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Abstract. Accurately measuring the recovery of released surface mines in the United 

States poses crucial challenges. This study aims to develop a prediction of land 

classification, that considers various environmental and coal mine variables. By 

utilizing this prediction, the researchers and environmentalists (specifically 

Appalachian Voices, the group heading this research) can better understand the 

relevant factors for successful reclamation. Efficient management of mine recovery is 

essential for environmental sustainability, regulatory compliance, and resource 

utilization. This study focuses on the Appalachian Forest area, which risks becoming 

a net carbon source (a place that emits more carbon than it absorbs) due to mine 

recovery. Machine and deep learning methods will be employed using Dynamic 

World land classification probabilities to identify areas requiring intervention and to 

provide ongoing insight into released mine conditions. The findings enable decision-

making for prioritized reclamation and restoration measures.  

1   Introduction 

Appalachia, a cultural and geographic region in the central and southern sections of the 

United States, confronts formidable challenges marked by severe economic hardship and 

environmental concerns resulting from coal mining and logging activities. This region, rich 

in natural resources, holds significant potential for addressing global warming challenges. 

Given its history of facing prejudice and environmental adversity, the health of the area and 

its population is a vital indicator for analyzing global warming and the intersection of 

environmental health with historically underprivileged populations.  

 

1

Scott et al.: Predicting Land Reclamation of Surface Mines

Published by SMU Scholar, 2023

mailto:tbackus@smu.edu
mailto:tbackus@smu.edu
mailto:tbackus@smu.edu


 

 

This research project focuses on released surface mines in the US and the crucial 

challenges of accurately measuring and predicting recovery time. This involves accounting 

for various environmental and mine-specific variables to identify factors essential for coal 

mine recovery. Subsequently, the study aims to develop a recovery score, a predictive tool 

for accurately estimating the time required for mine recovery. By analyzing factors critical 

to reclamation and providing estimates for reclamation timelines, this investigation will 

enhance the understanding of successful reclamation and restoration processes, supporting 

the efforts of organizations such as Appalachian Voices.  

 

Efficiently managing the recovery of released surface mines is of utmost importance 

due to its immediate implications on environmental sustainability, US regulatory 

compliance, and resource utilization. Accurate prediction models developed within this 

project are imperative for informed decision-making regarding these valuable natural 

resources. Moreover, the research acknowledges the Appalachian forests' significance as a 

net carbon sink, potentially at risk of becoming a net carbon source. The recovery of 

released surface mines threatens these forests, contributing greenhouse gases in the form of 

coal mine methane, further exacerbating global warming [1]. The research endeavors to 

create methods to classify and comprehend the factors that facilitate recovery to provide 

insights to support effective advocacy for remediation.  

 

Addressing climate change requires a focus on carbon methane emissions from coal 

mines. Appalachian Voices requires an efficient method to gather information on released 

mines. Utilizing data from Dynamic World, an ever-updating tool that classifies land cover 

data into one of nine categories based on Sentinel-2 satellite imagery will aid the 

organization in identifying crucial factors for recovering released mines and assessing areas 

at risk. Employing a combination of unsupervised machine learning methods, the study 

aims to classify released coal mines based on factors considering the mined land's state, 

business practices, and the health of the surrounding area. The research aims to utilize 

Dynamic World data to provide ongoing insight into the state of released coal mines, 

thereby identifying environmental risks and effective interventions for recovery. This will 

be achieved through land cover classification based on Sentinel-2 satellite imagery and new 

statistical forecasting models created and built by the researchers.  

 

The overarching goal is to contribute to the sustainable management and reclamation of 

released surface mines in Appalachia. By bridging the gap between environmental 

concerns, social equity, and economic vitality, the study seeks to offer practical solutions 

to complex challenges faced by the region. Understanding the factors that facilitate 

successful mine recovery will not only aid in reducing the environmental impact but also 

create opportunities for community development and job creation in an area historically 

burdened by economic hardship. Additionally, this work aligns with global efforts to 

combat climate change, as effective reclamation of surface mines can mitigate greenhouse 

gas emissions and preserve the ecological integrity of Appalachian forests, a critical 

component of the region's unique ecosystem.  
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This approach takes a multi-faceted perspective to explore the recovery of released 

surface mines in the Appalachian region. By developing predictive tools and utilizing 

innovative data analysis methods, the study aims to provide insights into effective 

reclamation processes, environmental risks, and advocacy for remediation. Through this 

research, the critical importance of balancing environmental health, social equity, and 

economic prosperity will be underscored, offering valuable information for decision-

makers, stakeholders, and environmental organizations (specifically Appalachian Voices) 

invested in the sustainable future of Appalachia and beyond. 

 

 This research project aims to develop a code driven solution to enhance the 

understanding of released surface mine recovery in the Appalachian region. The code will 

integrate various environmental and mine specific variables to create a predictive tool for 

classifying tree classification. By doing so, this project will address the pressing need for 

informed decision-making regarding the reclamation of valuable natural resources, which 

plays a pivotal role in environmental sustainability and resource utilization. 

 

The significance of using a code-based approach for this project lies in its ability to 

assist organizations like the one partnered with (Appalachian Voices) by efficiently 

gathering data on released mines. Utilizing Dynamic World, a versatile tool for classifying 

land cover data based on satellite imagery, the code will assist in identifying key factors for 

mine recovery and assessing areas at risk. Employing various unsupervised machine 

learning models and methods, this project seeks to classify released coal mines based on 

critical factors such as water quality, max temperature, precipitation, and many others. 

Ultimately, the project will harness data's power to offer ongoing insights into the state of 

released coal mines, thereby enabling the identification of environmental risks and effective 

interventions for recovery.  

 

Utilizing a machine learning approach for this research project aligns with the 

overarching goal of contributing to the sustainable management and reclamation of released 

surface mines in the Appalachian region. It emphasizes the importance of environmental 

concerns by providing practical solutions to the complex challenges faced by this region. 

This project's purpose is to support the understanding of factors that facilitate successful 

mine recovery, thus reducing environmental impact and creating opportunities for growth 

and recovery. The research project’s outcomes will be integral to global efforts to combat 

climate change because effective reclamation of surface mines can mitigate greenhouse gas 

emissions and preserve the ecological integrity of the Appalachian forests.  
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2   Literature Review  

The literature review focuses on four principal areas: Environmental Impact of Mining, 

Machine Learning and Interpretation, Mining Practices and Ethics, and Geospatial 

Analysis.  

 
Fig. 1. Child coal miners with mules in Gary, West Virginia in 1908. Working conditions were brutal 

for coal miners, and unionization was violently suppressed. [2] 

 

2.1   Environmental Impact of Mining  

The environmental impact of mining, particularly surface mining in the Appalachian 

region of the United States, has been a subject of worry, concern, and study. Researchers 

have attempted to quantify the potential impact of future mining in the area and its impact 

on the environment. By employing various scenarios based on historical data, valuable 

information for accurate predictions has been uncovered. 
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Mountaintop removal coal mining with valley fills (MTMVF) has become the 

predominant method for coal extraction in Central Appalachia, particularly in Kentucky, 

Tennessee, and West Virginia [3]. The process of MTMVF generates significant amounts 

of waste rock due to it involving blasting, excavating bedrock, and extracting coal seams. 

This waste rock is then deposited in headwater valleys or buried in streams under layers of 

spoil that can reach up to around 200 meters in depth [4]. The resulting rock spoil is then 

pushed to adjacent valleys, burying headwater streams. MTMVF can severely impact and 

impede vegetation, surface topography, and subsurface structure, causing native forests to 

struggle to re-establish, leading to altered landscapes and shifts from forests to grasslands.  

With approximately 25% of the coal production in the United States happening in the 

Appalachian area, the environmental impact of surface mining is of utmost importance in 

this area. Massive negative impacts on the environment can be observed, whether aquatic 

impact (including aquatic animal life), forest impact, surface temperature, or microbial 

communities. Mining has been identified as the leading force of landscape changes in the 

Appalachian region, and its diffusion was the greatest cause of net forest loss over the last 

four decades [5]. Efforts are needed to manage the intensity of human-caused deforestation 

through surface mining. These efforts will increase communication and discussion as they 

become more prominent in land-management strategies.  

Findings from previous studies identify potential sources of errors to avoid 

misinterpretation of land change analysis results. In one study, three land cover 

classifications consisting of five classes (developed areas, barren land, water, low 

vegetation, and forest) were derived from spatial resolution imagery [6]. This allows for 

better understanding of how areas can be accurately predicted and classified after MTMVF. 

Improvements to these findings are paramount as environmentalists and others seek to make 

surface mine reclamation the main objective when discussing mining.  

2.2   Machine Learning and Interpretation  

In the realm of surface mine reclamation, the incorporation of machine learning has 

emerged as a groundbreaking tool for interpreting and analyzing complex environmental 

data. By harnessing the power of advanced algorithms and computational models, valuable 

insights can be gleaned into the intricate processes involved with restoring disrupted 

landscapes. With an increasing focus on sustainable land management practices, machine 

learning techniques offer a promising avenue to enhance the efficiency and accuracy of 

surface mine reclamation.  

Many different machine learning models can and may be implemented in this effort to 

understand land reclamation better; however, one of the key drivers to deciding which to 

use is the interpretability of the model. This can be partly due to their nature of over-

parameterization, which involves so many different parameters with hundreds of layers that 

it is often difficult to understand and interpret [7]. Understanding the model itself is equally 
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as important as understanding its output. It is important to understand what part of the input 

pattern is responsible for a particular class being predicted. Still, it is also important to focus 

on understanding which internal features computed by the model are responsible for a 

particular class [8].  

Research shows that integrating gradient boosting with a neural decision tree aims to 

leverage bagging and boosting techniques [9]. Tree-based models perform with more 

robustness and interpretability (which is extremely important) due to their hierarchical 

structure, while deep neural networks excel with high-dimensional data. By combining both 

of these approaches, researchers hope to improve the performance of classification tasks. A 

recently proposed algorithm known as the Tree Alternating Optimization (TAO) algorithm 

can help researchers better learn trees that are both highly accurate and interpretable [10]. 

This algorithm allows trees to mimic the part of the neural network they replaced. This is a 

large step in better understanding different machine learning models. 

Machine learning has been identified as a valuable tool in evaluating the sustainable 

development level of coal enterprises. One study shows that establishing a multi-layer 

forward neural network model based on the error backpropagation algorithm (BP 

Algorithm) is proposed to evaluate this sustainable development level [11]. The study 

suggests that the neural network can overcome the limitations of traditional sustainable 

development evaluation models by considering the coal mine as a complex man-machine-

environment-management system. By analyzing these details and numerous other factors, 

an improvement in the safety production level of the coal mine industry could occur.  

Machine learning can play a role in environmental monitoring and management in 

mining operations. By analyzing data from various sensors and remote sensing 

technologies, such as satellite imagery, machine learning models can help monitor the 

impact of mining activities on the surrounding ecosystem. These models can then identify 

patterns and trends in vegetation health, soil quality, water quality, etc. By utilizing these 

machine learning techniques and models, mining companies can make more informed 

decisions to minimize their ecological footprint and ensure compliance with environmental 

regulations.  

2.3   Mining Practices and Ethics 

Coal remains the dominant energy source and is expected to continue playing a crucial 

role for the foreseeable future, emphasizing the pressing need for the coal industry to 

prioritize sustainable and secure development [12]. Some research highlights the high-risk 

nature of coal mining due to factors such as gas outbursts, complex working environments, 

and constant changes in the industry. It is important to emphasize the significance of safety 

and the need to follow ethical guidelines. Some find it safer, quicker, and easier to step 

around ethical lines to accomplish their tasks, which is why focusing on appropriate mining 

practices and ethics is vital. 
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Fig. 2. The Kayford Mine near Charleston, West Virginia [13] 

Many argue that there is a moral relationship between present and future generations in 

the context of environmental ethics. It poses questions about the obligations the current 

generation owes to the future and how present actions should be influenced by their impact 

on future generations. This moral obligation is evaluated using terms familiar in Western 

ethical thought, namely "rights" and "obligations." However, relying on rights and 

obligations to determine the moral relationship to the future may result in proposed rights 

that are not practical for present decision-making. Researchers have proposed adopting a 

perspective rooted in "virtue ethics" to understand this relationship with future generations 

[14]. By focusing on present virtues and considering our vision of well-being, people of the 

current generation can navigate the moral complexities of their actions without attempting 

to predict the preferences of future generations.  

Another study focused on predicting methane concentrations and dispersion in coal 

mines, directly affecting mining practices and ethics. Methane is a hazardous gas in coal 

mines and poses significant health concerns for miners. The study can enhance mining 

practices and safety by developing a model that quantifies the influence of numerous factors 

on methane dispersion. The main objective of the model is to quantify the factors' relative 

influences on methane dispersion in coal mines [15]. The researchers align the study with 

the principles of promoting the well-being and safety of workers in the mining industry. 

Implementing the findings from these studies demonstrates a commitment to ethical 

conduct by prioritizing the safety of the miners. The results from multiple models all 

produced comparable results, leading to the discovery that air velocity is the most 

significant factor in affecting methane dispersion [16]. 

Coal's massive and ubiquitous use necessitates focusing on sustainable and safe 

development in the coal industry. To address the environmental impact that coal mining has 

and promote sustainability, efforts are being made to explore cleaner and more efficient 

technologies. Machine learning models can assist in these efforts by monitoring and 

identifying potential violations, working conditions, and other human rights violations. On 

top of coal mining's working side, ethical questions must be addressed from a local 

viewpoint. A more inclusive and comprehensive approach can be achieved and applied by 
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involving local communities, environmental organizations, and other entities heavily 

involved in the aftermath of surface mining.  

2.4   Geospatial Analysis 

Geospatial analysis involves examining and interpreting spatial data to gain insights into 

various phenomena related to the earth's surface. In the context of this paper, the phenomena 

looked at relate to the reclamation of surface mines. One study uses geospatial analysis to 

assess groundwater potential in a specific district in India. By layering multiple themes 

representing groundwater influencing factors, such as geology precipitation, the 

identification of areas with high and low groundwater potential can be identified. The 

predictive performance of these models was then compared using various statistical 

performance metrics to construct a groundwater potential zoning map [17]. A map was 

henceforth created to detail the findings of high and low potential for groundwater.  

Accurate classification of downhole exploration data is crucial for geological modeling 

and predicting mining outputs. Traditional manual interpretation of this data is time-

consuming and subjective. However, by applying machine learning techniques that can then 

be fed into geospatial analysis, this can be automated and improve accuracy. These 

techniques can be used to analyze mineral groups and stratigraphy to classify rock types in 

each deposit [18]. By integrating multiple spatial datasets and applying advanced analytical 

techniques, geospatial analysis enables the identification of patterns, relationships, and 

potential areas for intervention.  

In environmental sustainability and management, geospatial analysis assists in 

monitoring and evaluating natural resources, ecosystems, and environmental changes. 

Researchers can use satellite imagery to track deforestation (and the opposite – forest 

reclamation), land degradation, and general changes in land coverage over time. By 

analyzing these patterns, geospatial analysis can benefit in assessing the impact of human 

activities, specifically coal mining, and support the development of effective mitigation 

strategies. In addition, geospatial analysis can help provide valuable insights into the pre-

mining conditions of the area where surface mining occurs. This information forms the basis 

for developing effective reclamation plans and strategies.  

Satellite imagery can help researchers identify areas with insufficient vegetation, which 

could be a cause for additional observation or assistance. Vegetation health is a key 

indicator of reclamation status, and geospatial analysis can help assess the health of the 

vegetation through different areas of time. Previous research leveraging Google Earth has 

successfully detected habitat loss from background changes between images [19]. 
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3   Methods 

3.1   Data Collection 

Data collection for this research project was of utmost importance and was a pivotal 

component of the entire process. These valuable data sources offer insights into 

environmental conditions, land use, and changes in landscape, all of which are essential in 

assessing released surface mine reclamation.  

Data was also provided by Appalachian Voices containing information on coal mines 

throughout multiple states in the Appalachian region. This data is from the Office of Surface 

Mining Reclamation and Enforcement. This data includes information on mines such as 

operation status, bond status, owner, different permit dates, the type of mine, and geospatial 

data. The distribution of surface mines across West Virginia, Kentucky, and Tennessee are 

shown in the map below (Figure 3). 

 

Fig. 3. Plot of mines by location 
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Fig. 4. Classification of land type by Dynamic World dataset in Tennessee 

 

Additional data will be collected from Dynamic World, which is a near real-time land 

cover dataset, which includes AI (Artificial Intelligence) generated probabilities for 

different classifications (Figure 4): Water, Trees, Grass, Flooded vegetation, Crops, Shrub 

& Scrub, Built Area, Bare ground, Snow & Ice. This data set will provide the current and 

historical land cover for the surface mines in question. Previous research has utilized Google 

Earth engine to determine yearly surface mining on active mines across Central Appalachia 

[20]. The difference in our methodology is we well be leveraging the predictions available 

in Dynamic World, instead of exporting raw images for classification later. This will save 

processing/computational time dealing with a large number of image files. Water Quality 

will be leveraged to estimate the crucial factors for mine reclamation. Surface mining has 

previously had associations with higher toxins in water quality, which has implications for 

the survival of over 50 federally protected species in Central Appalachia [21].  

 

Dynamic World’s continuous data updates are not only convenient, but they are also 

essential for this project. Timely access to geographical data is paramount in understanding 

and addressing the intricate environmental challenges in the Appalachian region. Preparing 

the data will leverage the Google Earth Engine API to join in multiple datasets, so that land 
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cover and water quality can be associated with the mines at that location. The various 

categories of land cover will be changed into averages of total mine individually.  

Mining data from the Google Earth Engine API, while a very powerful and useful 

approach, presented several complexities. The first being the obvious integration of various 

datasets from diverse sources, each with its own data structure and format. The process of 

harmonizing these diverse datasets into one coherent and standardized format can be very 

intricate and time consuming. Additionally, working with large-scale geospatial data often 

includes handling substantial amounts of data and information, which can put a strain on 

computational resources. The Google Earth Engine data was pulled at a resolution of 200 

meters (scale), due to the large number of observations that needed to be pulled. The GEO 

Json shape was converted into a randomized series of latitude and longitude, from within 

the perimeter of each mine. 

 

Google Earth Engine’s API also has some time constraints in terms of the availability 

of data, so each data point may have irregular results over time. This is true for the various 

types of Image Libraries/bands (various classifications available on Google Earth Engine). 

The image library sources for Maximum Temperature (Maximum temperature in kelvin) 

and Precipitation (Precipitation amount daily in mm) were University of Idaho Gridded 

Surface Meteorological Dataset [22]. The image library source for Water Quality 

(Normalized difference chlorophyll index) is the MultiSpectral Instrument, Level-2A 

Dataset [23]). These features offer insights into the climatic conditions of the region, which 

could ultimately influence and explain the recovery rate of these mines. Including these 

features allows for a more comprehensive understanding of the multifaceted factors 

affecting mine recovery.  

By integrating multiple and diverse datasets, the project can establish a holistic view of 

the factors affecting mine reclamation in this Appalachian region. This multidimensional 

approach enables the development of predictive models that account for various 

environmental and climatic variables. The importance of these features lies in their ability 

to shed light on the intricate and delicate relationship between environmental factors and 

mine recovery.  

3.2   Data Integration 

Once all data from the various data sources was properly combined and cleaned, a data 

preprocessing step was conducted. This step is responsible for handling encoding, scaling, 

and ensuring the data is in a suitable format for the models to properly work. The first step 

in the preprocessing process was to separate the numeric features from the dataset. Part of 

this also included excluding certain variables that would cause data leakage if they remained 

within the dataset (the other land type probabilities like water, grass, etc.). Scaling these 

numeric features was then conducted, which transforms the values into a common range 
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between zero and one. This is done to prevent some variables from dominating the learning 

process due to their larger magnitude. Neural networks perform better with scaled inputs, 

enabling more stable and efficient convergence during training.  

Once this scaling process is completed, these numeric features are once again added to 

the original dataset. The next part of the preprocessing step is to one-hot encode categorical 

variables. The final step in this section of the project is to impute the missing values. The 

mean and the mode were used to impute missing values, and decisions were based on 

percentage of values in the respective columns (see Table 1).  

 

Table 1. Table that shows the percentage of the mode in the columns with missing data 

Feature Mode Percentage of the Mode in the Column 

highwall 0 55.92 

steep_slope 0 63.36 

contour 0 48.27 

post_smcra 0 38.35 

coalmine_op_status 4 30.19 

Number_company_to_permit_id 1 38.21 

contact 3 55.97 

 

Data preparation steps as outlined previously are fundamental steps in machine learning, 

as the quality and format of the input data greatly impacts the performance and reliability 

of a deep learning model, in this case RNN and Random Forest.  

Once the data preparation steps were completed, the data was split into the 80/20 train 

and test splits. Stratification was done by the mine id variable, so that the models are 

safeguarded against predicting on mines that have not been seen by the model. This was 

important to implement, because the model needed to have at least one row of data on a 

specific mine location, in order to be able to predict further for different years at that 

location. This method would not be appropriate to use for extrapolation outside of the 

10,221 mines currently present in our dataset. 

Table 2. Percentage of mines by state 

State Number of Mines Percentage of Mines 

West Virginia 1,661 16% 

Tennessee 135 1% 
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Kentucky 8,425 82% 

 

The geographic location of the dataset was heavily skewed toward mines in Kentucky, 

representing 82% of the data (Table. 2). 

 

Table 3. Overview of mining data variables  

Variable Description 

FeatCLS Feature Class, which categorizes geographic features. 

Mine Status The current status of the mine, indicating whether it is 

active, abandoned, or in some other state. 

Permit Type Describes the type of permit associated with mining 

activities. 

Type Flag An indicator that provides additional information about 

the feature or data. 

Region des For Kentucky, a categorical variable for the region the 

mine was present in. 
Quad Description Quadrangle Description, which refers to the geographic 

location of a specific quadrangle on a map. 

Coalmine op status Numeric flag indicating the coal mine operating status. 

Inspectable unit status Numeric flag indicating the inspectable unit status. 

Permit approval year Year the permit for a coal mine was approved. 

Edit date Year of last edit for coal mine 

 

4   Results 

The results of this model are being leveraged to provide insight on released surface 

mines in Appalachia, which can be leveraged to find locations which need support and 

advocacy to recover. Below is a discussion of the different models leveraged, RNN with 

LSTM layers and Random Forest. 

4.1   RNN with LSTM layers 

The RNN LSTM “long short-term memory” has the benefit of utilizing weights within 

the model, which allows it to preserve memory and predict on time series data. Multiple 

Long Short-Term Memory (LSTM) layers are employed to handle the sequential nature of 
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this data. LSTMs are designed to remember information over an extended period, making 

them well-suited for this modeling complex, time-related patterns within this dataset [24]. 

Hyperparameter selection was done utilizing a recurrent drop out of 0.7, which reduces the 

risk of overfitting. Between each LSTM and Dense Layer, there was an additional .15 drop 

out added. Early Stopping on the validation data was utilized as well, with a patience of 5, 

in order to limit the number of epochs for the model and reduce the chances of overfitting. 

Results of R2, MAE, and MSE were utilized from the test dataset (rows unseen by the model 

during training), to ensure the model generalizes well. 

Fig 6. LSTM model architecture. 

Utilizing the variables available, we built the RNN model (Fig. 6) utilized early 

stopping criteria for the validation loss, with a patience of 5, recurrent dropout at 0.75, and 

a 0.2 dropout, with a sequence length of 4.  

 

Table 5. Results for RNN  

Scoring Metric Scores on Validation Dataset 

R2 60.1% 

MSE .007 

MAE .05 

 

 

4.2   Random Forest 

 The Random Forest model, with criterion of “squared-error,” had the following scores 

on the hold-out dataset: mean squared error of .007, mean absolute error of .05, and R2 of 

64.7%. This model was leveraged to look at feature importance, and the Google Earth 

Engine variables were in the top results for the model (Water Quality, Max Temperature, 

and Precipitation). This provides an important insight for future enhancements on this 

14

SMU Data Science Review, Vol. 7 [2023], No. 3, Art. 1

https://scholar.smu.edu/datasciencereview/vol7/iss3/1



 

 

project, as there is a large library of different metrics available from Google Earth Engine 

libraries and adding more variables into the coal mine dataset via the API, could provide 

additional insights. 

Table 6. Results for Random Forest 

Scoring Metric Scores on Validation Dataset 

R2 64.7% 

MSE .007 

MAE .05 

 

 

Fig. 7. Feature importance from Random Forest Model 
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Fig. 8. Tree Classification vs. Max Temperature, Precipitation, and Water Quality. 

Looking closer at the features selected by Random Forest, lower max temperatures are 

associated with more observations of tree classification. The relationship between 

Precipitation and Tree Classification, where there are more observations of trees in areas 

with higher precipitation. For Water Quality (Normalized difference chlorophyll index 

[23]), the lower values have a larger distribution in tree classification. 

 

5   Discussion 

5.1   Environmental Factors Impacting Land Recovery 

Understanding the intricate relationship between environmental factors and land 

degradation or recovery mining areas is paramount for sustainable resource management. 
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One of the key environmental factors that significantly influences recovery in mining areas 

is maximum temperature. Elevated maximum temperatures can have multiple and 

substantial effects on mining sites. High temperatures can exacerbate water scarcity, 

affecting the availability of water resources for restoration and reclamation efforts. This 

extreme heat can also lead to increased evaporation rates which could potentially reduce the 

success of vegetation growth and soil restoration.  

Another crucial environmental factor influencing land recovery in mining areas is water 

quality. Water quality plays a pivotal role in reclamation efforts. Poor water quality, which 

often results from mining activities, can hinder the establishment of healthy ecosystems 

during the recovery process. Contaminated water can harm aquatic life and vegetation, 

which in turn slows down the overall recovery of the area. There is a relationship between 

Water quality and the average tree classification, based on the importance of the feature in 

Random Forest model.  

5.2   Ethical considerations in Surface Mining Reclamation 

Surface mine reclamation is a layered process with complex ethical considerations that 

traverse the domains of the environment, society, and the economy. The ethical dimensions 

of surface mine reclamation underscore its pivotal role in mitigating the environmental and 

social impacts of mining activities. Within this context, there are several ethical aspects that 

warrant in depth analysis: 

Environmental stewardship, at the heart of surface mine reclamation, represents a moral 

and ethical obligation to protect and restore natural ecosystems. It represents a dedicated 

commitment to mitigating the environmental impacts of mining activities.  

One of the focal points of environmental stewardship in reclamation is the concept of 

rewilding. Rewilding is the principle that involves rehabilitating mined lands to their pre-

mining state, or in cases where this is not feasible, to ecosystems with similar 

characteristics. Rewilding accentuates the ethical responsibility to minimize ecological 

disruption and support the recovery of native plants and wildlife. This approach not only 

safeguards the biodiversity of the region but also helps reestablish the intricate ecological 

relationships that sustain these healthy ecosystems.  

Another crucial aspect of environmental stewardship is the sustainable management of 

mined land. Ethical mine reclamation encompasses strategies that promote the prudent use 

of natural resources. It involves reducing waste and managing land in a way that ensures 

long-term ecological health and productivity. By prioritizing sustainability, the reclamation 

process serves as a model for responsible environmental practices. It aligns with the global 

mandate to conserve resources and reduce the ecological impacts of resource extraction. 
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Environmental stewardship in surface mine reclamation is underpinned by a deep sense 

of responsibility towards the environment and future generations. It embodies the ethical 

commitment to leave behind a world that is ecologically sound, supporting a balanced 

coexistence between humans and the natural world. This stewardship philosophy recognizes 

that the choices made during reclamation reverberate far beyond the present, shaping the 

legacy left to posterity. 

The Surface Mining Control and Reclamation Act (SMCRA) of 1977 stands as a 

landmark piece of legislation in the United States, that tackles the ethical, social, and 

environmental issues associated with surface mining activities. The primary and main 

objective of the SMRCA is to strike a balance between the economic benefits of mining and 

the necessity to protect the environment affected by the mining operations [25].  

The SMCRA’s ethical significance stems from its commitment to environmental 

stewardship and the responsible utilization of natural resources. One of its primary ethical 

tenets is the duty to protect the environment. The SMCRA embodies the belief that natural 

landscapes and ecosystems are valuable and deserve safeguarding. The act obligates mine 

operators to minimize disturbances and restore mined lands, reflecting a moral duty to 

mitigate the ecological footprint of mining activates.  

Violations to this act, and general violations on mining land may impact the recovery 

process, which can present many ethical and practical challenges. These violations can be 

harmful to the environment and undermine the reclamation efforts. Upfront, these violations 

can cause a general disruption in the planned reclamation process, often leading to the need 

for additional resources and time to rectify the damage done. The ethical implications of 

these violations are clear – as they represent a breach of commitment to environmental 

stewardship and regulatory compliance.  

The impact of violations on mining land not only causes harm in the restoration process 

but also causes damage to the life surrounding the mining area. Certain violations can lead 

to water contamination, which poses a threat to aquatic life and local residents who depend 

on these water sources. Air quality can be compromised by unauthorized activities on 

mining sites, which could affect the health of living things near and around.  

Violations in general can undermine the credibility and trust of mining companies, 

regulatory agencies, and reclamation organizations. When these violations occur and go 

unaddressed, it erodes the public trust and raises concerns about the effectiveness of 

regulations. Ethical mine reclamation practices entail accountability and transparency when 

working. This is essential to ensure that it fulfills its ethical duty to protect the environment.  

For the communities of people around these coal mines, there is a significant 

employment gap when coal mines close, which leads to significant increases in 

unemployment in the region.” Coal industry employment fell by around 54 percent between 

2005 and 2020” [26]. The economic impact of coal mining closures flags an important 
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consideration for people in the region, which could be a motivating factor to ignore 

environmental impacts in the region, in favor of economic growth. 

5.3   Environemtal Degradation Challenges 

The extensive environmental degradation caused by mining activities is a formidable 

challenge in surface mine reclamation. When mining operations begin, the removal of 

topsoil is often one of the first steps, resulting in the loss of the most fertile and ecologically 

rich layer of soil. This depletion disrupts the natural nutrient cycles and can have long 

lasting effects on soil productivity [27]. Disruption of ecosystems is another critical aspect 

of environmental degradation. Mining operations frequently entail the removal of forests, 

wetlands, and other natural habitats. This not only results in the immediate displacement of 

wildlife but also disrupts the intricate ecological relationships that sustain these ecosystems.  

The results obtained through this project hold significance due to their diverse 

implications for the environment and society. These results provide insights into the future 

of surface mine reclamation in the Appalachian region, which can be used for further 

research in other regions around the world. By accurately predicting recovery for released 

surface mine areas, this research enables a greater level of insight into the ecological 

disruptions caused by mining activities.  

5.4 Analysis from Model Results 

Some of the company names showed up in the top 20 results for feature importance 

from Random Forest. For this project, any specifics on mine locations will be generalized 

to explain the overall and overarching insights, while more specific information will be 

shared with App Voices. There were a number of companies that showed up as significant 

for the Random Forest model, and when we did research we found that the companies listed 

as significant in the Random Forest model, also had a history (Environmental Protection 

Agency investigation and closure for permit violations) indicating that the feature 

importance from the model is helpful to identify which locations may be at risk from not 

following best practices for environmental safety. While listing details on the company 

name is outside of the scope of this project; this information will be provided to App Voices.  

Mines per permit id was another variable that showed as important in the Random 

Forest model. Mines per permit id is the number of mines that are associated with any 

given permit id. While the averages for 1-3 have an average 0.66 probability for being 

classified as a tree, while the higher (4-6) range had an average of 0.6 for tree 

classification.  
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Google Earth Engine has a wide variety of metrics available from different libraries, and 

because of the feature importance results, adding in more explanatory variables would likely 

lead to more accurate predictions. The time to code, construct, query, and save the data is 

computationally expensive, but these initial results indicate that effort has potential to 

improve and create a more accurate prediction. Specifically, the University of Idaho 

Gridded Surface Meteorological Dataset [22], has a few variables (Burning index, Wind 

velocity at 10m, Humidity, etc.), that were not leveraged in this project due to time and 

computational limitations, that may lead to an improvement in predictions for coal mines. 

Further research may involve expanding the model to predict other reclamation related 

factors and using this predictive framework as a decision support tool for land reclamation 

efforts in surface mining. As for this project, only the trees variable was predicted. 

6   Conclusion 

The results of this model indicate that it is possible to get statistically significant 

predictions on tree classification from Google Earth Engine (utilizing data about coal 

mines) and which environmental factors influence tree coverage. There are considerations 

that have not been included in this paper, and which offer an opportunity for future 

enhancement. There is a dataset which offers information on violations (Office of Surface 

Mining Reclamation and Enforcement’s Applicant/Violator System), which was not 

available before the completion of this project. This dataset could illuminate differences in 

coal mine recovery due to a mine’s compliance with government guidelines. 

While the variables pulled from Google Earth Engine’s API were valuable to help 

predict tree classification, it is a time-consuming process to query 10,221 different mines. 

Each mine has a perimeter and each query to the API was a randomized sample of a 

variety of latitudes and longitudes throughout that perimeter. Establishing a public 

repository with information on coal mines is worth considering in this context. 

Considerations for this would include creating an established framework (sampling size 

and timeframes), so that the work of getting details on a coal mine could be distributed, 

and future research could continue to layer in important environmental factors. 

Leveraging feature importance from Random Forest was a valuable tool for garnering 

insight into specific features, where it was possible to identify specific companies that had 

historic issues with environmental agencies of various forms. These locations would be 

important to prioritize for intervention in any reclamation work. 
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