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Abstract: O-linked β-N-acetylglucosamine (O-GlcNAc) is a distinct monosaccharide modification
of serine (S) or threonine (T) residues of nucleocytoplasmic and mitochondrial proteins. O-GlcNAc
modification (i.e., O-GlcNAcylation) is involved in the regulation of diverse cellular processes,
including transcription, epigenetic modifications, and cell signaling. Despite the great progress in
experimentally mapping O-GlcNAc sites, there is an unmet need to develop robust prediction tools
that can effectively locate the presence of O-GlcNAc sites in protein sequences of interest. In this
work, we performed a comprehensive evaluation of a framework for prediction of protein O-GlcNAc
sites using embeddings from pre-trained protein language models. In particular, we compared the
performance of three protein sequence-based large protein language models (pLMs), Ankh, ESM-2,
and ProtT5, for prediction of O-GlcNAc sites and also evaluated various ensemble strategies to
integrate embeddings from these protein language models. Upon investigation, the decision-level
fusion approach that integrates the decisions of the three embedding models, which we call LM-
OGlcNAc-Site, outperformed the models trained on these individual language models as well as
other fusion approaches and other existing predictors in almost all of the parameters evaluated. The
precise prediction of O-GlcNAc sites will facilitate the probing of O-GlcNAc site-specific functions
of proteins in physiology and diseases. Moreover, these findings also indicate the effectiveness of
combined uses of multiple protein language models in post-translational modification prediction
and open exciting avenues for further research and exploration in other protein downstream tasks.
LM-OGlcNAc-Site’s web server and source code are publicly available to the community.

Keywords: O-GlcNAc prediction; protein language models; post-translational modification predic-
tion; ensemble learning; embeddings

1. Introduction

Glycosylation is perhaps the most common and structurally diverse post-translational mod-
ification (PTM) of proteins [1,2]. Distinct from other glycans, O-linked β-N-acetylglucosamine
(O-GlcNAc) is a unique intracellular monosaccharide modification [3,4]. A multi-decade re-
search endeavor has made clear that O-GlcNAcylation exists in almost all kingdoms of life and
even some viruses [5]. It plays important roles in almost all cellular processes examined (in-
cluding genome maintenance, epigenetic regulation, protein synthesis/degradation, metabolic
pathways, and signaling pathways, among others). By modulating target proteins, O-GlcNAc
exerts various functional roles in numerous physiological and pathological events [6,7].

Protein O-GlcNAcylation functions in a site-specific manner. To characterize site-
specific O-GlcNAcylation on proteins, great progress has been made, especially with the
recent technological advances in high-throughput methods (e.g., mass spectrometry-based
proteomics) [8,9]. So far, thousands of O-GlcNAc sites on myriad proteins have been
catalogued [10–13]. Despite the progress, sensitive and robust techniques for global and
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site-specific O-GlcNAc analysis are still lacking. Unbiased identification of O-GlcNAc
sites using experimental methods is also technically challenging [8,9]. Moreover, the
total number of O-GlcNAc proteins/sites still appears to be far lower than previously
predicted [14].

Prediction of O-GlcNAcylation sites has been difficult [15,16]. So far, several compu-
tational tools have been developed to predict O-GlcNAc sites. The YinOYang prediction
program was based on a neural network trained on 40 experimentally determined O-
GlcNAc acceptor sites [14]. Based on the developed dbOGAP database [10] (consisting of
~380 experimentally identified O-GlcNAc sites from 167 proteins), the OGlcNAcScan predic-
tion program was developed [10]. By using almost the same positive datasets and similar
negative datasets, several other machine learning models (including PGlcS [17], OGT-
Site [18], O-GlcNAcPRED [19], and O-GlcNAcPRED-II [20]) were developed. Although
these computational methods showed great potential, their performance has still been
unsatisfactory. One reason might be the very limited positive datasets used for model train-
ing and testing. Moreover, similar to mucin-type O-glycosylation [21], O-GlcNAcylation
does not display a strict amino acid consensus sequence of proteins [5], making precise
prediction of O-GlcNAc sites a very challenging task.

On the other hand, with the advancements taken from the field of natural language
processing, we have witnessed the development of protein language models that learn
meaningful representations of proteins in a self-supervised manner by using the vast
quantity of unlabeled protein sequence databases. Some examples of these language
models are Ankh [22], ESM-2 (Evolutionary Scale Modeling) [23], and ProtT5 [24]. These
language models mainly differ in the transformer architectures utilized, as well as the
datasets used to train these models.

Our approach here was to leverage embeddings from several pre-trained protein language
models for prediction of O-GlcNAc sites. Witnessing recent breakthroughs in the development
of large protein language models [22–27] and their effectiveness in various protein downstream
tasks, including post-translational modifications [28–36], we explored the effectiveness of indi-
vidual embeddings from three sequence-based protein language models, Ankh [22], ProtT5 [24],
and ESM-2 [23], as well as the integration of embeddings from these models for the prediction
of O-GlcNAc sites. The dataset used in this study consisted of 13900 experimentally verified
O-GlcNAcylation sites obtained from O-GlcNAcAtlas [12]. In brief, three feed-forward neural
networks (FFNNs) were trained independently using embeddings individually extracted from
these three protein language models (Ankh [22], ESM-2 [23], and ProtT5 [24]). Moreover, with
an aim to leverage the assorted strengths and diverse representations captured by these three
prominent protein language models, we performed integration of the embeddings from these
models using score-level and decision-level fusion. In particular, the approach that utilizes
decision-level fusion of these three models performed the best, and we call this novel prediction
tool LM-OGlcNAc-Site (i.e., Protein Language Model-based O-GlcNAc Site predictor). LM-
OglcNAc-Site outperformed not only the models learned from the individual protein language
models but also existing O-GlcNAc site predictors. We found that integrating embeddings from
multiple protein language models is particularly useful for protein O-GlcNAc site prediction
and could be a very useful approach for other bioinformatics tasks.

2. Results

In this section, we present the 10-fold cross-validation results obtained using various
protein language models (Ankh, ESM-2, and ProtT5). Table 1 shows the comparison
results of FFNN architecture using 10-fold cross-validation trained on the above-mentioned
three embeddings.

Upon analyzing the table, it can be inferred that all three models produced comparable
results overall. However, it is worth noting that the Ankh-FFNN model demonstrated
relatively better performance in terms of the ROC-AUC. In other words, the Ankh-FFNN
model appears to have achieved a higher area under the ROC curve, indicating that
it has a better ability to identify positive and negative samples compared to the other
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models. Moreover, the other models proved their effectiveness in various metrics, implying
that each model may excel at capturing distinct characteristics. The results of similar
experiments performed using the class weighting cost-sensitive method are provided
in Supplementary Materials Table S1. In the subsequent sections, we will explore the
performance of combining these three models.

Table 1. Results of 10-old cross-validation (mean and one standard deviation) of three FFNN models
trained on Ankh, ESM-2, and ProtT5 embeddings. A total of five performance metrices, including ac-
curacy, sensitivity, specificity, MCC (Matthew’s correlation coefficient), ROC-AUC (receiver operating
curve–area under the curve), are reported.

Model Mean
Accuracy

Mean
Sensitivity

Mean
Specificity

Mean
MCC

Mean
ROC-AUC

Ankh-FFNN 0.7141 (0.0078) 0.7236 (0.0267) 0.7047 (0.0287) 0.4289 (0.0152) 0.7915 (0.0104)
ESM2-FFNN 0.7026 (0.0130) 0.7497 (0.0480) 0.6556 (0.0615) 0.4092 (0.0235) 0.7530 (0.0243)
ProtT5-FFNN 0.7152 (0.0068) 0.7352 (0.0073) 0.6952 (0.0149) 0.4308 (0.0134) 0.7872 (0.0105)

Values in parenthesis represent one standard deviation: (one S.D.).

Table 2 presents the results of the individual models in addition to the score-level fusion
and decision-level fusion results of the models on the independent test set mentioned in
Table 1. We call the decision-level fusion of the three pLM-FFNN models LM-OGlcNAc-Site.

Table 2. Results of three FFNN models trained on Ankh, ESM-2, and ProtT5 embeddings of training set
and tested against independent test set. The bolded numbers show the highest values of each column.

Model Feature Type Accuracy Sensitivity Specificity MCC ROC-AUC

Individual Models
Ankh 0.7126 0.7122 0.7325 0.1329 0.7962
ESM-2 0.7059 0.7071 0.6457 0.1050 0.7438
ProtT5 0.6999 0.6981 0.8263 0.1334 0.8348

Score-Level Fusion

Ankh + ESM-2 + ProtT5 0.7495 0.7502 0.7141 0.1447 0.8116
Ankh + ESM-2 0.7394 0.7397 0.7229 0.1423 0.8111
Ankh + ESM-2 0.7358 0.7364 0.7038 0.1350 0.7954
ESM-2 + ProtT5 0.7396 0.7402 0.7078 0.1379 0.7985

Decision-Level Fusion
(LM-OGlcNAc-Site) Ankh + ESM-2 + ProtT5 0.8590 0.8648 0.5613 0.1659 0.8116

According to Table 2, while the score-level fusion demonstrated comparable results,
it is evident that the decision-level fusion of the three models, namely LM-OGlcNAc-Site,
exhibited superior performance in terms of accuracy, sensitivity, and MCC.

Additionally, we conducted tests on the models using O-GlcNAcPRED-II’s indepen-
dent test set, ensuring that none of the protein sequences in the test set were part of
LM-OGlcNAc-Site’s training sequences. The results of both the individual models and the
combined models in O-GlcNAcPRED-II’s independent test set are presented in Table 3.

Building upon the findings in Table 2, it can be inferred from Table 3 that LM-OGlcNAc-
Site exhibited comparatively better performance in most of the evaluation metrics of O-
GlcNAcPred-II’s independent test set.
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Table 3. Results of three FFNN models trained on our training data using Ankh, ESM-2, and ProtT5
embeddings and tested against O-GlcNAcPRED-II independent test set. The bolded numbers show
the highest values of each column.

Model Feature Type Accuracy Sensitivity Specificity MCC ROC-AUC

Individual Model
Ankh 0.6767 0.7899 0.6751 0.1161 0.8077
ESM-2 0.5833 0.8123 0.5800 0.1270 0.7717
ProtT5 0.6765 0.8347 0.6742 0.1270 0.8348

Score-Level Fusion

Ankh + ESM-2 + ProtT5 0.6634 0.8263 0.6611 0.1205 0.8320
Ankh + ESM-2 0.6871 0.8179 0.6852 0.1266 0.8350
Ankh + ESM-2 0.6350 0.8095 0.6326 0.1074 0.8117
ESM-2 + ProtT5 0.6354 0.8571 0.6323 0.1189 0.8258

Decision-Level Fusion
(LM-OGlcNAc-Site) Ankh + ESM-2 + ProtT5 0.7836 0.7115 0.7846 0.1403 0.8320

2.1. Comparison with Existing Tools

For a fair comparison of the proposed methods with the existing predictors, we trained
the three different FFNN architectures using Ankh, ESM-2, and ProtT5 embeddings on
O-GlcNAcPRED-II’s [20] training data and evaluated performance on their independent
test set. The training dataset contained 889 positive sites and 48,262 negative sites. The
independent test set consisted of 357 positive and 25,093 negative sites. Due to the unavail-
ability of O-GlcNAcPRED-II’s complete dataset and updates of some sequences in UniProt
database, we were unable to match a few of the proteins, which led to a small variation in
numbers. The results of the three FFNN models trained on Ankh, ESM-2, and ProtT5 em-
beddings of O-GlcNAcPRED-II’s training dataset and tested against O-GlcNAcPRED-II’s
independent test set are shown in Table 4.

Table 4. Comparison of our various models with the existing state-of-the-art model (O-GlcNAcPRED-
II). All the models were trained on O-GlcNAcPRED-II’s training dataset. The highest values are
bolded in each column.

Model Feature Type Accuracy Sensitivity Specificity MCC ROC-AUC

Individual Model
Ankh 0.7548 0.6162 0.7568 0.1015 0.7468
ESM-2 0.6834 0.7199 0.6829 0.1014 0.7561
ProtT5 0.7263 0.7086 0.7265 0.1140 0.7707

Score-Level Fusion

Ankh + ESM-2 + ProtT5 0.7367 0.7148 0.7371 0.1189 0.7892
Ankh + ESM-2 0.7232 0.7030 0.7235 0.1114 0.7812
Ankh + ESM-2 0.7314 0.6946 0.7319 0.1124 0.7820
ESM-2 + ProtT5 0.7314 0.7254 0.7275 0.1188 0.7803

Decision-Level Fusion
(LM-OGlcNAc-Site) Ankh + ESM-2 + ProtT5 0.8695 0.5042 0.8747 0.1322 0.7892

O-GlcNAcPRED-II [20] 0.7239 0.6712 0.7246 0.1012 0.7433

It can be observed from the table that almost all individual models and other combined
models performed better than O-GlcNAcPRED-II. Furthermore, we can observe that our
proposed decision-level fusion model (LM-OglcNAc-Site) performed better when compared
to other combinations.
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The table indicates that almost all individual models and our proposed combined
model outperformed O-GlcNAcPRED-II [20], which is widely regarded as a state-of-the-art
method. Notably, our proposed decision-level fusion model (LM-OglcNAc-Site) exhibited
even better performance than all other combinations of models, including O-GlcNAcPRED-
II [20]. Furthermore, to facilitate a better understanding of the comparison, Figure 1 presents
radar plots depicting the sensitivity, specificity, MCC, and ROC-AUC values obtained from
various models (such as pLM-FFNN, score-level fusion, and decision-level fusion). In
the radar plot, points that reach further towards the edge of the spoke indicate higher
values. Figure 1a,b show the results of individual models trained on Ankh, ESM-2, and
ProtT5 embeddings and other combined models tested against our independent test and
O-GlcNAcPRED-II’s independent test set, respectively. Looking at both plots in Figure 1, it
is evident that LM-OglcNAc-Site had the highest values in most of the compared metrics.
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We also performed similar experiments to those presented in Tables 2 and 3 using the
cost-sensitive method, where we used imbalanced number of positive and negative samples
to train the model (refer to Supplementary Materials Section S1). The corresponding results
from the cost-sensitive methods are presented in Supplementary Materials Tables S2 and S3.

2.2. Case Study: Predicted Sites for O-GlcNAcylation in Human Galectins

Furthermore, we assessed the efficiency of our LM-OGlcNAc-Site tool in predicting
O-GlcNAcylation sites in human galectins, which were previously reported as predicted by
OGTSite and YinOYang in silico analysis [37]. Our results showed that there were multiple
overlaps between all tools. Additionally, LM-OglcNAc-Site identified several new sites
which can be potentially O-GlcNAcylated (Table 5).

Moreover, we evaluated LM-OGlcNAc-Site’s effectiveness in identifying sites located
within intrinsically disordered regions (IDRs), as identified by the flDPnn tool [38]. Our
findings indicate that our tool is capable of effectively detecting sites occurring within these
regions. (Refer to Supplementary Materials Section S2 and Supplementary Materials Table S4
for more details.)
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Table 5. Predicted sites for O-GlcNAcylation in human galectins.

Galectin NCBI Reference
Sequence OGTSite YinOYang LM-OGlcNAc-Site

Galectin-1 NP_002296.1 S84 S84 T71, S84

Galectin-2 NP_006489.1 S23, S51, S80, T85, S122 no predictions T21, S80, T85

Galectin-3 NP_002297.2 S84, T133 S84, S91, S92, T98, T104,
T243

S6, S12, S14, S40, S84, S91,
S92, S96, T98, T104

Galectin-4 NP_006140.1 S40 S58, T217, T317 S86, S92, T217, S258

Galectin-7 NP_002298.1 S9 S2, S8, S9, S45, T57, T58 S2, T18, S31, S69

Galectin-8 NP_006490.3 T22, S152, T160, T201, T211 T160, S178, S358
S4, T160, S171, S178, T180,

S192, T198, T201, S203,
T207, T211, T215

Galectin-9 NP_033665.1 S18, T32, T152, S165,
T193, S202

S4, S6, S12, S18, S139, T152,
S160, T161, S165, T193,

T195, T351, T355

S4, S6, T152, S160, S161,
S165, T193, T195

Galectin-10 NP_001819.2 T9 T9, T16 S13

Galectin-12 NP_001136007.2 T81, T82, S143, S192, S221,
T232, S305 T82, S192, T232, S315 S2, S221

Galectin-13 NP_037400.1 S13, S119, S127, T133 S2, S3, S13, S119, S127, T133 S2, S13

Galectin-14 NP_064514.1 T9, S13 S2, S3, T9, S13, S138 S2, S13, S138

Galectin-16 NP_001177370.2 S13, S119 S13, S119 S2, S13

3. Discussion

This work provides a comparative analysis of three different pre-trained protein language
models (Ankh, ESM-2, and ProtT5) for protein O-GlcNAc site prediction. In order to perform
the analysis, we developed a framework for the prediction of protein O-GlcNAc sites using
embeddings from pre-trained protein language models. Our framework consisted of learning
from these O-GlcNAc site labels for supervised training using an artificial neural network.
Additionally, to leverage the embeddings from these three protein language models, we
performed integration of the embeddings using score- and decision-level fusion. Our results
indicate that the decision-level fusion of the embeddings of these three protein language
models is particularly useful for the prediction of protein O-GlcNAc sites.

As can be observed from the results, LM-OGlcNAC-Site is particularly able to perform
better by integrating the embeddings from the individual protein language models. In
summary, the results of this tool showcase the immense potential of integrating embeddings
from multiple protein language models, enabling researchers and practitioners to delve
into the intricate realm of post-translational modifications. The improvement in the results
could be attributed to the fact that the three language models have different underlying
transformer architectures and that the dataset used to train these models varied slightly,
resulting in complementary representations. To the best of our knowledge, this work is one
of the first works that integrates embeddings from multiple protein language models for
the prediction of post-translational modification tasks. One of the possible drawbacks of
the approach could be the computational overhead to extract these features and train the
model to integrate these features.

4. Materials and Methods
4.1. Dataset

The dataset employed in this research was procured from O-GlcNAcAtlas (version 2.0),
a dedicated repository of experimentally identified O-GlcNAc sites and proteins [12]. This
collection comprises two discrete categories of data, distinguished by their identification
clarity as either unambiguous or ambiguous O-GlcNAc sites. For the purposes of ensuring
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model reliability in this study, only unambiguously identified sites were taken as positive
sites. After conducting a thorough process of duplicate removal and dataset cleaning, a
total of 13,900 experimentally verified sites from 5355 proteins were obtained. Given the
problem statement that necessitated a positive–negative learning approach, all other Serine
(S) and Threonine (T) residues within these 5355 protein sequences that were not annotated
as O-GlcNAc sites (including both ambiguously and unambiguously identified sites) were
designated as negative sites. Subsequently, the entire dataset was partitioned in a 9:1 ratio,
ensuring no overlapping of proteins, thus yielding a training set and a test set with 4826
and 529 sequences, respectively. Table 6 presents the overall structure of the dataset utilized
in this study.

Table 6. The number of experimentally verified positive (O-GlcNAc sites) and negative sites (before
under-sampling) and train–test split of the dataset.

No. of Proteins Positive Sites Negative Sites

Train 4826 12,644
Before Under-Sampling 662,081
After Under-Sampling 12,644

Test 529 1256 64,927

Given the uneven distribution of positive and negative samples within the training dataset,
we employed a random under-sampling (RUS) technique on the negative set to address the
issue of class imbalance. In addition to RUS, we also implemented imbalance learning using
cost-sensitive (CS) learning. In this method, a higher penalty is assigned to misclassification
errors for positive samples to counterbalance the overrepresentation of negative samples. The
specifics regarding the dataset prepared using CS learning, and the results derived from it, are
comprehensively detailed in Supplementary Materials Section S1, Table S5.

4.2. Sequence Encoding Using pLMs

In the domain of deep learning, the transformation of raw data into numeric space
via feature vectors is crucial for robust computation and interpretation. This principle is
particularly true when applied to raw protein sequences, where the quality of the feature
representation plays a significant role in the overall performance of the model. Recently,
the surge in popularity of transformer-based large language models in the field of natural
language processing (NLP) has prompted the training of various analogous models on
protein sequences. The aim of such endeavors is to harness the power of these transformer
models to enhance the representation of proteins. These protein language models (pLMs)
have the capacity to learn a contextualized representation (also called embeddings) from a
vast corpus of protein sequences, an ability that has significant implications for downstream
tasks related to protein functions. Using multi-head attention mechanisms and positional
encoding, pLMs can effectively capture both localized and globalized context-sensitive
features of protein sequences’ structures and functions.

In the context of PTM prediction problems, pLMs can be utilized to extract contextualized
representations (or embeddings) for the site of interest (in this case, Serine (S) and Threonine (T)
residues). With the rising popularity and demonstrated efficacy of these embeddings [23,39–42],
this study explores three popular transformer-based protein language models, Ankh, ESM-2,
and ProtT5, and their application in O-GlcNAc prediction tasks. Let n denote the length of a
protein sequence and L be the embedding dimension (size of feature vector obtained per amino
acid) from a pLM (Ankh/ESM-2/ProtT5). The resulting dimension for the entire sequence is
L × n, while the dimension specific to the sites of interest, ‘S’ and ‘T’, is L × 1. Consequently,
we use feature vectors, each with a length of L × 1, to contextually represent the positive and
negative S/T residues. The process of extracting embeddings for the site of interest is shown in
Figure 2. Detailed summaries of these pLMs, focusing on their role in this task, are provided in
the subsequent sections.
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Figure 2. A high-level view of the process of extracting embeddings per amino acid using protein
language models. The residue ‘S’ in red box shows the site of interest. The overall protein sequence is
provided as an input to these three pLMs and the feature vector of corresponding sizes are obtained
for the site-of-interest depending upon the pLM.

4.2.1. Ankh

Ankh [22] is a general-purpose protein language model that has a relatively smaller
number of parameters as compared to other competitive protein language models. It was
trained on a Uniref50 dataset consisting of 45 million protein sequences. The develop-
ers have released two versions of Ankh: Ankh_base and Ankh_large. Ankh_base is a
lightweight version that has 450M parameters and which has an embedding dimension of
768, whereas Ankh_large has 1.15B parameters with an embedding dimension of 1536. In
this work, we used Ankh_large model as an Ankh feature extractor. The model takes an
overall sequence as input and returns a feature vector with a dimension of 1536 for each
amino acid.

4.2.2. ESM-2

Evolutionary Scale Modeling (ESM) [23] is a general-purpose protein language model
based on the BERT transformer architecture and trained on UniRef50. ESM models are
trained to predict masked amino acids using all the preceding and following amino acids
in the sequence. There are different variants of models based on factors including number
of parameters and dataset. In this work, we used a model called esm2_t36_3B_UR50D
(hereafter termed ESM-2), which has approximately 3B learnable parameters. ESM-2 can
take an input sequence with a length of up to 1024. Because of this sequence length
restriction, we created a window of 1023 around the site of interest (511 residues on each
side), and this window was used as input for the ESM-2 model. The output of the model
was an embedding of a feature dimension of 2560 for each amino acid.

4.2.3. ProtT5

ProtT5-XL-U50 [24] is a transformer-based pre-trained model trained on the top of
Google’s T5 (Text-to-Text Transfer Transformer) [43] architecture on the BFD database and
fine-tuned on the UniRef50 database. It consists of a 24-layer encoder–decoder with around
3B parameters. In this work, only the encoder part of the model, which takes a sequence as
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an input and outputs an embedding vector with a dimension of 1024 for each amino acid,
was used for feature extraction. The dataset, the transformer architecture, and other details
of these three protein language models are presented in Table 7.

Table 7. Description of the three protein language models used in the study.

pLM Dataset Architecture Developer
Number of
Parameters
(Billions)

Embedding
Dimension Per
Residue (L × 1)

Ankh [22]
Uniref50 [44]

ConvBERT Rostlab 1.2B 1536 × 1
ESM-2 (esm2_t36_3B_UR50D) [23] RoBERTa Meta 3B 2560 × 1
ProtT5 (ProtT5-XL-U50) [24] T5 Rostlab 3B 1024 × 1

4.3. Model Architecture

The overall architecture of our framework is composed of two levels. The first level
(level-0) incorporates pre-trained protein language models (pLMs) that extract static global
contextual embeddings of serine (S) and threonine (T) residues using the full sequence;
each of these inputs has a dimension of L × 1, where L is 1536 for Ankh, 2560 for ESM-
2, and 1024 for ProtT5. These L × 1 dimensional embeddings are then processed by a
feed-forward neural network (FFNN) in the subsequent level (level-1) that classifies the
membership status (positive or negative) of the site of interest (S/T). We independently
used embeddings from three pre-trained pLMs (Ankh, ESM-2, and ProtT5) to acquire their
respective classification probabilities. We refer to the suite of models consisting of each
of these independently trained models of pLM embeddings as ‘pLM-FFNN’. This suite
includes the Ankh-FFNN, ESM2-FFNN, and ProtT5-FFNN.

The underlying FFNN architectures in each pLM-FFNN consisted of hidden layers
followed by a dropout layer to mitigate overfitting and an output layer with a single
neuron. This architecture was determined through 10-fold cross-validation, utilizing
different combinations of hyperparameters (including the number of layers, the number
of neurons, and the dropout size) in a grid search procedure. We employed the ReLU
activation function across all hidden layers and a sigmoid function in the output layer.
Details regarding the hyperparameters and other configurations associated with Ankh-
FFNN, ESM2-FFNN, and ProtT5-FFNN are presented in Supplementary Materials Table S6.
In alignment with the findings of Villegas-Morcello et al. and Weissenow et al. [41], our
work also demonstrates that pLM-based features can achieve competitive performance
without requiring a complex architecture.

Additionally, we optimized the decision threshold cut-off for each of these models
using threshold-moving strategies through 10-fold cross-validation based on the receiver
operating characteristic (ROC) and precision-recall (PR) curves. As presented in Figure 3,
we utilized the ROC curve to identify the optimal threshold value for each of the three pLM-
based models by maximizing the geometric mean (g-mean) of sensitivity and specificity.
The g-mean was computed at each threshold cut-off on the ROC curve, and the threshold
yielding the highest g-mean was selected as the optimal threshold.

Furthermore, to leverage the diverse representations from these three different pLMs,
we performed score-level fusion (based on an average strategy) and decision-level fusion
(based on a hard-voting mechanism) of Ankh-FFNN, ESM2-FFNN, and ProtT5-FFNN
models. This process allowed us to establish a framework that leveraged the strengths of
the three different pLM-based protein sequence representations. A high-level depiction of
this proposed architecture is provided in Figure 4.
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Figure 3. Determination of the optimal probability threshold cut-off that separates the positive and
negative classes using ROC curve by maximizing g-mean of specificity and sensitivity. The figure
illustrates the optimal cut-off points determined from training dataset using (a) Ankh embeddings,
(b) ESM-2 embeddings, and (c) ProtT5 embeddings.
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Figure 4. Diagrammatic illustration of the proposed model architecture. The input protein sequence
of length n, with ‘S’ (highlighted in red) as the site of interest, is processed through encoders of three
pLMs. Each pLM generates contextual embeddings of the sequence, resulting in a size of L × n.
However, only vectors of size L × 1, corresponding to ‘S’ (site of interest), are extracted from these
pLMs. These vectors serve as input to the pLM-FFNN models, where each model classifies whether ‘S’
is positive (1) or not (0). Finally, a decision-level fusion of the individual FFNN models is performed
to obtain the final prediction.

4.4. Model Training and Evaluation

The parameters across all the pLM-FFNN models were optimized using the Adam
optimizer, based on binary cross-entropy loss or log loss, with an adaptive learning rate set
to 10−5. Prior to training, the batch size was set to 32 and the number of epochs was set to
100. To track the progress in loss reduction and to prevent overfitting, an early stopping
strategy was used with a patience equal to 5.
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Next, to assess and compare the performances of different models, we used a standard
binary classification metric, the confusion matrix. The matrix consisted of four parameters:
True Positives (TPs), indicating correct predictions of positive sites as O-GlcNAc sites; True
Negatives (TNs), denoting correct predictions of negative sites as non-O-GlcNAc sites;
False Positives (FPs), representing incorrect predictions of negative sites as O-GlcNAc sites;
and False Negatives (FNs), marking incorrect predictions of positive sites as non-O-GlcNAc
sites. With the use of these components, we were able to determine key evaluation metrics
for each experiment, such as the Accuracy (ACC), Matthew’s Correlation Coefficient (MCC),
Sensitivity (Sn), and Specificity (Sp). More elaborate explanations and the equations used
for these metrics can be found in Supplementary Materials Table S7. Additionally, to better
gauge the discriminative capacity of the models, we computed the area under the receiver
operating characteristic curve (AUROC).

5. Conclusions

In conclusion, our work underscores the significance of a framework that uses a
neural network architecture for integrating embeddings from multiple protein language
models and high-quality datasets and effective predictive modeling techniques, resulting
in the creation of LM-OGlcNAc-Site, a new predictor to identify O-GlcNAc sites in given
protein sequences.

By training a feed-forward neural network with features from three protein language
models (Ankh, ESM-2, and ProtT5) and integrating the embeddings from these three lan-
guage models, our tool achieved performance improvement in predicting O-GlcNAc modi-
fications. Leveraging the strengths of multiple protein language models, LM-OGlcNAc-Site
outperforms existing O-GlcNAc prediction tools, demonstrating its superior performance.
This development highlights the vast potential of protein language models, empowering
researchers to explore the usage of these models to study post-translational modifications
and other downstream bioinformatics tasks.
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mdpi.com/article/10.3390/ijms242116000/s1.

Author Contributions: D.B.K. conceived the study and designed the experiments; S.P. and P.P.
preprocessed datasets and extracted features; S.P. performed experiments for implementing and
training different ML/DL-based architectures; D.B.K. and J.M. provided guidance throughout the
project; H.D.I. developed the webserver; S.P., P.P., J.M. and D.B.K. wrote the main manuscript and
S.P., P.P., H.D.I., J.M. and D.B.K. revised the manuscript; D.B.K. oversaw the overall aspects of the
project. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation (NSF), grant number 1901793,
2210356 (granted to D.B.K.). Part of this work was supported by the MDHHS Michigan Sequencing
and Academic Partnerships for Public Health Innovation and Response (MI-SAPPHIRE) grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets, source code, and other relevant information are available
at the GitHub repository at https://github.com/KCLabMTU/LM-OGlcNAc-Site (accessed on 5
November 2023). The webserver for LM-OGlcNAc-Site is available at http://kcdukkalab.org/
LMOGlcNAcSite (accessed on 5 Novermber 2023).

Acknowledgments: We thank Michigan Tech for providing high-performance computing resources.
We also extend our appreciation to Subash C. Pakhrin, Michael Heinzinger, Meenal Chaudhari, Ženia
Sidorov, Soufia Bahmani, Yaoxiang Li, and Weiyu Li for their helpful discussions during the project’s
development. We thank Diva KC for proofreading the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ijms242116000/s1
https://www.mdpi.com/article/10.3390/ijms242116000/s1
https://github.com/KCLabMTU/LM-OGlcNAc-Site
http://kcdukkalab.org/LMOGlcNAcSite
http://kcdukkalab.org/LMOGlcNAcSite


Int. J. Mol. Sci. 2023, 24, 16000 12 of 13

References
1. Spiro, R.G. Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds.

Glycobiology 2002, 12, 43R–56R. [CrossRef] [PubMed]
2. Hart, G.W.; Copeland, R.J. Glycomics hits the big time. Cell 2010, 143, 672–676. [CrossRef]
3. Torres, C.R.; Hart, G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of

intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 1984, 259, 3308–3317. [CrossRef]
4. Holt, G.D.; Hart, G.W. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-

saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 1986, 261, 8049–8057. [CrossRef]
5. Thompson, J.W.; Griffin, M.E.; Hsieh-Wilson, L.C. Methods for the detection, study, and dynamic profiling of O-GlcNAc

glycosylation. Methods Enzymol. 2018, 598, 101–135. [CrossRef]
6. Chatham, J.C.; Zhang, J.; Wende, A.R. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology.

Physiol. Rev. 2021, 101, 427–493. [CrossRef]
7. Zachara, N.; Akimoto, Y.; Hart, G.W. The O-GlcNAc Modification. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko,

J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor
Laboratory Press: Cold Spring Harbor, NY, USA, 2015.

8. Ma, J.; Wu, C.; Hart, G.W. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem. Rev. 2021, 121, 1513–1581.
[CrossRef] [PubMed]

9. Maynard, J.C.; Chalkley, R.J. Methods for Enrichment and Assignment of N-Acetylglucosamine Modification Sites. Mol. Cell.
Proteom. MCP 2021, 20, 100031. [CrossRef]

10. Wang, J.; Torii, M.; Liu, H.; Hart, G.W.; Hu, Z.-Z. dbOGAP—An Integrated Bioinformatics Resource for Protein O-GlcNAcylation.
BMC Bioinform. 2011, 12, 91. [CrossRef]

11. Wulff-Fuentes, E.; Berendt, R.R.; Massman, L.; Danner, L.; Malard, F.; Vora, J.; Kahsay, R.; Olivier-Van Stichelen, S. The human
O-GlcNAcome database and meta-analysis. Sci. Data 2021, 8, 25. [CrossRef]

12. Ma, J.; Li, Y.; Hou, C.; Wu, C. O-GlcNAcAtlas: A database of experimentally identified O-GlcNAc sites and proteins. Glycobiology
2021, 31, 719–723. [CrossRef]

13. Olivier-Van Stichelen, S.; Malard, F.; Berendt, R.; Wulff-Fuentes, E.; Danner, L. Find out if your protein is O-GlcNAc modified:
The O-GlcNAc database. FASEB J. 2022, 36. [CrossRef]

14. Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. In Pacific
Symposium on Biocomputing 2002; World Scientific: Singapore, 2002; pp. 310–322.

15. Abrahams, J.L.; Taherzadeh, G.; Jarvas, G.; Guttman, A.; Zhou, Y.; Campbell, M.P. Recent advances in glycoinformatic platforms
for glycomics and glycoproteomics. Curr. Opin. Struct. Biol. 2020, 62, 56–69. [CrossRef]

16. Bojar, D.; Lisacek, F. Glycoinformatics in the Artificial Intelligence Era. Chem. Rev. 2022, 122, 15971–15988. [CrossRef]
17. Zhao, X.; Ning, Q.; Chai, H.; Ai, M.; Ma, Z. PGlcS: Prediction of protein O-GlcNAcylation sites with multiple features and analysis.

J. Theor. Biol. 2015, 380, 524–529. [CrossRef] [PubMed]
18. Kao, H.-J.; Huang, C.-H.; Bretaña, N.A.; Lu, C.-T.; Huang, K.-Y.; Weng, S.-L.; Lee, T.-Y. A two-layered machine learning method to

identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs. BMC Bioinform. 2015, 16, S10. [CrossRef]
[PubMed]

19. Jia, C.-Z.; Liu, T.; Wang, Z.-P. O-GlcNAcPRED: A sensitive predictor to capture protein O-GlcNAcylation sites. Mol. Biosyst. 2013,
9, 2909–2913. [CrossRef]

20. Jia, C.; Zuo, Y.; Zou, Q. O-GlcNAcPRED-II: An integrated classification algorithm for identifying O-GlcNAcylation sites based
on fuzzy undersampling and a K-means PCA oversampling technique. Bioinform. Oxf. Engl. 2018, 34, 2029–2036. [CrossRef]
[PubMed]

21. Mohl, J.E.; Gerken, T.A.; Leung, M.-Y. ISOGlyP: De novo prediction of isoform-specific mucin-type O-glycosylation. Glycobiology
2020, 31, 168–172. [CrossRef]

22. Elnaggar, A.; Essam, H.; Salah-Eldin, W.; Moustafa, W.; Elkerdawy, M.; Rochereau, C.; Rost, B. Ankh

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 14 
 

 

4. Holt, G.D.; Hart, G.W. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-

saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 1986, 261, 8049–8057. 

5. Thompson, J.W.; Griffin, M.E.; Hsieh-Wilson, L.C. Methods for the detection, study, and dynamic profiling of O-GlcNAc gly-

cosylation. Methods Enzymol. 2018, 598, pp. 101-135. https://doi.org/10.1016/bs.mie.2017.06.009 

6. Chatham, J.C.; Zhang, J.; Wende, A.R. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiol-

ogy. Physiol. Rev. 2021, 101, 427–493. https://doi.org/10.1152/physrev.00043.2019. 

7. Zachara, N.; Akimoto, Y.; Hart, G.W. The O-GlcNAc Modification. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, 

J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor 

Laboratory Press: Cold Spring Harbor, NY, USA, 2015. 

8. Ma, J.; Wu, C.; Hart, G.W. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem. Rev. 2021, 121, 1513–

1581. https://doi.org/10.1021/acs.chemrev.0c00884. 

9. Maynard, J.C.; Chalkley, R.J. Methods for Enrichment and Assignment of N-Acetylglucosamine Modification Sites. Mol. Cell. 

Proteom. MCP 2021, 20, 100031. https://doi.org/10.1074/mcp.R120.002206. 

10. Wang, J.; Torii, M.; Liu, H.; Hart, G.W.; Hu, Z.-Z. dbOGAP—An Integrated Bioinformatics Resource for Protein O-GlcNAcyla-

tion. BMC Bioinform. 2011, 12, 91. https://doi.org/10.1186/1471-2105-12-91. 

11. Wulff-Fuentes, E.; Berendt, R.R.; Massman, L.; Danner, L.; Malard, F.; Vora, J.; Kahsay, R.; Olivier-Van Stichelen, S. The human 

O-GlcNAcome database and meta-analysis. Sci. Data 2021, 8, 25. https://doi.org/10.1038/s41597-021-00810-4. 

12. Ma, J.; Li, Y.; Hou, C.; Wu, C. O-GlcNAcAtlas: A database of experimentally identified O-GlcNAc sites and proteins. Glycobiology 

2021, 31, 719–723. https://doi.org/10.1093/glycob/cwab003. 

13. Olivier-Van Stichelen, S.; Malard, F.; Berendt, R.; Wulff-Fuentes, E.; Danner, L. Find out if your protein is O-GlcNAc modified: 

The O-GlcNAc database. FASEB J. 2022, 36. https://doi.org/10.1096/fasebj.2022.36.S1.R4178. 

14. Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. In Pacific 

Symposium on Biocomputing 2002; World Scientific: Singapore, 2002, pp. 310–322. 

15. Abrahams, J.L.; Taherzadeh, G.; Jarvas, G.; Guttman, A.; Zhou, Y.; Campbell, M.P. Recent advances in glycoinformatic platforms 

for glycomics and glycoproteomics. Curr. Opin. Struct. Biol. 2020, 62, 56–69. https://doi.org/10.1016/j.sbi.2019.11.009. 

16. Bojar, D.; Lisacek, F. Glycoinformatics in the Artificial Intelligence Era. Chem. Rev. 2022, 122, 15971–15988. 

https://doi.org/10.1021/acs.chemrev.2c00110. 

17. Zhao, X.; Ning, Q.; Chai, H.; Ai, M.; Ma, Z. PGlcS: Prediction of protein O-GlcNAcylation sites with multiple features and 

analysis. J. Theor. Biol. 2015, 380, 524–529. https://doi.org/10.1016/j.jtbi.2015.06.026. 

18. Kao, H.-J.; Huang, C.-H.; Bretaña, N.A.; Lu, C.-T.; Huang, K.-Y.; Weng, S.-L.; Lee, T.-Y. A two-layered machine learning method 

to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs. BMC Bioinform. 2015, 16, S10. 

https://doi.org/10.1186/1471-2105-16-S18-S10. 

19. Jia, C.-Z.; Liu, T.; Wang, Z.-P. O-GlcNAcPRED: A sensitive predictor to capture protein O-GlcNAcylation sites. Mol. Biosyst. 

2013, 9, 2909–2913. https://doi.org/10.1039/C3MB70326F. 

20. Jia, C.; Zuo, Y.; Zou, Q. O-GlcNAcPRED-II: An integrated classification algorithm for identifying O-GlcNAcylation sites based 

on fuzzy undersampling and a K-means PCA oversampling technique. Bioinform. Oxf. Engl. 2018, 34, 2029–2036. 

https://doi.org/10.1093/bioinformatics/bty039. 

21. Mohl, J.E.; Gerken, T.A.; Leung, M.-Y. ISOGlyP: De novo prediction of isoform-specific mucin-type O-glycosylation. Glycobiol-

ogy 2020, 31, 168–172. https://doi.org/10.1093/glycob/cwaa067. 

22. Elnaggar, A.; Essam, H.; Salah-Eldin, W.; Moustafa, W.; Elkerdawy, M.; Rochereau, C.; Rost, B. Ankh☥: Optimized protein lan-

guage model unlocks general-purpose modelling. bioRxiv 2023. https://doi.org/10.1101/2023.01.16.524265. 

23. Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; dos Santos Costa, A.; Fazel-Zarandi, M.; Sercu, T.; Candido, S.; et al. Language 

models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv 2022. 

https://doi.org/10.1101/2022.07.20.500902. 

24. Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M.; et al. 

ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE Trans. Pattern Anal. Mach. 

Intell. 2022, 44, 7112–7127. https://doi.org/10.1109/TPAMI.2021.3095381. 

25. Roshan Rao; Joshua Meier; Tom Sercu; Sergey Ovchinnikov; Alexander Rives Transformer protein language models are unsu-

pervised structure learners. bioRxiv 2020. https://doi.org/10.1101/2020.12.15.422761. 

26. Xiao, Y.; Qiu, J.; Li, Z.; Hsieh, C.-Y.; Tang, J. Modeling protein using large-scale pretrain language model. arXiv 2021, 

arXiv:2108.07435. 

27. Jozefowicz, R.; Vinyals, O.; Schuster, M.; Shazeer, N.; Wu, Y. Exploring the limits of language modeling. arXiv 2016, 

arXiv:1602.02410. 

28. Hou, X.; Wang, Y.; Bu, D.; Wang, Y.; Sun, S. EMNGly: predicting N-linked glycosylation sites using the language models for 

feature extraction. Bioinformatics 2023, 39, btad650. https://doi.org/10.1093/bioinformatics/btad650 

: Optimized protein
language model unlocks general-purpose modelling. bioRxiv 2023. [CrossRef]

23. Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; dos Santos Costa, A.; Fazel-Zarandi, M.; Sercu, T.; Candido, S.; et al. Language
models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv 2022. [CrossRef]

24. Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M.; et al.
ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE Trans. Pattern Anal. Mach. Intell.
2022, 44, 7112–7127. [CrossRef]

25. Roshan Rao; Joshua Meier; Tom Sercu; Sergey Ovchinnikov; Alexander Rives Transformer protein language models are
unsupervised structure learners. bioRxiv 2020. [CrossRef]

26. Xiao, Y.; Qiu, J.; Li, Z.; Hsieh, C.-Y.; Tang, J. Modeling protein using large-scale pretrain language model. arXiv 2021,
arXiv:2108.07435.

27. Jozefowicz, R.; Vinyals, O.; Schuster, M.; Shazeer, N.; Wu, Y. Exploring the limits of language modeling. arXiv 2016,
arXiv:1602.02410.

28. Hou, X.; Wang, Y.; Bu, D.; Wang, Y.; Sun, S. EMNGly: Predicting N-linked glycosylation sites using the language models for
feature extraction. Bioinformatics 2023, 39, btad650. [CrossRef]

https://doi.org/10.1093/glycob/12.4.43R
https://www.ncbi.nlm.nih.gov/pubmed/12042244
https://doi.org/10.1016/j.cell.2010.11.008
https://doi.org/10.1016/S0021-9258(17)43295-9
https://doi.org/10.1016/S0021-9258(19)57510-X
https://doi.org/10.1016/bs.mie.2017.06.009
https://doi.org/10.1152/physrev.00043.2019
https://doi.org/10.1021/acs.chemrev.0c00884
https://www.ncbi.nlm.nih.gov/pubmed/33416322
https://doi.org/10.1074/mcp.R120.002206
https://doi.org/10.1186/1471-2105-12-91
https://doi.org/10.1038/s41597-021-00810-4
https://doi.org/10.1093/glycob/cwab003
https://doi.org/10.1096/fasebj.2022.36.S1.R4178
https://doi.org/10.1016/j.sbi.2019.11.009
https://doi.org/10.1021/acs.chemrev.2c00110
https://doi.org/10.1016/j.jtbi.2015.06.026
https://www.ncbi.nlm.nih.gov/pubmed/26116363
https://doi.org/10.1186/1471-2105-16-S18-S10
https://www.ncbi.nlm.nih.gov/pubmed/26680539
https://doi.org/10.1039/c3mb70326f
https://doi.org/10.1093/bioinformatics/bty039
https://www.ncbi.nlm.nih.gov/pubmed/29420699
https://doi.org/10.1093/glycob/cwaa067
https://doi.org/10.1101/2023.01.16.524265
https://doi.org/10.1101/2022.07.20.500902
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1101/2020.12.15.422761
https://doi.org/10.1093/bioinformatics/btad650


Int. J. Mol. Sci. 2023, 24, 16000 13 of 13

29. Pakhrin, S.C.; Pokharel, S.; Aoki-Kinoshita, K.F.; Beck, M.R.; Dam, T.K.; Caragea, D.; Kc, D.B. LMNglyPred: Prediction of
human N-linked glycosylation sites using embeddings from a pre-trained protein language model. Glycobiology 2023, 33, 411–422.
[CrossRef]

30. Alkuhlani, A.; Gad, W.; Roushdy, M.; Voskoglou, M.G.; Salem, A.-b.M. PTG-PLM: Predicting Post-Translational Glycosylation
and Glycation Sites Using Protein Language Models and Deep Learning. Axioms 2022, 11, 469. [CrossRef]

31. Pratyush, P.; Pokharel, S.; Saigo, H.; Kc, D.B. pLMSNOSite: An ensemble-based approach for predicting protein S-nitrosylation sites
by integrating supervised word embedding and embedding from pre-trained protein language model. BMC Bioinform. 2023, 24, 41.
[CrossRef]

32. Unsal, S.; Atas, H.; Albayrak, M.; Turhan, K.; Acar, A.C.; Doğan, T. Learning functional properties of proteins with language
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