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Abstract. Post-acquisition data analysis of microscopy images is a vital yet 

time-consuming process for researchers. Quantitative fields such as biology and 

microbiology often require using images as primary data sources. Finding 

methods to automate this process would increase the throughput, quality, and 

reproducibility. This research aims to provide a novel end-to-end pipeline that 

reduces the workload on researchers in identifying cell cytoplasm and nuclei 

while creating a process that can scale to the researcher's needs. The proposed 

methodology utilizes various image-processing techniques to rapidly identify 

the boundaries of cells and nuclei, including filtering, thresholding, and deep 

learning. The results of this research indicate that the proposed methodology 

could be a valuable tool for microbiologists, saving time and effort for accurate 

data collection. 

1   Introduction 

Advanced light microscopy relies on collecting and analyzing images of cells. A 

vital part of this data collection procedure is post-acquisition analyses of microscopy 

images to understand cellular processes. The standard approach involves taking an 

image capture from its raw data format, applying a variety of image processing 

techniques, and extracting information on the organisms of interest. For many 

microbiologists, a crucial task is the identification, labeling and quantification of 

individual cells or subcellular structures. Large-scale image processing presents a 

significant challenge for researchers in that traditional microscopic image processing 

methods often involve many manual steps, are time-consuming, and may not always 

produce the most reliable results. Manual cellular image processing typically involves 

a researcher drawing boundaries around cells and counting upwards of 10,000 dots 

per image. Some of this work can be automated with varying degrees of success, 

depending on the experiment. Moreover, the heterogeneity of biological processes in 

individual cells requires single-cell information to be extracted from images 
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The target of this research involves working with single-molecule RNA 

fluorescence in situ hybridization (smRNA FISH), which is used by the research 

laboratory at The Herbert Wertheim University of Florida Scripps Institute for 

Biomedical Innovation and Technology to observe viral infection’s impact on human 

host cells. Messenger RNA (mRNA) provides a way for researchers to quantify gene 

expressions in the cell. In viral infections, this allows them to study the impact a virus 

infection has on a cell's gene expression. The impact can be seen through observations 

such as counts, saturation, or location to name a few. The benefits of this experiment 

are clear, but the data collection and analysis processes are time consuming and 

resource intensive. 

 

A central issue is processing these images is tedious and time consuming. A 

researcher needs to manually load the images, change the contrast to make the cells 

visible, and attempt to use a variety of software tools to outline the cells and nuclei. If 

the software fails to perform this automatically, then additional manual work is 

required. Then, the mRNA molecules must be individually counted. The counting 

process has some options in various software, but reliable automation would be 

preferred to prevent unnecessary time sinks in the experimental pipeline. 

 

Extensive research has previously been done for computer vision applications in 

biology. Nonetheless, there are several challenges affecting researchers in the field 

when applying advanced techniques or state-of-the-art artificial intelligence (AI) 

algorithms. Firstly, much of the existing research is difficult to integrate as a practical 

tool for common laboratory use. There are ongoing projects such as DeepImageJ 

(Gómez-de-Mariscal et al., 2021), which aims to bring deep learning algorithms to the 

widely used laboratory software, ImageJ. However, these tools are commonly 

developed as a “point-and-click” analysis tool and are not suitable for fully automated 

processing of images. Secondly, biologists are often not focused on the data science 

and computer science skills necessary to independently develop customized solutions 

using the latest algorithmic advances.  

 

Widely known traditional image processing methods are difficult to automate, as 

they are often dependent on image-specific characteristics and manual input. 

Techniques such as thresholding typically require fine-tuning before they produce 

satisfactory results. There are more complex tools that perform better within the field 

of traditional computer vision, but learning how to use and tune these tools takes 

additional time on top of existing research workloads. Consequently, the cumbersome 

workflow to process and analyze experimental images delays research progress, as 

researchers and scientists must devote more time to data processing instead of 

analysis and further experiments. 

 

The challenges arise from the complexity of the microscopy images rather than 

from tools or methods. Traditional computer vision has made significant 

advancements and achievements since its first development in the 1950’s (Caspersson 

et al., 1962) and has provided a diverse range of algorithms for image processing 

tasks. However, the biology and microbiology fields produce highly variable images 

at various levels of detail and composition. For example, the content of the images 
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varies due to the vast diversity of cell morphology. Additionally, experimental 

conditions such as focus, zoom level, and lighting all contribute to the wide range of 

resulting images. The types of fluorescence and dyes used also vary between 

experiments. As a result, many algorithms struggle to provide consistent performance 

across all these differences.  

 

The weakness of traditional computer vision algorithms is partially solved by 

recent advances in AI, they perform well in some cases but are not capable of 

generalizing their solutions as discussed earlier. However, well-trained computer 

vision AI models have shown promising improvements in this regard. The issue is 

either getting access to a model or training the model locally. Currently there are 

numerous public models that perform dependent on use case. If one's use case was not 

represented in the training set for the model, then it is not likely to produce desirable 

results. In this case a custom model would need to be made but might not be a viable 

solution. Model building is a far more complicated process that would require 

extensive time and effort. This is not a reasonable expectation for an individual lab for 

a specific use case. 

  

Software exists that is tailored to the medical and biomedical fields, but these 

tools have limitations. The lack of an automated solution for processing cellular data 

in microbiology presents an opportunity for improvement using data science 

techniques. We present research that aims to address these issues by exploring 

methods to utilize computer vision techniques and deep learning algorithms to 

streamline the process of cellular image data processing. 

 

The proposed strategy involves using both traditional and state-of-the-art AI 

computer vision approaches. The weakness of traditional computer vision, based in 

the highly varied reality of biological microscopy, can be remedied by AI. The result 

is a pipeline that takes smFISH data into a representation of the data that easily lends 

itself to traditional computer vision algorithms. Therefore, an array of traditional 

computer vision tools can be leveraged in addition to state-of-the-art AI algorithms.  

2   Literature Review 

There have been significant technological advances in computer vision techniques 

in recent years with the development of deep neural networks like convolutional 

neural networks (CNNs) and transformer networks. However, traditional image 

processing algorithms and machine learning approaches are still being used to provide 

efficient and accurate interpretation of cellular microscopy images. One of the 

primary efforts of this research involved assessing the range of available algorithms 

and customizing them to the selected use-case. 

 

This literature review focuses on the techniques and methodologies extensively 

explored for automated cell detection, segmentation, and identification. The evolution 
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of microscopy hardware and imaging processing algorithms has contributed 

significant advances to understanding biological processes 

2.1   Early Advances in Cellular Image Processing 

The idea of improving biological research processes through automated image-

processing has been a topic for researchers for decades. Early advances in automated 

microscopy data acquisition and interpretation became popular in the 1950’s with 

improvements in hardware technology. This allowed for higher resolution of single-

cell images and rapid developments in computer processing facilitated increasingly 

advanced algorithms. Caspersson et al. (1962) pioneered techniques for high 

resolution microscopy image scanning. This enabled researchers to begin shifting 

focus to developing and evaluating methods for automating the extraction of 

meaningful information from the images. Bartels et al. (1977) documented the 

ongoing development of supervised and unsupervised learning algorithms and their 

applications to biomedical image interpretation. However, there were still significant 

challenges for early data scientists with data storage and staging, image I/O, and the 

general availability of libraries and software packages (Bartels et al., 1977). 

 

Prewitt et al. (1966) created a methodology for classifying single-cell images of 

stained white blood cells into one of four types. The process involved scanning 

microscopy images into a digital grayscale format and used optical density histograms 

to identify image regions. For example, the histograms showed three distinct peaks of 

varying optical density values, which corresponded to the image background, 

cytoplasm, and nucleus. To classify the specific type of white blood cell, thirty-five 

parameters were calculated from the optical density frequency distribution and 

clustered using a nearest-neighbors algorithm. Finally, a spatial differentiation method 

was developed to define the cell boundaries and separate the background. 

 

A decade later, Borst et al. (1979) expanded on these ideas by creating an 

algorithm for automatic segmentation of single-cell images. In this method, a 

grayscale image is first median filtered using 29 neighboring pixels to reduce noise. 

The median filtered image is then filtered again using a smaller number of pixel 

neighbors to further distinguish the cell from the background. The neighboring pixel 

values are stored as three histograms, which are used for masking and thresholding. 

The thresholding process defines the cell boundary and separates the nucleus and 

cytoplasm from the background. Using this algorithm, post-processing steps, such as 

removal of small regions and merging of nearby regions, can be applied to the 

segmented cells to obtain the result. A similar cell segmentation methodology 

involving filters, masks, and thresholds was documented by Abmayr et al. (1979) for 

automated cancer cell detection. To determine if a cell was cancerous or not, the 

researchers included additional image processing steps for texture analysis, feature 

selection and classification. 

 

An algorithm for multi-cell image segmentation was developed by Harms et al. 

(1986), with the idea of matching geometric features and colors in the image to the 
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organismal cell structure. The morphological methodology involved splitting the 

image into red, green, and blue color channels, and segmenting the nucleus and 

cytoplasm based on threshold probabilities from these channels. A novel method for 

splitting multiple overlapping cells was also introduced, which used isograms and 

geometric centers to create separation boundaries between cells.  

 

In the 1990’s, fluorescence in situ hybridization (FISH) signals became a popular 

method for detecting specific features in deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA). Additionally, advances in imaging hardware with confocal 

laser scanning microscopes (CLSM) allowed for nondestructive three-dimensional 

imaging of biological organisms. Umesh et al. (1999) introduced an end-to-end 

pipeline for efficient cell segmentation of FISH signals. The algorithm was composed 

of traditional image processing techniques and a novel approach for segmentation of 

the 3D cell images. A graphical user interface (GUI) was also developed to make the 

research results available to a wider audience. The methods and algorithms described 

above were instrumental in laying the foundation for modern research and advancing 

biomedical cellular knowledge.  

 

2.2   Artificial Intelligence in Image Processing 

Previous advancements and applications in computer vision were undeniably 

impressive and valuable, but they were not without limitations. One significant 

drawback to these traditional methods is that they are not generalizable to the contents 

of the image, but rather the data present within the image. Fortunately, recent 

developments in AI introduced a novel solution to address these longstanding 

challenges through Convolution Neural Networks (CNNs). CNNs are a specialized 

type of neural network specifically designed for processing visual data such as images 

and videos. CNN architectures consist of convolutional layers, pooling layers, and 

fully connected layers. The convolutional layer is the main building block, creating 

trainable filters that detect certain properties in an image such as edges or shapes. 

Pooling layers are like convolutional layers in how they slide over the image matrix, 

but they are parameter-less down sampling calculations and thus are not trainable. 

One example of a pooling layer is max pooling, which simply takes the maximum 

value of the pixels in the window. Although the idea behind artificial neural networks 

such as CNNs has been around for decades, recent improvements in hardware and big 

data storage have created rapid advances in the field.  

 

LeCun et al. (1990) developed one of first CNN architectures (LeNet) for image 

recognition to classify handwritten digits in the widely recognized MNIST dataset. 

CNNs gained popularity with the successful research conducted by Krizhevsky, A., 

Sutskever, I., and Hinton, G. E. in 2012. Their work was one of the first examples of 

using CNNs for widescale image classification, where they trained a deep CNN to 

classify over one million images into a thousand different classes. This experiment 

generated widespread interest in CNNs from data scientists and researchers across 

computer vision. 
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Image segmentation is a computational task that builds upon the fundamental 

ideas from CNNs. It involves partitioning an image into regions and separating each 

pixel within the image by class. Although it shares some fundamental concepts with 

CNNs, segmentation is regarded as one of the most challenging tasks in image 

processing and computer vision. The main distinction between the CNNs and 

segmentation is the output: CNNs classify an image into a multiclass result while 

segmentation typically outputs a masked image of the segments that is the same 

dimensions as the original image. 

 

A naïve approach to segmentation is to convolve the image in place a few times 

and then have the final output be the final image. Unfortunately, this model fails to 

perform as it does not introduce a growing channel space which increases the 

expressiveness and generalizability of a model. Badrinarayanan, V., Badrinarayanan, 

V., & Cipolla, R. (2015) solved this problem by developing the encoder decoder 

network. They created a method that down samples just like classification CNNs and 

thus reaping the benefits of model expressiveness. The model is then sampled up to 

the same size as the original image. The result is a network that processes an image 

into high dimensional low-level space and then expands back to the original space and 

size. Even though the model worked, performance was far from optimal. 

 

An example of the next iteration in model development was in the work of 

Ronneberger, O., Fischer, P., & Brox, T. (2015). They show a variation of the U-Net 

architecture which still used the overall encoder decoder methodology but added a 

novel component to the network. Instead of operating in a sequential matter the model 

stores the weights from the various down sample stages and reintegrates them into the 

network in the up sampled stage. The benefit of this approach is the model can 

maintain context and “remember” the previously created weights at each stage. These 

improvements helped the model’s performance significantly such that the U-Net 

structure is still used to this day. 

 

Recently a generalized approach to image segmentation called Segment Anything 

(SAM) has been released by Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-

Wing Tai, Chi-Keung Tang, & Fisher Yu. (2023). Their model resolves an issue that 

impacted every model that was previously discussed; models must be trained with 

data directly relevant to their problem. SAM does not have this issue and performs 

well at segmentation in general, but it can see performance gain through transfer 

learning on desired domain specific image segmentations. SAM offers two methods 

to work with the model. The first is the pure SAM approach where an image is fed 

into the model and the model outputs as many masks as possible. The second is the 

augmented SAM approach where the image is fed with additional data such as a point 

or a bounding box and SAM outputs the most confident mask given the context of the 

prompt. 
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3   Methods 

The methods used in this analysis combine many traditional image processing 

techniques with SAM into an executable pipeline for semi-automated image 

processing. The cellular image processing pipeline was divided into steps shown in 

Figure 1. First, the image data is extracted from the proprietary file structure into a 

usable format. The image is then preprocessed to enhance the contrast and denoise the 

image. The first analysis phase starts with nuclei segmentation. Using the augmented 

SAM approach, the user interacts with the image within a GUI by drawing bounding 

boxes around nuclei of interest. The users bounding boxes are then processed and 

input into SAM with the image. Cytoplasm segmentation occurs in the same fashion 

as nuclei segmentation. After the nuclei and cytoplasm are segmented, a post 

processing step is performed to properly link the cytoplasm with their corresponding 

nucleus. Finally, the pipeline performs the mRNA “dot” counting step. The user 

specifies which z axis and staining channel combinations they would like to process 

and then the program automatically analyzes every combination. “Dot” counting is 

accomplished by utilizing pure SAM to produce segmentations on the isolated cell. 

Once complete the number found is simply recorded and returned to the user. 

 

 
Figure 1. Overview of the image processing pipeline showing steps from image 

loading to postprocessing. 

 

3.1  Data 

 

The data used in this research was collected by Dr. James Burke’s team at the 

University of Florida’s Scripps Biomedical Research laboratory. The raw images are 

captured using a Nikon microscope and are available in proprietary Nikon ND2 

format. The images were parsed using an ND2 processing Python library and 

converted into a NumPy array. The image file sizes range between 250 and 500 MB. 

 

The result of loading the raw image file into NumPy is a 4-dimensional array. The 

4 dimensions include the fluorescence channel, z-index of the 3-d z-stack, the x-axis, 

and the y-axis. Each experimental channel is used to highlight or enhance various 

aspects of the cell. For example, DAPI staining strongly binds to sections of DNA and 

thus acts as an indicator of where the nucleus is located. The z-stack contains levels of 

focus at different depths in the cell. Processing using this z-stack format is typically 

done by either manually selecting the z-stack of interest or combining them through a 

simple linear combination. The pixel values in the x-axis and y-axis of the image are 

light intensity values and can range from 0 to 64,000. 
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3.2  Image Preprocessing 

 

Due to the high quality of the Nikon microscope camera, the resulting images can 

capture a wide range of intensity values which are stored in 16-bit format. Many 

algorithms in both traditional image processing and deep learning expect the image in 

an 8-bit format, so a preprocessing step must first be employed to scale down the 

image intensities. Initially, the image is prepared by clipping intensity values that are 

exceptionally higher or lower than the image mean value, effectively removing 

outliers. Following the clipping step, the image is rescaled from 16-bit to 8-bit for use 

in further analysis.  

 

Background noise and excessive static can reduce the effectiveness of many 

segmentation algorithms. To enhance the image quality and remove background 

noise, a denoising algorithm such as Gaussian filter is applied to the image. Following 

this, the image contrast is enhanced through contrast limited adaptive histogram 

equalization (CLAHE). Contrast stretching or normalization is a technique that 

stretches the histogram of image intensity values to span a desired range with a linear 

scaling function. These methods both improve the image contrast, which results in 

significant improvements in boundary detection. 

 

3.3  Cell Nuclei Segmentation 

 

This research explored various methods for nuclei identification in microscopic 

images, ranging from traditional image filtering techniques to deep learning 

algorithms, with a particular focus on evaluating the effectiveness of architectures 

such as CNNs. Among the explored algorithms, SAM demonstrated exceptional 

performance, making it the core model for the specific use case.  

 

To enhance SAM's capabilities, a human-assisted version was developed, which 

requires additional input in the form of bounding boxes. A Graphical User Interface 

(GUI) canvas was designed to allow users to draw bounding boxes within the image, 

providing additional information. These bounding boxes are then translated into the 

appropriate input format for SAM, and the resulting mask predictions are exported for 

the user's use. The human-assisted GUI offers researchers the flexibility and control 

to precisely define the regions of interest in the images, allowing them to incorporate 

their domain knowledge. This ensures that the program is accurately capturing the cell 

nuclei to the researcher’s satisfaction. This approach creates a balance between 

automation and human augmentation. This results in more reliable and interpretable 

results for nuclei segmentation. 

 

3.4  Cell Cytoplasm Segmentation 

 

The segmentation of the cell cytoplasm, or boundaries, presents a more 

significant challenge compared to nuclei segmentation. These challenges primarily 

arise from the lack of clearly defined cell boundaries and the irregular shapes and 

sizes of the cells in the study. The boundary identification process relies heavily on 

visual interpretation of multiple layers of data and can require further human input for 
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accurate segmentation. Despite these inherent challenges, SAM has shown promising 

results for this application. Therefore, the same human-assisted SAM processing 

procedure was applied to the cytoplasm segmentation as the nuclei segmentation.  

 

 

3.5  Cell Mask Linkage 

 

After completing both segmentation steps, the resulting output is two image masks 

for the nuclei and cytoplasm. However, these masks are not linked to each other. To 

establish this link, the cell's physical attributes are used to create rules. For example, a 

nucleus is always contained within the cytoplasm of the linked cell. Using these rules, 

linear transformations can be performed between the two segmentation matrices to 

produce a new matrix that contains the necessary linkage information. This linked-

mask segmentation approach enables further analysis and interpretation of the cell 

during future processing steps. 

 

3.6  Messenger RNA (mRNA) Analysis 

 

In certain image channels, the mRNA molecules are visible as small areas of high 

intensity “dots” on an image and are far smaller than a cytoplasm or nucleus. Despite 

this size difference, SAM still demonstrates decent performance, but requires a new 

protocol for best results. In this adjusted procedure, the default SAM algorithm is 

utilized over the augmented approach with a process modification called SAM 

quilting. The original method involves inputting a single image into SAM, with SAM 

generating multiple segmentations for the image. However, in SAM quilting, the 

input image is broken up into a series of sub-images representing a grid-like structure. 

Each sub-image is then individually input into SAM, and the number of 

segmentations is counted for each. At the end of the process, the segmentation 

algorithm results are summed to yield the full count for the original image. The SAM 

quilting approach provides an effective way to improve the performance of the 

algorithm on small segmentations and analyze mRNA molecules. 

 

4 Results 
 

The full image processing pipeline produces multiple visualizations and CSV 

files, each relevant to specific tasks within the lab. A cell segmentation ID output 

image provides a visual reference linking other output data to the respective cell. The 

intensity CSV output yields pixel intensity sums and pixel areas for each cytoplasm 

and nucleus. This allows for calculations of mean intensity values for the overall 

segmented cell or its components. Lastly, the “dot” counting step outputs a CSV of 

mRNA counts within each nucleus and cytoplasm of the segmented cells. The mRNA 

counting step additionally outputs an image to display what the model counted to give 

insight into performance on the given cell. Performance will be demonstrated in a 

comparative fashion by displaying two cells that have a major difference in 

expression of mRNA counts in the mCherry channel along a singular z-axis. The 

difference between the two can also be clearly seen and represented in the analysis. 
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4.1  Cell ID Reference Image 

 

 
 

Figure 2. Cell ID reference image where two cells were selected for analysis. This 

image is a linear combination of the DAPI and mCherry channels at a singular z-

index. 

 

Figure 2 displays an example of the entire cell segmentation output. It provides a 

way for researchers to see the model's performance, while also providing a way to 

reference cells based on their IDs in future analysis steps. As shown in the image, Cell 

1 displays significant mRNA presence while Cell 2 displays minimal mRNA 

presence. This indicates differences in the viral responses of the cells 

 

4.2  Intensity CSV 

 

Table 1. Raw Intensity Output 

 

Cell ID Cyto. 

Intensity 

Cyto. 

Area 

Nuc. 

Intensity  

Nuc. 

Area 

Z-Index Channel 

1 729,737,702 110,628 216,006,098 38,480 1 WF mCherry 

2 211,956,984 48,931 183,428,574 43,834 1 WF mCherry 
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Table 1 presents the raw intensity output provided to the user. This output format 

offers the user the flexibility to decide the preferred type of mean intensity analysis 

for the study. The analysis options for the mean intensity values require minimal 

additional effort, and include formats for the entire cell, nucleus-only, and cytoplasm-

only. 

 

Table 2. Mean Intensity Output 

 
Cell ID Mean Cell 

Intensity 

Mean Cyto. 

Intensity 

Mean Nuc. 

Intensity  

Z-Index Channel 

1 6,342 6,596 5,613 1 WF mCherry 

2 4,262 4,332 4,185 1 WF mCherry 

 

 

Table 2 displays the resulting mean intensity values. The cell mean intensity for 

Cell 1 is larger than Cell 2, which was expected based on visual analysis of the image. 

 

4.3  mRNA Counts 

 

The mRNA "dot" counting step generates two types of output. The first is a CSV 

file containing mRNA counts, similar in format to the intensity CSV output. The 

second output is a model performance visualization, presenting an image of the cell 

that highlights the segmented "dots" corresponding to the identified mRNA 

molecules. 

 

4.3.1  mRNA Counts CSV 

 

Table 3. mRNA Count Output 

 
Cell ID Cyto. 

Counts 

Nucleus 

Counts 

Z-Index Channel 

1 606 205 1 WF mCherry 

2 85 117 1 WF mCherry 

 

 

The output of the mRNA "dot" counting step in Table 3 reveals that Cell 1 

exhibits a significantly higher mRNA count compared to Cell 2, in both their nuclei 

and cytoplasm. These output formats allow researchers to aggregate these statistics 

from single cell analysis to images with dozens or even hundreds of cells. As such, 

the impact of cellular responses to viral infections can be monitored and researched 

on a large scale through mRNA analysis. 

 

4.3.2  mRNA Counts Reference Image 

 

To enable the user to quickly assess the pipeline performance, additional outputs 

of cellular image segmentations are provided on a per cell, per channel, and per z-axis 
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basis. Figure 3A and Figure 3C display Cell 1 and Cell 2 cytoplasm mRNA 

segmentation results, respectively. These visualizations offer valuable insights into 

the mRNA distribution within each cell, facilitating evaluation of cell responses and 

comparative analysis between cells. 

 

 
 

Figure 3. Cell “Dot” Segmentations and Segmentation Outlines. (A) Cell 1 

Segmentation Outlines. (B) Cell 1 Segmentations. (C) Cell 2 Segmentation Outlines 

 

Lastly, an additional segmentation image, Figure 3B, is provided for further 

examination of model performance. The outlines provide a quick view into the 

validity of the segmentations but the procedure to produce these outlines can group 

separate segmentations together under one entity. The segmentation image can help 

clarify this issue as every color is indicative of a unique segmentation. 
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5   Discussion 

Through this research, implications, limitations, and ethical considerations were 

identified and are discussed below. Additionally, future research directions are 

outlined for further refinement and exploration. 

  

5.1  Implications 

 

The results shown above demonstrate the effectiveness of combining traditional 

image processing techniques with deep learning methods to streamline the 

segmentation and analysis of cellular images. The algorithms and methods used for 

segmentation are robust to the shape and boundary irregularities present in cell 

cultures. With the continued advances in deep learning methods and computational 

hardware, rapid adoption of these technologies within the biological field should be 

further explored. 

 

The significance of these methodologies relates to the practical implications they 

have for laboratory researchers and scientists. For laboratory researchers, the 

proposed image processing pipeline translates into time savings in data preparation 

and results gathering, allowing for increased focus on the analysis of the experimental 

results. There are wider implications for the scientific community with the 

demonstrated success in terms of performance and robustness of deep learning 

algorithms for image processing. 

 

A time efficiency metric is not provided as a single lab's workflow is not sufficient 

for a general claim. Still a rough estimate would be at least twice as fast as the normal 

workflow. Additional benefits are both consistency and automation. The model output 

will be consistent, reducing human error, which has a beneficial effect on scientific 

research. Additionally, there is the benefit of automation. Human researchers cannot 

process the data and work on other tasks, but human researchers could have the 

program process the data while they process other tasks. 

 

Lastly, the success of Meta’s Segment Anything Model over both traditional 

segmentation methods and U-Net neural networks that had been specifically trained 

for cell detection and segmentation was surprising. 

 

5.2  Limitations 

 

The current development of the image processing pipeline is configured to focus 

primarily on cell segmentation and mRNA detection and are aligned with the 

requirements of the research direction and objectives. However, techniques, methods, 

and algorithms used in this study could be generalized to a wide range of additional 

use cases in the field of microbiology, but time would need to be spent to develop 

additional process pipelines dedicated to these new objectives. Additionally, the 

current pipeline requires some manual adjustments and user input. Supplementary 

refinement of the image processing pipeline could be achieved to enhance efficiency, 

streamline workflows, and further reduce manual effort required from researchers.  

13

Awadallah et al.: Utilizing Computer Vision for Automated Cellular Microscopy

Published by SMU Scholar, 2023



 

Overall, the “dot” counting procedure is strong but not perfect. There are cases 

where “dots” are missed or objects that are not “dots” are segmented. For this reason, 

it is recommended to always inspect these images and adjust your output, as 

necessary. This hybrid approach is not perfect, but it saves more time than the manual 

approach. 

 

5.3  Ethics 

 

For continued development and expansion of this methodology to additional use-

cases in the field of biology, ethical implications must be considered. The current data 

does not involve human subjects, but for additional applications this might not be the 

case. If the images contain information from human subjects in a clinical trial setting, 

researchers must ensure that informed consent is followed, and subjects understand 

the risks associated with the study and how the data will be used. Similarly, any 

image data containing personal or identifying information from human subjects 

requires processes in place to ensure data classification, confidentiality, and privacy.  

 

5.4  Future Research 

 

Future research directions primarily focus around investigating the potential 

benefits of using transfer learning to improve cytoplasm segmentation and further 

refine nuclei segmentation. In addition, improvements could be made by continuing to 

refine the mRNA analysis “dot counting” procedure through adjustments to the 

Segment Anything Model or by exploring other methods.  

 

This research's objective was to provide a dedicated tool for cellular image 

processing tailored to microbiology research applications at the Scripps Biological 

Research Laboratory at the University of Florida. However, expanding the 

generalizability and accessibility of the proposed methods used could improve 

workflows of biological researchers working with similar use-cases. To achieve 

further accessibility and user-friendliness to the research community, continued 

efforts could be made to expand and improve the development of web applications 

and image processing methods. With the large file size of the images, the processing 

is computationally expensive. Further work could be done to improve computational 

efficiency or use a scaling method to reduce the size of the working images. 

6   Conclusion 

In conclusion, this research's objective was to create a novel pipeline for the 

identification, segmentation, and labeling of cellular microscopy image data for the 

application of mRNA analysis. The proposed pipeline and methods explored 

throughout this research demonstrated the effectiveness of combining traditional 
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image processing techniques with deep learning methodologies to create a 

streamlined workflow for laboratory researchers. 

 

Future research directions involve improving the robustness of the implemented 

algorithms and making the pipeline more accessible to the broader scientific 

community. 

 

 

Acknowledgments 

 

We would like to thank our family and friends for their support throughout this 

journey, as well as our professors and advisors for their invaluable insights and 

guidance. A special appreciation goes to Dr. Burke’s research lab for generously 

providing us with the data and insights into their research, and to James Watkins for 

his support on data gathering and analysis. Your contributions have been instrumental 

to the success of this project. 

References 

1. Abmayr, W., Burger, G., & Soost, H. J. (1979). Progress report of the TUDAB 

project for automated cancer cell detection. The journal of histochemistry and 

cytochemistry: official journal of the Histochemistry Society, 27(1), 604–612. 

https://doi.org/10.1177/27.1.374628 

2. Badrinarayanan, V., Badrinarayanan, V., & Cipolla, R. (2015). SegNet: A Deep 

Convolutional Encoder-Decoder Architecture for Image Segmentation. ArXiv 

(Cornell University). https://www.arxiv.org/pdf/1511.00561 

3. Bartels, P. H., and G. L. Wied. Computer Analysis and Biomedical Interpretation of 

Microscopic Images: Current Problems and Future Directions. Proceedings of the 

IEEE. Institute of Electrical and Electronics Engineers, vol. 65, no. 2, Institute of 

Electrical and Electronics Engineers (IEEE), 1977, pp. 252–261, 

https://doi.org10.1109/proc.1977.10460. 

4. Borst, H., Abmayr, W., & Gais, P. (1979). A thresholding method for automatic cell 

image segmentation. The journal of histochemistry and cytochemistry: official 

journal of the Histochemistry Society, 27(1), 180–187. 

https://doi.org/10.1177/27.1.374573 

5. Burke, J. M., Gilchrist, A. R., Sawyer, S. L., & Parker, R. (2021). RNase L limits host 

and viral protein synthesis via inhibition of mRNA export. Science advances, 7(23), 

eabh2479. https://doi.org/10.1126/sciadv.abh2479 

6. Caspersson, T.O. and Lomakka, G.M. (1962), Scanning Microscopy Techniques For 

High Resolution Quantitative Cytochemistry. Annals of the New York Academy of 

Sciences, 97: 449-463. https://doi.org/10.1111/j.1749-6632.1962.tb34656.x 

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A. I., Weissenborn, D., Zhai, X., Unterthiner, 

T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. 

(2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at 

Scale. ArXiv: Computer Vision and Pattern Recognition. 

https://arxiv.org/pdf/2010.11929 

15

Awadallah et al.: Utilizing Computer Vision for Automated Cellular Microscopy

Published by SMU Scholar, 2023

https://doi.org/10.1177/27.1.374628
https://doi.org10.1109/proc.1977.10460
https://doi.org/10.1177/27.1.374573
https://doi.org/10.1126/sciadv.abh2479
https://doi.org/10.1111/j.1749-6632.1962.tb34656.x


8. Gómez-de-Mariscal, E., García-López-de-Haro, C., Ouyang, W. et al. DeepImageJ: A 

user-friendly environment to run deep learning models in ImageJ. Nat Methods 18, 

1192–1195 (2021). https://doi.org/10.1038/s41592-021-01262-9 

9. Fidon, L., Li, W., Garcia-Peraza-Herrera, L. C., Ekanayake, J., Kitchen, N., Ourselin, 

S., & Vercauteren, T. (2018). Generalized Wasserstein Dice Score for Imbalanced 

Multi-class Segmentation Using Holistic Convolutional Networks. Brainlesion: 

Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 64–76. 

https://doi.org/10.1007/978-3-319-75238-9_6 

10. Harms, H., Aus, H. M., Haucke, M., & Gunzer, U. (1986). Segmentation of stained 

blood cell images measured at high scanning density with high magnification and 

high numerical aperture optics. Cytometry, 7(6), 522–531. 

https://doi.org/10.1002/cyto.990070605 

11. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with 

Deep Convolutional Neural Networks. Neural Information Processing Systems, 25, 

1097–1105. http://books.nips.cc/papers/files/nips25/NIPS2012_0534.pdf 

12. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, 

L. (1989). Handwritten Digit Recognition with a Back-Propagation Network. In 

Advances in Neural Information Processing Systems. Morgan-Kaufmann. 

13. Lguensat, R., Sun, M., Fablet, R., Tandeo, P., Mason, E., & Chen, G. (2018). 

EddyNet: A Deep Neural Network For Pixel-Wise Classification of Oceanic Eddies. 

IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing 

Symposium. https://doi.org/10.1109/igarss.2018.8518411 

14. Liu, X., Deng, Z., & Yang, Y. (2018). Recent progress in semantic image 

segmentation. Artificial Intelligence Review, 52(2), 1089–1106. 

https://doi.org/10.1007/s10462-018-9641-3 

15. Novikov, A., Lenis, D., Major, D. C., Hladůvka, J., Wimmer, M. A., & Bühler, K. 

(2017). Fully Convolutional Architectures for Multi-Class Segmentation in Chest 

Radiographs. ArXiv: Computer Vision and Pattern Recognition. 

https://arxiv.org/pdf/1701.08816.pdf 

16. Otsu, N. (1978). A Threshold Selection Method from Gray-Level Histograms. IEEE 

Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. 

https://doi.org/10.1109/tsmc.1979.4310076 

17. Prewitt, J.M.S. and Mendelsohn, M.L. (1966), THE ANALYSIS OF CELL 

IMAGES. Annals of the New York Academy of Sciences, 128: 1035-1053. 

https://doi.org/10.1111/j.1749-6632.1965.tb11715.x 

18. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for 

Biomedical Image Segmentation. Lecture Notes in Computer Science, 234–241. 

https://doi.org/10.1007/978-3-319-24574-4_28 

19. Umesh Adiga, P. S., & Chaudhuri, B. B. (1999). Efficient cell segmentation tool for 

confocal microscopy tissue images and quantitative evaluation of FISH signals. 

Microscopy Research and Technique, 44(1), 49–68. 

https://doi.org/10.1002/(SICI)1097-0029(19990101)44:1<49::AID-

JEMT6>3.0.CO;2-6 

20. Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-Wing Tai, Chi-Keung Tang, 

& Fisher Yu. (2023). Segment Anything in High Quality. 

https://ai.facebook.com/research/publications/segment-anything/ 

 

16

SMU Data Science Review, Vol. 7 [2023], No. 2, Art. 6

https://scholar.smu.edu/datasciencereview/vol7/iss2/6

https://doi.org/10.1007/978-3-319-75238-9_6
https://doi.org/10.1002/cyto.990070605
https://doi.org/10.1109/igarss.2018.8518411
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1002/(SICI)1097-0029(19990101)44:1%3c49::AID-JEMT6%3e3.0.CO;2-6
https://doi.org/10.1002/(SICI)1097-0029(19990101)44:1%3c49::AID-JEMT6%3e3.0.CO;2-6

	Utilizing Computer Vision for Automated Cellular Microscopy
	Recommended Citation

	tmp.1691555263.pdf.uLtFc

