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Biogeochemistry of upland to 
wetland soils, sediments, and 
surface waters across Mid-atlantic 
and Great Lakes coastal interfaces
allison N. Myers-Pigg  1,2,34 ✉, Stephanie C. Pennington  3,34 ✉, Khadijah K. Homolka1,33, 
allison M. Lewis4, Opal Otenburg1, Kaizad F. Patel  5, Peter Regier1, Madison Bowe1, 
Maxim I. Boyanov  6,7, Nathan a. Conroy8, Donnie J. Day2, Cooper G. Norris5, 
Edward J. O’Loughlin6, Jesse alan Roebuck Jr.  1, Lucie Stetten  6, Vanessa L. Bailey5, 
Kenneth M. Kemner  6, Nicholas D. Ward  1,9 & EXCHaNGE Consortium*

transferable and mechanistic understanding of cross-scale interactions is necessary to predict how 
coastal systems respond to global change. Cohesive datasets across geographically distributed sites 
can be used to examine how transferable a mechanistic understanding of coastal ecosystem control 
points is. to address the above research objectives, data were collected by the EXploration of Coastal 
Hydrobiogeochemistry across a Network of Gradients and Experiments (EXCHaNGE) Consortium – a 
regionally distributed network of researchers that collaborated on experimental design, methodology, 
collection, analysis, and publication. The EXCHANGE Consortium collected samples from 52 coastal 
terrestrial-aquatic interfaces (TAIs) during Fall of 2021. At each TAI, samples collected include soils from 
across a transverse elevation gradient (i.e., coastal upland forest, transitional forest, and wetland soils), 
surface waters, and nearshore sediments across research sites in the Great Lakes and Mid-atlantic 
regions (Chesapeake and Delaware Bays) of the continental USA. The first campaign measures surface 
water quality parameters, bulk geochemical parameters on water, soil, and sediment samples, and 
physicochemical parameters of sediment and soil.

Background & Summary
The structure and function of coastal ecosystems vary considerably across relatively small spatial scales, result-
ing in dynamic hydrological and biogeochemical behaviors along the gradient of coastal upland, wetland, and 
surface water environments1,2. Insight into drivers of spatial heterogeneity can be elucidated by linking biogeo-
chemical data with ecosystem properties3,4, enabling scientific discovery and model parameterization, such as 
furthering mechanistic understanding of coastal ecosystems and improving uncertainty constraints of coastal 
models1,5.

Open access and interoperable coastal biogeochemical datasets are needed to predict how coastal systems 
will respond to global change3,6. The Great Lakes and Mid-Atlantic regions have a wealth of long-term monitor-
ing programs hosting open access datasets, such as the National Estuarine Research Reserve7, the Great Lakes 
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Wetland Monitoring Program8, and the Chesapeake Bay Program9, among others. However, the synthesis of 
existing data streams across traditional ecosystem and disciplinary boundaries is still relatively sparse1,5. Here, 
we describe datasets collected as part of EXCHANGE Campaign 1 (EC1), which establishes a baseline under-
standing of the chemical forms and distribution of carbon and nutrients across coastal terrestrial-aquatic inter-
face (TAI) research sites in the Great Lakes and Mid-Atlantic regions (Chesapeake and Delaware Bays) of the 
continental USA that can be utilized to conduct synthesis. EXCHANGE adds to existing efforts in these regions 
by developing a consortium of regional researchers interested in exchanging knowledge and information, with a 
molecular level focus that spans upland to aquatic domains, that can contribute to understanding of how coastal 
systems will respond to global change.

In the Fall of 2021, the EXCHANGE Consortium collected samples from 52 coastal terrestrial-aquatic inter-
faces (TAIs). At each of these TAI sites, the consortium collected soil samples from across a transverse elevation 
gradient, which included soils from coastal upland forests, transitional forests, and wetlands. The consortium 
also collected surface water and nearshore sediment samples adjacent to the transverse elevation gradient (Fig. 1). 
Samples collected from EC1 were analyzed for bulk geochemical parameters, bulk physicochemical parameters, 
organic matter characteristics, and redox-sensitive elements. These datasets are useful in evaluating the physic-
ochemical factors that drive spatial variations in the cycling of organic matter across coastal terrestrial-aquatic 
interfaces (TAIs). They also facilitate an understanding of the biogeochemical control points in coastal ecosys-
tems that can be assessed for their transferability across different coastal systems. Here, we describe version one 
(v1) of the key baseline datasets that are currently published open access10. We also describe additional datasets 
that will be published in subsequent versioning of the data package in the Supplementary Information.

Methods
Sampling and processing
Sampling design. The experimental design of EC1 was developed via workshops (following open science prin-
ciples11) from conception to data analysis and publication. Coastal researchers gathered virtually to design a spa-
tially distributed sampling campaign across Great Lakes and Mid-Atlantic regions (Fig. 1). The EC1 consortium 
collected surface waters, soils, sediments, and site level metadata using standardized sampling kits. Following 
sample collection, all sample kits were shipped to the Marine and Coastal Research Laboratory (Sequim, WA), 
part of Pacific Northwest National Laboratory.

Site metadata. At each site, the EXCHANGE consortium collected standardized site metadata, such as latitude, 
longitude, and type of water system (e.g., estuary, lake). Additional site metadata, such as elevation and soil type, 
were extracted from publicly available databases (e.g., GoogleEarth) using site coordinates.

Surface waters. Field-filtered water – using 0.22 µm Sterivex syringe filters – was collected in vials for dissolved 
organic carbon (DOC), total dissolved nitrogen (TDN), common dissolved ions, stable water isotopes, and 
several organic matter characterization methods. Samples were filtered into vials in the field and preserved by 

Fig. 1 EXCHANGE Campaign 1 sites were located in the Great Lakes and Mid-Atlantic Regions. 52 terrestrial-
aquatic interfaces were sampled, from uplands to nearby waters (lake, estuary, stream, river, etc) for surface 
soils, sediments, and water samples.

https://doi.org/10.1038/s41597-023-02548-7
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freezing or storing at 4 °C until analyzed, depending on the analyte (Table 1). A 125 mL amber HDPE bottle of 
unfiltered water was collected with no headspace for pH, oxygen-reduction potential (ORP), alkalinity, and 
conductivity measurements of the surface waters. Unfiltered surface water samples were also collected in 1 L 
acid-cleaned HDPE amber bottles for total suspended solids and filtered to 0.2 µm in the lab, within 48 hours 
of collection. Lab-filtered 1 L grab samples were extracted for several organic matter characterization methods 
(e.g., high-resolution mass spectrometry) using standard solid phase extraction (SPE) procedures12. The filtered 
samples were stored at 4 °C until SPEs were completed, within 2 weeks of sample collection. Briefly, SPE was per-
formed by passing one liter of sample through a 6 mL/1 g PPL SPE cartridge (Agilent PPL), after being acidified 
24 hours before extraction to a pH of 2. Samples were then eluted in LC-MS grade methanol and were stored at 
−20 °C until analysis. Additional analysis beyond those reported herein (e.g. common dissolved ions and stable 
water isotopes) will be performed on archived filtered waters or SPE extracts as appropriate for the analysis 
method, and appended to future versions of the data package10.

Soils. Surface soils (top 5 cm of soil profile) were collected from the three transect locations (upland, transition, 
and wetland) from each TAI site. Soils were collected as intact cores (using HYPROP sampling rings, 5 cm diam-
eter × 5 cm depth) and as surface grab samples (using 2.5 oz plastic (clear polypropylene) jars and plastic bags). 
The intact cores were refrigerated at 4 °C upon arrival to the laboratory. Subsamples of soil grabs samples were 
either immediately processed, frozen (−20 °C), or refrigerated, based on the analyses planned (Table 1). Frozen 
grab samples were freeze-dried, catalogued, and sieved to 5.6 mm before additional analyses (Supplementary 
Information; Figure S1; Table S1). Water retention curves, particle size analysis, X-ray absorption spectroscopy 
measurements, and any other additional analysis that will be performed will be appended to future versions of 
the data package (methods outlined in Supplementary Information)10.

Sediments. Surface sediments (i.e., top 5–10 cm of sediment) were collected into clear 2.5 oz polypropylene jars 
and frozen at −20 °C upon arrival for archival purposes. One full plastic bag of sediment was also collected for 
gravimetric water content (GWC) and was stored at 4 °C until analysis. Immediately upon arrival, subsamples from 
the sealed plastic bags were collected in minimal oxygen conditions and frozen for Fe X-ray absorption fine struc-
ture (XAFS) analysis. X-ray absorption spectroscopy measurements and analyses performed on sediment samples 
will be appended to future versions of the data package (methods outlined in Supplementary Information)10.

Surface water analyses
Common water quality measurements (pH, ORP, conductivity, alkalinity). Common water quality measurements 
(i.e., pH, ORP, conductivity, alkalinity) were performed on unfiltered surface water samples, within 24 hours of 
receiving. Samples were measured simultaneously for temperature, specific conductivity, oxidation-reduction 
potential, and alkalinity using a Mettler Toledo T7 auto-titrator equipped with an auto-sampler. Prior to starting 
each run and after every five samples, conductivity and pH sensors were checked with standards, and were recali-
brated if outside the acceptable tolerance (+/− 1% for conductivity, and +/− 0.05 for pH). Conductivity was cal-
ibrated with a 50,000 μS/cm (+/− 1%) solution to cover the salinity range represented by samples (0 to ~35 PSU). 
pH was calibrated using a three-point calibration curve (using calibration solutions of pH 4.01, 7.00, and 10.00).  
Alkalinity was determined by titration with 0.02 N HCl to an endpoint of pH 4.00, following standard United 
States Geological Survey (USGS) procedures13. All water quality variables underwent quality control to flag 
values outside of sensor analytical ranges.

Dissolved organic carbon and total dissolved nitrogen. Field-filtered samples were stored at 4 °C until analyzed 
for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN). DOC and TDN analyses were per-
formed simultaneously, within one week of sample collection on a Total Organic Carbon Analyzer (Shimadzu 

Sample 
type Collection

Storage 
Method

Additional preparation for storage  
or analysis Analyses performed

Soil & 
Sediment

Intact cores 
(soils only) 4 °C — Bulk density, water retention curves, particle size 

analysis

Grab samples

−20 °C Lyophilize, sieve Total carbon, total nitrogen, soil pH and 
conductivity, poorly crystalline iron

4 °C
Sub-sample in anoxic environment X-ray absorption spectroscopy

— Gravimetric water content

Water

Unfiltered grab 
samples 4 °C

— Water quality (pH, ORP, alkalinity, conductivity)

Filter in lab with GFF and then 0.2µm PES, 
filtrate run through solid phase extraction, 
extract stored at −80 °C

High-resolution mass spectrometry

GFF filter dried at 45 °C, then stored at 
room temperature in desiccator Total suspended solids

Filtered grab 
samples

−20 °C — Common dissolved anions and cations

4 °C —
Dissolved organic carbon, total dissolved 
nitrogen, colored dissolved organic matter 
absorbance and fluorescence, water isotopes

Table 1. Collection methods, storage protocols, laboratory processing, and analytes by sample type.

https://doi.org/10.1038/s41597-023-02548-7
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TOC-L). DOC was measured as the best 3 of 5 injections, after in-line acidification with 1:12 hydrochloric acid, 
as non-purgeable organic carbon (NPOC) via catalytic combustion. TDN was measured by chemiluminescence 
as the best 3 of 5 injections. A combined carbon and nitrogen check standard was run every 10 samples; all val-
ues were within 10 ± 7% of the concentration for DOC and 6.5 ± 7% of the concentration for TDN. Peaks were 
disregarded if the coefficient of variation between replicate injections was greater than 2.0%. Data underwent 
quality control, including visual inspection of calibration curves, check standards, and sample peak shapes; val-
ues were flagged when they were outside of the calibration curve and instrument detection limit ranges.

Total suspended solids. Total suspended solids were measured on 1 L grab samples and filtered within 24 hours 
of sample collection, following Environmental Protection Agency (EPA) method 160.214 with slight modifica-
tions. Samples were filtered through pre-combusted and pre-weighed glass fiber filters (GFF, nominal pore size 
of 0.7 µm). The filtrate was then filtered through 0.2 µm PES filters and stored at 4 °C until solid phase extraction 
(SPE) procedures were performed.

GF filters were dried in a 45 °C oven for 24–72 hours for TSS. Filters were dried until the filter mass was sta-
ble and stored in a desiccator for 24–48 hours after drying, until final weights were taken. Process blanks were 
filtered concurrently with sample filtering, and average blank signal was below detection. TSS were calculated 
gravimetrically as follows:

TSS mg L Oven dry weight of sample and filter in mg oven dry weight of filter in mg mL L
volume filtered in mL

/ ( , , ) 1000 /
=

− ×

The volume filtered in mL was determined via mass and corrected for density of variable salinity waters using 
temperature, pressure and salinity data obtained from the titrator dataset with the package gsw15 in R version 
4.2.1. When the common water quality measurements samples were not collected at a site, data were gap filled 
by taking the average of all adjacent kits. Data underwent further quality control to flag values below the blank 
and above the reported method detection limit for the EPA method14.

Colored dissolved organic matter absorbance and fluorescence. UV absorbance scans and excitation-emission 
matrices (EEMs) were collected simultaneously with an Aqualog (Horiba Scientific) on filtered sub-samples, 
which were stored at 4 °C until analysis. Absorbance was measured from 230 to 800 nm in 3 nm intervals, and 
blank corrected prior to exporting the data. EEMs were collected with the same wavelength constraints and fur-
ther processed with drEEM toolbox v. 6.0 for Matlab16 (https://www.openfluor.org). EEMs processing included 
blank correction, inner filter correction17, and normalization to Raman Scatter units based on daily water 
Raman scans collected at an excitation of 350 nm.

High-resolution mass spectrometry. Aliquots of SPE extracts described in the sampling and processing methods 
for surface waters were normalized to a DOC concentration of 50 mg C/L prior to FTICR-MS analysis18. Spectra 
were collected at the Environmental Molecular Sciences Laboratory in Richland, WA, using a 12 Tesla (12 T) 

Data Types

ReadMe

Metadata

Metadata taken at the time of sample collection (Collection Level Metadata)

Metadata taken for each kit (Kit Level Metadata)

Data taken during each sample collection (Collection Level)

Sample catalog

Data dictionary of each column present in data package (DD)

File-level metadata of each file present in data package (FLMD)

IGSN sample metadata (IGSN Metadata)

Water Data

water quality (pH, ORP, alkalinity, conductivity)

total suspended solids (TSS)

dissolved organic carbon (DOC)

total dissolved nitrogen (TDN)

high-resolution mass spectrometry (FT-ICR-MS)

colored dissolved organic matter absorbance and fluorescence (CDOM)

Sediment Data gravimetric water content (GWC)

Soil Data

gravimetric water content (GWC)

bulk density (BD)

soil pH and conductivity (pH, Cond)

total carbon (TC)

total nitrogen (TN)

Table 2. List of analytes located in each .zip folder of the current version (v1) of the data package.

https://doi.org/10.1038/s41597-023-02548-7
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Bruker SolariX Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) (Bruker, SolariX, 
Billerica, MA) with a custom direct infusion system (that performed two offline blanks between each sample) 
and an electrospray ionization (ESI) source. Data were acquired in negative mode with the needle voltage set to 
+4.0 kV and were collected from 150 m/z – 1000 m/z at 8 M. Three hundred scans were co-added for each sample 
and internally calibrated using OM homologous series separated by 14 Da (–CH2 groups). Mass measurement 
accuracy was generally within 1 ppm for singly charged ions across a broad m/z range (150 m/z - 1100 m/z). Raw 
spectra were converted to a list of m/z values using Bruker Data Analysis (version 5.0) by applying FTMS peak 
picker module with a signal-to-noise ratio (S/N) threshold set to 7 and absolute intensity threshold to the default 
value of 100. Chemical formulae were then assigned using Formularity19, an in-house software, following the 
Compound Identification Algorithm20–22. Criteria to assign chemical formulae included a S/N >7, and mass 
measurement error <0.5 ppm, taking into consideration the presence of C, H, O, N, S and P and excluding other 
elements19. Further processing of the data was done using the fticrrr R package23, including: (a) removing peaks 
<200 and >800 m/z, (b) removing peaks associated with 13C, and (c) blank correcting all spectra.

Soil and sediment analyses
Gravimetric water content. Gravimetric water content (GWC) was determined, calculated and reported as the 
dry moisture content24. Field moist soil (~5 g) was dried in the oven at 100 °C for 24 hours. Weight loss was then 
calculated using the following equation:

gwc
field moist weight oven dry weight

oven dry weight
(%) 100=

−
×

Dry weight basis is utilized herein to better indicate whether or not the soils were saturated24 across the broad 
spatial heterogeneity captured in EC1.

Bulk density. Bulk density was determined on intact cores collected in HYPROP rings, and calculated as:

bulk density g cm
dry weight
soil volume( / )

3 =

Samples in the HYPROP rings were collected and maintained at field moisture, so the following conversion 
was applied to calculate the dry weight in the above equation:

=
+

dry weight
wet weight

GWC( /100) 1

Total carbon and nitrogen. Total carbon and nitrogen on a percent weight basis was determined via combus-
tion and chromatographic separation using an ECS 8020 CHNS-O Elemental Analyzer (Orbit Technologies 
Pvt. Ltd.) equipped with a zero-blank electronic autosampler and thermal conductivity detector. Approximately 
15 mg of freeze-dried, sieved, and homogenized soil were weighed into tin capsules. Reaction and reduction 
columns were packed according to operation manual specifications for C/N mode. For sample analysis, furnace 
temperatures were set to 980 °C for the reaction column, 650 °C for the reduction column, and 65 °C for the gas 
chromatograph. Carrier gas flow was held constant at ~110 ml/min. Standard reference sediments (SRM 1944; 
NY/NJ Waterway sediments) were run prior to each sample set, immediately following the calibration curve. 
We confirmed software peak detection, peak identification and integrations prior to exporting data. Calibration 
curves and final sample weight percentages were calculated in R Version 4.2.1 with the package EnvStats25.

Soil pH and conductivity. Soil pH and specific conductance were measured on freeze-dried and homogenized 
soils. Soil subsamples were shaken with deionized MilliQ water (1:10 weight:volume ratio) for 30 minutes and 
then analyzed using a Myron L 6PIIFCE pH and conductivity meter.

Data Records
Data (for complete list, see Table 2) are permanently deposited on the open access repository Environmental 
Systems Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE)26,27, accessible at https://doi.
org/10.15485/196031310. Additional data types will be added to the ESS-DIVE data package as they are com-
pleted and will be version-controlled in the Change History section of README.pdf.

The structure of the data package is as follows:
Data Package Structure*

•	 ec1_metadata_v1.zip
•	 ec1_dd.csv: a file-level data descriptor file containing a list of every column present in the data files
•	 ec1_flmd.csv: a file-level data descriptor file containing a list of every file name present in the data package
•	 ec1_sample_catalog.csv: a file containing a list of all samples and their collection status or information 

about methodological inconsistencies
•	 ec1_metadata_kitlevel.csv
•	 ec1_metadata_collectionlevel.csv
•	 ec1_data_collectionlevel.csv
•	 ec1_igsn_metadata.csv

https://doi.org/10.1038/s41597-023-02548-7
https://doi.org/10.15485/1960313
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•	 ec1_soil_v1.zip
•	 ec1_sediment_v1.zip
•	 ec1_water_v1.zip
•	 ec1_processingscripts_v1.zip

*Please note the ESS-DIVE data package will include additional versions as we add new data types and the 
version number on the data package will reflect the latest version.

CSV file structure

•	 [Campaign]_[Sample Type]_[Analyte]_[QC level].csv
•	 Ex. ec1_soil_tctn_L2.csv
•	 Ex. ec1_metadata_kitlevel_L2.csv

•	 All .csv dataset files contain the following first three identifying columns:

•	 campaign: coordinated sampling effort, Ex. EC1
•	 kit_id: unique identifier for each collection of samples from a given site, Ex. K001
•	 transect_location: position along the coastal TAI transect (Fig. 1), Ex. wetland

DAT file structure

•	 [Kit_ID]_[Processing Step A]_[Processing Step…Z].dat

•	 Ex. K004_DilCorr_IFE_RamNorm.dat
•	 Ex. K013_DilCorr_Abs.dat

•	 All .dat dataset files are organized by Kit_ID and in matrices.

Processing script structure

•	 [Sample Type]_[Analyte].R

•	 Ex. soil_tctn.R
•	 Ex. water_cdom.R

•	 All processing scripts follow a standardized structure outlined in template.R

technical Validation
Technical validation steps were completed throughout the analysis process for each analyte (Fig. 2). Quality 
assurance of sample integrity was maintained from sample kit receiving, assuring that the quality of each sam-
ple was not compromised, by monitoring temperature and container quality upon kit arrival and stored prop-
erly for each analyte (Table 1). Instruments used to acquire EXCHANGE datasets were calibrated before each 
run and maintained using standard procedures for each instrument. Datasets were quality controlled following 
processing level designations (Table 3), inspired by the Ameriflux and Fluxnet programs28,29. For Level 1 (L1) 
datasets, flags are provided but are not applied. L1 datasets were screened for a secondary review and calculating 
the limit of detection ranges. Normal procedures for data quality were implemented, such as blank correction, 
etc, as appropriate. Analytical replicates are averaged, and outliers are also removed for L1 datasets. These data-
sets are archived on a Google Drive repository for additional data provenance and are accessible by the entire 
EXCHANGE consortium. For Level 2 (L2) datasets, all flags are applied to the L1 datasets, flagged data points 
removed, and data are summarized based on categorical variables (e.g., Transect Location, Kit ID). Datasets 
available on ESS-DIVE include L2 data for concentration-based datasets10.

Fig. 2 Workflow of quality control procedures. Samples are received from the consortium, then processed at the 
Marine and Coastal Research Laboratory (PNNL–Sequim, WA) for analyses, which then were shared with the 
consortium and the public on ESS-DIVE.

https://doi.org/10.1038/s41597-023-02548-7
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We adopted the use of ESS-DIVE’s sample ID, file-level metadata, and CSV reporting formats30–33 to increase 
the usability of this data package and generate findable, accessible, interoperable and reusable (FAIR) data for 
the coastal science community33.

Usage Notes
This dataset follows Creative Commons Attribution 4.0 licensing, making all data freely available to use and 
distribute via the ESS-DIVE repository. Additional analyses are being performed on these sample sets, methods 
detailing these analyses can be found in the Supplementary Information. The data package10 will be updated 
periodically with such additional datasets, found at the same DOI, with version numbers of the data package 
indicating new datasets are available.

EXCHANGE is an open science, community-driven program. We encourage those that use this data for 
subsequent analyses to deposit their code in an open source repository, which aids in furthering our collective 
knowledge about coastal interfaces.

Code availability
All code necessary to reproduce our Level 2 datasets are written in the open source R Statistical Software34 version 
4.2.2 and are publicly available in our ESS-DIVE repository accessible at https://doi.org/10.15485/196031310 in 
ec1_processingscripts_v1.zip. All scripts follow a standardized structure outlined in template.R and are named in 
the following format: [Sample Type]_[Analyte].R that correspond to their respective dataset name.

Received: 19 June 2023; Accepted: 6 September 2023;
Published: xx xx xxxx
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