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Abstract. This research used deep learning for image analysis by isolating and 

characterizing distinct DNA replication patterns in human cells. By leveraging 

high-resolution microscopy images of multiple cells stained with 5-Ethynyl-2′-

deoxyuridine (EdU), a replication marker, this analysis utilized Convolutional 

Neural Networks (CNNs) to perform image segmentation and to provide robust 

and reliable classification results. First multiple cells in a field of focus were 

identified using a pretrained CNN called Cellpose. After identifying the location 

of each cell in the image a python script was created to crop out each cell into 

individual .tif files. After careful annotation, a CNN was created from scratch 

using the TensorFlow Keras package and trained on those images to categorize 

them into five distinct replication patterns. Using a holdout test set our model 

was able to achieve an accuracy of 86.5%. This analysis method for segmentation 

and classification enhances the efficiency and reproducibility of DNA replication 

analysis, allowing for high-throughput processing and analysis of replication 

foci. This research can enhance image analysis in cell biology by providing a 

time-efficient and accurate tool to investigate replication dynamics, advance 

cancer research, and contribute to scientific discovery in various domains. 

 

1   Introduction 

For cells to divide properly they must first copy their entire genome so that 

each of its daughter cells inherits a complete copy of the genome. This process is called 

DNA replication, and it plays a crucial role in maintaining genomic integrity. Most 

metazoan cells replicate their genome following a spatiotemporal pattern that becomes 

apparent when replication sites in S phase nuclei are labeled with thymidine analogs 

like BrdU or EdU. Quantifying cells with spatiotemporal replication patterns 

characteristic of early, mid, or late S phase has become a widely used method among 

1

Boyd et al.: Human Cell Segmentation and Classification

Published by SMU Scholar, 2023



scientists to assess and understand the progression of cells through the S phase of the 

cell cycle. Identifying and characterizing DNA replication patterns in human cells is 

essential for understanding the mechanisms underlying cell division and its 

dysregulation in various diseases such as cancer. Current methods for analyzing 

replication foci in images of cells rely heavily on manual assessment, leading to 

subjectivity, time inefficiency, and limited sample sizes. To address these limitations, 

this research focuses on developing a deep learning image analysis pipeline that can 

automate the characterization and identification of different patterns during S-phase. S-

phase takes place during interphase, before mitosis or meiosis, and is the time that DNA 

replication occurs. 

During S-phase of the cell cycle, the genome must be accurately copied to 

make sure proper cellular function is maintained. If the inherited genetic information is 

not copied correctly and contains errors, it can lead to various diseases. One of the key 

aspects of DNA replication is the initiation of replication forks, which are responsible 

for unwinding and copying the DNA strands. Replication forks initiate at specific sites 

on the DNA where the replication machinery that copies the DNA takes place. These 

dynamic structures are formed by the unwinding of the DNA double helix and the 

assembly of proteins and enzymes necessary for DNA synthesis. The initiation of 

replication forks is a highly regulated process involving multiple factors. The regions 

on chromosomes where these forks can begin replication are known as replication 

origins (ORI). In the G1 phase of the cell cycle, prior to S-phase where DNA replication 

occurs, these replication origins are "licensed" or marked for potential initiation (Chong 

et al. 1995). This licensing process ensures each ORI is used only once during each cell 

cycle, preventing overactive or incomplete DNA replication. The mechanisms that 

control the progression of S-phase, like replication fork initiation, and the factors that 

limit it have implications both developmentally and in disease progression. 

Replication foci are specific subnuclear structures that are observed within the 

nucleus of a cell during S phase. These foci are formed by a combination of various 

proteins and enzymes at active sites of replication forks. Replication foci represent the 

localized concentration of replication-associated factors and newly synthesized DNA 

at clusters of replication forks in the nucleus. They are considered indicators of ongoing 

DNA replication in a cell. The number and distribution of replication foci within a cell’s 

nucleus can provide insights into the replication status of the genome and can be used 

to compare specific treatments that affect DNA replication. 

The importance of investigating this topic lies in the need for a robust and 

efficient tool to improve the analysis of replication foci in human cells. Such a tool 

would enhance the accuracy and reproducibility of DNA replication studies and enable 

researchers to process and analyze images time-efficiently. By automating the 

identification of replication patterns, the subsequent pipeline would contribute to the 

advancement of cancer research and other fields exploring DNA replication dynamics. 

It is important to note that these automated processes should be maintained and checked 

often to ensure the validity of the results. It is possible for slight experimental variation 

to affect the expected accuracy. 

Previous studies have identified distinct patterns associated with different 

stages of DNA replication using specific markers of replication foci such as 5-ethynyl-

2′-deoxyuridine (EdU), 5-bromo-2′-deoxyuridine (BrdU), and the replication 
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processivity factor PCNA. Specifically, we will be focusing on the use of EdU, which 

is a Thymidine analog. When applied to cells in S-phase, this analog is incorporated 

instead of Thymidine into newly replicated DNA. Once EdU becomes incorporated into 

genomic DNA, it can be efficiently labeled by covalently attaching fluorescent azides 

through a Cu(I)-catalyzed [3 + 2] cycloaddition reaction, commonly referred to as 

"click" chemistry (Salic et al. 2008). Sites of replication in the nucleus fluorescently 

labeled with EdU can be observed using fluorescence microscopy. Replication sites 

have distinct spatial patterns associated with different times in S-phase (O’Keefe, 

1992). In the early stages of S-phase, genomic DNA distributed across the nuclear 

interior undergoes replication, followed by replication of DNA located at the nuclear 

periphery and surrounding nucleoli in mid-S phase, with DNA within large 

heterochromatin patches being replicated towards the end of S phase. Hence, a cell's 

specific stage in the S phase can be identified by categorizing it based on one of three 

to five distinct spatiotemporal replication patterns. Quantifying these replication factors 

has evolved into a standard approach for evaluating S phase progression. However, 

traditionally, scientists have relied on manual categorization of these patterns, which is 

labor-intensive, subjective, and susceptible to variability. Furthermore, the manual 

assessment often involves analyzing only a subset of cells within an image, potentially 

leading to biased conclusions. There is a clear gap in the field for a tool that can increase 

both the throughput and accuracy of DNA replication analysis while reducing the 

inherent biases associated with manual categorization. 

This research aims to bridge this gap by leveraging deep learning techniques 

to develop an automated image analysis pipeline. By training a deep learning model on 

a large dataset of human cell images stained with replication markers, the pipeline will 

learn to identify and categorize replication patterns with high precision and efficiency. 

This approach will not only reduce the time and effort required for replication analysis 

but also enable researchers to analyze larger sample sizes, thereby improving the 

statistical power of their experiments.  

Image segmentation is a kind of computer vision that partitions an image into 

multiple segments or regions. Each of these segments represents an area of significance 

or a unique object. The goal of image segmentation is to divide an image into 

meaningful and semantically consistent regions, making it easier for computers to 

analyze and understand the contents of the image. The research will discuss 

architectural variations, modifications, and strengths in handling image segmentation. 

In image segmentation, each pixel or group of pixels in an image is assigned a label or 

a unique identifier based on its visual attributes, such as color, intensity, texture, or 

spatial location. The segmentation process aims to separate objects or regions of interest 

from the background or separate different objects from each other. There are different 

approaches to image segmentation, including thresholding, region-based segmentation, 

edge detection, clustering, and deep learning-based methods. For this research, our 

focus will be on semantic segmentation. 

Semantic segmentation is another computer vision method that labels each 

pixel in an image with a class or category, aiming to assign a meaningful semantic label 

to every individual pixel. Unlike other forms of image segmentation that only 

differentiate regions or boundaries, semantic segmentation provides a more detailed 

understanding of the image by associating semantics with each pixel. In semantic 

segmentation, the goal is to partition an image into multiple regions and assign each 
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pixel a label that represents the category or class it belongs to. The resulting segmented 

image provides a pixel-wise representation of the scene, highlighting the specific 

objects or regions of interest. 

Semantic segmentation is typically performed using deep learning techniques, 

specifically convolutional neural networks (CNNs). CNNs are trained on large, 

annotated datasets, where pixel-level labels are provided for training images. The 

network learns to recognize and classify different visual patterns and features in the 

images, allowing it to segment new, unseen images accurately. These networks can 

generalize well to new, unseen data and provide accurate and real-time segmentation 

results for various computer vision applications. Deep learning-based image 

segmentation has significantly advanced the field, enabling breakthroughs in medical 

imaging, autonomous vehicles, robotics, and many other areas where accurate scene 

understanding is crucial. 

The architecture commonly used for semantic segmentation is the Fully 

Convolutional Network (FCN). FCNs are used to replace the fully connected layers in 

a traditional CNN with convolutional layers, enabling the network to produce spatially 

dense predictions for each pixel. Semantic segmentation has numerous applications in 

various domains. In medical imaging, it aids in segmenting organs, tumors, or lesions, 

enabling accurate diagnosis and treatment planning.  

 

2   Literature Review 

High-resolution microscopy and deep learning algorithms have both shown 

exciting potential in advancing our understanding of the cell cycle. Medical researchers 

have leveraged these approaches to classify different cell cycle phases, analyze 

chromosome replication, and even predict disease progression. Developing and 

improving deep learning models and refining image analysis techniques, valuable 

insights can be gained regarding different cellular processes and disease mechanisms. 

The literature presented here gives some relevant information about visualizing 

replication foci, explores the background of deep learning image analysis in the field 

of medicine, and shows some examples of relevant studies that have demonstrated its 

effectiveness in cell cycle research. 

 

2.1 DNA Staining Techniques 

An efficient way to label replication foci is with BrdU, a thymidine analog. 

This technique has been widely used in cell cycle studies to label replication foci. Vogel 

et al. (1989) employed this technique to analyze human chromosome replication in 

lymphocyte and amniotic cells. This study highlighted the sensitivity of the technique 

in detecting replication foci, even in regions where only a very small number of 

nucleotides were replaced by BrdU. This demonstrates the effectiveness of BrdU 

labeling for studying replication foci. EdU is another thymidine analog used to label 

active sites of DNA replication by incorporating into the newly synthesized DNA. 

While both EdU and BrdU have similar purposes, there are slight differences in the 

chemical structure and detection method. Another group of researchers used a similar 
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technique to study the length of S-phase by using a dual EdU-BrdU pulse-labeling 

technique with incremental thymidine chases (Bialic et al., 2022). With this method, 

they measured the length of unperturbed S-phase without genome engineering or cell 

cycle synchronizing the cells. Therefore, S phase progression could be tracked in 

unmodified adherent or suspended cultured cells or even cells in animals. These 

approaches reduce the risk of off target effects or artifacts that could undermine the 

specific goal of any study and are why they are commonly used in medical research 

today. Another example of the EdU-pulse labeling technique being used to study DNA 

replication is when a group of researchers found that CDKs (cyclin-dependent kinases) 

play a crucial role in regulating the length of S phase and replication initiation (Sansam 

et al., 2015). They investigated the role of CDKs in this process through 

TICRR/TRESLIN phosphorylation using high resolution microscopy, BrdU/EdU-

pulse double labeling, and other techniques. They found that phosphorylated TICRR 

limits S-phase progression, and the overexpression of a mutant form of TICRR with 

phosphomimetic mutations resulted in an enhanced replication initiation and a shorter 

S-phase. This study provides insights into the regulatory mechanisms governing S-

phase progression and replication timing using these established labeling techniques. 

 

2.2 Image Segmentation 

Image segmentation has a long history and has evolved through various 

techniques and methods over the years. The earliest (1960-1970) image segmentation 

methods were based on simple thresholding and region-growing techniques. 

Researchers used basic intensity or color thresholding to separate objects from the 

background. In the 1980s, edge-based segmentation techniques gained popularity. 

These methods aimed to identify boundaries or edges between different regions in an 

image using gradient-based operators or filters. Active contour models, also known as 

snakes, were introduced in the 1990s. These methods used deformable curves or 

contours to detect object boundaries by minimizing an energy function. In the 1990s, 

region-based segmentation techniques gained popularity. These methods grouped 

pixels based on their similarity in color, texture, or other feature spaces. Graph-based 

methods emerged as powerful tools for image segmentation in the early 2000s. These 

methods represented the image as a graph, where pixels were nodes, and edges 

represented the relationships between neighboring pixels. Machine learning techniques, 

particularly clustering algorithms like k-means, were applied to image segmentation 

tasks in the 2000s. Additionally, support vector machines (SVMs) and random forests 

were utilized to classify pixels into different regions based on feature representations. 

In the 2010s, the advent of deep learning revolutionized image segmentation. 

Convolutional neural networks (CNNs) became the dominant approach, enabling 

accurate image segmentation. Fully Convolutional Networks and architectures like U-

Net, DeepLab, and Mask R-CNN propelled the field of image segmentation to new 

heights, achieving state-of-the-art performance in various applications. 

 

2.3 Deep Learning Models in Medicine 

Deep learning models have also been applied to medical image analysis 

studies to predict disease progression. Voets et al. (2019) attempted to replicate the 

results of an earlier study that developed a deep learning algorithm for detecting 

diabetic retinopathy. The original study did not use publicly available data for training 
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and source code was not available. To deal with this the researchers re-implemented 

the main method using publicly available data sets. In contrast to the original study 

which had multiple grades per image, this study had only one grade per image. 

Unfortunately, Voets replicated algorithm achieved lower performance compared to the 

original study. The researchers suggested these discrepancies may be due to the data 

having only a single grade per image or differences in the training data they used. This 

is an example of the challenges of reproducibility in deep learning results and the 

importance of validation and replication studies, particularly in medical image 

analysis.  

Modern deep learning methods have been useful in performing image 

segmentation. A survey by Minaee et al. (2022), explains how deep learning methods 

can be used to perform image segmentation. The paper begins by introducing the 

historical background of image segmentation and its evolution over the years. It 

highlights the limitations of traditional segmentation methods and the need for more 

robust and accurate approaches, leading to the emergence of deep learning-based 

techniques. The paper provides a comprehensive overview of deep learning 

architectures commonly used in image segmentation, such as Fully Convolutional 

Networks (FCNs), U-Net, DeepLab, and Mask R-CNN. It explains the principles 

behind each architecture, including encoder-decoder structures, dilated convolutions, 

and feature fusion mechanisms. The survey delves into the role of annotated datasets 

and transfer learning in training deep learning models for image segmentation. 

Moreover, the paper discusses the trade-offs between accuracy and computational 

efficiency in deep learning-based segmentation models, considering the resource 

constraints in real-time applications. The paper states that fully convolutional networks 

and encoder-decoder networks were initially developed for medical & biomedical 

image segmentation and that residual networks (ResNet) can be used as feature 

extractors in images. Semantic segmentation using deep learning techniques have been 

used in the field of medical imaging. Araújo, F. H. D. et al. (2019) explores the use of 

deep learning for cell image segmentation and ranking tasks. Cell image segmentation 

is the process of accurately identifying and delineating individual cells within an image, 

which is crucial for various biological and medical research applications. Deep learning 

techniques like convolutional neural networks (CNNs) have shown remarkable success 

in automating this process, enabling efficient and accurate cell segmentation even from 

complex and noisy images. Similar deep learning techniques have also been used to 

identify Covid-19 lung infections as addressed in Chen, Y et al. (2022).  Asgari 

Taghanaki, S et al. (2021), provides a comprehensive overview of deep learning 

techniques for semantic segmentation in medical image domains. The paper then delves 

into the principles and architectures of deep learning models commonly used for 

semantic segmentation, paying special attention to convolutional neural networks. It 

presents a thorough overview of popular CNN architectures, such as U-Net, DeepLab, 

and Mask R-CNN, and explains their design characteristics and strengths. The study 

concludes with how semantic segmentation can be used in medical image domains. To 

add further support, Hesamian, M. H. et al. (2019) extensively discusses deep learning 

techniques and architectures for medical image segmentation. The study begins by 
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highlighting the critical role of medical image segmentation in various clinical 

applications, such as disease diagnosis, treatment planning, and monitoring. It 

emphasizes the significance of accurate and precise segmentation to aid medical 

professionals in making informed decisions. The paper provides an in-depth 

explanation of multiple deep learning techniques with examples. It focused on 

convolutional neural networks (CNNs), which have become some of the most effective 

models in addressing medical image segmentation. It discusses the architectural 

components of CNNs and the benefits of using deep learning models over traditional 

approaches. A sizable portion of the review is dedicated to discussing the achievements 

of deep learning-based medical image segmentation. The authors present case studies 

and examples of successful applications, including organ and tumor segmentation, 

brain lesion detection, and cardiac image analysis. They highlight the improved 

accuracy and efficiency of deep learning methods in these tasks compared to 

conventional methods. Our study intends to use residual networks to improve the 

accuracy of the deep learning model.  Cheng, J et al. (2022), proposes residual networks 

and effective deep learning architecture that address challenges related to variations in 

appearance and limited training data in medical image segmentation.  The authors of 

the paper emphasize the significance of accurate medical image analysis in diagnosis 

and treatment planning. They highlight the challenges posed by the complexity and 

variability of medical images, motivating the need for advanced techniques to improve 

classification and segmentation accuracy. The paper introduces the ResGANet 

architecture, which combines the residual connections and group attention mechanisms. 

Residual connections enable the network to learn residual mappings, facilitating the 

training of deeper architectures and reducing vanishing gradient issues. Group attention 

mechanisms enhance the model's ability to capture relevant features by selectively 

attending to informative regions of the input.  

Another example of using machine learning on image analysis comes is when 

Jaeger et al. (2010) developed an algorithm for classifying cell cycle phases using 3D 

spinning disk confocal microscopy images. Their method leveraged a 3D k-means 

approach for image segmentation and was able to extract the shape and curvature 

features associated with different cell cycle phases. After training a support vector 

machine (SVM) classifier they achieved high recognition rates for both the 

chromocenter and PCNA channels, demonstrating the reliability of their automated 

algorithm. A study using deep learning to predict disease progression was conducted 

by Yoo et al. (2019). They applied deep learning to predict the risk of conversion to 

multiple sclerosis (MS) from clinically isolated syndrome. By combining deep learning 

with user-defined clinical and MRI features, they improved the accuracy of MS 

conversion prediction compared to traditional imaging biomarkers. This study 

highlights the potential of deep learning in extracting latent lesion patterns from MR 

images for enhanced disease progression prediction. 

 

2.4 Cellpose Image Segmentation 

Stringer et al. (2021) introduced Cellpose, a deep learning-based segmentation 

method for cellular analysis. Cellpose allows precise segmentation of cell bodies, 

membranes, and nuclei in high resolution microscopy images. This approach eliminates 

7

Boyd et al.: Human Cell Segmentation and Classification

Published by SMU Scholar, 2023



the need for model retraining with hundreds or thousands of images, allowing for 

minimal parameter adjustments. This makes it suitable for various image types without 

needing much training data. Cellpose provides an efficient and accurate initial 

segmentation step in cell cycle studies ‘out of the box’ or with very little training, 

enabling researchers to analyze individual cells. Saad et al. (2023) used Cellpose and 

Fiji to create a novel automated protocol for ice crystal segmentation analysis. They 

were able to improve the throughput and accuracy of their measurements using this 

automated approach. Yang et al., 2023 tested Cellpose on fluorescent images of HeLa 

cells. After determining the algorithm was performing well on their data, they 

developed a workflow that increased their throughput without lowering cell 

identification accuracy. They later tested the workflow on images of fluorescent 

labelled cells exposed to polystyrene nanoparticles. This allowed them to investigate 

the connection between the size of each cell and how many nanoparticles they could 

absorb. This is a study that was greatly helped by the increased throughput. Another 

group of researchers decided to investigate deep learning architectures for nuclear 

image segmentation by comparing U-Net, U-Net ResNet, Cellpose, Mask R-CNN, KG 

instance segmentation, iterative h-min based water shedding, and attribute relational 

graphs (Kromp et al., 2021). Their results showed that both Cellpose and instance aware 

segmentation architectures outperformed the U-Net architectures and conventional 

methods. This research demonstrates the different methods that use annotated images 

to train instance aware segmentation architectures that have the ability to accurately 

segment fluorescent nuclear images.  

 

2.5 Challenges Using Deep Learning 

Some familiar challenges using deep learning for image segmentation include 

limited annotated data because deep learning models often need a large amount of 

annotated data to train, and it can be difficult to obtain high-quality annotations. A 

sizable portion of the review by Asgari Taghanaki, S et al. (2021), is dedicated to 

exploring the challenges and datasets related to deep semantic segmentation, both in 

the context of natural images and medical images. It highlights the importance of 

annotated datasets and the complexities involved in acquiring high-quality annotations 

for training deep learning models; Class Imbalance and Multi-Modal Fusion in that 

some medical image segmentation tasks involve imbalanced classes, where certain 

structures or pathologies are rare compared to the background or normal regions. 

Dealing with class imbalance is crucial to prevent the model from biasing towards the 

majority class. Medical imaging often involves multiple modalities, and fusion of 

information from different modalities has gained attention. Techniques like early 

fusion, late fusion, and attention-based fusion are used to combine multi-modal 

information for more accurate and robust segmentation. A survey by Hesamian, M. et 

al (2019) addresses the challenges faced in the domain of medical image segmentation 

using deep learning. It explores issues related to limited annotated data, class 

imbalance, handling multi-modality images, and ensuring robustness and 

generalization across different patient cohorts. The paper presents insights into various 

strategies to address these challenges, including data augmentation techniques, transfer 

learning, and domain adaptation. It also discusses the significance of model 
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interpretability in medical applications, as well as the need for uncertainty estimation 

to assess the reliability of segmentation results; Interpretability in that deep learning 

models, especially complex architectures, can lack interpretability, which is crucial in 

medical imaging applications. Understanding the reasoning behind model predictions 

is essential for clinical acceptance and trust. Cheng, J. et al (2022) emphasizes the 

interpretability of ResGANet, enabling clinicians to understand the reasoning behind 

the network's decisions. This interpretability aspect is crucial for building trust in the 

model's outputs in clinical applications and handling Small Structures in that some 

medical structures, such as tiny lesions or cellular structures, pose difficulties in 

segmentation due to their size and limited contrast in the image. Addressing this 

challenge is essential for accurate and reliable segmentation. Tajbakhsh, N. et al (2020), 

dedicates their study to examining methods to address the challenges of imperfect 

medical image datasets. Techniques such as data augmentation, domain adaptation, 

transfer learning, and semi-supervised learning are explored, which help to mitigate the 

effects of limited and noisy training data. 

 

2.6 Summary 

In conclusion, deep learning-based image analysis techniques offer 

investigators the possibility for significant advancements in many different areas of 

research including cell cycle studies. From classifying cell cycle phases to analyzing 

replication patterns and predicting disease progression, these approaches provide 

automated and accurate analysis, reducing manual efforts and enabling comprehensive 

investigations. Continued research and development in this area will enhance our 

understanding of cellular processes and contribute to the advancement of disease 

diagnosis and treatment. 

 

 

3   Methods 

3.1 Data Acquisition 

The data for this research will be obtained from Dr. Chris Sansam at the 

Oklahoma Medical Research Foundation. Dr. Sansam has graciously provided a 

collection of high-resolution microscopy images of human cells (HCT116) stained with 

the replication marker 5-Ethynyl-2′-deoxyuridine (EdU) at different times. These 

images capture the dynamic process of DNA replication in the cell's nucleus at various 

stages. 

 

3.2 Image Segmentation 

The first step in the analysis pipeline involves segmenting the images to 

differentiate individual cells. Our initial input data were cell images that had two 

channels with between 4 and 6 layers each. Using ImageJ, each image was transformed 

to show a maximum intensity projection. Only one channel is needed for this process, 

so the channels were split, and we only keep the one. After this all the images were 
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concatenated so we could use a single file to process as many images as we wanted. 

For the segmentation process, we utilized a program called Cellpose, which has been 

demonstrated to be effective in segmenting cells in fluorescence microscopy images. 

Using the Cellpose convolutional neural network we automatically identified and drew 

masks around individual cells within the images. The Skimage Regionprops package 

in python we developed a script to automatically crop out each of the cells in the image 

based on the masks created by Cellpose. This allowed us to efficiently isolate and crop 

out all of the cells in our images in order to use them downstream for training our 

classification model. Each of the output files were saved as individual .tif files with a 

sequential naming order based on the input name. By segmenting the images this way 

we can isolate and analyze many more cells than we could using other methods, 

enabling more accurate characterization of replication patterns. 

 

3.3 Annotation and Training Data Preparation: 

After the image segmentation, we need to proceed with annotating the 

segmented cells. Manual annotations were performed to classify the cells into 1 of 5 

states. These annotations were then checked by Dr. Courtney Sansam, an experienced 

researcher in the DNA replication field. The quality of the annotations is particularly 

important to classify unseen data in the future. 

 

3.4 Deep Learning Model Development and Training 

To develop a robust and accurate deep learning model, we employed a 

convolutional neural network (CNN) architecture using TensorFlow and Keras. The 

segmented cell images were classified into one of the five replication patterns. The 

training dataset consisted of over 400 annotated cell images, encompassing a diverse 

range of replication patterns. Data augmentation techniques, including rotation, scaling, 

and flipping, were applied to increase the diversity and generalizability of the training 

dataset. The annotated dataset was split into training, validation, and testing sets to 

evaluate the model's performance accurately. The CNN we used was trained using 798 

images with 171 validation images and 171 final test images. The CNN model uses 5 

convolution layers with max pooling. Convolutions are needed for learning local 

features in an image. Small filters called kernels are applied to local regions of the 

image, allowing the model to capture patterns like edges, corners and textures present 

in the image. Multiple layers of convolutional are needed for the model. The initial 

layers capture low-level features such as edges and then the other layers capture 

complex features and object representations. The model uses max pooling to reduce 

feature map dimensionality and overfitting. The deep learning model was trained using 

the well-defined loss function categorical cross-entropy and optimized through the 

Adam gradient descent algorithm. The model's hyperparameters, such as learning rate, 

batch size, and network architecture, were tuned through iterative experimentation to 

achieve optimal performance. During the training process, we regularly monitored the 

model's performance on the validation set to avoid overfitting. The trained model was 

then evaluated on the independent testing set to obtain an unbiased estimate of its 

performance and generalizability. 
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4   Results 

4.1 Image Segmentation and Annotation 

The initial segmentation process was performed on 87 high-resolution 

fluorescence microscopy images showing groups of cells stained with EdU to produce 

over 2000 individual images of cells. An example of the output from Cellpose to 

identify and draw masks around each of the cells in the is shown in the image below. 

 

 
Figure 1: Identification of individual cells with Cellpose 

 

 

 Using those masks, we identified the coordinates of each cell to crop and 

output as an individual .tif file. Using some of images output from the previous step, 

285 images of cells were annotated by eye and augmented creating a final dataset of 

1140 images. The annotations classified each of the cells into one of five stages with 

one being the earliest time point and 5 being the latest. Examples of the cropped images 

and their associated annotations are shown in the figure below. Each of the stages are 

defined by specific characteristics, but there can be some ambiguity between some of 

the stages. These images were imported in greyscale with a single channel and field of 

focus showing a maximum intensity projection.  
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Figure 2: Example of cropped and annotated cells 

 

 

4.2 Classification 

We found that a convolutional neural network using categorical cross entropy 

as its loss function and accuracy as our performance metric was most useful to our task 

and would be most interpretable. While training this model we achieved an accuracy of 

99% on the training set with a loss of 0.0643, but when performing on our unseen test 

dataset our accuracy dropped to 86.5% with a loss of 0.470. 

 

       
Figure 3: Training and validation accuracy                  Figure 4: Training and validation loss 

 

 

When trying to predict the first stage we were able to classify it correctly 56 

times out of 62 total times, giving that specific stage a ~90% prediction accuracy. The 

accuracies on the test data for the distinct stages are seen in the table below. There is a 
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trend that the least represented stages have lower accuracy which is specifically seen in 

stages 4 and 5.  

 

 

Cell Stage Test Accuracy 

Stage 1 90.32% 

Stage 2 94.44% 

Stage 3 88.24% 

Stage 4 83.33% 

Stage 5 80.95% 

                                  Table 1: Table of individual stage accuracies 
 

Predicting any of the 5 distinct stages we can see that misclassification 

happens most often in the adjacent stages, although some stages were easier to predict 

than others. There is also an imbalance in the number of images representing the last 

two stages, but the predictions remain accurate as seen in the heat plot below. 

 

Predicted vs Actual Cell Stages 

 
Figure 5: Heat plot of classification of each stage 

 

 

The images below are examples of each of the states that had a correct 

prediction. Each of the 5 patterns were predicted accurately even though the first stage 

was most common in our dataset. While we do see an imbalance in the data, we still 

have >80% accuracy for all the stages. 
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Figure 6: Example of predictions for each stage 

 

5   Discussion 

Automating the segmentation process was a crucial aspect of this project in 

order to obtain enough data to train our model. While it is possible to use the base 

nuclear segmentation model trained by Cellpose, we trained the base model on 4-5 

images to ensure the masks were as accurate as possible. This process does not require 

many images for accurate masks to be drawn. This was the first step before we could 

crop the images and separate them into individual cells. The script to crop the images 

in python used the location of each mask that was drawn to define the boundaries of 

each cell. The masks were extremely important to ensure the entire cell was cropped 

without cutting off the edges or including multiple cells. Occasionally when cells were 

layered on top of each other they were cropped out together, but this did not happen 

very often. After we removed any images with multiple cells, we could annotate them. 

The predictions from our model appear to be accurate, which can be a 

challenging task when observing biological images. There can be a lot of variation 

between cells in the same stage with only a few key differences differentiating the 

stages. These key features need to be picked up by the model during the training process 

for accurate predictions, but we still need to take care not to overfit. The extremely high 

accuracy of the training dataset suggests that we should be careful of overfitting in our 

case. Something that can always be considered when looking at a problem like this is 

getting even more training data to train the model so it can pick up on as many 

differences as possible that are found naturally in each of the stages. 

Now that we have shown this model's ability to perform accurate predictions 

on cells in various stages of S-phase, it could be applied to biological problems. 

Knowing how long these cells have been stained before they were imaged and 

employing sequential, double labeling with EdU and BrdU at multiple time points can 

allow us to calculate the total length of S-phase. We could then compare cells treated 

with different drugs or genetic mutations to see if we could alter the time it takes to 

progress through S-phase. By increasing the number of cells, we can study will allow 

for a more granular perspective to understand the length of each individual stage in S-

phase. 

Future possibilities include using unsupervised techniques to see how many 

cell stages are found. These could possibly produce three stages; an early, mid, and late 

stages based on the misclassifications seen in the model above. It is also possible that 

an unsupervised technique could find more than the five we were trying to identify and 

14

SMU Data Science Review, Vol. 7 [2023], No. 3, Art. 7

https://scholar.smu.edu/datasciencereview/vol7/iss3/7



that is a possible reason for some of the misclassifications we are seeing. It is not 

surprising that we are seeing some overlap between the stages considering many of the 

cells could be transitioning from one stage to another at the time of the image being 

taken. But this also leads to the exciting possibility that an entirely new stage could be 

identified if there is a consistent classification using an unsupervised approach.  

This model was trained and tested using HCT116 cells. It is possible to also 

apply this model to other cell types with minor adjustments. The initial segmentation 

process would be the same. It would be possible to use base nuclear segmentation 

model from Cellpose or train on a couple of images beforehand. The cropping step uses 

the masks drawn by Cellpose so this process would not need to be changed. Finally, 

when using the CNN it is important to check the output to make sure it looks as 

expected. Checking the accuracy with train and test splits would be most appropriate, 

but this model can likely be used on other cell lines with the same DNA replication 

marker. While this is an exciting possibility it is not the only way to apply this model 

in a slightly different manner. Using transfer learning we could apply our model to 

other nuclear stains to answer different questions posed by researchers. Specific 

proteins of interest could be identified at different time points and our model could be 

used to classify them into distinct groups.  

Another exciting possibility for future work would be to make this into a 

pipeline using Nextflow or Snakemake to completely automate the processes. It would 

be important to output model performance each time, but it would be possible to start 

with only an input image with multiple cells in the frame and output all the cells with a 

predicted cell stage label. These could be checked by eye, or a previously annotated 

dataset could be used to ensure the model accurately characterizes the cells. 

A final important aspect to consider is making sure to put this deep learning 

model into context. Often deep learning models tend to be overfitted to the data they 

are trained on. We want to be sure that readers know that every experiment and 

recording technique could be subject to aberrations that may make this model less 

accurate for their data ‘out of the box’. Also, all deep learning models will need to be 

maintained and updated as imaging techniques change over time. 

 

 

6   Conclusion 

 
In conclusion, this research harnessed deep learning convolutional neural 

networks to efficiently isolate and categorize distinct DNA replication patterns in 

human cells. The study addressed the limitation of current manual assessment by using 

an automated method for the segmentation and classification process. This robust tool 

can also be used for many different applications in medical image analysis as it can be 

applied to different cell lines, fluorescent stains, and even bright field images of cells 

with minimal training. 

However, it is important to keep in mind that the model's performance may 

vary with different experimental designs and imaging techniques, and regular 

maintenance and updates will be necessary to ensure accurate segmentation and 

classification. This research offers a valuable contribution to the field of cell biology 

by providing a powerful tool for image segmentation and replication dynamics 
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investigation with the potential to accelerate the pace of scientific discovery in various 

scientific domains, particularly cancer research. 

 

 

 

Code Availability 

 
A general workflow, code, examples of output, and any future updates are available at  

https://github.com/kevinboyd76/Automated_S-phase_Image_Classification. 
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