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Abstract
The associated uncertainties of future climate projections are one of the biggest obstacles 
to overcome in studies exploring the potential regional impacts of future climate shifts. In 
remote and climatically complex regions, the limited number of available downscaled pro-
jections may not provide an accurate representation of the underlying uncertainty in future 
climate or the possible range of potential scenarios. Consequently, global downscaled pro-
jections are now some of the most widely used climate datasets in the world. However, 
they are rarely examined for representativeness of local climate or the plausibility of their 
projected changes. Here we explore the utility of two such global datasets (CHELSA and 
WorldClim2) in providing plausible future climate scenarios for regional climate change 
impact studies. Our analysis was based on three steps: (1) standardizing a baseline period 
to compare available global downscaled projections with regional observation-based 
datasets and regional downscaled datasets; (2) bias correcting projections using a single 
observation-based baseline; and (3) having controlled differences in baselines between 
datasets, exploring the patterns and magnitude of projected climate shifts from these data-
sets to determine their plausibility as future climate scenarios, using Hawaiʻi as an exam-
ple region. Focusing on mean annual temperature and precipitation, we show projected 
climate shifts from these commonly used global datasets not only may vary significantly 
from one another but may also fall well outside the range of future scenarios derived from 
regional downscaling efforts. As species distribution models are commonly created from 
these datasets, we further illustrate how a substantial portion of variability in future species 
distribution shifts can arise from the choice of global dataset used. Hence, projected shifts 
between baseline and future scenarios from these global downscaled projections warrant 
careful evaluation before use in climate impact studies, something rarely done in the exist-
ing literature.

Keywords Climate shifts · Downscaling · GCMs · Regional projections · Future scenarios · 
Bioclimatic variables
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1 Introduction

Adequate climate change projections are needed for regional climate impact studies and 
the resource managers that ultimately use the results. These products are essential to under-
stand current climate as well as any potential future climatic changes. A single future cli-
mate projection is only one of many plausible future outcomes. Hence, when considering 
potential future climate impacts, best practices include using multiple future climate sce-
narios to account for the range of possible future climatic conditions (Hawkins et al. 2016). 
Past syntheses indicate that a range of projected climate outcomes based on multiple sce-
narios when examined better consider both short- and long-term risks and opportunities, 
while reducing the possibility of negative outcomes that were not intended in planning pro-
cesses (Terando et al. 2020).

A paucity of fine-scale regional climate projections has left managers with limited 
resources to inform climate adaptation and long-term planning in remote and climatically 
complex regions. Although climate projections are available on a global scale, many out-
puts do not capture the smaller scale processes of places that may fit into only a hand-
ful of General Circulation Model (GCM) grid cells. Furthermore, variability and uncer-
tainty between individual models can differ as well. For small or isolated regions such as 
Hawaiʻi, the development of multiple regionally tailored downscaled climate projections 
is limited by available resources. As a result, in Hawaiʻi, until recently there were only 
three efforts to regionally downscale global models (Elison Timm et al. 2015; Elison Timm 
2017; Zhang et al. 2016a, b; Xue et al. 2020) representing a small sample of the available 
GCMs, and few future emissions scenarios. Thus, these currently available climate projec-
tions for Hawaiʻi do not reflect a wider range of possible climate futures and only provide 
limited options for regional research, management, and planning efforts.

Global spatially downscaled datasets such as WorldClim2 (Hijmans et  al. 2005; Fick 
and Hijmans 2017) and CHELSA (Karger et al. 2017a) are especially used in ecological 
studies, such as those exploring potential species distribution shifts under alternative cli-
mate scenarios (Rodder 2009; Rovzar et al. 2013; Kodis et al. 2018; Mausio et al. 2020). 
These convenient and readily accessible datasets are nearly ubiquitous, with over 32,000 
Google Scholar citations for WorldClim2 alone by March 2023. However, past research has 
cautioned against the unexamined use of such global spatial climate datasets (Daly 2006; 
Bedia et  al. 2013; Poggio et  al. 2018), with an increasing number of studies examining 
how these datasets replicate local climatic patterns (Wango et al. 2018; Marchi et al. 2019) 
and how climate dataset choice may impact modeled distribution under current conditions 
(Bobrowski and Schickhoff 2017; Lembrechts et  al. 2019; Morales-Barbero and Vega-
Álvarez 2019).

Our research aims to further explore differences in these common global datasets to 
better inform the choices of climate impact studies for data-poor regions like Hawaiʻi. In 
data-poor regions, climate data may be difficult to obtain or lacking due to limited histori-
cal records and/or sparse or unreliable station coverage, making it challenging to accurately 
characterize local climate patterns. We assess mean annual temperature and precipitation 
from the two global datasets CHELSA (climatologies at high resolution for the earth’s land 
surface areas, Karger et al. 2017a) and WorldClim2 (Fick and Hijmans 2017) to determine 
their skill in representing current climate in Hawaiʻi. After applying a bias correction based 
on regional baseline observational data, we explore the consistency and plausibility of 
these commonly used future climate projections. We do this by first comparing the pro-
jected climate shifts from the bias corrected global datasets with those from a limited set 
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of regional downscaled projections (Elison Timm et al. 2015; Zhang et al. 2016a, b; Elison 
Timm 2017; Xue et al. 2020). Then, we assess their resulting influence on projected spe-
cies range to illustrate how differences in future projections between these global datasets 
can affect species distributions shifts, which is a very common use of these global datasets.

2  Data

2.1  Global datasets

Downscaled global climate datasets have not been prominently used previously in Hawai 
‘i because their ability to represent the fine scale and spatially complex climatic patterns 
of the islands has not been fully examined. We considered two widely used global datasets 
in our analysis: WorldClim2 (Fick and Hijmans 2017) and CHELSA (Karger et al. 2017a). 
The WorldClim2 and CHELSA global datasets include multiple mid- (2041–2060) and 
late-century (2061–2080) projections. These global datasets calculate future projections 
and anomalies by using a combination of climate model simulations, statistical downscal-
ing, and interpolation techniques that simulate the future climate under different green-
house gas emission scenarios. These downscaled projections are available for multiple 
individual GCMs for the Coupled Model Intercomparison Project 5 (CMIP5) simulations 
under four representative concentration pathways (RCPs; 2.6, 4.5, 6.0, and 8.5) (IPCC 
2000). However, not all GCMs had available CMIP5 simulations across all mid- and late-
century periods and RCPs. Hence, of the nearly 60 GCM-specific CMIP5 simulations, we 
focused only on GCM and RCP combinations common in both CHELSA and WorldClim2 
datasets (e.g., 16 GCMs for RCP8.5 2061–2080). To assess the adequacy of these global 
datasets in representing local climate patterns, we compared the historical simulations 
from these new global downscaled datasets with a regional observation-based baseline cli-
matology and with a set of widely used regionally downscaled projections described in 
Section 2.2 below.

2.1.1  WorldClim2

WorldClim2’s high spatial resolution global weather and climate data have been available 
since 2005 (version 1.4, Hijmans et al. 2005) and has been improved upon over time (ver-
sion 2.1, Fick and Hijmans 2017). The WorldClim2 datasets have been used in numerous 
species distribution models and many other climate impact studies (Escalera-Vazquez et al. 
2018; Brandl et al. 2020; Çoban and Örücü 2020; Sydenham et al. 2020). The data consist 
of spatially interpolated monthly climate data, with downscaled temperature and rainfall 
being the most widely used variables. The WorldClim2 baseline climate data were created 
by thin-plate splines interpolation using covariates such as elevation, distance to the coast, 
and MODIS-derived (Moderate Resolution Imaging Spectroradiometer) covariates includ-
ing maximum and minimum land surface temperature and cloud cover. The interpolation 
was done for 23 separate regions delineated by considering station density. The baseline 
period for WorldClim2 is 1970–2000, and the finest spatial resolution available is 30 arc 
seconds (approximately 1  km). Future WorldClim2 data include projections of monthly 
values from multiple GCMs for the four RCPs that are downscaled and calibrated using the 
WorldClim2 baseline dataset. There is minimal information on the downscaling of World-
Clim2 future climate projections, as these are simply described as the relative and absolute 
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deltas between baseline and future GCM runs that are spatially interpolated to 1 km resolu-
tion (https:// www. world clim. org/ data/ downs caling. html).

2.1.2  CHELSA

As a newer global downscaling effort that partially accounts for orographic effects in 
its precipitation downscaling, CHELSA has been shown to yield better rainfall projec-
tions than using a single GCM projection alone or other downscaled products that do not 
account for orographic effects (Raju and Kumar 2020). CHELSA provides high resolution 
climatologies for the earth’s land surfaces based on a downscaled global reanalysis of mul-
tiple GCMs (Karger et al. 2017a, b). CHELSA is essentially a statistical downscaling of 
the ERA-Interim Reanalysis data (European Centre for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis Interim; Berrisford et  al. 2011), with the downscaled temperature 
based on mean lapse rates and elevation and a precipitation algorithm that incorporates 
orographic predictors including wind fields, valley exposition, and boundary layer height. 
The baseline period for CHELSA data is 1979–2013, and the finest spatial resolution avail-
able is 30 arc seconds (approximately 1 km). CHELSA uses a delta change method to pro-
ject future climate. This method involves interpolating anomalies (deltas) of the respec-
tive CMIP5 GCM dataset using B-spline interpolation. The anomalies are then added (for 
temperature variables) or multiplied (in the case of precipitation) to high resolution climate 
data from CHELSA V1.2. Future CHELSA data include projected mean monthly values 
for the four RCPs.

2.2  Regional projections

The Hawaiʻi regional climate model (HRCM) is a Weather Research and Forecasting 
(WRF) dynamic downscaling model configured for the Hawaiian Islands (Zhang et  al. 
2012). In general, the dynamical downscaling approach of the HRCM realistically simu-
lates the magnitude and geographical distribution of mean rainfall in Hawaiʻi and reasona-
bly reproduces heavy rainfall events as well. As the HRCM projections are commonly used 
for climate impact studies in Hawaiʻi (Fortini et al. 2017; Camp et al. 2018; Brewington 
et al. 2019; Pau et al. 2019; Westerband et al. 2020), we included it as a benchmark in our 
baseline comparisons to see how newer globally downscaled products compare with it. The 
HRCM baseline period is 1990–2009, and the data are available at 3 km resolution for all 
the major Hawaiian Islands, except for Maui, for which data are available at a resolution of 
1 km. Future projections are available for end-of-century (2080–2099) conditions under the 
CMIP3 A1B scenario of the Special Report on Emissions Scenarios (SRES; IPCC 2000). 
Although the HRCM has since been further improved upon and updated, we used the latest 
published HRCM configurations (Zhang et al. 2016c) as those outputs are the only ones 
available for all the major Hawaiian islands.

The projected climate shifts from the bias-corrected global datasets were compared with 
a wider set of regional downscaling climate projections. This includes a more recent effort 
by the National Center for Atmospheric Research (NCAR) that produced an additional 
dynamically downscaled dataset for projected future climate (2090–2100) using the Pseudo 
Global Warming (PGW) method to implement change to historical conditions based on 
climate signals from GCM averages under RCP8.5 emissions (Xue et al. 2020). We also 
used a statistical downscaling (SD) effort for comparison that produced end-of-century cli-
mate projections for Hawaiʻi (2070–2099; Elison Timm et al. 2015; Elison Timm 2017) by 

https://www.worldclim.org/data/downscaling.html
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developing a statistical relationship between regional-scale spatial patterns of atmospheric 
circulation, moisture transport, and stability and point-scale observations.

3  Methods

3.1  Comparing model‑based baseline projections with regional observations

We considered mean annual temperature (MAT) and mean annual precipitation (MAP) 
as our primary variables for comparison because they are widely used datasets in cli-
mate impact studies. In Hawaiʻi, the most accurate observation-based estimates of MAT 
and MAP patterns across the archipelago are the 250-m resolution MAP datasets from the 
Rainfall Atlas of Hawaiʻi (Giambelluca et al. 2013) and the MAT dataset from the Climate 
of Hawaiʻi data portals (Giambelluca et al. 2014). These two datasets also have differing 
baseline periods, with the MAP and MAT data representing 1978–2007 and 1957–1980, 
respectively. Once all observation and model-based MAP and MAT baselines were stand-
ardized (described below), we compared the CHELSA, WorldClim2, and the HRCM base-
line climatologies to these observation-based datasets. Absolute and percent deviations 
were calculated for MAT and MAP, respectively. To avoid localized but extremely large 
MAP percent deviation values, pixels with absolute rainfall deviations < 200  mm/year 
were excluded (approximately 1% of the landscape), as deviations can vary widely when 
comparing relative deltas for precipitation. These calculated deviations were used to make 
comparisons between the newer global datasets and the widely used HRCM regionally 
downscaled projections.

Because the historical baseline periods for each of the three downscaled and the two 
observational reference datasets all differ, exact comparisons are impossible without stand-
ardization. Hence, for our comparisons we used a standard base period of 1983–2012 as 
a recent 30-year period with available MAP and MAT data for the state. To standardize 
modeled and observational MAP datasets, we used monthly gridded precipitation datasets 
available from 1920–2012 (Frazier et al. 2016). From these monthly datasets, we created 
grids matching the differing base periods for each of the observational (Rainfall Atlas of 
Hawaiʻi), global (WorldClim 2 and CHELSA) and regional (HRCM) datasets. We then cal-
culated the percent change between data from the original base period and the standard 
base period (1983–2012) for each dataset at each pixel. Ultimately, we applied this percent 
change as a standardization for each grid cell in the dataset used in this analysis:

To standardize the MAT datasets, we used absolute deviation instead of percent devia-
tion to make comparisons between datasets. However, because we did not have equivalent 
gridded monthly temperature data from prior to 1990, we used statewide annual tempera-
ture records from station points (McKenzie et al. 2019; Kagawa-Viviani and Giambelluca 
2020) to calculate the absolute temperature deviation between the original dataset period 
and the standardized 1983–2012 baseline period. We standardized observational (Climate 
of Hawaiʻi), global (WorldClim 2 and CHELSA), and regional (HRCM) datasets using 
the differences in mean anomalies between baseline periods based on the mean yearly 

CHELSA MAP1983−2012 =CHELSA MAP1979−2013

×

(

1 +
Monthly ObsMAP1983−2012 −Monthly Obs MAP1979−2013

Monthly Obs MAP1979−2013

)
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temperature anomalies from these datasets to create a landscape level gridded product. We 
applied this absolute change value to standardize each of the datasets:

3.2  Regionally adapting projections by bias correction

After the baseline standardization, we relied on the delta method for bias correction 
(Teutschbein and Seibert 2012) to reduce the effects of deviations in the spatial patterns 
of baseline MAT and MAP across the different modeling approaches. The delta method is 
widely used, including in the development of the future projections for both global datasets 
we considered, but does not take into account future changes in variability. To apply it, we 
calculated the percent change in precipitation and the absolute change of temperature (in 
degrees) between the standardized baseline and future time periods of each global dataset, 
and applied those deltas to the observation-based baseline data:

3.3  Comparing projected MAT and MAP shifts across bias‑corrected global datasets 
and regional downscaling efforts

Beyond comparing baseline models with observation-based MAT and MAP, as has been 
done in previous studies examining global climate datasets (Wango et  al. 2018; Marchi 
et  al. 2019), we contextualized the projected shifts from the bias-corrected global data-
sets with projected shifts for a limited set of regional downscaled projections available for 
Hawaiʻi (Elison Timm et al. 2015; Zhang et al. 2016c; Elison Timm 2017; Xue et al. 2020). 
To do this, we first calculated the change between future and baseline projections (i.e., 
deltas) for MAT and MAP across the 16 GCMs considered for the bias-corrected CHELSA 
and WorldClim2. In these delta comparisons, we used only late century RCP8.5 projections 
as those are the ones common across all global and regional downscaled efforts. However, 
because the future simulation periods differ across downscaled efforts (see 2.1 and 2.2), 
we calculated MAT and MAP shifts in terms of decadal rates (e.g., precipitation change in 
mm/decade; temperature change in °C/decade).

3.4  Demonstrating the impacts of global dataset choice on future species 
distribution projections

After standardizing these two global datasets to a common baseline for Hawaiʻi, we assess 
their resulting differences on projected species range shifts, a key application of these 
global downscaled datasets (Liao et  al. 2020; Mundis 2021; Panja et  al. 2021; Li et  al. 

CHELSA MAT
1983−2012

=CHELSA MAT
1979−2013

+

(

Yearly Obs MAT
1983−2012

− Yearly Obs MAT
1979−2013

)

Bias corrected CHELSA MAP2061−2080 =Obs MAP1983−2012

×

(

1 +
CHELSA MAP2061−2080 − CHELSA MAP1983−2012

CHELSA MAP1983−2012

)

Bias corrected CHELSA MAT2061−2080 =Obs MAT1983−2012

+

(

CHELSA MAT2061−2080 − CHELSA MAT1983−2012

)
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2022; Zarate et al. 2023), to illustrate the potential implications of the differences in future 
projections between the two global datasets on climate impact studies. Species distribution 
modeling (SDM) is a widely used approach to investigate the relationships between species 
occurrences and environmental variables, and thus to evaluate the potential impacts of cli-
mate change on species’ distributions. Previous studies have examined the effects of dataset 
choice on the projected current distributions of species (Bedia et al. 2013; Bobrowski and 
Schickhoff 2017; Lembrechts et al. 2019; Morales-Barbero and Vega-Álvarez 2019). How-
ever, the consistency of future SDM projections across different global datasets remains 
largely unexplored. We take advantage of our temporally standardized and bias corrected 
WorldClim2 and CHELSA datasets to systematically compare the differences in future pro-
jected range shifts between them. By comparing the projected range shifts between the two 
datasets, we aimed to identify the magnitude of effects arising from the choice of global 
dataset and to evaluate the potential implications of these discrepancies on species distribu-
tion modeling and climate impact studies.

3.4.1  Virtual species and SDM data generation

We utilized the R package “virtualspecies” (R Core Team 2020) to create SDM models 
for 200 virtual species. This virtual species approach allowed us to ensure our results 
were not dependent on a limited number of real species distributions. The “virtualspecies” 
package generates random virtual species distributions based on predefined relationships 
between species and our environmental predictors, mean annual temperature (MAT) and 
mean annual precipitation (MAP). Four potential relationships were used in virtual species 
generation: Gaussian, linear, logistic, and quadratic. By using these diverse relationships 
in generating 200 virtual species, we were able to create a diverse set of species distri-
bution models that mimic the variety of responses real species exhibit to local environ-
mental gradients (e.g., high elevation dry adapted species, low elevation wet adapted spe-
cies, broadly distributed species, etc.). Once a virtual species distribution was generated, 
we “collected” 600 sample presence and absence points across the landscape to serve as 
data for the SDMs. The MAT and MAP values from our standardized baseline rasters were 
then extracted and used as predictors in fitted and projected SDMs. SDM model fitting and 
evaluation details are included in Online Resource 1.

3.4.2  SDM model comparisons

To compare SDMs based on the different global datasets, we performed a series of anal-
yses to assess the differences in baseline and future species distributions and associated 
range shifts. First, to understand the impact of dataset difference on baseline SDM projec-
tions, we fitted and projected baseline distributions using the bias corrected (observation-
based baseline climate data) and the original non-bias corrected WorldClim2 and CHELSA 
baseline datasets, all standardized to the same 1983–2012 period for each virtual species. 
We then compared the overlap between modeled presence and the underlying (typically 
unknown) actual presence for each virtual species as a measure of model accuracy.

Second, to evaluate the impact of future projection differences across the two glob-
ally downscaled datasets, using models fitted to the bias corrected baseline, we projected 
and compared the future species distributions for both bias corrected WorldClim2 and 
CHELSA datasets for each of the 16 GCM-based climate projections common across the 
two datasets under the RCP8.5 scenario for the period of 2060 to 2079. The purpose of 
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these SDM analyses was not to explore the specific spatial patterns resulting from mod-
eling virtual species, but to determine whether differences in baseline and future projec-
tions between these datasets result in consistent biases to be considered by potential global 
dataset users.

All data processing, analyses, and resulting maps were performed using R version 4.0.2 
(R Core Team 2020), and when possible, we utilized the Viridis color scale designed to be 
perceived by viewers with common forms of color blindness and interpretable under color 
and black-and-white visualization (Garnier et al. 2021).

4  Results

4.1  Historical baseline comparisons

We compared downscaled projections for historical baseline MAP and MAT from the 
HRCM, CHELSA, and WorldClim2 datasets to observed rainfall and temperature data 
from the Rainfall Atlas of Hawaiʻi (Giambelluca et al. 2013) and the Climate of Hawaiʻi 
(Giambelluca et al. 2014), respectively.

4.1.1  Rainfall

When assessing the global datasets on the same standard baseline period as the observa-
tions (1983–2012), the HRCM data represent the observed MAP patterns reasonably 
well in magnitude and spatial pattern (Fig. 1). The spatial pattern of baseline MAP from 
WorldClim2 largely deviates from the clear windward and leeward rainfall patterns known 

Fig. 1  Mean annual rainfall (mm) for the period 1983–2012 from (a) observations (the Rainfall Atlas of 
Hawai ‘i), (b) regional HRCM projections, (c) CHELSA, and (d) WorldClim2
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to occur on the islands (Fig. 1a). The CHELSA and baseline MAP comparison shows a 
coarse windward and leeward rainfall pattern but deviates in the extent of this pattern and 
underestimates the overall magnitude of the orographic effect. The CHELSA data show 
higher precipitation in windward areas in comparison to the outputs from the WorldClim2 
data, although the values for both CHELSA and WorldClim2 are much lower than the 
observed values. HRCM had the lowest median absolute and relative deviations in MAP 
(Table 1; Online Resource 2). Additionally, the histogram of deviations between each of 

Table 1  Absolute deviations in MAT (°C) and MAP (mm) between observations and bias-corrected global 
datasets (CHELSA, WorldClim2) and the widely used regionally downscaled dataset (HRCM). Values are 
based on quantiles of pixel-level differences between each downscaled dataset and the observation-based 
dataset

Variable Dataset 25% Quantile Median 75% Quantile Range
(Q75–Q25)

MAP WorldClim2 -428 198 598 1030
MAP CHELSA -255 159 392 648
MAP HRCM -598 -20.6 435 1030
MAT WorldClim2 0.172 0.524 0.915 0.742
MAT CHELSA 0.58 0.945 1.38 0.799
MAT HRCM -1.04 -0.565 -0.0863 0.955

Fig. 2  Histograms of percent deviation of mean annual precipitation (MAP) for the baseline period of 
1983–2012. Deviations were calculated based on a comparison of each model (WorldClim2, CHELSA, and 
HRCM) versus the observation-based MAP baseline from the Rainfall Atlas of Hawaiʻi
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the three different model outputs and the observation-based rainfall patterns show a gener-
ally wider distribution of deviations for the WorldClim2 downscaled data compared to both 
the HRCM and CHELSA datasets (Fig. 2; Online Resource 2). However, in absolute terms, 
50% of absolute deviations between modeled and observed MAP (i.e., the 25–75% quantile 
of deviations) for the CHELSA dataset span a range of 648 mm, an interval smaller than 
the corresponding intervals for the WorldClim2 and HRCM datasets (Table  1). Beyond 
the deviations in magnitude from observed MAP, there are notable differences in spatial 
patterns of modeled rainfall compared to the observed rainfall patterns (Fig. 3). All World-
Clim2, CHELSA, and HRCM datasets underestimate windward rainfall values across the 
islands. Additionally, WorldClim2 largely overestimates rainfall in leeward areas. Both 
CHELSA and HRCM struggle to represent lower precipitation at higher elevations, which 
is due to the effects of an atmospheric inversion layer called the trade wind inversion (TWI; 
Longman et al. 2015). The discontinuity in the vertical temperature gradient produced by 
the local TWI prevents the moist trade winds from rising and producing clouds and pre-
cipitation. The inability of these global models to capture this local pattern of rainfall leads 
to some of the highest positive percent deviations (i.e., rainfall overestimates) in these high 
elevation areas above the TWI due to their larger scale projections.

4.1.2  Temperature

All downscaled products show a spatial pattern of historical mean annual temperature 
across the landscape very similar to the observed pattern (Online Resource 3). All down-
scaled MAT modeled datasets show small overall bias in baseline temperatures in relation 
to the observational data, with WorldClim2 having the smallest median deviation in com-
parison to the observed data (0.52 °C) and CHELSA having the largest deviation (0.95 °C) 
(Table 1). In absolute terms, the WorldClim2 dataset also had a narrower range of devia-
tions between modeled and observed MAT (Fig.  4). Although all downscaled results 
reproduce the elevation dependency of temperature reasonably well, the spatial pattern of 
deviations from the observed temperature are complex (Fig.  5). Both the CHELSA and 
WorldClim2 datasets show subtle deviations in their mapped patterns that reflect the topo-
graphic complexity in Hawaiʻi on a fine spatial scale. Although CHELSA may show the 
smoothest patterns of deviation, it again struggles to perform above the TWI and showed 
higher biases in windward areas. In contrast, the HRCM deviations do not tend to follow 
any clear geographic pattern.

Fig. 3  Maps of percent deviation of mean annual precipitation (MAP) between baseline Rainfall Atlas of 
Hawaiʻi observed data and (a) HRCM, (b) CHELSA, and (c) WorldClim2 downscaled data
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4.2  Standardized deltas and bias correction of future downscaled projections

We calculated standardized deltas and bias corrected future projections for CHELSA and 
WorldClim2 for Hawaiʻi under all 16 common GCMs, emission scenarios, and future time 
periods. Close examination of the standardized deltas between current and the late century 
RCP8.5 scenario for CHELSA and WorldClim2 showed highly contrasting patterns and 
magnitude of change between the two datasets (Online Resource 4). The median MAT del-
tas across the 16 considered GCMs for CHELSA showed a noisy but stronger warming for 
the islands in the southeast and modest warming for islands in the northwestern portion of 
the archipelago. In contrast, the median MAT deltas for WorldClim2 showed a much wider 
range of projected temperature shifts with abrupt spatial patterns, where sites with simi-
lar elevation and topography varied by > 1°C in projected MAT shifts. In terms of MAP 
median deltas for the same future climate scenario and GCMs, CHELSA projected a small 
magnitude of shifts across most of the archipelago (MAP deltas mostly < 5% change). In 
contrast, WorldClim2 projected large drying and wetting trends across the archipelago 
(MAP deltas > 50% change) that were very abrupt, as areas with > 50% projected drying 
were nearly adjacent to areas with > 50% projected wetter conditions.

To further examine the plausibility of these projections, we compared the deltas for MAT and 
MAP across the global datasets with the three regionally downscaled MAP and MAT climate 
projections available for Hawaiʻi for end-of-century climate under RCP8.5. Both bias-corrected 

Fig. 4  Histograms of absolute deviation between model and observation-based mean annual temperature 
(MAT) for the baseline period of 1983–2012. Deviations were calculated based on a comparison of each 
model (WorldClim2, CHELSA, and HRCM) versus the observation-based MAT baseline from the Climate 
of Hawaiʻi
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CHELSA and WorldClim2 datasets project a smaller median MAT and MAP rate of change 
across Hawaiʻi compared to the regional datasets (Fig.  6). However, the lower (10%) and 
upper (90%) quantiles for these rates of change showed WorldClim2 projections often had 
rates of change for MAT and MAP that were more than twice of those from regional climate 

Fig. 5  Maps of absolute deviation (in °C) of mean annual temperature (MAT) between baseline Climate of 
Hawaiʻi observed data and (a) HRCM, (b) CHELSA, and (c) WorldClim2 downscaled data

Fig. 6  Median projected rates of change in mean annual temperature (MAT) and mean annual precipitation 
(MAP) (with 10% and 90% quantile bars) across bias-corrected global datasets (CHELSA, WorldClim2), 
and Hawaiʻi regionally downscaled datasets (HRCM, NCAR, SD). Median, 10% and 90% quantile values 
did not visibly change for the non-bias-corrected Worldclim2 and CHELSA global datasets
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projections. CHELSA projections, on the other hand, exhibited a narrow range of delta values, 
not only compared to WorldClim2 deltas but also to regionally downscaled deltas. Exploring 
GCM-specific bias-corrected datasets showed an even greater range of values for WorldClim2 
in comparison to the regionally downscaled datasets and show that variability among GCMs is 
greater than the differences between regional or bias-corrected datasets (Fig. 7).

Lastly, using the bias-corrected datasets, we described patterns of projected future shifts 
in MAP and MAT in Hawaiʻi (Online Resources 7–10). We explored the variability of future 
projections based on 16 available GCMs for late century (2061–2080) under RCP8.5 as these 
outputs were comparable to regional climate projections from the HRCM and the other two 
regional models. We also produced a similar dataset available in our online data release that 
offers mid-century results and a wider range of RCPs (Berio Fortini and Kaiser 2022).

4.3  Impact of global dataset choice on projected future species range shifts

The use of the globally downscaled datasets for species distribution model fitting resulted 
in a statistically significant decrease in accuracy (6% and 7% relative accuracy decrease for 

Fig. 7  Median projected rates of change in mean annual temperature (MAT) and mean annual precipitation 
(MAP) (with 10% and 90% quantile bars) across GCM-specific bias-corrected global WorldClim2 projec-
tions and Hawaiʻi regionally downscaled datasets (HRCM, NCAR, SD) under late century RCP8.5. Similar 
figures for CHELSA projections are shown in Online Resource 5
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CHELSA and WorldClim2, respectively) in comparison to models fitted using the observa-
tion-based bias corrected baseline data (Online Resource 6). Beyond the impact of differ-
ent baselines on model accuracy, we isolated the effect of differences in future projections 
between the two globally downscaled datasets by fitting and projecting present range using 
a common bias corrected baseline climate dataset, and projecting future distributions using 
both bias corrected CHELSA and WorldClim2 datasets.

The effect of dataset choice on species modeled range shifts, independent of baseline 
differences, varied widely across species (Online Resource 6). The median percent range 
change differences between CHELSA and WorldClim2 projections was 5.7% the size of a 
given species current range. While apparently small, the median range change due to pro-
jected climate shifts between the baseline and the 2061–2080 RCP8.5 future scenarios con-
sidered for both datasets was also relatively small (19.7%). Hence, across all species, the 
relative effect of dataset choice could be consequentially large, as the median effect of data-
set choice was 30.1% as large as the percent range change due to projected climate shifts 
between the baseline and the 2061–2080 RCP8.5 future scenarios considered. This relative 
effect of dataset choice could also be extremely high, with the 95% quantile across all spe-
cies being 665% as large as the projected climate change driven range change (i.e., some 
species had little to no climate-driven range change but differed widely between CHELSA 
and WorldClim2 future projections). In general, CHELSA based future projections resulted 
in larger range overlaps between baseline and future projections when compared to World-
Clim2 projections, even when using a common bias corrected baseline (71.6% versus 
66.4% mean range overlap, CHELSA and WorldClim2 respectively). This agrees with the 
noticeably smaller range of MAT and MAP deltas across GCMs for CHELSA future pro-
jections in comparison to WorldClim2 (Fig. 6).

5  Discussion and conclusions

Downscaled climate projections are being increasingly used for biogeographical, hydro-
logic, and climate change impact modeling purposes (Rodder 2009; Rovzar et  al. 2013; 
Kodis et al. 2018; Mausio et al. 2020). Consequently, globally downscaled climate datasets 
such as WorldClim2 and CHELSA are some of the most widely used climate datasets in 
the world (Lima-Ribeiro et  al. 2015; Fick and Hijmans 2017; Karger et  al. 2017a; Vega 
et al. 2017). In this study, we expand on previous work that recommended bias correction 
of such datasets (Poggio et al. 2018) by exploring the future projections from these datasets 
to characterize their utility as plausible future climate scenarios.

From our comparison of WorldClim2 with local observational data, it is apparent that 
for Hawaiʻi, this downscaled dataset does not adequately represent MAP as it does not 
capture the well-known windward-leeward rainfall pattern. Rainfall in Hawaiʻi is mainly 
driven by the steep orography and prevailing trade winds (Schroeder et  al. 1984; Garza 
et al. 2012), where the windward sides of the mountains are major contributors to state-
wide rainfall totals (Lyons 1982), with some areas receiving mean annual rainfall of over 
10,000 mm per year (Giambelluca et al. 2013). These steep rainfall gradients are difficult 
to capture at a larger scale and require more refined projections to capture local rainfall 
patterns on small islands like Hawaiʻi. In fact, both global datasets encountered some dif-
ficulty in projecting orographic rainfall and also had problems with temperature projections 
in areas above the TWI that resulted in some of the highest positive percent deviations. 
The CHELSA dataset offers better results for MAP but exhibits consistent temperature bias 
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across the islands, especially in areas above the TWI. The interaction of the TWI (typi-
cally located at 2,150 m elevation and above), which determines the cloud top height (Cao 
et al. 2007; Longman et al. 2015) and subsequently the precipitation in conjunction with 
the complex terrain, creates a unique response to climate change. The TWI creates sharp 
discontinuities in climate patterns as high elevation areas are some of the driest areas in 
Hawaiʻi (Giambelluca et al. 2013). Because the TWI base height is usually lower than the 
tallest mountains that extend above 4,000 m, the summits on Maui and Hawaiʻi Island can 
be dry and clear despite clouds on the lower slopes. However, the TWI can vary in base 
height, thickness, strength, and frequency across the island chain (Cao et al. 2007). Con-
sequently, bias-corrected projections for areas above the TWI are to be used with caution. 
Nevertheless, given that a large portion of areas of conservation, water management, and 
other areas of concern are located below this elevation, this clear TWI limitation does not 
undermine the utility of these datasets to a broader portion of the Hawaiian landscape. 
Other researchers working in areas with similar topographically defined climate patterns 
may benefit from evaluating the capacity of such global datasets to properly represent simi-
larly important regional climatic patterns.

In terms of exploring the ability of these global datasets in replicating fine scale MAT 
and MAP patterns of current climate, our work expands on past efforts (Wango et al. 2018) 
by including HRCM, a widely used regionally downscaled set of baseline projections, 
as a reference point for comparisons. In that respect, despite similar deviations between 
the regional downscaled model and the global datasets in representing local climate, the 
HRCM better represented the strong windward and leeward orographic MAP gradients in 
general but did not fully capture the TWI effect on high elevation temperatures, resulting 
in a small cold bias at high elevations. Overall, although the proposed regional adaptation 
of global climate datasets we describe in our work provide some additional resources to 
be incorporated into impact studies and resource management decisions, these are not a 
replacement for tailored regional downscaling efforts (Zhang et  al. 2016c; Elison Timm 
2017; Xue et al. 2020).

The examination of projected future rates of MAT and MAP change is a step not pre-
viously performed in studies examining global downscaled datasets but could improve 
the understanding of the differences seen in global models and datasets. The differences 
in MAT and MAP shifts from GCM-specific future projections from WorldClim2, and 
CHELSA were larger than the differences between median global downscaled projec-
tions and their regionally downscaled counterparts (Figs.  6 and 7). The spatial patterns 
and magnitudes of shifts for WorldClim2 late century MAT and MAP shifts under RCP8.5 
were substantially larger than CHELSA and regionally downscaled projections (Online 
Resource 4). On the other hand, CHELSA equivalent projections had smaller shifts both in 
terms of median and range of change. These patterns were present irrespective of the appli-
cation of baseline bias-correction. Given the differences in projected change between the 
bias-corrected GCM-specific projections, when available, regional downscaled projections 
can be useful to identify individual GCMs that yield projections more in line with regional 
downscaling values, such as Model for Interdisciplinary Research on Climate (MIROC) 
atmospheric chemistry coupled model (MIROC-CHEM) and earth system model (MIROC-
ESM) for CHELSA (Online Resource 5). Using this subset of best performing bias-cor-
rected GCMs, multiple bias-corrected future climate scenarios can be developed based on 
the wide availability of WorldClim2 and CHELSA projections for mid- and late-century 
under multiple RCPs (Fick and Hijmans 2017; Karger et al. 2017a, b).

Although Morales-Barbero and Vega-Álvarez (2019) recommended considering 
congruency among global datasets as a measure of certainty in climate change impact 
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studies, the different ways in which future projections are created between CHELSA and 
WorldClim2 signify that additional discrepancies are possible when comparing future 
climate impact projections based on these two datasets. In fact, by isolating the differ-
ences in future projections by standardizing these global datasets to a common baseline 
showed that the implications of future projection differences alone could be quite large. 
Past work has already shown that differences in baseline climate data used to fit models 
can have a large effect on climate projections (Bedia et  al. 2013; Poggio et  al. 2018), 
and this work expands those cautionary notes by showing that differences in global 
downscaled dataset future projections alone can also have large effects on projections 
such as species distribution shifts and likely other uses. These differences were not only 
a matter of accuracy, magnitude and bias in projected range shifts, but often changes in 
overall spatial patterns of resulting projected distributions (Online Resource 6). Never-
theless, it is still important to note that our findings are based on a single study region, 
and that the specific patterns of deviations in baseline and future projections between 
WorldClim2, CHELSA, and local datasets are likely region-specific. Lastly, the gener-
ally limited descriptions of methods used to generate future projections for both data-
sets hinders their use and if improved would ensure that future research efforts could 
more easily understand potential sources of error and uncertainties in these products 
and derived climate impact analyses. In fact, both primary publications for WorldClim2 
(Fick and Hijmans 2017) and CHELSA (Karger et al. 2017a) focus on the methods asso-
ciated with current climatologies, and do not describe future GCM downscaling meth-
ods, with only limited information available in their respective websites (https:// www. 
world clim. org/ data/ downs caling. html and https:// chelsa- clima te. org/ wp- admin/ downl 
oad- page/ CHELSA_ tech_ speci ficat ion. pdf (Section  3.4), respectively). Without more 
detailed description of the future GCM downscaling approaches, understanding the 
causes of our observed differences between the two approaches is challenging.

Although these high-resolution global datasets were developed to provide regional 
climatology for the terrestrial world and have been widely valued and used, past research 
has already cautioned against the unexamined use of global datasets in topographically 
complex regions (Bobrowski and Schickhoff 2017). Our analyses also highlight the need 
to examine the patterns of climatic change projected by these datasets. At a minimum, 
bias correction using locally available baseline datasets is one important step previously 
identified (Poggio et al. 2018) that warrants consideration by users of these global data-
sets. However, for our analysis, this step alone was not enough to address issues identi-
fied in comparisons with observational baseline data and fine-tuned regionally devel-
oped projections for complex, mountainous, small-scale areas. Although we did have 
the benefit of being able to compare the bias-corrected global projections with region-
ally downscaled projections, we expect in other similar regions without regional down-
scaling efforts for comparisons that averaging across datasets would still help reduce 
outlier values in bias-corrected global datasets. Lastly, the inspection of projected shifts 
from these global datasets was useful, especially when comparing to similar projections 
from regionally downscaled efforts. Even without regional projections for comparisons, 
the inspection of projected shifts in MAT and MAP provide a much clearer picture of 
the relative strengths and weaknesses of these datasets for studies that aim to project 
future climate change impacts at global and regional scales.
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