developing a tool to efficiently compute squared amplitudes holds sig-

nificant potential for utility and impact within the field.

- The squared amplitude is ubiquitous across various sub-fields of high-energy

physics, and making improvements in this area could have wide-ranging impli-

cations for the field.

- Computing the squared amplitude is a highly complicated process because it

involves many mathematical operations, including Lorentz index contractions,

color factor calculation, matrix multiplications, Dirac algebra, traces, and, in

some cases, integrals. This imposes a significant challenge; hence, success in

this area will be highly impactful, and techniques developed for this problem

may have applications in other areas of physics and beyond.

- Calculating the squared amplitude is a task that demands substantial computa-

tional resources. This complexity escalates markedly with the addition of more

particles or the inclusion of higher-order interactions. Therefore, seeking a more

efficient method for conducting these calculations is important and could prove

to be immensely beneficial.

- As we are employing a supervised machine learning model, which necessitates

a substantial dataset of examples for training purposes, generating a sufficient

numbers of squared amplitude examples, using domain-specific algebraic pro-

grams, is possible in practice.

- Tackling this complex problem encourages the development of new machine-

learning techniques and computational methods and demonstrates the viability

of machine learning for solving fundamental problems in high-energy physics.

6



1.4 Challenges

Venturing into uncharted territory by applying machine learning models to square the

amplitude of particle interactions in high-energy physics presents unique challenges,

given that it is a novel approach and lacks precedent. Some of these challenges

include:

- The lack of pre-existing frameworks and guidelines and the need to develop a

framework from scratch is a significant challenge. Likewise, deciding on the ma-

chine learning model, architecture, features, parameters, and data preprocessing

requires careful consideration and experimentation.

- The inherent complexity of squaring amplitudes requires looking for innova-

tive approaches in machine learning to manage computational demands while

maintaining high accuracy.

- Symbolic mathematics presents a complete contrast to natural language tasks,

where outputs can be partially correct and still hold value. In symbolic math-

ematics, the results are either correct or entirely incorrect. A single erroneous

token in the output can render the entire answer invalid, highlighting the critical

importance of accuracy in this task.

- Generating high-quality training data for the model is essential, especially given

the lack of pre-existing datasets for this specific problem, which creates the need

to look for the optimal way of performing this step.

- Since the expressions of the amplitude and the squared amplitude are long

and complicated, it is necessary to find a way to simplify them and make them

more manageable for the machine learning model. A good representation makes

the underlying patterns and relationships in the data more apparent, which

7



facilitates easier learning by the model and leads to higher accuracy in prediction

and robust performance.

- The task requires a deep understanding of both high-energy physics and ma-

chine learning, so acquiring interdisciplinary knowledge and collaboration is

necessary.

As we pioneer the application of machine learning to squared particle interaction am-

plitudes in high-energy physics, we encounter these challenges, including the absence

of established frameworks, the need for precision in symbolic mathematics, and the

generation of high-quality training data. Simplifying complex expressions and foster-

ing interdisciplinary collaboration are also critical. These challenges motivate us to

explore innovative solutions and shape the future of this novel approach.
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Chapter 2 The Standard Model of Particle Physics

2.1 Overview

One of the most successful achievements in the history of physical science is the Stan-

dard Model (SM) of particle physics. It is a theory that describes the fundamental

constituents of matter and their interactions. It is our best theory to describe the

microscopic world in a consistent and computable framework. The standard model

of particle physics, developed in the 1960s and 1970s, attempts to explain all the

phenomena of particle physics. It has stood for 50 years as ’the’ theory of particle

physics, passing numerous stringent tests. It incorporates special relativity and quan-

tum mechanics so it is based on quantum field theory (QFT), which is the language

in which we codify our knowledge about the fundamental laws of nature in a manner

compatible with quantum mechanics, relativity, and locality. The standard model SM

is based on symmetry principles: gauge invariance and Lorentz invariance (special rel-

ativity). The SM incorporates three of the four known fundamental forces: the strong

nuclear force, the weak nuclear force, and the electromagnetic force, each of which

is associated with a symmetry called a gauge symmetry. All observed microscopic

phenomena can be attributed to one or more of these interactions. For instance, the

strong force is responsible for keeping protons and neutrons together within atomic

nuclei, the electromagnetic force is what binds electrons to atomic nuclei and atoms

within molecules, and weak interactions are responsible for the nuclear β-decays of

certain radioactive isotopes and the nuclear fusion processes that fuel the Sun. The

fourth fundamental is gravity, but its effect on particle processes at energies we can

currently explore is totally negligible.

In the Standard Model, the elementary particles can be classified based on their spin

characteristics, which is a property that describes the intrinsic angular momentum

9



Figure 2.1: Standard model of elementary particles (by MissMJ — Own work by
uploader, PBS NOVA, Fermilab, Office of Science, United States Department of
Energy, Particle Data Group.)

of a particle 2.1. There are two types of particles in the Standard Model: fermions,

matter particles that have a spin of 1/2. They obey the Pauli exclusion principle,

which means that no two identical fermions can occupy the same quantum state.

The fermions in the SM are quarks, which come in six flavors—up, down, charm,

strange, top, and bottom, and leptons, which come into three flavors-electron, muon,

and tau, along with their corresponding neutrinos (electron neutrino, muon neutrino,

and tau neutrino). Quarks are confined within larger particles called hadrons (like

protons and neutrons) and are held together by the strong force. The other type

of particles are the bosons, which have integer spin values. There are three spin-1

particles in the SM, called gauge bosons, that are force carriers: gluon, the force

carrier for the strong force, the W and Z, the force carriers for the weak force, and

the photon, the force carrier for the electromagnetic force. There is a spin-0 boson

called the Higgs boson which is associated with the Higgs field, which gives mass

10



to other particles through a mechanism known as the Higgs mechanism [35].

2.2 Theoretical framework

The Standard Model is a quantum field theory where particles are treated as excited

states or “quanta” of underlying fields, which permeate all of space-time. It is based

on wave equations: Dirac, Maxwell, Yang-Mills, and Klein-Gordon, which all gen-

eralize Schrodinger’s equation to incorporate special relativity. The dynamics and

interactions arise from gauge symmetry. The Standard Model is based on the local

gauge group SU(3)C × SU(2)W × U(1)Y . Each factor corresponds to a fundamental

force: SU(3)C for the strong force, and SU(2)W × U(1)Y for the electroweak force,

which unifies the electromagnetic and weak forces. The behavior and interactions

of the fields in the SM are described by a mathematical construct known as the

Lagrangian density L. This entity encapsulates the dynamics of all the fields and

their interactions. All interactions are determined from the symmetries except their

strengths (coupling constants) and masses which are determined from experimental

data, like α the fine structure constant or me the mass of the electron. Let us talk

about each part in detail:

- Relativistic quantum mechanics: The first attempt to incorporate spe-

cial relativity into Schrodinger’s equation in quantum mechanics is the Klein-

Gordon equation. By starting from the expectation that the free theory should

have plane wave solutions of the form ϕ ∝ e−iEt+ip.x = e−ipµxµ
and noting that

the relativistic dispersion relation pµp
µ = m2 should be reproduced, we get the

Klein-Gordon equation:

(∂µ∂
µ +m2)ϕ = 0. (2.1)

It is a second-order equation in space and time, manifestly Lorentz-covariant

and it describes scalar (spin-0) particles. Later on, Dirac derived a relativistic
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equation that is linear in time and space which has the form:

(iγµ∂µ −m)ψ = 0, (2.2)

where the 4 constant γµ are 4× 4 matrices which satisfy the anti-commutation

relation: {γµ, γν} = 2ηµν . Since the γµ are 4×4 matrices, the wavefunction ψ

should have 4 components. It transforms in a special way under Lorentz trans-

formations and we call it a 4-component spinor. The Dirac equation describes

spin-1/2 particles.

- Lagrangian formulation: Imagine we have a field on spacetime, which we

denote generically by ϕ(xµ). Just like in classical mechanics, the action, S, is

obtained by integrating the Lagrangian, L, over time. Now, we shall restrict

ourselves to theories in which the Lagrangian can be obtained by integrating

something called the Lagrangian density, L, over space:

S =

∫
dtL =

∫
d4xµL(ϕ(x), ∂µϕ(x)). (2.3)

Since we almost always deal with the Lagrangian density only, we will simply

call it the Lagrangian. Given the Lagrangian, the classical (Euler-Lagrange)

equations of motion are obtained by extremizing the action. Thus, consider the

variation δS that results from a field variation δϕ:

δS =

∫
d4x(

∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)) (2.4)

=

∫
d4x(

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
)δϕ, (2.5)

where we have integrated by part and dropped the total derivative term based

on the assumption that the field vanishes at boundaries. The action is thus

extremal when:

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0, (2.6)
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which is called (Euler-Lagrange) equations. This formalism is useful for iden-

tifying symmetries of the dynamics and its consequent implications, which are

encoded in Noether’s theorem. Suppose that the action is invariant under some

symmetry transformation of the fields, ϕ→ ϕ+ δϕ. The fact that the action is

invariant means that the Lagrangian can change at most by a total derivative,

∂µK
µ (which integrates to zero in the action). Then,

δL = ∂µK
µ =

∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ∂µϕ (2.7)

=
∂L
∂ϕ

δϕ− ∂µ
∂L

∂(∂µϕ)
δϕ+ ∂µ(

∂L
∂(∂µϕ)

δϕ) (2.8)

The first two terms on the right-hand side cancel when the equation of motion

holds. Thus, classically, we have the conserved current:

∂µJ
µ = 0, where Jµ =

∂L
∂(∂µϕ)

δϕ−Kµ (2.9)

2.2.1 Quantum Electrodynamics (QED)

Quantum Electrodynamics (QED) is the quantum field theory that describes the

interactions between charged particles through the exchange of photons. It is a subset

of the Standard Model of particle physics and stands as one of the most precisely

tested theories in physics. The QED Lagrangian can be derived by requiring that the

free Dirac Lagrangian:

L = ψ̄(i/∂ −m)ψ, (2.10)

where /∂ ≡ γµ∂µ and γµ are the Dirac matrices, be invariant under a U(1) local

transformation, ψ(x) → ψ′(x) = eieχ(x)ψ. With this transformation, the Lagrangian

becomes:

L → L′ = L − eψ̄γµ(∂µχ)ψ. (2.11)

If we replace the derivative ∂µ in 2.10 with the covariant derivative Dµ,

∂µ → Dµ = ∂µ + ieAµ, (2.12)
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where Aµ is a new field, the eψ̄γµ(∂µχ)ψ term gets cancelled provided the new field

transforms as:

Aµ → A′
µ = Aµ − ∂µχ. (2.13)

Hence, the gauge-invariant Lagrangian for a spin-half fermion;

L = ψ̄(i/∂ −m)ψ − eψ̄γµAµψ, (2.14)

contains a term describing the interaction of the fermion with the new vector field

Aµ, which can be identified as the photon. Adding a kinetic term for the spin-1 field

FµνF
µν which is invariant under U(1), we get the QED Lagrangian:

LQED = ψ̄(i/∂ −m)ψ − eψ̄γµψAµ −
1

4
FµνF

µν , (2.15)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor, and the coupling con-

stant e is interpreted as the electric charge. Using the gauge covariant derivative

Dµ = ∂µ + ieAµ, the QED Lagrangian can be written as:

LQED = ψ̄(i /D −m)ψ − 1

4
FµνF

µν , (2.16)

where /D ≡ γµ(∂µ + ieAµ). From this Lagrangian, we can extract the QED Feyn-

man rules, draw Feynman diagrams, and compute physical quantities that can be

measured. Examples of 2 → 2 processes that are computed in QED are Compton

scattering (γe− → γe−), Møller scattering (e−e− → e−e−) and Bhabha scattering

(e−e+ → e−e+).

QED is the most successful theory in physics in terms of the theoretical and experi-

mental precision of its tests. Its predictions are among the most accurately tested in

all of physics. It has passed the classical atomic tests, such as the Lamb shift, atomic

hyperfine splittings, muonium, and positronium, see [44]. Furthermore, the theory’s

predictions about the anomalous magnetic moment of the electron agree with exper-

imental measurements to an astounding level of precision. Such precise agreement
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between theory and experiment reinforces QED as a fundamental and accurate de-

scription of nature.

While QED can achieved remarkable success at the tree-level, it is essential to incor-

porate higher-order (loop) effects in perturbation theory, because some effects only

occur at the loop level. The calculation of higher-order effects is greatly complicated

by divergences and the need to renormalize (while maintaining gauge invariance).

The divergence we often encounter called “UV divergence” comes from integrating

momenta goes to infinity, which does not converge. The technique to handle these

UV divergences is called renormalization. The idea is to introduce counterterms in

the Lagrangian that cancel out the infinities. The infinities are absorbed into redefi-

nitions of the parameters of the theory, such as the electron’s charge and mass. Once

the counterterms are introduced, the parameters are said to be “renormalized.” Then

we use dimensional regularization, which involves analytically continuing the number

of spacetime dimensions away from the physical four dimensions (3 space + 1 time)

and performing the integrals in this d dimensions. In dimensional regularization,

UV divergences manifest as poles (1
ϵ
terms) as ϵ approaches zero. These poles are

more manageable and mathematically well-defined compared to the outright infinities

that one would encounter in 4-dimensional calculations. After the integrals are regu-

lated and renormalized, the limit ϵ → 0 is taken to return to the physically relevant

four-dimensional spacetime, but now without the infinities, and gauge invariance is

preserved. There is another divergence called Infrared Divergence (IR) that happens

when the loop momentum goes to zero, which reflects real physical phenomena, such

as the emission of soft photons. These divergences are usually handled by introducing

an IR cutoff or assigning the massless particle a fictitious mass, and then taking the

limit as the fictitious mass vanishes.
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2.2.2 Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) is a quantum field theory and the sector of the

Standard Model that describes the interactions of quarks and gluons, the fundamen-

tal constituents of hadrons like protons and neutrons. QCD is a non-abelian gauge

theory based on the SU(3)C group, where the subscript c refers to “color,” an ab-

stract charge-like property that quarks and gluons carry. Analogous to electric charge

in QED, QCD introduces the concept of ’color’ charge. Unlike electric charge which

comes in positive and negative, color charge in QCD has three types: red, blue, and

green. Anti-quarks carry anticolors: anti-red, anti-blue, and anti-green, the “nega-

tive” charge. The force carriers of QCD are the gluons. Unlike photons in QED,

which do not carry an electric charge, gluons carry a color charge and an anticolor

charge. This unique feature leads to the self-interaction of gluons, making the behav-

ior of the strong force vastly different from the electromagnetic force. One essential

feature of QCD is asymptotic freedom, which implies that the strong interaction be-

comes weaker as quarks come closer together (high energy) and becomes stronger as

they move apart. This behavior, confirmed experimentally, is opposite to the electro-

magnetic force, where charges feel a stronger force as they approach each other.

To construct the QCD Lagrangian, we first need to know how non-Abelian gauge

theory differs from Abelian gauge theory. In QED, the gauge group is U(1), which

is an Abelian group. This means that the group’s generators commute with each

other. The photon, which is the gauge boson of QED, does not interact with itself.

Non-Abelian gauge groups, on the other hand, have generators which don’t commute.

As a result, the gauge bosons do interact with themselves. We call theories that are

based on non-Abelian gauge group Yang-Mills theories.

Consider a theory with n fields represented by the potentials Aa
µ (a = 1, 2, 3, ..., n).

The gauge invariance occurs under the local transformation:

Ψ → Ψ′ = e−igTaαa(x)Ψ (2.17)
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The group generator of the potential Aa
µ is Ta, which obeys the commutation relation

[Ta, Tb] = ifabcTc, where the coefficients fabc are the structure constants of the group.

The covariant derivative now becomes:

Dµ = ∂µ − igTaA
a
µ. (2.18)

By analogy with the electromagnetic field tensor F a
µν , the field tensor is defined as:

igTaF
a
µν = [Dν , Dµ]. (2.19)

Substituting the covariant derivative and commutator of the generators of the group

is obtained:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfa

bcA
b
µA

c
ν . (2.20)

We see that the first two terms are similar to the field tensor in QED, but the last

term reflects the fact that the generators are not part of Abelian group.

Going back to QCD, the Lagrangian is invariant under local gauge transformations of

the SU(3)C group Ψ → Ψ′ = e−igsTaαa(x)Ψ. The strong interaction is represented by

eight gauge fields for gluons Ga
µν (a = 1, 2, ..., 8), and each of these fields is associated

with a generator Ta =
λa

2
, where λa is a Gell-Mann matrix. The covariant derivative

is given by:

Dµ = ∂µ − igsG
a
µνTa (2.21)

The coupling constant of the fields with gluons is gs. The Lie algebra is defined by the

commutation rule: [Ta, Tb] = ifabcTc where fabc is the structure constant of the SU(3)

group. Quarks are represented by spinor fields ψ, and since there are six different

flavors of quarks (up, down, charm, strange, top and bottom), we can represent these

fields collectively with a three-component spinor in flavor space. Thus, the QCD

Lagrangian can be written as the sum of the quark kinetic term, the gluon kinetic

term, and their interaction:

LQCD =
∑
f

ψ̄f (i /D −m)ψf −
1

4
Ga

µνG
µνa, (2.22)
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where a is a color label, taking values from 1 to 8 for SU(3), f runs over quark flavors,

and the field strength tensor is given by:

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

a
bcA

b
µA

c
ν (2.23)

Some of the calculations in QCD are similar to the QED except for the boson (gluon)

self-interaction, and color factors must be taken into account. Processes involving

non-abelian vertices are extremely tedious to carry out by hand and are best handled

by specialized computer algebra programs. Higher-order calculations involve all of

the subtleties of gauges and ghost loops (the latter may even appear in tree-level cal-

culations involving external gluons, which are treated in standard field theory texts.)

The gluon self-interactions in QCD imply asymptotic freedom, so that one can treat

the quarks and gluons as weakly coupled, and processes such as deep inelastic scatter-

ing can be calculated in perturbation theory. However, at low energies, perturbation

theory no longer holds. The strong coupling and gluon self-interactions presumably

lead to the confinement of quarks, gluons, and any colored states, so that only color

singlet hadron states can emerge.

2.2.3 Electroweak Theory (EW)

The electroweak theory is a fundamental cornerstone of the Standard Model of particle

physics. It provides a unified description of two of the four known fundamental forces

in nature: electromagnetism (mediated by the photon) and the weak force (mediated

by the W± and Z0 bosons). This theory was developed during the mid-20th century

and its key architects include Sheldon Glashow, Abdus Salam, and Steven Weinberg,

all of whom were awarded the Nobel Prize in Physics in 1979 for their contributions.

The electroweak interactions are described by the gauge group SU(2)L⊗U(1)Y . The

subscript L means that these transformations only act on components of the left

chiral fermions and Y is the hypercharge quantum number. Electroweak interactions

are represented by three non-Abelian gauge fields W i
µ (i = 1, 2, 3) and Abelian gauge
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field Bµ. The generators of the weak isospin group SU(2)L are τi = σi/2 and the

generators for the U(1)Y group is y = IY/2, where σi are the Pauli matrices, I the

2× 2 unit matrix, and Y hypercharge quantum number. The coupling constants are

g and g′. The covariant derivative is given by:

Dµ = I∂µ − ig
σi
2
W i

µ − ig′I
Y

2
Bµ. (2.24)

From the definition in 2.20, we can write the tensor field:

W i
µν = ∂µW

i
ν − ∂νW

i
µ + gf i

jkW
j
µW

k
ν (2.25)

Bµν = ∂µBν − ∂νBµ. (2.26)

The Lagrangian for the free fields is:

L = −1

4
W i

µνW
µν
i − 1

4
BµνB

µν (2.27)

Performing the matrix operations in the first term of the covariant derivative 2.24,

we can define:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ). (2.28)

With the linear combination of the third component of the gauge field, W 3
µ with the

gauge field Bµ, we can define the Z0
µ boson and the photon A0

µ as the following:

A0
µ = cos θWBµ + sin θWW

3
µ (2.29)

Z0
µ = − sin θWBµ + cos θWW

3
µ , (2.30)

where the mixing angle, θW , called Weinberg angle; is defined by the ratio of the

electroweak coupling constants,

tan θW = g′/g, (2.31)

or equivalently, e = g sin θW = g′ cos θW , where e is the magnitude of the electron

charge. The hypercharge Y is related to the electric charge Q by the relation: Q =
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1
2
(σ3+IY ). Substituting these definitions, with the boson definitions in 2.29 and 2.30

in the covariant derivative 2.24, we obtain:

Dµ = I∂µ − ieQA0
µ − i

g√
2
(σ+W+

µ + σ−W−
µ )− i

g

cos θW
(
σ3

2
−Q sin2 θW )Z0

µ, (2.32)

where σ± = 1√
2
(σ1 ∓ iσ2). We know from experiments that the weak force violates

parity, so we need to separate each fermion field into right-handed and left-handed

chiral components, Ψ = ΨL + ΨR using the chiral projectors PL = 1
2
(1 − γ5) and

PR = 1
2
(1 + γ5), where γ5 = iγ1γ2γ3γ4, and ΨL = PLΨ and ΨR = PRΨ.

Fermions, quarks and leptons, are classified into three groups called generations. A

generation is formed by quarks and leptons with different charges, and generations

are ordered from the lightest to the heaviest. The left component of the leptons is

given by a doublet:

L doublet : lL =

νi
ei


L

, qL =

ui
di


L

(2.33)

R singlet : uiR, d
i
R, e

i
R, (2.34)

where (i = 1, 2, 3) labels the generations. Notice that there are no right-handed neu-

trinos because in the SM, neutrinos are massless —there is no right-chiral component.

To describe the leptons and quarks interacting with the weak and electromagnetic

fields, we use the Lagrangian:

L = l̄iLiγ
µDLµl

i
L + l̄iRiγ

µDRµl
i
R. (2.35)

The left-handed components belong to the SU(2) group while the right ones only to

the U(1) group. The mass term is absent in the Lagrangian because such a term

is not gauge invariant. The covariant derivative DLµ in this Lagrangian is given by
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2.32, and DRµ = ∂µ − ieQA0
µ − i g

cos θW
− Q sin2 θWZ

0
µ. Substituting these into the

Lagrangian gives:

Ll = iν̄iγ
µPLνi + iēiγ

µ∂µei

− eēiγ
µeiA

0
µ +

g

2 cos θW
ν̄iγ

µPLνiZ
0
µ

+
g√
2
ν̄iγ

µPLeiW
+
µ +

g√
2
ēiγ

µPLνiW
−
µ

+
g

2 cos θW
ēiγ

µ(2 sin2 θWpR + (2 sin2 θW − 1)PL)eiZ
0
µ.

Similarly for the quarks, the Lagrangian is:

Lq = iūiγ
µ∂µui + id̄jγ

µ∂µdj

+
2e

3
ūiγ

µuiA
0
µ −

e

3
d̄jγ

µdjA
0
µ

+
g√
2
Vijūiγ

µpLdjW
+
µ +

g√
2
V ⋆
ij d̄jγ

µpLuiW
−
µ

+
g

cos θW
ūiγ

µ(
1

2
PL − 2

3
sin2θW )uiZ

0
µ

+
g

cos θW
d̄jγ

µ(−1

2
PL +

1

3
sin2θW )djZ

0
µ.

To generate mass terms we use the Higgs mechanism, which is a crucial part of the

Standard Model. This process involves introducing a scalar field called the Higgs field,

a ubiquitous scalar field with a non-zero vacuum expectation value. As quantum fields

interact with the Higgs field, they acquire mass proportional to the strength of this

interaction. The Higgs mechanism operates through a process called Spontaneous

Symmetry Breaking (SSB); the Higgs field possesses a symmetric potential; however,

its ground state, is not symmetric. Instead of the field resting at a zero value (which

would preserve the symmetry), it settles in a non-zero value (vacuum expectation

value, vev), thereby breaking the symmetry spontaneously. As other fields interact

with this non-zero Higgs field, they acquire mass. This phenomenon of spontaneous

symmetry breaking is crucial to the Higgs mechanism, allowing particles to have mass

without explicitly violating gauge symmetry.
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Figure 2.2: Higgs Potential (From: [30])

To implement spontaneous symmetry breaking, let us introduce a doublet of complex

scalar Higgs, Φ =
(
ϕ+

ϕ0

)
. The Lagrangian of this field is:

L = (DµΦ)
†DµΦ− V (Φ), (2.36)

with the Higgs potential,

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (2.37)

For µ2 < 0, the potential has an infinite set of degenerate minima (see Fig. 2.2).

The real part of the neutral field ϕ0 can be written as ϕ0 = 1√
2
(h + v + iη). After

symmetry breaking, SU(2)L⊗U(1)Y → U(1)em , the minimum of the potential must

correspond to a non-zero vacuum expectation value only of the neutral scalar field

Φ0, such that,

⟨Φ⟩0 =
1√
2

0

v

 . (2.38)

When the fields are expanded around the ground state, the kinetic part of the La-

grangian becomes:

L =M2
WW

+
µ W

µ− +
1

2
M2

ZZµZ
µ, (2.39)

where, Mw = gv
2
, is the W boson mass; MZ = gv

2 cos θW
, Z boson mass and the Aµ

boson remains massless. The two free parameters of the Higgs potential µ and λ are
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related to the vacuum expectation value of the Higgs field v and to the mass of the

Higgs boson MH so that,

v2 =
−µ2

λ
, M2

H = 2λv2. (2.40)

The leptons and quarks acquire mass through Yukawa interactions between fermion

fields and the Higgs field:

−LY = l̄iLλijΦejR + q̄iLλijΦ̃ujR + q̄iLλijΦdjR + h.c., (2.41)

where Φ̃ = iτ2Φ
∗, and the mass term can be defined as mij = λijv/

√
2. Therefore,

the Lagrangian for the ground state (Φ → ⟨Φ⟩0) is:

LY =mei ēiei +mui
ūiui +mdi d̄idi

g

2MW

(mei ēiei +mui
ūiui +mdi d̄idi) h

o

+
ig

2MW

(mei ēiγ
5ei +mui

ūiγ
5ui +mdi d̄iγ

5di) η
o

gmei√
2MW

ν̄iPReiϕ
+ +

gmei√
2MW

ēiPLνiϕ
−

g√
2MW

ūi(mdjPR −mui
PL)Vijdjϕ

+

g√
2MW

d̄i(mdjPL −mui
PR)V

∗
ijujϕ

−.

In summary, the electroweak theory is a chiral gauge theory with gauge group SU(2)L⊗

U(1)Y . This symmetry is spontaneously broken down to U(1)em by the Higgs mech-

anism which generates the gauge bosons, Higgs, and all fermion masses. The elec-

troweak theory is extremely well tested experimentally due to two properties: ob-

servables can be reliably calculated in perturbation theory, and it can be tested in

lepton-lepton collisions, which allow for very precise measurements.
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2.3 Experimental Test of the Standard Model

The Standard Model (SM) exhibits remarkable agreement with a vast array of exper-

imental results —see, for example, how cross section measurement, from the ATLAS

agree with the Standard Model predictions 2.3. Precision experiments conducted

over decades at high-energy physics laboratories around the world, such as CERN

and Fermilab, have tested the Standard Model predictions and have firmly estab-

lished its validity at energies up to the electroweak scale. Precise measurements of

the properties of quarks and leptons and the force-carrying particles like the W and Z

bosons, gluons, and the Higgs boson, confirm that the Standard Model’s predictions

to an astonishing degree of accuracy. The discovery of the Higgs boson at CERN in

2012 was a monumental milestone, filling in the last missing piece of the Standard

Model and solidifying the theory’s foundational status in physics.

Figure 2.3: Summary of several Standard Model total production cross section mea-
surements. (From: ATLAS Collaboration [1])
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2.4 Challenges and Search for New Physics Beyond The Standard Model

Although The Standard Model of particle physics is an incredibly successful theory,

it does have a number of known limitations and unanswered questions that present

significant challenges highlight the need for a more comprehensive framework. The

theoretical challenges of the Standard Model include:

- The Hierarchy Problem: If we consider the Standard Model as an effective field

theory up to some cutoff Λ, loop corrections from the Standard Model to the

Higgs mass yield a quadratic divergence. In other words, these corrections de-

pend quadratically on the energy scale Λ2 up to which the Standard Model is

valid (potentially the Planck scale Λ ∼ Mpl). This would naturally drive the

mass of the Higgs boson to be at the Planck scale, far higher than the observed

value at 125 GeV, unless there is an incredible fine-tuning of parameters to

cancel out these corrections. This seems unnatural and calls for an explana-

tion. The hierarchy problem is often seen as an indication that there must be

new physics beyond the Standard Model that comes into play at energy scales

between the electroweak and the Planck scales to stabilize the Higgs mass.

- The Strong CP Problem: It is related to the quantum chromodynamics (QCD)

sector of the Standard Model where there is a term in the QCD Lagrangian that

can violate CP symmetry, characterized by the θ parameter. If θ is nonzero, it

would lead to observable effects, such as a nonzero electric dipole moment for the

neutron. However, experiments have placed extremely tight constraints on the

electric dipole moment of the neutron, implying that θ is very close to zero. The

question then arises as to why θ is so small, essentially indistinguishable from

zero. This also appears to require fine-tuning, which is generally considered to

be unnatural unless there is a mechanism that explains it.

- Flavor Puzzle: The Standard Model includes three generations of quarks and
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leptons, each with different masses and mixing patterns. The flavor puzzle is

the question of why the particle properties have the values they have, and why

the mixing angles in the PMNS and CKM matrix have the values they have?

For instance, the top quark is about 36,000 times heavier than the up quark,

and the tau lepton is about 3,500 times heavier than the electron. The Standard

Model does not provide an explanation for this vast disparity in masses, nor

does it predict the absolute values of these masses.

Likewise, the Standard Model faces a range of experimental challenges that are central

to our quest to understand the fundamental particles and forces of the universe. These

experimental challenges include:

- Dark Matter: The Standard Model does not account for dark matter, which

makes up about 27% of the total mass in the universe. Extensions or alternatives

are needed to account for these observed phenomena.

- Neutrino Masses: In the Standard Model, particles acquire mass through the

Higgs mechanism, where particles interact with the Higgs field. However, this

mechanism applies to Dirac masses, which require both left-handed and right-

handed components of the particles. Neutrinos are only observed as left-handed

particles (or right-handed antiparticles), and the Standard Model does not in-

clude right-handed neutrinos. This means that the usual Higgs mechanism

cannot generate neutrino masses. One possible solution is to introduce right-

handed neutrinos and incorporate a see-saw mechanism, or consider neutrinos

to be Majorana particles, meaning that they are their own antiparticles. This

would allow for mass generation through a different mechanism but would also

have profound implications for our understanding of particle physics.

- Matter-Antimatter Asymmetry: One of the central mysteries in physics and

cosmology is the abundance of matter over antimatter in the observable uni-
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verse. The Standard Model does not provide a satisfactory explanation for the

observed asymmetry between matter and antimatter in the universe.

- Anomalies and Discrepancies: There are a few experimental results that show

possible discrepancies with Standard Model predictions, such as the anoma-

lous magnetic moment of the muon and certain B-meson decay anomalies and

the discrepancy between different measurements of the neutron lifetime. Un-

derstanding whether these are signs of new physics or due to experimental or

theoretical uncertainties is a significant challenge.

These theoretical and experimental challenges highlight the limitations of the Stan-

dard Model and bring the need for new ideas, extensions, or a more fundamental

theory to address these questions and deepen our understanding of the fundamental

constituents and forces of nature. There are many proposed solutions, including su-

persymmetry and extra dimensions, which have the potential to replace the Standard

model; however, they lack experimental evidence.
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2.5 Squared Amplitude and Cross Section

In particle physics, the cross section measures quantitatively the probability that

two particles will collide and react in a certain way under certain conditions. The

cross section is a crucial quantity both for theoretical computations and experimental

observations. If you know the cross section for a particular process and how many

particles you’re shooting at a target, you can predict how many of those particles

will undergo the interaction. It acts as a bridge between theoretical predictions

and experimental observations, allowing scientists to validate or challenge established

models like the Standard Model. By measuring and comparing cross sections of

various processes, physicists can discern the presence of new particles. Further, any

deviations between measured cross sections and theoretical expectations can hint at

groundbreaking phenomena beyond current understanding.

Classically, the cross section is a measure of the number of scattered particles in a

given area relative to the incident particles. In quantum mechanics, we can relate

this quantity, called the “differential probability dP” to the cross section dσ by

dσ =
1

T

1

Φ
dP, (2.42)

where T is the observation time and Φ is the flux which equals magnitude of the

relative velocity of the incoming particles v⃗ divided by the total volume V in which

the collisions take place: Φ = |v⃗|
V
. If we consider the case of two colliding particles

that yield n particles;

p1 + p2 → pj, (2.43)

then the differential cross section in the rest frame of the incoming particle is

dσ =
V

T

1

|v⃗1 − v⃗2|
dP. (2.44)

We know from quantum mechanics that the probability of going from state |i⟩ to state

⟨f | is just the squared of the amplitude | ⟨f |S |i⟩ |2. So the normalized differential
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probability is

dP =
| ⟨f |S |i⟩ |2

⟨f |f⟩ ⟨i|i⟩
dΠ, (2.45)

where dΠ is the differential phase space that contains all final state momenta, which

is given by:

dΠ =
∏
j

V

(2π)3
d3pj. (2.46)

The numerator in Eq. 2.45 ⟨f |S |i⟩ is the invariant matrix that contains all physical

information about the dynamics of the particle interaction. In particular, to go

from initial state |i⟩ to final state ⟨f | assuming both states are eigenstate of the free

Hamiltonian:

lim
t±→±∞

⟨f |U(t−, t+) |i⟩ = ⟨f |S |i⟩ , (2.47)

where S is called the S-matrix. Expanding the S-matrix

⟨f |S |i⟩ = ⟨f | I+ iT |i⟩ , (2.48)

and taking the non-trivial case ⟨f | iT |i⟩ and factoring a δ-function, which imposes

4-momentum conservation, we can define the invariant matrix elements ⟨i|M |f⟩

or the amplitude as:

⟨f | iT |i⟩ = (2π)4 δ4(
∑
i

pi −
∑
f

pf ) ⟨i|M |f⟩ . (2.49)

Squaring this quantity, we get:

| ⟨f | iT |i⟩ |2 = (2π)8δ4(0) δ4(
∑
i

pi −
∑
f

pf ) | ⟨i|M |f⟩ |2

= (2π)4TV δ4(
∑
i

pi −
∑
f

pf ) | ⟨i|M |f⟩ |2,
(2.50)

where we used the fact that δ4(0) = TV
(2π)4

since the δ-function here can be regulated

by the finite volume. The normalization factors in Eq. 2.45 are given by:

⟨i|i⟩ = (2E1V )(2E2V ), ⟨f |f⟩ =
∏
j

(2EjV ). (2.51)
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Putting everything together, the differential cross section of a 2 → n process is:

dσ =
1

(2E1)(2E2)|v⃗1 − v⃗2|
|Mif |2dΠLIPS (2.52)

where dΠLIPS is the Lorentz-invariant phase space, which equals:

dΠLIPS = (2π)4δ4(
∑
i

pi −
∑
f

pf )
∏
j

d3pj
(2π3)2Epj

. (2.53)

The only part in 2.52 that is process-dependent is the squared amplitude |Mif |2, so,

calculating the cross section of an interaction requires calculating the square of the

amplitude, averaging over all the spin states of the incident particles and summing

over all final spin states, while calculating the kinematic term and dΠLIPS is easy and

process-independent.

To determine the S-matrix elements, hence the amplitude, one begins by specifying

the initial and final particle states of interest and identifying the appropriate inter-

action Lagrangian, drawing all possible Feynman diagrams for the process, up to the

desired perturbation order. By applying the associated Feynman rules, each diagram

translates into a mathematical contribution. To isolate the pure interaction from

these contributions, external particle propagators are amputated, and the result is

then multiplied by the respective wave packets using the LSZ reduction formula. The

summed contributions yield the matrix element for the process.

Let us take an actual example of a process and try to compute the amplitude and

squared amplitude. One of the simplest processes, albeit important, is annihilation of

an electron and anti-electron (positron) into a muon and anti-muon e+e− → µ+µ−, as

shown in Fig. 2.4. We construct the amplitude (matrix elements) of this interaction

using the QED Feynman rules:

iM = (−ie)v̄α(p2)γµαβuβ(p1)
−igµν
k2

(−ie)ūδ(p3)γνδσvσ(p4), (2.54)
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Figure 2.4: Feynman diagram of annihilation of electron and anti-electron (positron)
into muon and anti-muon e+e− → µ+µ− process

where kµ = pµ1 + pµ2 = pµ3 + pµ4 . Each spinor comes with a spin label, i.e. us1α (p1), but

we keep them implicit. Rearranging this slightly, we get:

M =
e2

s
v̄(p2)γ

µu(p1)ū(p3)γµv(p4), (2.55)

where s = (p1 + p2)
2.

To calculate the squared amplitude |M|2 = M†M, we need to get the conjugate

amplitude M†. From the commutation relations of the gamma matrices, we can infer

that γ†µγ0 = γ0γµ and γ†0 = γ0; therefore:

(ψ̄1γ
µψ2)

† = (ψ̄†
1γ0γ

µψ2)
† = ψ̄†

2γ
µ†γ†0ψ1 = ψ†

2γ0γ
µψ1 = ψ̄2γ

µψ1. (2.56)

Then, the squared amplitude becomes

|M|2 = e4

s2
[v̄(p2)γ

µu(p1)][ū(p3)γµv(p4)][v̄(p4)γ
νu(p3)][ū(p1)γνv(p2)]. (2.57)

For the unpolarized case, where the spin is not measured, we need to sum over the

spin. We can do that using the trace technique, which derived form the Dirac equation

as follows:

2∑
s=1

usα(p)ū
s
β(p) = (γµpµ +mI)αβ = (/p+m)αβ (2.58)

2∑
r=1

vrα(p)v̄
r
β(p) = (γµpµ −mI)αβ = (/p−m)αβ. (2.59)
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This yields:

∑
s′

∑
s

[ūs
′

(p3)γµv
s(p4)][v̄

s(p4)γ
νus

′

(p3)] = ( /p3 +mµI)αβγµβδ( /p4 −mµI)δσγνσα (2.60)

= Tr[( /p3 +mµ)γ
µ( /p4 −mµ)γ

ν ]. (2.61)

We can evaluate the traces using γ-matrix identities, such as:

Tr[γµγν ] = 4gµν , T r[γαγµγβγν ] = 4(gαµgβν − gαβgµν + gανgβµ). (2.62)

Multiplying by a factor of 1
4
and performing the traces, the averaged squared am-

plitude becomes:

< |M|2 >= 8e4

s2
(p13p24 + p14p23 +m2

µp12 +m2
ep34 + 2m2

µm
2
e), (2.63)

where pij = pi · pj.

This is the way we obtain the squared amplitude in such processes, it involves multiple

steps. At each step, specific mathematical operations and identities are employed to

advance the calculation. As we extend to encompass a greater number of final states,

the amplitude naturally escalates in complexity, giving rise to a growing number of

terms and expressions. Furthermore, when we incorporate higher order (loops), the

complication deepens, particularly with integration associated with the loops. This

highlights the escalating difficulties inherent in calculations within the domain of

high-energy physics.
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Chapter 3 Machine Learning

Machine learning (ML) is a subset of artificial intelligence (AI) that focuses on the

development of algorithms and statistical models that enable computers to perform

specific tasks without using explicit instructions. Instead, they rely on patterns and

inferences derived from data. It has developed significantly since the 1950s, starting

with Turing’s Test and early algorithms like perceptrons (Rosenblatt, 1958). Despite

an initial decline in interest in the 1970s, the 1980s rejuvenated the field with expert

systems and backpropagation (Rumelhart, 1986). The 1990s and 2000s saw the rise of

data-driven approaches and deep learning. Recent years highlight advancements like

GPT [57] and BERT [28] in natural language processing and milestones like AlphaGo

[63].

Machine learning is playing increasingly important roles in many aspects of modern

technology, spanning from biotechnology to the design of autonomous vehicles and

smart devices. Its applications are abundant and varied, including image and speech

recognition, medical diagnosis, financial forecasting, content recommendation, and

many others. The surge of interest and advancement in machine learning in recent

years is due in part to the availability of large datasets, powerful computing resources,

and refined algorithms.

There are three main types of machine learning:

1. Supervised Learning: The algorithm is trained on a labeled dataset, meaning

the input data is paired with the correct output. The goal is for the model to

learn a mapping from inputs to outputs and make predictions on new, unseen

data.

2. Unsupervised Learning: The algorithm is provided with an unlabeled dataset

33



and must find patterns and relationships within the data. Common techniques

include clustering and association.

3. Reinforcement Learning: The algorithm learns by interacting with an environ-

ment, receiving feedback in the form of rewards or penalties. It aims to find

the best strategy, called a policy, to achieve the maximum cumulative reward

over time.

In supervised deep learning, the primary goal is to train a model to approximate the

function f which maps input features to outputs. Given a dataset of input features

X ∈ Rn×p where n is the number of samples and p is the number of features, and

corresponding outputs y ∈ Rn×m, the objective is to find an approximation of the

function fRp → Rm such that:

f(Xi) ≈ yi, ∀i ∈ 1, . . . , n. (3.1)

The model f , encapsulated within a deep neural network, is characterized by its

parameters θ, making it non-linear and typically high-dimensional. The accuracy of

the model’s predictions, given by fθ(X), against the true outputs y is measured using

a loss function

L(y, fθ(X)) =
1

n

n∑
i=1

ℓ(yi, fθ(Xi)). (3.2)

Here, ℓ is a predefined per-sample loss (e.g., mean squared error for regression or cross-

entropy for classification). To optimize the model’s parameters θ, an optimization

algorithm, commonly referred to as an optimizer, is employed. For many deep learning

models, gradient descent or its variants are utilized. The optimizer updates the

parameters θ in a direction that minimizes the loss L:

θt+1 = θt − η∇θL(y, fθ(X)). (3.3)

In the equation above, η is the learning rate, and ∇θL represents the gradient of

the loss with respect to the model’s parameters. The training process involves it-
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eratively feeding data, computing the loss, back-propagating the error through the

neural network to obtain gradients. Back-propagation involves the systematic adjust-

ment of the network’s weights by assessing the impact of each weight on the overall

error. Subsequently, these gradients guide the updating of the model parameters

using an optimizer. This iterative process continues until reaching convergence or

completing a predefined number of epochs. The goal is to have fθ generalize well to

unseen data, minimizing the discrepancy between predictions and true values. The

set {Xi, yi}i=1,...,n is called the training set. In order to test the resulting function f

one usually splits the data samples into the training set used to learn the function

and a test set to evaluate the performance.

Commonly used machine learning models and algorithms include:

- Linear regression: This algorithm is used to predict continuous values, based

on a linear relationship between different values. For example, the technique

could be used to predict house prices based on known features such as the size,

location, and neighborhood of the given property.

- Logistic regression: This algorithm is used for binary classification tasks. It

predicts the probability of a discrete outcome, usually between two classes,

based on one or more independent variables. The output is transformed using

the logistic (or sigmoid) function to fall between 0 and 1, making it suitable for

probability estimation.

- Clustering: It is an unsupervised learning technique that groups similar data

points based on their inherent patterns, without predefined labels. By recog-

nizing subtle differences in data, clustering algorithms can assist data scientists

in segmenting information in ways that might not be immediately obvious, re-

vealing hidden structures or relationships within the dataset.
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- Decision trees: This can be used for both regression (predicting numerical val-

ues) and classification. Decision trees use a branching sequence of linked de-

cisions that can be represented with a tree diagram. One of the advantages

of decision trees is that they are easy to audit and validate, unlike the neural

network.

- Neural networks: This is the method that stands behind the machine learning

revolution of the past decade. It is a computational model inspired by biological

brain structures. It consists of interconnected layers of nodes or “neurons”

that process and transmit information. Starting with an input layer, data

passes through subsequent hidden layers and culminates in an output layer that

makes predictions. During training, the network adjusts its internal parameters,

known as weights w and biases, to better predict outcomes, enabling it to

capture complex data relationships. A concept central to “deep learning” is the

multi-layer feed-forward neural networks (FFNN), where there are l-layer fully

connected neural networks, so the function fw(Xi) is parameterized as follows:

fw(X) = g(l)(W (l)...g(2)(W (2)g(1)(W (1)Xi))), (3.4)

where W (l) ∈ Rk×m is the weight matrix of the l−th layer with k and m the

number of neurons in the input and hidden layer, respectively, and g is called the

activation function. Neural networks are good at recognizing patterns and play

an important role in applications including natural language translation, image

recognition, speech recognition, and image creation. Examples of deep learning

models include: Convolutional Neural Networks (CNN) [52], Recurrent Neu-

ral Networks (RNNs) [45], Long Short-Term Memory Networks (LSTMs) [40],

Restricted Boltzmann Machines (RBMs) [69], Generative Adversarial Networks

(GANs) [36] and Transformers [68].
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3.1 Machine Learning in Physics

The significant impact of machine learning in the industrial domain, coupled with

its vast technological implementations, has piqued the interest of scientists in its ca-

pabilities for fundamental research. It is been used in biology for predicting protein

structures - AlphaFold [41]. In chemistry, it is been used for molecular dynamics sim-

ulation, analytical chemistry, and computational chemistry [49]. Physics, notably, is

also exploring this realm. In fact, physicists are uniquely situated to benefit from

and contribute to machine learning. Many of the core concepts and techniques used

in machine learning, such as Monte-Carlo methods, and variational methods, origi-

nate from physics. Moreover, “energy-based models” inspired by statistical physics

form the foundation of many deep learning methods. Hence, modern physicists and

astronomers have been leading proponents of harnessing “big data” for their research

endeavors. For instance, experiments in LHC colliders such as CMS and ATLAS

generate petabytes of data per year. In astronomy, projects such as the Sloan Digi-

tal Sky Survey (SDSS) release and analyze hundreds of terabytes of data measuring

the properties of nearly a billion stars and galaxies. Researchers in these fields are

increasingly incorporating recent advances in machine learning and data science, and

this trend is likely to accelerate in the future [2][65]. Other areas of physics, such as

quantum computation [42] and condensed matter [8] [16], are increasingly exploring

the potential benefits of machine learning in their research.

High energy physics, which investigates the fundamental particles and forces of the

universe, has always been at the forefront of technological innovation and data analy-

sis. Machine learning has emerged as a critical tool in managing and making sense of

this data avalanche, as it offers a suit of techniques to confront these challenges and

a new perspective that motivates bold new strategies. The excitement is widespread,

touching both the theoretical and applied aspects of these fields, highlighting not

only the current, significant applications but also suggesting deep and transformative
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changes in the future. In experimental high-energy physics, physicists use machine

learning in a variety of tasks, including:

- Simulation and event generation: Simulating particle interactions is compu-

tationally expensive. Several generative machine learning methods are being

explored to generate synthetic data that matches real experimental data, po-

tentially reducing the need for exhaustive simulations [14] [59] [47] [50].

- Event and particle classification: Machine learning has been used to quickly

classify and filter events, allowing physicists to focus on the most promising

data. This is crucial for tasks like identifying rare decay processes or searching

for new particles [58] [25] [38].

- Particles identification: The capacity of machine learning algorithms to learn

from vast amounts of data and recognize intricate patterns makes them par-

ticularly suited for the challenges posed by particle identification in modern

experiments [20] [37].

- Anomaly detection: Since machine learning excels at identifying patterns, it

has been used to detect anomalies or rare events in the data, which could be

indicative of new physics beyond the current understanding [21] [23] [17].

Machine learning is also rapidly finding new uses in theoretical high-energy physics

and phenomenology, with the purpose of gaining as much insight into a physical sys-

tem or process as possible, reducing the need for time, and computational resources.

Examples of applying machine learning in these areas include:

- Parton model: Parton Distribution Functions (PDFs) is the probability of find-

ing a certain parton (like a quark or gluon) with a specific momentum fraction

inside a proton. These functions are essential in predicting the outcomes of
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high-energy collisions involving protons, like those at the Large Hadron Col-

lider (LHC). PDFs are derived by fitting Quantum Chromodynamics (QCD)

theoretical models to experimental data, particularly from deep inelastic scat-

tering. Recently, machine learning techniques have been introduced to aid in

navigating the complex, high-dimensional parameter spaces of the fits. By

leveraging machine learning, researchers can efficiently optimize these fits, po-

tentially uncovering subtleties in the proton’s internal structure and refining

our understanding of particle interactions [7] [26].

- Lattice QCD: It is a computational approach to studying Quantum Chromody-

namics (QCD). Lattice QCD calculations are performed by approximating the

QCD path integral by a Monte Carlo sum over gauge field configurations on

a discrete four-dimensional space-time. Machine learning has been integrated

into Lattice QCD to handle its high dimensional data and complex optimization

challenges [61] [32] [43].

- Search for new physics: Machine learning is reshaping the search for new physics

models by its adeptness at analyzing complex and vast datasets. Its proficiency

in pattern recognition can unveil anomalies suggesting deviations from estab-

lished physics, while its capability for anomaly detection can spotlight rare

events indicative of phenomena beyond the Standard Model [10] [48] [22] [31].

- Constraining Effective Field Theories (EFTs): EFTs provide a framework for

describing physics at a given energy scale while integrating out higher energy

details, often coming with a plethora of parameters. Machine learning assists

in efficiently exploring this vast parameter space, identifying regions consistent

with experimental data. By rapidly comparing EFT predictions with observa-

tional data, machine learning facilitates the optimization of these parameters

and tightens constraints, aiding physicists in narrowing down plausible scenarios
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and improving our understanding of fundamental interactions [12] [3] [34].

- Symbolic and numerical calculations: Machine learning offers tools to auto-

mate and optimize high-energy calculations. By recognizing patterns and mak-

ing intelligent predictions, Machine learning algorithms can significantly re-

duce the computational overhead, making complex symbolic computations more

tractable and paving the way for deeper insights into particle interactions and

behaviors [4] [27] [13] [54] [64] [5].

- Symbolic regression and models discovery: Symbolic regression is a powerful

tool for model discovery and equation formulation. Symbolic regression, which

involves finding mathematical expressions that best fit a given dataset, allows

physicists to uncover potential underlying equations or relationships in their

data. Machine learning can automatically sift through vast spaces of math-

ematical forms, efficiently pinpointing those that best represent the observed

phenomena. This capability not only aids in validating established theories but

also paves the way for the potential discovery of new relationships or conserva-

tion laws within the realm of high-energy interactions [70] [15] [53] [29].
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Chapter 4 Method

4.1 Sequence to Sequence Models

A Sequence-to-sequence (seq2seq) model is a machine learning model that is designed

for tasks involving mapping an input sequence of symbols to an output sequence. It

is a pivotal development that has played a significant role in Natural Language Pro-

cessing (NLP), which has revolutionized various tasks including machine translation,

text summarization, speech recognition, and more. The foundations of seq2seq mod-

els can be traced back to the development of recurrent neural networks (RNNs) in

the 1980s [45]. RNNs, with their ability to process sequential data by maintain-

ing hidden states, were instrumental in modeling sequences for various tasks, and in

2007, they showed great success in speech recognition tasks [33]. The breakthrough

for seq2seq models came with the introduction of the Encoder-Decoder architecture

in 2014 [19]. This architecture consisted of two main components: an encoder net-

work that encodes the input sequence into a fixed-length vector representation, and

a decoder network that generates the output sequence from this representation. This

architecture has revolutionized machine translation with the introduction of the Long

Short-Term Memory (LSTM) networks [40]. The Encoder-Decoder architecture was

a significant step forward; however, its limitations when dealing with long sequences

were addressed with Attention Mechanisms in 2014 [6]. Attention mechanisms al-

lowed the decoder to focus on specific parts of the input sequence while generating

the output, significantly improving the model’s performance on long sequences and

complex tasks. In 2017, Vaswani et al [68] introduced the transformer architecture,

which further improved the efficiency and parallelization of seq2seq models, making

them highly scalable and suitable for large-scale tasks.
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4.2 Transformer Model

The transformer model was introduced in 2017 in a paper titled “Attention Is All

You Need” by Ashish Vaswani et al. of the Google Brain team [68]. It represents a

groundbreaking paradigm shift in the field of natural language processing and ma-

chine learning. This architectural innovation revolutionized the way we approach

sequence-based tasks by eliminating the need for recurrent neural networks (RNNs)

and relying instead on a novel, attention-based mechanism. The Transformer’s self-

attention mechanism allows it to capture complex dependencies and relationships

within sequences, making it highly effective in a wide range of applications, from ma-

chine translation and text summarization to question-answering systems, language

generation, biological sequence analysis and drug discovery.

As sequence-to-sequence (seq2seq) transformer-based model has been applied in

many areas of science; the most relevant and interesting ones are the application

in symbolic mathematics and physics, which represents a cutting-edge approach,

leveraging deep learning to tackle complex computational challenges. These mod-

els, which have achieved remarkable success in natural language processing, are now

being adapted to understand and generate mathematical expressions, manipulate

symbols, and solve mathematical and physical problems. Examples of recent works

in this area:

- The transformer model achieves state-of-the-art performance on various sym-

bolic mathematics tasks, including integration, solving differential equations,

and simplifying expressions. In the paper ’Deep Learning for Symbolic Mathe-

matics’ [51], the authors, Lample and Charton demonstrate that deep learning

models can not only match but also surpass the performance of traditional

symbolic computation systems. This model was able to predict correctly the

symbolic solutions of integrals and found solutions to some problems that could
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not be completed using the the standard symbolic mathematics systems within

a time limit orders of magnitude longer than the model execution time. Also,

pre-trained transformer models achieved excellent results [56] in symbolic cal-

culus problems.

- Transformers models can perform linear algebra numerical calculations with

high accuracy [18]. This includes matrix transposition, addition, multiplication,

eigenvalues and vectors, singular value decomposition, and inversion.

- Transformer models have also been used to infer the recurrence relation of

underlying sequences of numbers [24]. The authors used a transformer model

to successfully find symbolic recurrence relations given the first terms of the

sequence.

- Transformer models have also been used for symbolic regression, which is the

task of identifying a mathematical expression that best fits a provided dataset

of input and output values [67].

- In physics, the transformer model has been used to simplify polylogarithmic

functions, which appears in loop calculations in high energy physics [27].

4.2.1 Transformer Architecture

The transformer model consists of two parts: encoder and decoder. The encoder

maps an input sequence to a numerical vector in a d -dimension vector space in a

process called embedding, which allows words with similar meanings to have a similar

representation. Then, the model encodes the relative position of each word in the

sequence, an operation referred to as positional encoding that has the same dimen-

sion d. The position pos is encoded in a sequence using a combination of sin and

cos functions (alternating these functions for each dimension i in the d -dimensional
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Figure 4.1: Transformer Architecture. (From: ”Attention Is All You Need” by Ashish
Vaswani et al. [68])
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embedding vector) as follows:

PE(pos,2i) = sin (
pos

10000
2i
d

)

PE(pos,2i+1) = cos (
pos

10000
2i
d

)

That is, each dimension of the positional encoding corresponds to a sinusoid. The

wavelengths form a geometric progression from 2π to 2π · 10000· The positional

encodings have the same dimension d as the embeddings, so that the two can be

summed. Next, these vector enter the encoder block, which has two main compo-

nents: the multi-head self attention mechanism and the position-wise fully connected

feed-forward network. There is also a residual connection around each of the two sub-

layers, followed by layer normalization. The multi-head self attention, allows each

position in the input sequence to attend to all positions in the input sequence. It

uses three vectors for each word: Query (Q), Key (K), and Value (V). The attention

score is computed using the formula:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (4.1)

where dk is the dimension of the key vectors. The scaling factor
√
dk is used to prevent

the dot product from growing too large. The model uses multiple sets of Q, K, V to

capture information from different representations. Then, the results from different

heads are concatenated and linearly transformed:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O, (4.2)

where:

headi = Attention(QWQ
i , KW

K
i , V W

V
i ). (4.3)

The projections are parameter matrices: WQ
i ∈ Rd×dK , WK

i ∈ Rd×dK , W V
i ∈ Rd×dK ,

and WO ∈ Rhdv×d. Next, a fully connected feed-forward network is applied, which

consists of two linear transformations with a ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4.4)

45



While the linear transformations are the same across different positions, they use

different parameters from layer to layer.

The decoder is like the encoder, but it has an additional sub-layer to perform multi-

head attention over the encoder’s output, and it has a Masked Multi-Head Self At-

tention Mechanism to prevent attending to future tokens. During the training of the

model, the decoder takes the output vector from the encoder, which encodes infor-

mation about the input sequence to the encoder, together with the encoded target

sequence one token at a time and outputs a sequence also one token at a time.

In this dissertation we describe an in-depth study of the application of transformer

model to the symbolic calculation of squared amplitudes. We begin with the data

preparations and the choice of hyperparameters. This is followed by the presentation

of the results which followed by a discussion and possible future directions.
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4.3 Data Generating

As in all supervised machine learning tasks, we need enough data to train the model.

We use the symbolic computation program MARTY [66] to generate expressions for

possible interactions in quantum electrodynamics (QED), the theory of the electro-

magnetic force, quantum chromodynamics (QCD), the theory of the strong forces,

and the electroweak theory (EW). For our proof-of-concept, and due to resource limi-

tations, we restrict the scope to 2-to-2 and 2-to-3 particles at tree-level processes, and

2-to-2 at loop-level processes. All interactions involving off-shell and on-shell parti-

cles, anti-particle, and gauge bosons are included. Since it is possible for different

amplitudes to yield the same squared expressions, we include such amplitudes in our

dataset. An example of expressions of the amplitudes iM and squared amplitudes

|M|2 of a process of two incoming electrons e(p1) and e(p2) scatter into two electrons

e(p4) and e(p5) and a photon γ(p3) are shown in Fig. 4.2

Figure 4.2: Feynman diagram, amplitude, and squared amplitude expression (without
simplification) for the ee→ eeγ scattering process produced by MARTY
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We consider two approaches:

1. Mapping the input (amplitude or diagram) to the entire squared

amplitude expression

input → output

2. Mapping the input (amplitude or diagram) to part of the squared

amplitude expression, that is, breaking the squared amplitude into n in-

dependent parts, and mapping the input to one part at a time, so the model

processes each part independently. By doing this, we increase the number of

data elements by a factor of n.

input+"part 1" → output 1

input+"part 2" → output 2

input+"part 3" → output 3

....

input+"part n" → output n

The advantage we gain from doing this segmentation is making the mapping

easier as the output gets simpler and shorter, which helps improve the perfor-

mance of the model. In practice, this segmentation would be beneficial if one

is interested in certain orders of the squared amplitude, like when putting con-

straints on the observables in effective field theories (EFTs). Additionally, this

way of segmenting the squared amplitude is general and it might be necessary

to apply it when we go to more final states or higher order, where the squared

amplitude expression becomes excessively long. However, the downside of using

this approach is that the data size will be large. More details of this approach

are in the next section.
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Figure 4.3: Feynman diagram written as a sequence for the ee → eeγ scattering
process produced by MARTY

For each one of these approaches, there are two tasks:

1. Mapping the amplitude to the squared amplitude: this task is restricted

to tree-level datasets only.

2. Mapping the Feynman diagram (written as a sequence as shown in

Fig 4.3 ) to the squared amplitude: this task is applied to all datasets

(tree-level and loop).

The reason for the second task is that the Feynman diagram sequence expression

has a short and compact form compared to the amplitude which can be very long

and complicated, so using the Feynman diagram as input makes the model smaller.

All loop datasets are represented in Feynman diagrams only since the amplitude in

loop interaction tends to be longer than what our model can take. Another notable

advantage of this task is the Feynman diagram can be written by hand, if desired,

without the need for a domain-specific tool to construct the amplitude.
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4.4 Data Preparation

4.4.1 Simplifying squared amplitude expressions

All squared amplitude expressions are simplified with the Python symbolic mathe-

matics module SymPy [55]. All squared amplitudes can be written in a general form

consisting of a numerator and denominator. The numerator is a polynomial in the

particle masses m(p) or in v (the vacuum expectation value) with even powers, and

the coefficients are functions of masses of other particles m(p), momenta p(j), v, and

the electroweak mixing angle θW . The denominator is also a function of masses m(p),

momenta p(j), v, and the electroweak mixing angle θW . The squared amplitude can

be written as follows:

Squared amplitude =
a0m

0
(p) + a2m

2
(p) + a4m

4
(p) + ...+ anm

n
(p)

D(m(p), p(j), v, θW )
, (4.5)

or:

Squared amplitude =
a0v

0 + a2v
2 + a4v

4 + ...+ anv
n

D(m(p), p(j), v, θW )
, (4.6)

where an = f(m(p), p(j), v, θW ), j = {1, 2, 3, 4, 5}, and p = {e, µ, τ, u, d, s, t, c, b, h}.

Knowing the general form of the output makes us able to represent the squared

amplitude in different ways that are suitable for machine learning, as it is important

to have a short and simple representation. Therefore, for the first task (considering the

whole squared amplitude), we put the factors (masses or v) first, then the coefficients,

and finally the denominator, as the following:

Squared amplitude = [{m0
(p),m

2
(p), ...,m

n
(p)}], [{a0, a2, ..., an}], [D] (4.7)

This way of writing the squared amplitude has several advantages:

• Structured expressions can facilitate more effective learning by making it easier

for the seq2seq model to capture relevant patterns and relationships.
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• Making the expression follow one structure makes them more interpretable for

humans, enabling easier inspection and understanding of the data.

• In this structure, missing parentheses or operand tokens will not affect the whole

expression making it mathematically meaningless. It affects only one term in

the expression.

• This structure may help in scalability and extrapolation when one extrapolates

to more final-state particles.

Below is an actual example of squared amplitude written in this form for the ee→ eeγ

scattering process:

where sij = pi · pj.

For the second task (breaking the squared amplitude into parts), we split all squared

amplitude into n parts based on the highest possible order of the polynomial, because

it is possible to know what the highest order of the dataset by knowing the Feynman

rules and the number of particles in the process, and consider the denominator as a

part too. For instance, the highest order in 2-to-3 QED theory is m6
(p), so, we break

the squared amplitude into 5 parts: a part for m0
(p) with its coefficient a0, a part for

m2
(p) with its coefficient a2, a part for m4

(p) with its coefficient a4, a part for m6
(p) with

its coefficient a6, and the last one is for the denominator D. If the squared amplitude

has no particular order, like no m6
(p) for example, we put “zero”.

4.4.2 Tokenization

There are many choices for making the tokenizations, and each choice has advantages

and disadvantages. For the squared amplitude, we could tokenize it by symbols (like

me or p12), by terms (like 4 ∗m2
e ∗ p12.p34), or by characters. Tokenizing by symbol
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or character makes the expression very long, which is not preferable, and tokenizing

by term, makes the number of tokens very large and there is a chance of losing

the generality. So, we choose to tokenize by each mass, product of momenta, weak

mixing angle for EW, and numerical factor (for example, 4 ∗m2
e ∗ p12.p34 ∗ sin θW is

four tokens) as there are a finite number of momenta products consistent with the

physical dimension (in powers of mass) and conservation laws. For squared amplitudes

coming from loop interactions, there are additional symbols corresponding to the n-

point function integrals that can be evaluated numerically with other tools such as

LoopTools [39]. The amplitudes are tokenized by operators (tensors) and their indices

in Fig. 4.2, while the diagrams are tokenized by particle label (name and momentum)

and by vertex number as shown in Fig. 4.3. For practical computational reasons, we

exclude expressions longer than 264 tokens after the simplification, which excludes

5%, 26% and 12% of all QED, QCD and EW tree-level expressions, respectively. For

the loop interaction, we exclude expressions longer than 500, which excludes 56%, 51%

and 24% of all QED, QCD and EW loop expressions. The data are split into three

sets: training, validation and test, 70%, 15% and 15%, respectively. Figure 4.4 shows

the sequence length for the dataset of the first task (amplitude-squared amplitude).

We perform the tokenization, that is, the assignment of an integer to each symbol

and the padding of sequences to make them of equal length using torchtext [60], so

each sequence is then converted to a vector built from these integers.
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Figure 4.4: Sequence distribution of amplitudes and squared amplitudes
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4.4.3 Model and Hyper-parameters:

The transformer model is implemented using Pytorch 2.0 [60] without structural

modifications. The model has 1−2 layers and 8 attention-heads, with 512 embedding

dimensions and 2048 latent dimensions. We use cross-entropy as the loss function,

the Adam optimizer [46] with a learning rate of 10−4. For the batch size, we used

64 for QCD and QED loop, 128 for QED, QCD and EW (2-to-2), and 512 for EW

(2-to-3) and EW loop. The training was performed for 30 epochs for EW (2-to-3)

due to the fact that we have a limited time for training (24 hours), 100 for QED and

QCD at tree-level and loop, and 50 for EW loop. The training was performed on four

NVIDIA A100 Tensor Core GPUs, which took about 2− 24 hours.
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Dataset Number of Tokens Maximum Sequence Length

QED (amplitude) input: 933 input: 264
2-to-2 & 2-to-3 output: 1717 output: 256

QCD (amplitude) input: 2387 input: 251
2-to-2 & 2-to-3 output: 1971 output: 250

QED (diagram) input: 90 input: 12
2-to-2 & 2-to-3 output: 2469 output: 196

QCD (diagram) input: 68 input: 25
2-to-2 & 2-to-3 output: 2749 output: 255

EW (amplitude) input: 922 input: 210
2-to-2 output: 2797 output: 195

EW (diagram) input: 202 input: 19
2-to-2 output: 3820 output: 200

EW (amplitude) input: 1449 input: 222
2-to-3 output: 7829 output: 253

EW (diagram) input: 250 input: 28
2-to-3 output: 7855 output: 255

QED (diagram) Loop input: 238 input: 16
2-to-2 output: 3384 output: 498

QCD (diagram) Loop input: 152 input: 16
2-to-2 output: 5479 output: 362

Table 4.1: Number of tokens and sequence length for dataset in the first approach
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Chapter 5 Results

5.1 Accuracy Metrics

We examined the accuracy of our model by taking a random sample of 500 ampli-

tudes or diagrams (from the test set) that have not been used in the training of the

transformer model and predicting their squared amplitudes (or part of the squared

amplitudes for the second approach). We used two distinct metrics to measure the

accuracy of our model:

1. Sequence Accuracy: The percentage of predicted symbolic expressions that

identically match the correct expression. That is, each predicted token is cor-

rect and in the right location.

2. Token Score: Ameasure of the number of tokens (symbols) predicted correctly

in the correct location in the sequence. We define a token score measure:

Token Score =
nc − nex

nact

× 100%,

where nc is the number of tokens predicted correctly, nex is the number of extra

tokens that the model predicts (if any), and nact is the number of tokens in the

actual sequence. This metric might initially appear impractical, as our ultimate

goal is to obtain a correct expression, and a single incorrect token can render

the prediction useless. However, this metric is valuable in assessing the model’s

proximity to the correct answer, which is useful in determining the potential

benefits of further experimentation or fine-tuning. Additionally, it provides

insights into the form and structure of the output, which can be particularly

useful in certain scenarios.
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5.2 Model Performance Results

5.2.1 First Approach

Sequence Accuracy:

The results of sequence accuracy for the entire squared amplitude are shown below

in the table. 5.1:

Training Sample process Training Size Sequence Accuracy

QED (amplitude) 2-to-2 & 2-to-3 213K 98.6%

QCD (amplitude) 2-to-2 & 2-to-3 205K 97.4%

EW (amplitude) 2-to-2 236K 94.8%

EW (amplitude) 2-to-3 7M 94.4%

QED (diagram) 2-to-2 & 2-to-3 244K 99.0%

QCD (diagram) 2-to-2 & 2-to-3 250K 87.7%

EW (diagram) 2-to-2 258K 93.2%

EW (diagram) 2-to-3 7M 82.3%

QED (diagram) 2-to-2 (Loop) 13K 68.9%

QCD (diagram) 2-to-2 (Loop) 5.5K 60.0%

Table 5.1: Model performance on the first approach - sequence accuracy

57



Token Score:

The results of the token score for the entire squared amplitude are shown below in

the table. 5.2:

Training Sample process Training Size Token Score

QED (amplitude) 2-to-2 & 2-to-3 213K 99.7%

QCD (amplitude) 2-to-2 & 2-to-3 205K 98.7%

EW (amplitude) 2-to-2 236K 96.1%

EW (amplitude) 2-to-3 7M 97.4%

QED (diagram) 2-to-2 & 2-to-3 244K 99.7%

QCD (diagram) 2-to-2 & 2-to-3 250K 90.0%

EW (diagram) 2-to-2 258K 95.8%

EW (diagram) 2-to-3 7M 90.9%

QED (diagram) 2-to-2 (Loop) 13K 80.0%

QCD (diagram) 2-to-2 (Loop) 5.5K 72.3%

Table 5.2: Model performance on the first approach - token accuracy.
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5.2.2 Second Approach

Sequence Accuracy:

The results of sequence accuracy for each part of squared amplitude are shown in the

tables below:

Sequence Accuracy
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5

QED (amplitude) 1M 100% 99.4% 99.3% 99.4% 99.9%
(2-to-2 & 2-to-3)

QED (diagram) 1M 100% 99.5% 99.0% 98.9% 98.6%
(2-to-2 & 2-to-3)

QCD (amplitude) 1M 100% 99.5% 98.8% 98.4% 99.4%
(2-to-2 & 2-to-3)

QCD (diagram) 1M 96.0% 92.4% 88.0% 90.0% 91.0%
(2-to-2 & 2-to-3)

Table 5.3: Model performance on the second approach for QCD and QED - sequence
accuracy

Sequence Accuracy
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

EW (amplitude) 1.4M 99.9% 99.4% 98.4% 98.6% 94.9% 98.7%
(2-to-2)

EW (diagram) 1.4M 99.9% 99.7% 99.4% 99.4% 96.7% 99.8%
(2-to-2)

Table 5.4: Model performance on the second approach for EW (2-to-2) - sequence
accuracy
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Sequence Accuracy
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5

EW (amplitude) 1st generation 8M 100% 100% 99.7% 99.6% 95.9%
(2-to-3)

EW (diagram) 1st generation 8M 100% 100% 100% 98.8% 95.8%
(2-to-3)

Table 5.5: Model performance on the second approach for EW (2-to-3) - sequence
accuracy (1)

Sequence Accuracy
Training Sample Size Part 6 Part 7 Part 8

EW (amplitude) 1st generation 8M 76.8% 75.0% 99.2%
(2-to-3)

EW (diagram) 1st generation 8M 76.7% 69.8% 99.0%
(2-to-3)

Table 5.6: Cont. Model performance on the second approach for EW (2-to-3) -
sequence accuracy (2)

Sequence Accuracy
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

QED (diagram) Loop 128K 95.2% 88.5% 84.1% 78.4% 86.9% 97.1%
(2-to-2)

QCD (diagram) Loop 40K 91.0% 82.0% 72.0% 71.2% 73.2% 91.5%
(2-to-2)

Table 5.7: Model performance on the second approach for QCD and QED at loop-
level - sequence accuracy
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Sequence Accuracy
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5

EW (diagram) Loop 1.7M 99.0% 100% 98.8% 98.4% 94.3%
(2-to-2)

Table 5.8: Model performance on the second approach for EW (2-to-2) at loop-level
- sequence accuracy (1)

Sequence Accuracy
Training Sample Size Part 6 Part 7 Part 8 Part 9 Part 10

EW (diagram) Loop 1.7M 95.9% 90.0% 96.5% 97.9% 85.7%
(2-to-2)

Table 5.9: Cont. Model performance on the second approach for EW (2-to-2) at
loop-level - sequence accuracy (2)
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Token Score:

The results of the token score for each part of the squared amplitude are shown below

in the tables:

Token Score
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5

QED (amplitude) 1M 100% 99.6% 99.5% 99.5% 99.8%
(2-to-2 & 2-to-3)

QED (diagram) 1M 100% 99.9% 99.6% 99.4% 98.9%
(2-to-2 & 2-to-3)

QCD (amplitude) 1M 100% 99.8% 99.5% 99.3% 99.6%
(2-to-2 & 2-to-3)

QCD (diagram) 1M 97.4% 95.5% 92.1% 92.4% 94.9%
(2-to-2 & 2-to-3)

Table 5.10: Model performance on the second approach for QED and QCD - token
score

Token Score
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

EW (amplitude) 1.4M 99.9% 99.6% 97.9% 98.2% 97.8% 99.5%
(2-to-2)

EW (diagram) 1.4M 99.9% 99.7% 99.4 99.4% 96.7% 99.8%
(2-to-2)

Table 5.11: Model performance on the second approach for EW (2-to-2) - token score
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Token Score
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5

EW (amplitude) 1st generation 8M 100% 100% 99.9% 99.7% 97.2%
(2-to-3)

EW (diagram) 1st generation 8M 100% 100% 100% 99.4% 97.4%
(2-to-3)

Table 5.12: Model performance on the second approach for EW (2-to-3) - token score
(1)

Token Score
Training Sample Size Part 6 Part 7 Part 8

EW (amplitude) 1st generation 8M 87.5% 86.3% 99.8%
(2-to-3)

EW (diagram) 1st generation 8M 87.2% 82.4% 99.7%
(2-to-3)

Table 5.13: Cont. Model performance on the second approach for EW (2-to-3) -
token score (2)

Token Score
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

QED (diagram) Loop 128K 96.3% 90.0% 90.0% 86.3% 93.4% 98.6%
(2-to-2)

QCD (diagram) Loop 40K 93.5% 88.8% 79.8% 78.8% 81.5% 96.4%
(2-to-2)

Table 5.14: Model performance on the second approach for QED and QCD at loop-
level - token score
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Token Score
Training Sample Size Part 1 Part 2 Part 3 Part 4 Part 5

EW (diagram) Loop 1.7M 99.8% 100% 99.2% 98.5% 96.7%
(2-to-2)

Table 5.15: Model performance on the second approach for EW at loop-level - token
score (1)

Token Score
Training Sample Size Part 6 Part 7 Part 8 Part 9 Part 10

EW (diagram) Loop 1.7M 97.3% 94.0 97.6% 98.8% 93.3%
(2-to-2)

Table 5.16: Cont. Model performance on the second approach for EW at loop-level
- token score (2)

Table 5.1 and 5.2 summarize the performance of our models for the first ap-

proach. The model achieves a sequence accuracy between 94.4% to 98.6% for the

first task (mapping the amplitudes) at tree-level, and between 83.2% to 99.0%

for the second task (mapping the diagrams) at tree-level. For the token score, the

model achieves between 97.4% to 99.7% for the first task at tree-level, and be-

tween 90% to 99.7% for the second task. For the loop-level dataset, the sequence

accuracy is between 60% to 68% and a token score between 72.3% to 80.0%.

Tables 5.3, 5.4, 5.5, and 5.6 summarize the performance of our models for the sec-

ond approach (mapping to parts of the squared amplitude), the model achieves a

sequence accuracy of almost 100% for the first three parts and the last part (the

denominator) at tree-level (except the QCD diagram). The plots in Fig. 5.3 provide

a comprehensive overview of the results for the second approach.
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Figure 5.1: A visualization of the validation loss and accuracy during training
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Figure 5.2: A visualization of the validation loss and accuracy during training
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Figure 5.3: Sequence accuracy results for each part in the second approach
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Figure 5.4: Sequence accuracy results for each part in the second approach
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Chapter 6 Discussion

6.1 Overview

The results in the previous chapter provides a detailed account of our work, setting

the stage for a thorough and thoughtful discussion. It has been demonstrated in

the previous chapter that the model can “do the algebra” for such a mathematical

problem as complicated as squaring an amplitude, averaging and summing over the

internal degrees of freedom of particles, and manipulating the whole result into a

meaningful form. The time for inference, on average, is less than one second, which is

similar to the time taken by MARTY for most of the dataset, but in some data in EW

(2-to-3) and QCD, the model is up to 6 orders of magnitudes faster than MARTY

for the same calculations. This proves that the scalability of our model is much better

than MARTY. The accuracy of the sequence varies within specific ranges for different

tasks in our analysis. For the first task, which involves mapping amplitudes at the

tree-level, the sequence accuracy falls between 94.4% and 98.6%. In contrast, for

the second task, where we map diagrams also at the tree-level, the accuracy ranges

from 83.2% to 99.0%. This discrepancy highlights that the second task exhibits lower

accuracy compared to the first one, possibly due to a lack of sufficient information

in the input data. In particular, the difference in accuracy in quantum chromody-

namics theory (QCD) can be attributed to the inherent complexity of the theory

itself, which involves color factors and gluon self-interactions, elements not present

in quantum electrodynamics (QED), for example. As a result, expressing the input

data in the form of Feynman diagrams alone may not be adequate in QCD, primarily

because the number of input tokens in Feynman diagrams is significantly smaller. A

similar pattern is observed in the case of electroweak interactions (EW) for 2-to-3

processes, where accuracy is lower when compared to models that rely on amplitude
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sequence information. However, in the case of QED and EW 2-to-2, the dataset can

be effectively represented by Feynman diagrams, and this representation seems to

capture the complexity adequately. For the loop-level dataset, the sequence accuracy

ranges from 60% to 68%, and the token score falls between 72.3% and 80.0%. This

lower accuracy is expected due to the limited size of the dataset and the fact that

the input consists solely of Feynman diagrams, which may not fully encompass the

intricacies of the mapping process.

In the second approach, which involves mapping to parts of the squared amplitude,

the model achieves a sequence accuracy of nearly 100% for the first three parts and

the last part (the denominator) at the tree-level, except for the QCD diagram. In

the case of EW at 2-to-3 processes, the accuracy drops to 70% for some parts beyond

the third part. This decrease in accuracy is anticipated because we trained the model

using particles from the 1st generation exclusively, due to resource limitations. We

anticipate improved performance when incorporating more particles for the 2nd and

3rd generations.

In regard to the model’s ability to extrapolate, specifically, its capability to predict

squared amplitude for processes involving a greater number of final state particles

without comprehensive prior training, we have found some promising evidence. We

trained the model on electroweak (EW) 2-to-2 data (285K), supplemented by an ad-

ditional sample of 5K from EW 2-to-3 data. When testing this model on amplitudes

from EW 2-to-3, it achieved a sequence accuracy of 32.4% (compared to a sequence ac-

curacy of 2.4% when training only on those 5K). This indicates that including a small

sample from data with more final state particles, along with the current data, enables

the model to combine knowledge from both and more accurately predict outcomes

involving more final state particles. This also implies a reduced need for extensive

data generation as we go to more final-state particles. While this current result might

seem low, it suggests significant potential for improvement and development. An im-
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provement could be accomplished in the data representation, such as representing the

squared amplitude in a format that is more suitable for extrapolations. Furthermore,

adapting the model to accommodate additional terms arising from extrapolating to

more final-state particles could be beneficial. This would involve altering the mass

dimensions and modifying the loss function and inference process accordingly.

6.2 Remarks:

In the remarks that follow, we aim to extract key insights, address the implications

of our work, and highlight potential directions for future research that arise from our

study:

- We observed that the model’s accuracy is influenced by three key factors: data

complexity, data size, and sequence length. While quantifying data complex-

ity directly may be challenging, we can draw insights from several indicators,

including the total number of tokens, the presence of longer sequences in both

input and output and the distribution of data sequence lengths. These factors,

coupled with our understanding of the inherent complexity of the underlying

theory, as previously mentioned, can collectively shed light on the issue of com-

plexity. In loop dataset, all of these three factors manifest and contribute to

the lower accuracy observed. As there is a strong dependence on data set size,

we expect that employing a larger training dataset will likely yield improved

performance. There are several ways to address the issues of data complexity

including adding more details about the interaction, so the input data should

encompass a comprehensive range of features, taking into consideration all com-

plexities of interactions. Notably, considering the amplitude as an input, as

opposed to the diagram, appears to have a positive impact, particularly in the

case of QCD. Regarding data size and sequence length, we present empirical

evidence in Table 6.1 and Table 6.2 demonstrating the positive effects of in-
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QCD Train on: 1/5 data 1/3 data 1/2 data full data (235K)
Sequence Accuracy: 82.0% 91.0% 94.0% 97.4%

QED Train on: 1/5 data 1/3 data 1/2 data full data (251K)
Sequence Accuracy: 89.6% 95.8% 98.0% 98.6%

Table 6.1: Model performance on different sizes of QCD and QED dataset

QCD Max. sequence length: 170 tokens 195 tokens full length
Sample size: 126K 137K 235K

Sequence Accuracy: 99.6% 98.6% 97.4%

QED Maximum sequence length: 170 tokens 185 tokens full length
Sample size: 218K 237K 251K

Sequence Accuracy: 99.0% 98.8% 98.6%

Table 6.2: Model performance on different sequence lengths of QCD and QED dataset

creasing data size and reducing sequence length on model accuracy. However,

challenges arise in datasets like QED and QCD loop datasets, where both data

size and data length pose issues. The data size issue can be solved by adding

more processes from theories beyond the Standard Model (BSM) which exposes

the model to a greater variety of examples, potentially enhancing its ability to

handle variations in data size. For addressing longer sequence lengths, special-

ized transformer model variants that exhibit better scalability with respect to

sequence length, as demonstrated in [9], could be explored. However, we leave

these considerations for future research. Additionally, fine-tuning the sequence

length can be accomplished through adjustments to the tokenization process.

- The effect of representing the squared amplitude in a form that is concise, uni-

fied, and easily tokenizable is important for efficient and optimal performance.

As an example, if we were to refrain from the simplification of the squared am-

plitude, as detailed in Section 4.4.1 and instead directly adopt it in its original
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form from the source, MARTY, the resulting model becomes excessively large,

leading to a decline in performance. Similarly, it is advisable to maintain uni-

formity in the representation of the amplitude, at least up to a level where it

adequately encapsulates the underlying complexity.

- One of the most important issues encountered in the project is data imbalance,

a common issue in many machine learning, which means that the distribution

of classes or categories is not roughly equal or balanced. In other words, some

classes or categories have significantly more examples (data points) than others,

leading to an unequal representation of different classes in the dataset. In the

context of this project, the imbalance manifests in the varying frequencies of

expression forms of the squared amplitude expressions, like the number of or-

ders illustrated in 4.7, which means some forms appear more often than others.

Consequently, some expression forms occur more frequently than others. This

inherent issue spans across all the theories under consideration, primarily due to

the fact not every interaction is physically allowed, resulting in the prevalence of

certain interactions with similar (albeit not exact) forms over others. Address-

ing data imbalance is a critical consideration in machine learning, and existing

literature offers several strategies to mitigate this issue, including resampling,

synthetic data generation, and data augmentation. However, these approaches

may either be irrelevant or accompanied by disadvantages in the specific context

of this project. An alternative solution that shows promise involves expanding

the scope to encompass additional theories or interactions that are mathemati-

cally correct, even if they may not align with physical reality. By incorporating

these mathematically valid but potentially non-physical interactions into the

training dataset, we can expose the model to a broader array of examples that

share similar mathematical characteristics. This approach has the potential to

help mitigate the challenges posed by data imbalance and enhance the model’s
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Figure 6.1: Sequence length of squared amplitude parts

performance.

- The decline in accuracy in parts beyond the third one in EW 2-to-3 and loop

datasets can be primarily attributed to the increasing sequence length. As the

polynomial order decreases, the sequence tends to become longer. Figure 6.1

illustrates the maximum sequence length for each part. One potential solution

is to customize the loss function to place greater emphasis on these specific

parts during training.

In summary, these remarks highlight crucial factors influencing model accuracy, in-

cluding data complexity, size, and sequence length. We emphasize the importance of

representing the squared amplitude in a concise and uniform manner for efficiency and
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optimal performance. Data imbalance poses a significant challenge, and we explore

the inclusion of mathematically valid but non-physical interactions as a potential solu-

tion. Additionally, we pinpoint the accuracy decline in certain parts due to increasing

sequence lengths and suggest customizing the loss function to address this issue dur-

ing training. These insights inform strategies to enhance the model’s performance

and robustness in symbolic mathematics applications.
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6.3 Future Works

Having explored the applications of seq2seq models in symbolic calculations of squared

amplitude within the realm of high-energy physics, we have made significant strides

in enhancing our understanding of this complex domain. While our current research

has yielded valuable insights, several challenges and opportunities remain unexplored.

These areas represent fertile ground for future investigations. To continue pushing the

boundaries of high-energy physics and symbolic mathematics, it is imperative that we

embark on a journey of further exploration. Our work has laid the foundation, and

the path ahead is filled with exciting possibilities. In light of these considerations,

we turn our attention to potential avenues for future research. The following sections

will outline suggestions and strategies for advancing our understanding of symbolic

amplitude calculations in high-energy physics. Examples of future research directions

include:

Enhancing model performance: As we aim for a higher accuracy for the entire

prediction of the output, there are many directions one can explore:

- Exploring transformer variants: One of the foremost limitations lies in sequence

length; thus, exploring advanced transformer model variants that exhibit better

scalability with respect to sequence length would be of great importance as one

goes to final states with more particles or higher order the sequence length

becomes overly large. By identifying or developing transformer variants that

effectively handle these longer sequences, researchers can significantly enhance

the model’s performance and applicability.

- Including more data: The significance of data in achieving optimal performance

cannot be overstated. Researchers can explore various strategies to generate

additional data and examples to enrich the training dataset. This could involve

using theories beyond the Standard Model, or including additional theories or
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interactions that are mathematically correct, even if they may not align with

physical reality.

- Incorporate physical constraints: Many physical constraints within this task

have the potential to assist the model during both the training and inference

phases. This can be accomplished by developing a custom loss function that

directly incorporates the relevant physical principles.

- Enhancing sequence accuracy: While achieving higher accuracy for the entire

output is a primary objective, it’s crucial to develop methods and techniques

that ensure such accuracy consistently across various tasks and expressions.

Researchers can explore strategies such as multi-task learning or fine-tuning

approaches that specifically target sequence accuracy improvement.

- Improving data representation: The data representation is important in the

context of symbolic mathematics. Given the various ways expressions can be

written, it is essential to explore and refine data preprocessing techniques. Re-

searchers can investigate methods for standardizing and optimizing data rep-

resentation to ensure consistency and effectiveness in model training and infer-

ence.

Expanding the model: As our ultimate goal is to create a model that can be

practically employed for discovery, prediction, and reliability, requiring robust gener-

alization and effective extrapolation to accommodate a broader range of final-state

particles and orders, researchers have a multitude of avenues to explore, including:

- Integrating with the domain-specific programs: Combining machine learning

with traditional methods and taking advantage of both holds tremendous po-

tential. By integrating machine learning models with domain-specific programs

and techniques, researchers can leverage the speed and scalability advantages
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offered by machine learning, while still benefiting from the accuracy and preci-

sion inherent in traditional methods. A strategic approach involves a thorough

analysis of the domain-specific program’s algorithms to pinpoint bottlenecks

within the amplitude calculation process. Machine learning can then be ap-

plied at these specific junctures, such as during simplification, expansion, or

other transformations. This collaborative synergy holds the potential to propel

symbolic amplitude calculations to new heights of advancement.

- Multitasking model: When calculating the squared amplitude, numerous com-

plicated mathematical operations come into play, encompassing tasks like ampli-

tude simplification, Lorentz index contractions, color factor calculations, matrix

multiplications, Dirac algebra, and trace evaluations. It’s conceivable to gener-

ate examples for each of these operations and train the model to execute them

proficiently. By incorporating these auxiliary tasks alongside the primary ob-

jective of squaring the amplitude, there is potential for significant performance

and robustness improvements.

- Utilizing pre-trained models: The use of pre-trained models has emerged as

a state-of-the-art approach in various machine learning domains. Researchers

can explore the adaptation of pre-trained models to symbolic amplitude cal-

culations. Employing strategies such as fine-tuning and transfer learning, re-

searchers can exploit the wealth of knowledge encapsulated within these pre-

trained models. An intriguing avenue involves pre-training a multi-tasking

model specifically tailored to mathematical operations in high-energy physics.

This deliberate approach holds the promise of yielding substantial performance

improvements.

- Addressing the uncertainty: Developing methods for error analysis and uncer-

tainty quantification within symbolic calculations is essential for robust and
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reliable results. Researchers can explore techniques such as uncertainty esti-

mation and probabilistic modeling to gain insights into the model’s confidence

levels and identify potential sources of error. Ensemble methods, which com-

bine predictions from multiple models with different architectures, can also be

a valuable tool for addressing uncertainty.

These future research opportunities represent diverse avenues for advancing the field

of symbolic amplitude calculations in high-energy physics. Researchers can choose to

explore one or more of these directions based on their specific goals, resources, and

the evolving needs of the scientific community. Each avenue promises to contribute

to the ongoing progress in this fascinating and interdisciplinary field.
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6.4 Conclusion

In conclusion, we show the remarkable capacity of a symbolic deep learning model

to efficiently learn the mapping between particle interaction amplitudes and their

squares with a high level of accuracy. This novel approach significantly outpaces

traditional methods in terms of computational speed, despite the inherent complexity

of the mapping process. Our findings highlight the complex interplay of factors

influencing accuracy, with data size and sequence length emerging as key influencers.

While acknowledging the model’s limitations, the promising results obtained serve as

a catalyst for future endeavors aimed at further enhancing performance.
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