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Abstract

JUAN DIEGO VALLADOLID
Assisted-Control Strategies On Electric Vehicles In Order To Achieve Optimal Energy
Efficiency

Electric vehicles (EV s) are capturing popularity, and the reasons behind this are
many. The most outstanding is its contribution to the reduction of greenhouse gas emis-
sions. Electric vehicles, with sufficient penetration in the transport sector, are expected
to reduce those emission indicators.
The EV s are quiet, easy to operate, and the average cost : EV is 3 times cheaper than
fuel internal combustion engine (ICE). As a mode of urban transport, it is beneficial. It
uses no energy or emissions of harmful chemicals, gases and particle pollution while
idling. EV is capable of frequent stop-and-go driving using minimal power and provides
full torque right from the start and the instant torque makes it highly preferable for
motorsports.
The next-generation power grid, called the "smart grid," is also being developed. Elec-
tric vehicles are seen as a significant contributor to this new energy system made up of
renewable generation facilities and advanced grid systems. All this has led to a renewed
interest and development in this mode of transport.
This doctoral thesis focuses on the proposal of strategies to improve the energy efficiency
of electric vehicles through optimal assisted control. In order to generate a detailed
description of the vehicle, experimental tests are accomplished on routes and in the
laboratory, using a dynamometric bench and combining it with the mathematical model
of the vehicle’s dynamics.
The developed strategy shows that driving energy efficiency can increase between 2%
and 3% depending on the driving style. On the other hand, for the regenerative braking
system, an optimal assisted control strategy has been proposed based on achieving an
improvement in energy recovery of up to 8%.
These results will allow the start of future work focusing on implementing assisted sys-
tems for current electric vehicles and proposals for energy optimization for autonomous
vehicles.



Resumen

JUAN DIEGO VALLADOLID
Estrategias de Control Asistido en Vehículos Eléctricos para Alcanzar la Eficiencia
Energética Óptima

Los vehículos eléctricos (EV s) están ganando popularidad, y las razones detrás de
esto son muchas. La más destacada es su contribución a la reducción de las emisiones
de gases de efecto invernadero. Se espera que los vehículos eléctricos, con suficiente
penetración en el sector del transporte, reduzcan esos indicadores de emisiones.
Como vehículo, un EV es silencioso, fácil de operar y no tiene los costos de combustible
asociados con los vehículos convencionales. Como modo de transporte urbano, es
beneficioso. No utiliza energía ni emisiones mientras está en ralentí, es capaz de conducir
con paradas y arranques frecuentes, proporciona par completo desde el principio. El par
instantáneo lo hace muy preferible para los deportes de motor.
También se está desarrollando la red eléctrica de próxima generación, denominada "red
inteligente". Los vehículos eléctricos son vistos como un contribuyente significativo a
este nuevo sistema energético compuesto por instalaciones de generación renovable y
sistemas de red avanzados. Todo esto ha llevado a un renovado interés y desarrollo en
este modo de transporte.
Esta tesis doctoral se centra en la propuesta de estrategias para mejorar la eficiencia
energética de los vehículos eléctricos mediante un control asistido óptimo. Para generar
una descripción detallada del vehículo, se realizan ensayos experimentales en ruta y
en laboratorio, utilizando un banco dinamométrico y combinándolo con el modelo
matemático de la dinámica del vehículo.
La estrategia desarrollada muestra que la eficiencia energética en la conducción puede
aumentar entre un 2% y un 3% en función del estilo de conducción. Por otro lado, para
el sistema de frenado regenerativo se ha propuesto una estrategia óptima de control
asistido basada en conseguir una mejora en la recuperación de energía de hasta un 8%.
Estos resultados permitirán el inicio de trabajos futuros centrados en la implementación
de sistemas asistidos para vehículos eléctricos actuales y propuestas de optimización
energética para vehículos autónomos.
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Chapter 1

Introduction

In introducing this research study, this chapter shows an overview of the context in
which it was conducted. Motivations, general and specific objectives are considered.
Likewise, the contributions and limitations of this research are presented, as well as
publications made during its development and the general structure of the chapters that
make up the document.

1.1 Motivation and Research Problem

Society has been largely dependent on fossil fuels for energy, particularly for the
transportation sector, which releases greenhouse gases that pollute the atmosphere,
known as global climate change [1–3]. The electric energy generated by renewable
sources contributes significantly to mitigate polluting gas emissions and the energy
demand is expected to continuously increase in the coming years. Therefore, a significant
reduction in the use of fossil fuels is the result of the substantial contributions of the
electricity sector. Therefore, a substantial contribution of the electric sector gives as
result a significant reduction of the use of fossil fuels.

During the last few decades, transport electrification technology has presented
proposals around hybrid electric vehicles (HEV s) and pure electric vehicles (EV s).
These vehicles are the biggest bets of today’s technology, especially the EVs with almost
local zero emission, which is capable of reduce fossil fuels demand and environmental
damage caused by the internal combustion engines used for transportation [3–6].

The automotive industry in Latin America is mainly occupied by vehicles that work
with internal combustion engines. However, EV s sales have been increasing every year
as a result of the acquisition cost reduction and the variation in oil prices worldwide. In
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Latin America, an average increase in the range of 75% has been reported [7]. South
American countries such as Colombia and Ecuador show an increase in sales during
2021 of 60% and 228% respectively in comparison to 2020 [7, 8].

In Ecuador, the Organic Law of Public Service for Electrical Energy (LOSPEE)
determines that the Ministry of Electricity and Renewable Energy (MEER) establishes
the creation of the National Plan of Energy Efficiency (PLANEE), which seeks to
coordinate stakeholders, identifying and incorporating programs and projects that will be
implemented nationwide to increase efficient energy use, during the 2016-2035 period,
as shown in Figure 1.1.

Fig. 1.1 Energy saved in the transportation sector in Ecuador [1]

The primary consumer sector identified is transportation, which corresponds to
42% of the total national energy consumption [1]. PLANEE aims to optimize energy
consumption in freight and passenger transport compared with the industry baseline
scenario by carrying out energy efficiency projects that generate benefits in the sector.
This Project pursues to Incorporate HEV , EV and New Technology Vehicles to be
commercially available in the future.

On the other hand, the increase of this technology in the automotive industry of
Ecuador and Latin America sector suggests taking action on the limitations of the
operation of these vehicles, such as the lack of charging points or charging stations, the
repowering of the local electrical network and the insufficient autonomy. Studies have
shown that electric motors are largely more efficient than internal combustion engines.
However, the energy density of an electric vehicle (EV ) battery pack falls short of that
of fuel, and the constraints on recharging continue to be a vital factor to bear in mind
when acquiring an EV .
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This research focuses on improving energy efficiency in comercialEV s, where
control and optimization strategies are proposed that can be executed while driving
the vehicle. The initial step involves considering the study and modeling of vehicle
subsystems using mathematical equations and lookup tables, accounting for the non-
linearities inherent in the system dynamics. Then, test routes for the vehicle in order to
determine its performance in each scenario are established. With this information, an
optimizer is proposed to improve energy efficiency. Finally, proposals for optimal control
are also presented in the vehicle’s energy recovery system through the regenerative
braking system (RBS). The optimization algorithms adequately consider the electrical
and mechanical losses.

1.2 Objetives

The present study proposes to generate simulation tools and assisted control strategies
that help improve EV s’ efficiency, includiing : speed optimisation, driving cycle optimi-
sation, motor efficiency optimisation. Based on this approach, the following general and
specific objectives are established

1.2.1 General Objective

The main objective of this research is to develop assisted-control strategies for electric
vehicles in order to achieve optimal energy efficiency, considering a dynamic model that
includes losses and experimental data of the system.

It is essential to develop a model capable of representing the full dynamics of the
EV, from the battery pack to the power in the vehicle wheel. Additionally, the vehicle
experimentations must be considered in real conditions and in the laboratory, where
there are controlled conditions.

1.2.2 Specific Objectives

In order to achieve the general objective, the following specific objectives are defined:

1. Determine an EV model that represents the interactions between electrical and
mechanical components, as well as the losses of the system in each stage of
operation.
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2. Formulate a model for the problem of energy efficiency optimization to address
the dynamics of the vehicle considering the effects of non-linearities and driving
styles.

3. Propose a control scheme that includes formulating an optimization problem to
increase energy efficiency in EV during the driving and regenerative braking
action.

1.3 Contributions

The control strategies applied in EV are aimed to obtain an enhanced performance, taking
into consideration the driver’s driving profile or adapting to a defined speed trajectory,
as discussed in detail in the following chapters. Nowadays, most EVs consist of driving
modes, such as the NORMAL mode which offers regular daily performance, the ECO
mode offers a setting to reduce energy consumption and the SPORT mode which adapts
to a more aggressive driving mode ensuring maximum power. Unfortunately, most of the
scientific researches and improvement strategies around EVs do not take into account the
electrical and mechanical losses of all subsystems that guarantee the maximum energy
efficiency point throughout the entire system during its operation.

This research aims to address the above challenges to present a formulation for
an optimizer covering distinct scenarios of driving patterns for EVs; this proposal is
developed with the mathematical model including a differential drive, lookup tables made
from experimental data, and a solution of the objective function using a metaheuristic
algorithm. The contributions of this thesis are the following:

1. We formulate a model for commercial EV that aims to include a realistic effi-
ciency analysis for the whole system of the vehicle using a mathematical model,
experimental tests in a dynamometer bench [9] and the On-Board Diagnostics
(OBD), which provides access to the Electronic Control Unit (ECU) data allowing
the inclusion of realistic nonlinear effects of EV in lookup tables.

2. A strategy is proposed to improve consumption and energy efficiency in an EV
through an optimization algorithm that adapts to the user’s driving pattern in real
conditions, generating corrections in vehicle speed according to defined ranges.
This formulation guarantees the improvement of EV’s energy efficiency without
the need to generate previous training for the identification or classification of
driving styles.
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3. We propose and evaluate an assisted control strategy to enhance the recovered
current from the RBS during the braking process generating corrections in the
torque target generated by the vehicle braking system. This formulation guarantees
the improvement of the recovered current during the braking process without
depriving the driver of the principal operation. By incorporating experimental
tests, vehicle dynamics, and accessing data from the Electronic Control Unit
(ECU) via the On-Board Diagnostics (OBD), we have developed a fourth-order
multi-variable state space discrete-time linear model for the electric vehicle (EV )

braking system. Furthermore, we have taken into account the guidelines outlined
in regulation # 13 of the United Nations Economic Commission for Europe to
establish the criteria for safe braking.

1.4 Scientific Publications Resulting From This Docu-
ment

It is important to mention that this dissertation is based on several articles published in
journals and conferences during this investigation. The publication topics during the
development of this research are the following:

Accepted and published journal articles

• Valladolid, J.D., Patino, D., Gruosso, G., Correa-Flórez, C.A., Vuelvas, J., Es-
pinoza, F. A Novel Energy-Efficiency Optimization Approach Based on Driving
Patterns Styles and Experimental Tests for Electric Vehicles. Electronics 2021,
10, 1199. https://doi.org/10.3390/electronics10101199.

• Gruosso, G., Storti Gajani, G., Ruiz, F., Valladolid, J.D., Patino, D. A Virtual
Sensor for Electric Vehicles’ State of Charge Estimation. Electronics 2020, 9, 278.
https://doi.org/10.3390/electronics9020278.

Accepted and published conference articles

• J. D. Valladolid, D. Patino, G. Gruosso and F. Espinoza, "Study on the Torque-
Speed Allocation on PMSM to Improve Energy Efficiency in Electric Vehicles
Using Metaheuristic Optimization," 2021 IEEE Vehicle Power and Propulsion
Conference (VPPC), 2021, pp. 1-5, doi: 10.1109/VPPC53923.2021.9699274.
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• J. D. Valladolid, R. Albarado, D. Mallahuari and D. Patiño, "Experimental Per-
formance Evaluation of Electric Vehicles (EV) Based on Analysis of Power and
Torque Losses," 2020 IEEE International Conference on Industrial Technology
(ICIT), 2020, pp. 933-938, doi: 10.1109/ICIT45562.2020.9067241.

• J. D. Valladolid, D. Paladines, J. Vidal and D. Patiño, "Proposal of Fuzzy Con-
trollers for Improve Features of Driven Style in Electric Vehicles Using Experimen-
tal Route Data," 2020 IEEE International Conference on Industrial Technology
(ICIT), 2020, pp. 77-82, doi: 10.1109/ICIT45562.2020.9067208.

• G. Gruosso, G. S. Gajani, J. D. Valladolid, D. Patino and F. Ruiz, "State of Charge
Estimation of LiFePO4 Battery Used in Electric Vehicles Using Support Vector Re-
gression, PCA and DP Battery Model," 2019 IEEE Vehicle Power and Propulsion
Conference (VPPC), 2019, pp. 1-5, doi: 10.1109/VPPC46532.2019.8952458.

• J. D. Valladolid, J. P. Ortiz, F. A. Berrezueta and G. P. Novillo, "Lithium-ion
SOC Optimizer Consumption Using Accelerated Particle Swarm Optimization
and Temperature Criterion," 2019 AEIT International Conference of Electrical
and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), 2019, pp.
1-6, doi: 10.23919/EETA.2019.8804490.

• J. D. Valladolid, D. Patiño, J. P. Ortiz, I. Minchala and G. Gruosso, "Proposal
for Modeling Electric Vehicle Battery Using Experimental Data and Consider-
ing Temperature Effects," 2019 IEEE Milan PowerTech, 2019, pp. 1-6, doi:
10.1109/PTC.2019.8810611.

Summitted journal paper

• J. D. Valladolid, D. Patino, J. Vuelvas and P. Ortiz, "A novel proposal for as-
sisted control to enhance the regenerative braking system performance in electric
vehicles", Elsevier, Transportation Research.

1.5 Thesis Outline

The thesis document is organized in chapters and each one can be read independently.
Fig. 1.2 shows the organization of the thesis, numbered by the respective chapter and
their purpose in the assisted optimal control strategies for electric vehicles framework.

• Chapter 1: Introduction
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This chapter presents the initial information of this document and its general struc-
ture. The content refers to how the research problem is defined, its motivations,
and the set of objectives considered . Additionally, the generated contributions are
detailed and the scientific publications in congresses and journals are presented.

• Chapter 2: Electric Vehicle System and Dynamic Modeling

The second Chapter considers that generating a model of EV s (Mechanical and
electrical) is essential to provide accurate and useful representations of the knowl-
edge needed to generate control and optimization proposals. The considered
subsystems are battery pack, inverter, motor, representation of loss mechanical
and electric inverter. Finally, the mathematical expressions and look-up tables nec-
essary to establish a proposal for optimization strategies in the following chapters
are exposed.

• Chapter 3: A Virtual Sensor for Electric Vehicles’ State of Charge Estimation

This chapter shows a new methodology for estimating the state of charge estima-
tion in electric vehicles without the use of a conventional current sensor in the
battery pack. It is important for the proposed optimization algorithms that the
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battery current data are available directly or through a virtual current sensor.
The virtual current sensor is based on the use of other available vehicle variables,
such as speed, battery voltage and accelerator pedal position. The estimator was
derived from experimental data, employing support vector regression, principal
component analysis and a dual polarization battery model. It is shown that the
obtained model is able to predict the state of charge of the battery in the case of a
failure of the current sensor.

• Chapter 4: Energy-Efficiency Optimization Approach Based on Experimen-
tal Tests

This chapter proposes a strategy to improve energy efficiency in EV s based on
optimizing the speed profile during the electric vehicle’s driving. The optimization
problem is focused on maximizing energy efficiency between the wheel power
and battery pack, while also improving the state of the battery. The solution to the
optimization problem is found using a metaheuristic algorithm based on particle
swarm optimization.

• Chapter 5: Assisted Regenerative Braking Control System

The recovery of energy of EV s from the wheels to the battery pack through the
braking process is analyzed in this chapter. A model of regenerative braking
system is established, this one describes the system’s dynamics and proposed
assisted control strategies to improve its performance. The proposal is based on
the modeling obtained through experimental data and optimal control strategies,
such as model predictive control and finite horizon linear quadratic regulator.

• Chapter 6: Conclusions

This section considers the obtained assumptions and results in Chapters 3, 4 and 5
and discusses all the most important conclusions of the investigation. Finally, this
chapter presents the closure of all the research and a methodological proposal to
implement the controllers in future studies.



Chapter 2

Electric Vehicle System and Dynamic
Modeling

In recent years, vehicle electrification technology, including HEV s and EV s, has gained
popularity in public and private transportation systems [10, 3–6]. This chapter provides
a detailed description of the state-of-art in the dynamic modeling of an electric vehicle.

Different studies of electric vehicles have been carried out around the world. Most
of these studies focus on the battery and the losses that exist in its overall operation. For
this reason, different authors are looking for a way to obtain greater battery autonomy
and achieve a long-distance trip. To achieve it, different mathematical models help to
understand EV behavior[6, 11–13].

The electric vehicle model gives primary importance to the electric propulsion
system, which is comprised of an electric machine, power converters, and electronic
controllers. This system is crucial to the functioning of the electric vehicle as it converts
electrical energy into mechanical energy, propelling the vehicle forward.

2.1 Dynamic Modeling

In this section, first, the power-train modeling of the Battery EV (BEV ) is detailed.
Then, the longitudinal and lateral dynamic model is proposed. The architecture of the
power train is shown in Fig. 2.1. The motor’s command torque is dynamically coupled
through simple gearbox and transmitted to front-wheels via a conventional differential
drive.
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Fig. 2.1 Architecture of the EV power train

The power train modeling parameters and lookup tables were obtained through its
technical specifications and laboratory experimentation in a commercial EV detailed in
[12].

It is essential to mention that for EV modeling, the altitude of 2550 meters above sea
level was considered. Experiments was performed in Cuenca-Ecuador. This information
was factored into the calculation of the air density. Given that vehicle driving at higher
altitudes, the air density would have lower values, and so the air resistance as well.
According to [14], the air density of 0.96 kg /m3 was considered.

On the other hand, the rolling resistance coefficient was calculated in relation to
different types of roads and variable weather conditions. The value for this parameter is
0.017.

The Aerodynamic Drag Coefficient (Cd) is a rather complex parameter, and in prac-
tice, wind tunnels and coast down tests are often used to obtain it. For this document,
the Kia Soul EV manufacturer provided the 0.35 value for Cd . Finally, the value of a
vehicle’s frontal area can be estimated as the multiplication of width and height. How-
ever, as the shape differs between model vehicles, this value is perhaps not applicable.
Nevertheless, various estimations can be found in the literature [6] [15]. Based on the
EV’s model, the frontal area’s estimate is found according to the weight and the Cd of
the vehicle [15].

The parameters are shown in Table 2.1.
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Table 2.1 Parameters for the dynamic model on the EV

Parameter Value Unit

Total mass of the vehicle 1670 kg
Aerodynamic Drag Coefficient 0.35 –

Frontal area vehicle 2.3 m2

Air density 0.96 kg/m3

Tire radius 0.325 m
Rolling resistance coefficient 0.017 –

Distance from gravity center to front axle 1.2 m
Distance from gravity center to rear axle 1.4 m

Track width 1.576 m
Max. torque of Electric Motor 285 Nm

Ratio in the transmission system 8.2 –

A system model is required for designing the vehicle motion control, with motor
torque as input and EV speed as output. Tire forces influence the vehicle’s longitudinal
dynamics model, the aerodynamic drag force of the vehicle, rolling resistance forces,
and the gravitational force related to the inclination of the vehicle as shown Fig. 2.2
[6, 16]. The external longitudinal forces acting on the vehicle are described in (2.1) as
follows.

V̇x =
Te

rm
− Faero

m
+g(−sinβ −urcosβ ) (2.1)

The torque Te applied to the front wheels through the differential drive causes the
vehicle to move. The aerodynamic drag force is defined as shown in Equation (2.2):

Faero =
1
2

ρCdA(Vx)
2 (2.2)

EV is driven by a transmission system between motor and wheel to improve vehicle
performance. The primary function is to transfer power from the electric motor to
the wheels, allowing the torque and motor speed to fulfill performance requirements
[17]. The torque generated by the electric motor is distributed in the front wheels via
differential bevel gear. Considering the effort to overcome these forces, the differential
drive allows the drive wheels to turn at different speeds when turning a corner or
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Fig. 2.2 Diagram of longitudinal forces acting on a vehicle.

maneuvers while driving the vehicle. Another essential feature is distributing equal
torques on each of the wheels, even when rotating at different speeds.

2.2 Battery Modelling

The most valuable component involved in the operation of an EV corresponds to the bat-
tery storage system [18, 19, 11]. Manufacturers are highly devoted in the improvement
of power and energy density of batteries, which makes necessary to establish reliable
models to determine its performance and behavior during the charge and discharge pro-
cesses. Batteries used in EV s have different characteristics depending on their chemistry
composition. Lithium polymer batteries are more suitable for EV s due to the long life
cycle, less self-discharge rate, high-energy density, high efficiency, low maintenance,
and safe use [19].

The battery of EV consists of about 96 cells in the pack, which are monitored and
controlled by a battery management system (BMS). The BMS need to be linked with all
battery components, as well as with the vehicle’s computer. The BMS will take several
sensors readings A fundamental indicator used in BMS, is the battery state of charge
(SOC). Numerously methods have been investigated in the literature for SOC modelling,
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several strategies presented in [20–22] show a Coulomb counting methodology, where
the Thevenin model is taken as a reference to represent the dynamics of a cell.

To establish the empirical model of the battery, we use some of the expressions
described in [23–26], where the models used are: Unnewehr universal model, Shepherd
model and Nernst model. Nernst model is considered due to its enhanced performance
over other model structures. The expression for the battery model is expressed as:

Vk =Vo−
k1

SOCk
− k2SOCk + k3ln(SOC(k))

+ k4ln(1−SOC(k))−Rint i(k)
(2.3)

where, Vk is the output voltage of the battery, k1, . . . , k4 are parameters of the model,
Rint is the internal resistance of the battery and Vo is the initial voltage in the battery
pack.

In addition, there are variations from this model to extended structures as the general
nonlinear (GNL) and an improved model for a partnership for a new generation of
vehicle (PNGV ), which includes a series capacitor to the open circuit voltage source
(VOC) [27–30].

However, these methods have the disadvantage of error propagation according to the
study shown in [31].

The non-linear behavior of the SOC has also generated proposals based on Machine
Learning (ML) and Artificial Intelligence (AI) [32–35] successfully combining recurrent
neural networks and sliding mode observers to estimate the SOC and voltage of batteries.
On the other hand, in [36] is shown the use of the Kalman filter (KF) for estimate
synaptic weights of a dynamic neural network. The concept of adaptive extended
Kalman filter (EKFA) is used in [37] as well as the Thevenin model in order to establish
the parameters of the equivalent circuit. These methods present a great performance in
their estimation, however; its complex structure hinders its implementation.

There are models for battery packs in a series-parallel combination of cells; some
strategies are shown in [38, 39], where Thevenin models are established as a reference
for each element, increasing its complexity to a model of 96 combined series circuits.
Therefore, the model will require a high computational cost.

For the development of this research, a package of Lithium polymer battery of a
commercial EV is used, composed of 96 cells of 3.7V placed in series, with a load
capacity of 80Ah and as an internal characteristic of self-discharge of less than 5% in the
period of one month. The experiments described in [40] show that the self-discharge for
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this type of battery is less than 3% per month. The expression of the SOC described in
[41] is used for the models generation, the same as it governs a function of: the current,
the temperature, the number of cycles and self-discharge.

2.2.1 Deriving SOC model whit Temperature effects

This model describes the battery state of charge (SOC) and the batteries’ output voltage
using experimental data gathered during the driving of the EV on pre-established routes.
In addition, the temperature effect was considered [42]. The state of charge is formulated
as

SOC(t) = SOC(t0)−
β

Q

∫ t

t0
i(τ) ·dτ +ϖ (2.4)

where i(t) is the instantaneous current of the battery, considered as positive for discharge
and negative for charge, Q is the nominal capacity measured in Ah, whose value for the
EV used in this research is 80Ah. The ϖ term refers to the internal losses caused by
self-discharge, this value is lower than 3%, in this case it is discarded for the analysis
obtaining a global accuracy of the model of at least, 97%. The factor β is defined as the
product of parameters that depend on the performance between charge and discharge
f [ν ], temperature f [T ] and the number of cycles of the battery [41, 43, 44], this factor
is shown in the following expression.

β = f [T ] f [ν ] f [Ncycles] (2.5)

The expression of temperature f [T ] is presented in [41], f [T ] can be calculated by
taking the average of the ratios between each voltage value on the 25◦C curve and the
corresponding voltage values on other temperature curves. This relationship can be
defined as:

f [T ] =
1
k

k

∑
m=1

Vocm|25◦C

Vocm|Other_Temperature
(2.6)

where k is the total number of measured points. A comparison between the temperature
of each cell on the 25◦C curve with the experimental data (Fig. 2.3), shows that the
temperature has an important effect on the behavior of the battery during discharge;
therefore, it is proposed that f [T ] could be replaced by the expression considered as:

f [T ] = aT 2 +bT + c (2.7)
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Fig. 2.3 Temperature influence during the discharge cycle of the batteries

where, a, b, and c are coefficients of the second-order polynomial found. Considering
the equivalent circuit or the Thevenin model, which consists of an array of a Resistor-
Capacitor (RC) network in series with a voltage source [42, 45–47], the proposal is
replacing the RC circuit with a transfer function as shown in Fig. 2.4.

i(t)
Voc

V
S

R

V(t)

-2.589s - 0.05374

s  + 31.99s + 0.3203
2

Fig. 2.4 Battery model using modified Thevenin circuit

where a, b and c are scalars coefficients for the second order polynomial in (2.7).

By using the least squares algorithm applied to Equation (2.6), the following param-
eters are obtained: a = 0.000157; b = 0.00617 and c = 1.052.

According to the data obtained during experiments on the EV battery during a
previous research detailed in [42] , the fitted curve for the relationship between VOC and
SOC is shown in Figure 2.5 using 5th order regression, VOC is represented as
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VOC = 1505SOC5−4315SOC4 +4623SOC3−2254SOC2 +556.9SOC+288.1 (2.8)
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Fig. 2.5 Estimated and fitted VOC vs. SOC

The method for determining f [ν ] is to establish the relationship between the SOC
from the characteristic curve of the battery and the measured data, as shown in Equation
(2.9). This relationship is established when the battery cell is charged (4.1V ) and when
the cell is discharged (3.4V ), the experimental data is presented in Table 2.2.

Table 2.2 Relationship for the Charging State and Discharging State

PARAMETER CHARGED (4.1V) DISCHARGED (3.3V)
SOC Curve 92% 9.5%
SOC Data 98% 8.9%

From the information presented, the formulation shown in (2.9) is applied to deter-
mine the factor f [ν ], as follows:

f [ν ] =
SOCoc|Charging−Discharging_Curve

SOCoc|Charging−Discharging_Measured
(2.9)

f [ν ] = 0.997 (2.10)

Table 2.3 presents the factor for the number of cycles f [Ncycles] for a Lithium Polymer
battery GMB05230. It is considered that the distance covered by the EV is 20,000km and
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each load reaches approximately 200km, implies at least 100 battery cycles, therefore it
is taken as f [Ncycles] = 1 [10].

Table 2.3 Factor for the Number of Cycles

Cycle Number 100 200 300 400 500
f [Ncycles] 1 0.98 0.94 0.88 0.86

All the necessary values for the Equation (2.4) are replaced, obtaining the expression
for the SOC given by:

SOC(t) = SOC(t0)−0.997(aT 2 +bT + c)
∫ t

t0

i(τ)
80
·dτ (2.11)

The SOC does not only depend on the current of the battery, this proposal also
includes the effect of the temperature for the calculation. The expression (2.11) could
be used to establish models that describe the complete dynamics of the battery of EV s.

The performance of the SOC model is evaluated in four realistic scenarios for EV s
applications:

• Route 1 (Fig. 2.6a).- It includes the route of the EV between two cities, in such
a way that the capacity of the battery is at its minimum. This route lasts around
7500 seconds.

• Route 2 (Fig. 2.6b).- Includes a journey around local areas of the city, with a
duration of 7000 seconds.

• Route 3 (Fig. 2.6c).- Refers to a short route around the city with a duration of
3500 seconds.

• Route 4 (Fig. 2.6d).- For this experiment, a tour of steep slopes is carried out in
such a way that in a certain sector the effect of the regeneration of the current
towards the battery can be visualized.

Fig. 2.6 shows the response of the SOC model provided in Equation (2.11) and the
data measured in each route. Fig. 2.6a, 2.6b and 2.6c show very close results for the
modeled and measured SOC when the EV is discharging, however, Fig. 2.6d shows how
the regenerative brake has more influence on the recharge of the battery in a section
of the route, for this reason there is a small deviation of the modeled and measured
values.This variation is due to non-linearities present in the braking mechanisms during
aggressive driving conditions.
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Fig. 2.6 Evaluating SOC model of the battery EV for different routes. (a) Route 1, (b) Route 2,
(c) Route 3 and (d) Route 4

2.2.2 Battery Model Proposed

The two proposed models are based on the proposed structure to determine the SOC,
where the current and temperature are the system inputs and the voltage of the battery is
the output. These models will be evaluated with data from established routes for the EV .

For the internal resistance Rint described in Equation (2.12) the average variation of
the current and voltage from the experimental data obtained from the pre-established
routes is performed as follows:

Rint =
1
n

n

∑
i=1

∆Vi

∆Ii
(2.12)

The value for internal resistance is Rint = 0.0498Ω

Equivalent electrical circuits are commonly used for modeling batteries, which
consist in an array of a resistor capacitor network (RC) in series with a voltage source.
The typically equivalent circuit model is the Thevenin model, see Fig. 2.7.



2.2 Battery Modelling 19

i(t)

R1

C
1

R2

C
2

V(t)Voc
V
S

R

Fig. 2.7 Thevenin battery model (2RC model)

In this model, V (t) is the voltage at the terminal of the battery, Voc is the open circuit
voltage of the battery cell, R is the internal resistance of the battery and the parameters
R1, C1, R2 and C2 correspond to the RC network of the model. This parameters describe
the polarization dynamics. According to the circuit theory, V (t) in Fig. 2.7, can be
defined as

V (t) =Voc−Ri(t)−VS (2.13)

where VS corresponds to the voltage that exists in the RC network when there is an
i(t) different from zero. To determine Voc , several experiments of discharge events are
performed to obtain a curve, which is used for fitting purposes (see Fig. 2.8).

2.2.3 Parameter Estimation

In this subsection a nonlinear least square (NLS) adaptive algorithm is used to estimate
the parameters of the battery. Other methods could be in principle be used, but since
in our problem NLS converges quickly and with low computational effort, it has been
preferred to alternative methods. In order to minimize the squared error between the
measured and calculated voltage, we define as the minimization target function, the error
criterion known as chi square, and define it as follows:

χ
2(ψ) =

M

∑
i=1

[
V (ti)−V̂ (ti,ψ)

σVi

]2

(2.14)

where V̂ (ψ, t) is the estimated value of the V (t) value defined in the output relation
of Equation 3.9 and based on the parameter vector ψ = [R R1 C1 R2 C2 Voc]

T , M is
the number of data samples used and σVi is the expected measurement error for the i-th
sample V (ti).
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By collecting all calculated and measured voltages V̂ (ti) and V (ti) in the M× 1
vectors V̂ and V respectively, and, further, collecting the reciprocal of all σVi in the
M×M diagonal matrix W , Equation (2.14) reduces to the quadratic form:

χ
2(ψ) = (V −V̂ )TW (V −V̂ ) (2.15)

The minimum of the chi square error is searched by repeated use of the Levenberg-
Marquardt algorithm, that we will briefly recall in the following paragraph, on small m
sample sized partitions of the M sized available data.

In our setting, the Levenberg-Marquardt algorithm [48] is used to update the param-
eter vector and iteratively by solving the nonlinear optimization problem described in
Equation (2.14). The algorithm adaptively updates the parameter estimates by combining
the gradient descent update and the Gauss-Newton update [48] by tuning a damping
parameter λ . The Marquardt’s update equation is given by:

[JTWJ+λ diag(JTWJ)]h = JTW (V −V̂ ) (2.16)

where h is the parameter update vector, diag(·) is an operator that extract the diagonal
from a matrix, J is the Jacobian matrix of V −V̂ with respect to ψ and λ is the damping
parameter acting on the diagonal of JTWJ and initially chosen to be large so that,
initially, small steps in the steepest descent direction are taken. The Jacobian can be
quickly updated (Jnew) using the Broyden formula [49].

Jnew = J+
(V̂ (ψ +h)−V̂ (ψ)− Jh)hT

(hT h)
(2.17)

The damping factor λ is adjusted by checking the values obtained with the new
parameter set against the previous values. One possible way to do this is by using a ρ

factor [48, 50, 51] defined in Equation (2.18). The step is accepted if ρ is larger than a
user-specified threshold, rejected otherwise and, in this case, λ is increased.

ρ(h) =
χ2(ψ)−χ2(ψ +h)

hT (λ diag(JTWJ)h+ JTW (V −V̂ (ψ))
) (2.18)

Different convergence criteria may be used, based on limit values for the gradient,
for the chi square error, for the norm of the update vector or, simply, by the number of
iterations. An adaptive algorithm is developed based on the above criterion. Given M
time samples of current and voltage data i(t) and V (t), the sequence is initially split in
sub-sequences of length m. The algorithm optimizes, for each sub-sequence, the chi
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square cost function (2.15), obtained by estimating the electric parameter vector ψ of
the battery and then calculating the voltage from the electrical parameters in ψ . The
operation is repeated for each following sub-sequence using as initial condition for ψ the
values obtained in the previous iteration. This process updates and adjusts the electrical
parameters of the battery.

To determine Voc from the measured data, a 5th order regression is used, as shown
in Equation (2.19).
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Fig. 2.8 Measured and fitted Voc vs. SOC

Voc(SOC) = 1505SOC5−4315SOC4 +4623SOC3

−2254SOC2 +556.9SOC+288.1
(2.19)

The next term of the Equation (12) that is analyzed is the voltage VS, this term refers
to the combination of the RC network of the Thevenin model. A Thevenin model is
established for each cell, this means the quantity of 96 RC networks in serial connection,
increasing the difficulty to locate the value of the distribuited parameters R and C for
each element that forms the complete model of the battery.

The proposal in this document is to modify the Thevenin model, replacing the RC
network of the circuit by a transfer function, where the input is the current in the battery
and its output is VS.

For constructing a transfer function of RC network of battery pack from measured
input-output data we use the System Identification Toolbox of MATLAB.

The transfer function found is:
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V (s)
I(s)

=
−2.589s−0.05374

s2 +31.99s+0.3203
(2.20)

The resistor R refers to the internal resistance of the battery described in (2.12). Fig.
2.9 shows the modified circuit according to the proposal established in this paper.
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R

V(t)
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s  + 31.99s + 0.3203
2

Fig. 2.9 Modified Equivalent Circuit Model

The modified equivalent circuit model successfully represents the behavior of lithium
polymer battery in the EV along several established routes.

The error in models predictions is evaluated by the Root Mean Square Error (RMSE).
This indicator is given by:

RMSE =

√
∑

n
i=1(Vmeasured,i−Vmodeled,i)2

n
(2.21)

where, Vmeasured,i is the ith measured data, Vmodeled,i is the ith simulated data and n is
the number of measurements available for the analysis.

Table 2.4 RMSE Test Result for Models Battery

ROUTE Root Mean Squared Error
(RMSE)

Empirical
Model

Modified
Equivalent

Circuit Model
Route 1 2.58 1.85
Route 2 4.95 3.47
Route 3 7.33 3.50
Route 4 3.44 3.20

Table 2.4 shows a comparison of the models according to RMSE index. The obtained
indices make it clear that the constructed modified equivalent circuit model show higher
prediction performance than the empirical model with lower RMSE index values for all
routes. It has been demonstrated that the modified equivalent circuit model can be used
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satisfactorily to predict SOC and output voltage of EV battery including the discharge
and charge stages.

2.3 Inverter and Electric motor

The inverter is a key component of the EV , similar to the Engine Management System
(EMS) of combustion vehicles, which determines driving behavior. The design of the
inverters and the different topologies aim to transfer energy from the battery pack to the
Permanent Magnet Synchronous Motor (PMSM), modifying the voltage and frequency
according to their needs. The inverter is also responsible for transforming the energy
obtained by the regenerative brake to power the batteries. As a result, the performance
of the EV is directly related to the inverter efficiency [52–54].

In order to evaluate the performance of the inverter, measurements need to be taken
of the battery power, motor performance, and the power delivered directly to the front
wheels of the EV . These measurements were conducted using the MAHA LPS 3000
dynamometer bank during the experiment. The measurement experiment tests were
made using the MAHA LPS 3000 dynamometer bank. Details can be found in Appendix
A. In addition, the information obtained through the OBD II port directly from the
ECU of EV is used by the authors in [55] in order to generate an analysis of losses and
efficiency curves in the vehicle subsystems as shown in Fig. 2.10. Before starting with
the experiments, MAHA LPS 3000 recommends establishing the following conditions:
tires pressure must be 30 PSI, the tire tread temperature must reach 30◦C, secure the
vehicle with tension straps, and follow the measurement protocol that governs the
dynamometer bank [55, 56].
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Fig. 2.10 Inverter and motor efficiency experiment setup on the dynamometer bank

After analyzing data from experiments, the inverter efficiency curve as a function
of the motor’s rotational speed is shown in Fig. 2.11 The inverter in this study shows
minimum efficiency of 94 % at high speed and maximum efficiency of 99% at low
speed.
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Fig. 2.11 Efficiency curves for inverter electrical device

The electric motor of the test EV is a (PMSM) and has advantages of high efficiency
and torque current ratio, high power density, and wide speed range. These features
are suitable for automotive applications, especially for HEV and EV [12, 55, 57–59].
Technical specifications declare the nominal parameters of the PMSM as 81.4 kW
of maximum power, 400-V voltage, and 285 Nm maximum torque. The non-linear
effects generated by the PMSM model, mechanical elements and the internal losses are
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considered within the lookup tables that were generated through experimentation in the
dynamometric bank.

According to data of experiments, the transmission and torque efficiency curves as a
function of the motor’s rotational speed are shown in Fig. 2.12, where the mechanical
transmission torque efficiencies improve when increasing motor speed. It is essential to
mention that Fig. 2.12 includes all losses between PMSM and gearbox, such as inertial
losses, losses in couplings, and lubricant losses.

Fig. 2.12 displays the transmission and torque efficiency curves of the motor as a
function of its rotational speed, as per the experimental data. The mechanical transmis-
sion torque efficiencies improve with an increase in the motor speed. It should be noted
that Fig. 2.12 accounts for all losses, including inertial losses, losses in couplings, and
lubricant losses, between the PMSM and gearbox.
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Fig. 2.12 Result of efficiency curves based on speed

The PMSM mechanical power was calculated as follows

Pmot(k) = ηMI(ω)Pelec(k) (2.22)

The efficiency factor ηMI shown in Fig. 2.11 is obtained through mechanical power
tests in the dynamometric bank and electrical power obtained from OBD data. Rewriting
the Equation (2.22) in terms of torque, voltage, and current, it can be expressed as:

Tm(k)ω(k) =Vbatt(k)Ibatt(k)ηMI(ω) (2.23)

The equation for motor torque can be expressed as follows

Tm(k) =
Vbatt(k)Ibatt(k)ηMI(ω)

ω(k)
(2.24)
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Tm(k) =
30Vbatt(k)Ibatt(k)ηMI

πNm
(2.25)

where Ns is the motor rotational speed in (rpm). The mechanical power output of the
transmission is calculated by:

Ptra(k) = ηTr(k)(ω)Pmot(k) (2.26)

where ηTr represents the efficiency factor shown in Fig. 2.11. Substituting from
Equation (2.23) into Equation (2.26), the mechanical power output and torque of the
transmission is obtained as

Ptra(k) = ηTr(ω)Vbatt(k)Ibatt(k)ηMI(ω) (2.27)

TTra(k) =
ηTr(ω)ηMI(ω)Vbatt(k)Ibatt(k)

ω(k)
(2.28)

The EV model and its subsystems were implemented in MATLAB/Simulink. Exper-
iments and power tests have previously validated the model feasibility and efficacy on a
dynamometer bank. The measured experimental data also was used for the parameters
adjustment of the mathematical model. The presented EV model leads to the calcula-
tion of torque, PMSM rotational speed, battery pack power, and the resulting energy
consumption in each subsystem.



Chapter 3

A Virtual Sensor for Electric Vehicles’
State of Charge Estimation

The increasing diffusion EV is not accompanied by a corresponding solid tradition in
terms of data collection. The phenomenon is relatively new, and in particular, important
for what concerns data related to battery observation. Often the models for determining
the states of charge of vehicles are obtained in the laboratory and do not take into account
the variability of driving styles; the use of auxiliaries, such as air conditioning; and
the environmental conditions in which vehicles can be found. This leads to incorrect
estimates of SOC of the batteries in the vehicle and failure of perception by the drivers
[60–64].

Since the state of charge of a battery is not a directly observable quantity, the methods
used for its estimation are strongly dependent on assumptions and model simplifications
[65–67]. In addition, some methods require data measured in laboratory conditions
that cannot be directly collected during the normal operation of a vehicle, making them
unsuitable for real-world usage. Moreover, the models often depend on parameters that
have to be calibrated manually with specific tests and are not appropriate for on-the-run
analysis.

A critical factor in any SOC estimator is the quality of the information provided
by the EV sensory system; e.g., battery current and voltage measurements. Then, a
fault in any of these sensors can lead to a wrong SOC estimate and possible misuse of
the battery [68]. The use of automatic learning techniques can bring about significant
improvements, especially if combined with traditional techniques for estimating the
battery model and state, which can then be improved by the data collected over time.

In this framework, the principal component analysis (PCA) is used to analyze the
original data and reduce their dimensions, while the non-parametric machine learning
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method named Support Vector Regression SV R, using kernel functions such as Gaussian
kernel support vector regression (GK− SV R) and polynomial kernel vector support
regression (PK−SV R) is used to estimate the battery current on a lithium iron phosphate
(LiFePo4) battery.

3.1 Design of a virtual current sensor

The study employed a small (two-passenger) electric vehicle. It relies on a LiFePo4

battery with a capacity of 150 Ah and a maximum voltage of 72 V. For more details, see
[69]. The available measurements are the battery voltage (V), battery current (A), battery
SOC (%), pedal position (% of angle) and vehicle speed (Km/h). All the variables are
obtained from the EV ′s controller area network (CAN) bus. The CAN bus messages
are generated at different time intervals. Then, the CAN data is pre-processed to obtain
samples at uniform time intervals for all the variables of interest and to remove eventual
inconsistent data, which in some cases, are erroneously logged. The data used in this
paper for training and testing are available at [70].

Four different itineraries have been considered; their characteristics are briefly
summarized in Table 3.1.

Table 3.1 Itineraries used for training and testing

Routes

Type Duration (s) Init SOC Max Speed
1 urban(lt) 2000 89 60
2 urban(lh) 1100 81 55
3 mixed 1630 72 60
4 urban(lt) 1830 99 60

where “lt” stands for “light traffic conditions”, “ht” for “heavy traffic” and “activity”
represents the percentage of time the EV is moving at speed higher than 50 km/h.

The Routes have initial and final sections in urban conditions and a town’s middle
section. For the training step, 900 s of data were extracted from each route from random
initial times, and testing was performed on the whole route data file.

The structure of the current virtual sensor is shown in Fig. 3.1. The battery voltage
is obtained by adding the voltage of each of the 24 battery cells, the data of which
is available on the CAN bus, rather than using the standard total battery voltage also
available on the bus. The pedal position data is also available on the CAN bus, and the
acceleration data are obtained by numerical differentiation of the speed measurements.
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Two steps form the virtual sensor. First, a dimension reduction procedure based on
PCA is applied to the inputs, and then, the resulting signal is applied to an SV R model
that generates the current estimates.

Voltage
 Pedal
Speed R4 → R3

PCA

PC1 PC2 PC3

SVR
Kernel Gaussian / Polinomial

Current

Battery DP Model

SOC

Computing
Acceleration

Fig. 3.1 General architecture for SOC estimation

PCA is used to reduce the dimension of input variable space [71]. This methodology
allows one to find a new and reduced set of variables (features) as a linear combination
of the original variables.

The expression of the principal components (PCs) can be written as:

PCi = AZi (3.1)

where, considering the i-th sample of input data, PCi ∈ Rp is the vector of the p
principal components, Zi ∈ Rq the vector of q input variables and A ∈ Rpxq the PCA
matrix. Each row ak of matrix A is the eigenvector corresponding to the k-th principal
component of the input sample being considered. If we are considering N samples of
data, in our case time samples, we can write for all data PC = AZ with PC ∈ RpxN and
Z ∈ RqxN . In principle p can be as large as q, but the main idea of PCA is to have p < q.

Before being fed to the PCA algorithm, the four input variables (i.e., voltage, pedal,
speed and acceleration) are normalized in order to obtain the PCA input data vectors Zp.
Each variable is re-scaled as
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Zi =
zi− zmin

zmax + zmin
(3.2)

where zmax and zmin are respectively the maximum and minimum values of the
original data samples. When applied to the data in Table 3.1, the PCA method finds that
three principal components are sufficient to describe, respectively, the 99.75%, 99.78%,
99.58% and 99.66% of the total variance of the input variables for each one of the routes
considered. While this means that the feasible order reduction is only one dimension,
this reduction, as will be shown in the sequel, allows a substantially better performance
of the SVR algorithm.

A geometric visualization of the four vectors representing the coefficient values that
transform each input variable in the corresponding PC for Route 1 is shown in Fig. 3.2.
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Fig. 3.2 Input variable vector representation in the principal components’ space.

The support vector regression (SV R) method was first designed to solve nonlinear
two-class classification problems [72, 73]. The SV R method is a non-parametric function
approximation technique because it relies on kernel functions [74]. The relationship
between the independent and dependent variables is represented by a deterministic
function, defined as:

y = f (x) = wT
φ(x)+b (3.3)

where x ∈ Rn is the independent component of the data and the corresponding
dependent value is y ∈ R, so that each sample vector xi corresponds to a scalar yi·.



3.1 Design of a virtual current sensor 31

w ∈Rm, with m the dimension of the “feature” space, controls the flatness of the model;
φ (·) is a non-linear mapping function from the input space Rn to feature space Rm; and
b ∈ R is a bias term. Details of this algorithm can be found in Appendix B.

The approximation function f (x) is represented by the following equation:

f (x) =
N

∑
i=0

(αi−α
∗
i )G(xi,x)+b (3.4)

where αi and α∗i represent Lagrangian multipliers. The inner product ⟨φ(xi),φ(x j)⟩ is
defined through a kernel function, that is, G(xi,x j) = ⟨φ(xi),φ(x j)⟩ [75–77]. Different
kernel functions are determined as:
(a) Gaussian Kernel (GK) :

G(xi,x j) =−exp(

∥∥xi− x j
∥∥2

2σ2 ) (3.5)

(b) Polynomial Kernel (PK) :

G(xi,x j) = (c+ xT
i x j)

p (3.6)

where σ2 denote the variance for GK, p is the order of the kernel, and c is a constant
that allows to trade off the influence of the higher and lower order term for PK. One
of the aims of the paper is to show how the choice of the kernel is a key point in the
proposed methodology. In the following, the SV R is based on the Gaussian kernel (GK)

and the second and sixth order polynomial kernel (PK2 and PK6, respectively)

According to Equation B.6, the virtual sensor design problem can now be transformed
into the following system of linear equations:

Î(x) =
N

∑
i=0

(αi−α
∗
i )G(xk,xi)+b (3.7)

where Î(x) is the estimated battery current and G(xk,xi) is the chosen kernel function;
i.e., Gaussian or polynomial kernel.

The k-th input variable sample xk used for training is set to xk = [PC1k, PC2k,
PC3k] in the PCA case, or to xk = [Vk, Pk, Sk, Ak], that is, the scaled voltage (Vk), pedal
position (Pk), vehicle speed (Sk) and acceleration (Ak), when the SV R model is trained
without resorting to PCA. The performance of the virtual sensor obtained from the
SV R procedure, in terms of RMSE (root mean square error) and MAE (mean absolute
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error), for the GK and PK2 models, wherein PCA was not used, and the PCA+GK,
PCA+PK2 and PCA+PK6 models, PCA based, are presented in Tables 3.2 and 3.3. In
those experiments, different routes have been used for training models, and each model
was then tested on the same set used for its training.

Table 3.2 RMSE (root mean square error) of SVR training for GK, PK2, PCA + GK, PCA +
PK2 and PCA + PK6 models.

SVR Training RMSE

Route GK PK2 PCA + GK PCA + GK2 PCA + PK6
1 11.6 46.1 3.58 10.6 4.16
2 29.6 49.0 6.16 14.1 6.73
3 32.9 35.3 10.3 18.2 13.3
4 17.9 123 8.15 17.1 11.2

Table 3.3 Mean absolute error (MAE) of SVR training for GK, PK2, PCA + GK, PCA + PK2
and PCA + PK6 models.

SVR Training MAE

Route GK PK2 PCA + GK PCA + GK2 PCA + PK6
1 2.60 38.2 1.43 4.78 1.91
2 9.50 42.2 2.31 6.54 2.89
3 11.9 29.8 4.10 10.3 6.53
4 6.46 99.1 2.98 7.37 3.50

The PCA+GK SV R method offers the best performance on the training sets, with
the lowest RMS and MAE values. Additionally, the PCA+PK6 method yields good
results, but is in general more expensive in terms of computational requirements. Note
also that the route data used for training also has a relevant effect on the final quality
of the model. In all cases, note how the use of PCA to pre-process the input variables
yields much better results with both the polynomial and the Gaussian kernels. Fig. 3.3
shows the result for each method, except PCA+PK6, over a portion of the training data,
in this case extracted from Route 1.

The MAE and RMSE indices in Tables 3.2 and 3.3 only show the average error
in model operation and do not give any information about the error distribution. To
overcome this problem we propose to use the developed discrepancy ratio (DDR) index,
proposed in the literature for evaluating prediction models; see, e.g., [22–25].

The MAE and RMSE indices in Tables 3.2 and 3.3 only show the average error
in model operation and do not give any information about the error distribution. To
overcome this problem we propose to use the developed DDR index, proposed in the
literature for evaluating prediction models; see, e.g., [78–81].
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Fig. 3.3 A sample of predicted current on the same route used for training—in this case Route 1.
The PCA + PK6 model is not shown.

DDR =
PredictedValue
MeasuredValue

−1 (3.8)

The error distribution can be visually described by drawing the histogram of the
DDR for each one of the four different approaches considered. These results (see Fig.
3.4) show that during the training stage, the DDR values for the PCA+GK method vary
between -0.9 and 1; those for the PCA+PK2 method between -1 and 2; those for the
GK method between -1 and 2; and those for the PK2 model between -5 and 5. Moreover,
as it can be seen, the distribution for PCA+GK, and to a lesser degree, for PCA+PK2,
has a smaller variance around the optimal zero value, and is thus more reliable than the
other methods that do not rely on a preliminary PCA of input variables.

According to the results shown in Tables 3.2 and 3.3, and to the distribution of DDR
values shown in Fig. 3.4, only the methods based on PCA “preprocessing” deserve
being considered. As noted previously, training sets extracted from each one of the
four routes considered result in different qualities of virtual sensor. Using, for example,
data extracted from Route 1 (900s) to train the model, the battery current estimations
obtained using the data from Routes 2, 3 and 4 are shown, respectively, in Figs 5–7.
As expected, the Gaussian kernel based model PCA+GK yields the best results, even
if the PCA+PK6 model still gives accurate results. The RMSEs and MAEs of the
three models considered, i.e., PCA+GK, PCA+PK2 and PCA+PK6, trained using a 15’
section of each route in the data set, and then tested on the complete data of the four
routes, are reported in Tables 3.4 and 3.5. In each table the column “score” represents
the average by row of the RMSE and MAE. Note that the best results were obtained by
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(a) (b)

(c) (d)

Fig. 3.4 Normalized histogram of the DDR values for the four methods in the training stage. (a)
PCA+GK-SVM, (b) PCA+PK-SVM, (c) GK-SVM and (d) PK-SVM

using the PCA−GK method trained using Route 1 followed by the PCA−PK6 method
trained using Route 2. This shows that the characteristics of the routes chosen for the
training of the virtual sensors should be carefully chosen to obtain a good representation
of the behavior in different situations.

Fig. 3.5 Current prediction: Training using a 15’ sample of Route 1 and Testing on a small
portion of Route 2.
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Fig. 3.6 Current prediction: Training using a 15’ sample of Route 1 and Testing on a small
portion of Route 3.

Fig. 3.7 Current prediction: Training using a 15’ sample of Route 1 and Testing on a small
portion of Route 4.

3.2 Battery Model and SOC Estimation

In order to estimate the SOC, the first step is to develop a reliable battery modeling.
In this work, a model based on the dual polarization (DP) equivalent circuit model,
composed of three parts, is employed to simulate the behavior of the battery [82, 37].
This model was described in the subsection 2.2.2.
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Table 3.4 RMSEs of SVR PCA+GK, PCA+PK2 and PCA+PK6 models trained using four routes
testedagainst the other routes.

Training and Test Route

Model-Route 1 2 3 4 Score

1 3.98 14.44 14.77 16.91 12.53
PCA+GK 2 9.16 8.03 17.38 19.83 13.6

3 16.93 19.71 12.21 16.18 16.26
4 17.04 39.08 13.13 9.26 19.63

1 12.75 17.80 19.77 31.84 20.54
PCA+PK2 2 19.49 15.30 19.85 18.88 18.38

3 26.39 29.02 21.07 26.52 25.75
4 22.26 24.32 21.32 19.43 21.83

1 4.99 15.80 14.26 27.33 15.60
PCA+PK6 2 11.13 9.55 17.55 12.47 12.68

3 20.97 20.13 15.01 16.58 18.17
4 18.36 25.75 16.37 12.33 18.20

Table 3.5 MAEs of SVR PCA + GK, PCA + PK2 and PCA + PK6 models trained using four
routes tested against the other routes.

Training and Test Route

Model-Route 1 2 3 4 Score

1 1.74 6.89 7.17 7.12 5.73
PCA+GK 2 5.21 3.01 10.18 11.22 7.40

3 8.38 10.01 7.13 7.83 8.34
4 8.90 13.23 7.75 4.59 8.62

1 5.88 17.80 19.77 16.19 14.91
PCA+PK2 2 9.22 8.13 11.00 9.99 99.59

3 13.45 16.01 10.76 12.15 13.09
4 10.07 13.11 10.13 9.93 10.81

1 2.01 7.98 7.15 14.98 8.03
PCA+PK6 2 6.84 4.96 8.25 6.64 6.67

3 11.09 10.33 7.56 8.28 9.32
4 8.88 14.00 8.22 6.17 9.32

• An ideal voltage source representing the open circuit voltage of the battery Voc;
this voltage has a non linear relation with the state of charge of the battery. This
relation depends on the type of battery, but also on its temperature and age.
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• Internal resistors, specifically the “ohmic” resistance represented by R and the
polarization resistances R1 and R2.

• Capacitors that, in combination with the polarization resistances, are used to
characterize the transient response during the transfer of power, represented by C1

and C2.

Assuming the current through the battery as an independent variable, that is, the
battery model is connected to an independent current source of value i(t). Following
modeling battery discharge or charge, the battery terminal voltage can be expressed in
terms of the state equation and output relation given by:

V̇1

V̇2

=

−
1

R1C1
0

0 − 1
R2C2


V1

V2

+


1
C1

1
C2

 i(t)

V (t) =Voc + i(t)R+V1 +V2

(3.9)

where V1 and V2 are the voltages at C1 and C2 respectively; V (t) is the voltage at the
battery terminal; and i(t) is the current in the battery. The states space of the battery
model are represented by V1 and V2 and by the state of charge SOC, which defines the
open circuit voltage Voc. The methodology to obtain the value of these parameters was
detailed in the previous chapter.

The identification results of electric parameters for the DP battery model are shown
in Table 3.6.

Table 3.6 Battery Parameters Estimation

Identified item Value

R 0.0056 Ω

R1 0.040858 Ω

R2 0.025259 Ω

C1 9484 F
C2 71.049 F

Optimal Value F 0.235

Finally, the relationship between the Voc and the SOC can be described through
polynomial data fitting. The fitted curve for the relationship between Voc and SOC is
presented in Fig. 2.5,

where the Voc from the estimated data is fitted to the SOC value using the 4th order
regression polynomial in Equation (3.10).
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Voc(SOC) =−157.9SOC4 +554.3SOC3−696SOC2 +378.3SOC+4.81 (3.10)

3.3 Results and Discussion

In this section, the performance of the SOC estimation using the current virtual sensor
based on the PCA+GK and PCA+PK2 methods and the DP battery model is evaluated.

The voltage, the pedal position, the speed and the acceleration were measured and
were used as input data to the model. PCA was applied, reducing the dimension of the
inputs from R4 to R3. Then, the data were injected to the SV R model to estimate the
current. Finally, the current provided by the virtual sensor was used as input for the DP
battery model, to finally determine the SOC.

The estimation methods were validated with two routes, and the results can be seen
in Fig.s 3.8 and 3.9, where the performance of the estimation methods vs. data reported
by the existing BMS is shown.
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Fig. 3.8 Evaluating SOC model of the battery EV for Route 1

The FIT index was used to evaluate the quality of the proposed SOC estimation
algorithm. This index is defined as
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FIT = 100

(
1− ∥SOCm−SOCe∥∥∥SOCe−SOCm

∥∥
)

% (3.11)

where ∥∗∥ is the norm of the argument, SOCe is the SOC obtained with the estimation
methods, SOCm the measurements provided by the BMS and SOCm is the average of
SOCm during the experiment.
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Fig. 3.9 Evaluating SOC model of the battery EV for Route 2

Table.3.7 shows a comparison of the methods according to FIT , RMSE and MAE
indexes for route 1. The obtained indices make it clear that the estimation PCA+GK−
SV R method shows higher prediction performance than the PCA+PK−SV R method
model, with FIT = 91.8%.

Table 3.7 SOC Estimation Results for Route 1

PCA+GK-SVR PCA+PK-SVR

FIT 91.80% 85.423%
RMSE 0.007 0.014
MAE 0.005 0.011

For route 2, results are shown in Table.3.8. PCA+GK−SV R method shows higher
performance than the PCA+PK−SV R method model, with FIT = 87.49%.
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Table 3.8 SOC Estimation Results for Route 2

PCA+GK-SVR PCA+PK-SVR

FIT 87.49% 71.76%
RMSE 0.058 0.127
MAE 0.053 0.114

Note that both models, PCA+GK and PCA+PK2, provide adequate virtual current
measurements that allow the estimation of the battery SOC from the battery voltage,
accelerator pedal position and vehicle speed.

3.4 Conclusions

We have presented a solution for state of charge estimation in electric vehicle applications.
The proposed strategy makes use of virtual sensors for the battery current estimation,
replacing the physical sensor in case of failure.

The models are created by analyzing experimental data obtained from the CAN bus
of a real electric vehicle. These models employ the battery voltage, vehicle speed, and
acceleration pedal position to estimate the current signal when the actual measurement
is unavailable. Support vector regressions and principal component analysis have been
employed to build the virtual sensors. Gaussian and polynomial functions have been
employed as kernel functions, and it was observed that the Gaussian kernel offers better
performance on the available data sets. A principal component analysis allows one to
reduce by one the dimension of the input to the virtual sensor, significantly increasing
the final performance.

The estimated current signal is used as input to a dual polarization equivalent circuit
model of the battery to estimate the state of charge and open circuit voltage during the
vehicle’s operation. The parameters of the equivalent circuit have been obtained through
a non-linear least squares adaptive algorithm, using experimental data from the vehicle.
The joint operation of the virtual sensor and the battery model allows one to estimate the
state of charge with a fit higher than 87% when evaluated on fresh data not employed
for the model adjustment. The methods herein proposed are scalable and can integrate
knowledge from other sensors, such as temperature and torque, and can be combined
with other machine learning methodologies. One of the limitations that we noticed in
the the method is related to specific properties of the driving segments. Analyzing the
entire route can lead to incorrect patterns due to different links between the magnitudes
considered by the virtual sensor. For example, accelerations and currents have a very
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different relation if the vehicle is traveling uphill or on flat terrain, or even downhill. The
next extension of our work is to create a mixed method of classification and machine
learning,to recognize specific peculiarities of the driving segment and select the correct
model to apply.



Chapter 4

Energy-Efficiency Optimization
Approach Based on Experimental Tests

The optimal energy management in electric vehicles becomes one of the challenges
faced by new algorithms that include vehicle performance and driver behavior. The
latter significantly influences the battery consumption and is difficult to forecast.

The main objective of research efforts in this field is to find a solution to improve
energy efficiency and fuel savings in EV and HEV transportation systems, considering
the maximum limits of the vehicle. This topic has been studied from different approaches
in the literature.

4.1 Energy Efficiency Optimizer

In order to improve efficiency in EV s, in this section, an optimization algorithm for
driving patterns will be proposed to achieve maximum energy efficiency; it is essential
to understand the management of traction and the flow of energy consumption from the
battery to the wheels of the EV . In addition, the power conditions and limitations of
battery discharge EV during its operation were considered as studies showed in [83, 84].
The proposal includes the electric vehicle’s dynamic model described in Equation (2.1),
the battery model, the PMSM, and the inverter model as lookup tables. The proposed
optimizer requires as input the torque, battery power from OBD data, and dynamometer
lookup tables and the output of the optimizer is the reference signal V rop.
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Fig. 4.1 Simulation schematic to optimization for drive cycles

For establishing a strategy for the optimizer, the objective function is obtained from
the value analysis of the inverter and mechanical transmission efficiency lookup tables
shown in Fig.s 2.11 and 2.12 obtained from the experiments presented in Chapter 2. The
total energy-efficiency function between power supplied for battery and power wheel of
the system is given as:

Jη = ηTr(ωk)ηMI(ωk) (4.1)

It is fundamental to mention that the Jη represents the efficiency function between
the battery and the transmission drive of EV . The decision variable of the optimization
problem in (4.2) is the rotational velocity generated by PMSM (Ns) expressed in rpm.
The speed correction generated by the optimizer on the driving pattern can be assigned
in real-time, improving the EV ′s overall efficiency during its operation. The energy
efficiency objective function was formulated according to the power and torque equations,
and inequality constraints are given as follows.

max
Ns

Jη j =
πTeNs

30VbattIbatt

s.t. 0≤ Tm( j)≤ Tmax

0≤Vbatt( j)Ibatt( j)≤ Pmax

0≤|Vx−Vr |≤ δ

(4.2)

where j is the value obtained during the driving condition (DC) with a sampling
period of 0.5 seconds and δ is the maximum variation between real and optimal velocity
reference that depends on driving patterns. The optimal vehicle velocity depends on the
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value of Ns found by the optimizer Nsop, tire radius, and transmission ratio given as 8.2
for this vehicle, as shown in Equation (4.3).

V rop =
πNsopradio

30(8.2)
(4.3)

To evaluate the optimizer’s performance, real data collected on specific routes is used
where the speed profile is determined by limits speed conditions and patterns driving.
According to the established speed limits by Ecuador’s traffic law, three test routes
were established. Fig. 4.2 shows data for a route on highway roads where the speed
limit is 90km/h, this route is considered as DC 1 in the analysis. DC 2 is considered
the route generated by driving the EV in urban areas, where the maximum limit speed
established is 50km/h. The data for this route is shown in Fig. 4.3 describe a typical
driving pattern inside the city. Fig. 4.4 shows a combination of highways and urban
areas, where variations in driving patterns can be seen. This route is considered as DC 3.
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Fig. 4.2 Route 1: The route of the EV between two cities on the highway
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Fig. 4.3 Route 2: The route around local areas of the city, a short route around the city with
medium-traffic roads
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Fig. 4.4 Route3: high energy consumption in mountainous roads

The objective is to find a suitable optimization algorithm, among strategies used
in the literature such as GA, SA and PSO. Table 4.1 presents the fitness values and
computational time requirements for each algorithm. PSO obtains the best results on
maximizing energy efficiency and minor computational time.

Table 4.1 Performance comparison of GA, SA and PSO algorithms

Algorithm The best efficiency Mean time
value found (%) execution (msec.)

GA 79.15 0.79

SA 78.76 0.84

PSO 79.86 0.55

In this study, the PSO, introduced for Eberhart and Kennedy [85–88] for swarm be-
havior and social cooperation, is applied to solve the discontinuous and highly nonlinear
objective function and inequality constraints.

Each iteration adjusts the particle position according to its own experience and
neighboring, where it is established in the best position encountered by the swarm. The
direction that the population takes is defined by particles neighboring the main particle
and the swarm history experience. The velocity vi and position xi of particles are updated
by the following Equations:

xi(k+1) = xi(k)+ vi(k) (4.4)
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vi(k+1) = ωvi(k)+ c1r1(pbesti(k)− xi(k)))+ c2r2((gbesti(k)− xi(k))) (4.5)

where, k is the iteration number, gbest is the best value global in iteration k , pbest is
the best position of the best particle, r1 and r2 are random numbers in the range of [0,1]
and the particles number is defined since i = 1,2, . . . ,N. The PSO convergence depends
on the learning factors c1 and c2, the inertial weight w, the maximum generation k of
a PSO stage, and the number of particles N. Details of this algorithm can be found in
Appendix C.

The objective function solution in Equation (4.2), is given in two-dimensional lookup
tables with the desired motor rotational speed in a specific range of the desired speed.
The proposed solving process for optimal driving employs the process described in the
flowchart illustrated in Fig. 4.5.

The variation of the rotation speed of the PMSM and the EV operating points are
simulated under different driving pattern conditions, where the initial positions and the
convergence of the particles during the execution of the algorithm are shown in Fig. 4.6.
The performance of the algorithm shows that all particles converge towards the same
point in an average of 6 iterations for each scenario while the EV is driven. As a result,
the swarm’s collective behavior converges to the same state, suggesting that a global
minimum has been found.

• Step 1 Parameter settings: the maximum number of iterations N, particle size X ,
the inertial weight factor ω , acceleration coefficients c1 and c2, random numbers
for r1 and r2, and constraint conditions (Pmax, Tmax and delta);

• Step 2 Fitness calculations and evaluation: compute the best value pbest and
position gbest of the particle that maximizes the objective function in Equation
(4.2) determined for jth driven pattern sample;

• Step 3 Compare value pbest and previous Jη: If pbest is greater than Jη then
update new velocity vi and position xi of particles using Equations (4.4) and (4.5),
otherwise keep the previous values.

• Step 4 If the maximum iteration is met, terminate the algorithm. Otherwise, go to
step 2.

• Step 5 Repeat the process for sample j+1.
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Fig. 4.5 PSO Algorithm flowchart.

4.2 Results and Analysis

In order to evaluate the energy efficiency algorithm presented in this paper, the dynamic
modeling for a commercial EV and experimental tests, presented in the Chapter 2, and
real DCs were used. The simulation model was built with Matlab/Simulink is shown
in Fig. 4.1. All parameters used in the simulation are described in Table 2.1 and the
solution for optimization problem (4.2) where using PSO flowchart shown in Fig. 4.5
for solving the optimization problem.

The algorithm proposal aims to make small changes (δ ) in speed reference without
affecting the driver’s behavior. In other words, the algorithm intends to make small
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Fig. 4.6 Particles convergence of PSO algorithm in different motor speed scenarios

changes in the speed, improving the efficiency of the vehicle, without removing control
of EV of the driver, Fig. 4.7.

Variations of the delta factor are considered, ranging δ factor between 0% and 10%
with increases of 1% to determine the optimizer’s performance. The results obtained
from the simulations are presented in Table 4.2.

Table 4.2 shows that the SOC value of the battery, according to the model described
in Figs 2.4 and 2.5, presents modifications below 1% without applying the optimizing
algorithm. An optimizing algorithm is proposed to maximize the energy efficiency of the
EV . The (EEOptimizer) is designed to make speed adjustments in the vehicle depending
on the data of mechanical torque, battery power, and a maximum variation of δ . These
adjustments are made by following the trajectory of a real-world driving cycle.

Given the variety and complexity of vehicle driving patterns, it is essential to consider
several of them to evaluate optimizer performance. These driving patterns are created
from various speed characteristics described as driving styles: conservative, moderate,
and aggressive [89, 90].

The information is obtained by evaluating the EV on specific routes and real driving
conditions described in Figs 4.2, 4.3 and 4.4 that include different driving styles. During
the simulation, the following information from ECU is required: power in the wheel,
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Table 4.2 Results of energy efficiency in EV applying the driver cycle optimizer in 3 tests with
different variations in the reference speed.

Variation Wheel power Battery energy Power efficiency SOC
(kW) consumption (kWh) (%) (%)

- 5.00 5.33 78.12 82.49
1% 5.09 5.32 78.53 82.32
2% 5.18 5.31 78.80 82.30
3% 5.25 5.30 78.88 82.21
4% 5.33 5.30 78.84 82.21

DC 1 5% 5.42 5.29 79.22 81.99
6% 5.47 5.26 79.41 81.81
7% 5.55 5.25 79.55 81.42
8% 5.62 5.24 79.51 81.12
9% 5.71 5.23 79.62 81.11

10% 5.79 5.22 79.86 80.90

- 3.20 3.62 73.76 86.51
1% 3.24 3.61 73.96 86.44
2% 3.26 3.56 74.19 86.42
3% 3.28 3.51 74.14 86.43
4% 3.17 3.49 74.48 86.35

DC 2 5% 3.37 3.50 74.90 86.35
6% 3.38 3.47 74.97 86.28
7% 3.39 3.43 75.27 86.31
8% 3.41 3.41 75.34 86.21
9% 3.45 3.41 75.34 86.01

10% 3.50 3.40 75.42 86.00

- 3.20 3.63 73.59 86.50
1% 3.24 3.62 73.96 86.43
2% 3.26 3.56 74.19 82.42
3% 3.28 3.51 74.24 86.43
4% 3.31 3.49 74.48 86.35

DC 3 5% 3.37 3.50 74.90 86.36
6% 3.27 3.47 75.35 86.28
7% 3.40 3.43 75.37 86.31
8% 3.41 3.41 75.39 86.21
9% 3.45 3.40 75.48 86.08

10% 3.51 3.39 75.55 86.00
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Fig. 4.7 Result of efficiency curves based on speed

battery power, energy efficiency, torque and SOC for each speed variation of δ defined
in the optimization problem.

According to the performance of the PSO optimization algorithm presented in Fig.
4.6, the best locations of efficiency during the entire simulation time are located as a
function of speed. In each DC, a specific driving pattern is presented, where results of
the efficiency improvement for each DC are shown in Fig. 4.7.

The value of 0% for δ refers to the fact that the VE operates without the optimization
algorithm through DC. Before starting with the simulations, it is necessary to take into
account that the initial value of the SOC is 1 and a simulation time is 3000 seconds for
each DC. According to the results shown in Table 4.2 and Fig. 4.7, it is possible to
determine that the highest energy efficiency value is reached when δ is 10%. However,
it is important to note that the evolution in the increase in efficiency is greater when
the variation δ is between 5-6%. Fig. 4.7 (a) shows that for a 5% variation in speed
the efficiency increases to 63% of the efficiency when δ is 10% and 74% when delta
is 6%. For DC 2, Fig. 4.7 (b) shows the efficiency of 68% and 72% when δ is 5% and
6% respectively. Finally, Fig. 4.7 (c) presents 66% and 89% of the maximum efficiency
value.
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It is important to note that the power saving of the DC 3 is better than the others; This
result corresponds to the test path that has moderate and aggressive style components
in its driving pattern, therefore, the algorithm has several search spaces in the look-up
tables.

On the other hand, when δ = 5 %, it is considered the best solution given that the
SOC value remains fixed while the energy efficiency increases for all DC simulations.
In this scenario, it is verified that there is an improvement in the EV ′s energy efficiency
without causing additional consumption in the battery pack. Fig. 4.8(b) shows that the
proposed algorithm does not generate significant changes in the speed adjustment in EV
during its operation, ensuring the following of the trajectory at the reference speed.
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Fig. 4.8 Comparison of the original and optimal values for δ=5%: (a) Efficiency; (b) Speed
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Fig. 4.8(a) presents the result of the variations carried out by the optimizer. The
efficiency of the EV during operation shows an increase during the entire simulation
process. This result verifies that the proposed optimizer adapts to any driving style,
improving efficiency throughout the EV travel; besides, it can be applied for long
driving times. Another advantage of this approach is the computational time required
to execute the proposed algorithm. The formulation was carried out according to (4.2),
the generated search tables and the metaheuristic algorithm used, present an average
execution time of 0.55 milliseconds. Fig. 4.9 shows the calculation time required by
the algorithm to generate a solution for each sample j of the DC. The sampling time of
the vehicle measurements from OBD is 0.5 seconds, which implies the proposal can be
implemented.
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Fig. 4.9 The computation time during optimizer execute

To examine the effectiveness of the optimizer, the operation of the algorithm is
compared with strategies reviewed in the literature that show the use of Dynamic
Programming (DP) and iterative Dynamic Programming (iDP) as an alternative to find
a solution to this problem. However, the computational cost increases depending on
the amount of data it must process. The proposed optimizer keeps its computational
cost in low levels, specifically 0.55 milliseconds average for any DC. Another aspect
that can be emphasized is that during the formulation of the optimization problem, a δ

factor is proposed such that guarantees that the algorithm works within a specific band
according to the EV’s speed. Finally, only the PSO algorithm is considered to generate
the search for the best solution, because no prior training or identification of additional
DC is necessary, avoiding hybrid algorithms. These features show the advantages of the
proposed method over the strategies presented in the literature.
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4.3 Conclusions

A strategy for improving energy-efficiency based on mathematical modeling, experimen-
tal data, optimization formulation problem, and driving patterns in electric vehicles was
proposed in this study. The main conclusions are:

• The optimal rotational speed is calculated online corresponding to the driving
requirements of DC using a metaheuristic algorithm and vehicle constraints (max-
imum torque and maximum power), ensuring minimal energy consumption be-
tween the battery pack and wheel over the road during driving.

• The mathematical model of the EV and the optimization algorithm proposed
were designed for a commercial test vehicle. Its performance was verified using
simulation on driving profiles described in Figs 4.2,4.3 and 4.4. This methodology
could be applied to other electric propulsion vehicles with different architectures
in the power train and even HEV s. For each variation in the speed reference, the
proposal is improving efficiency. The results presented in Table 3 and Fig. 15 are
evaluated with 3000 seconds (50 minutes). On a daily route, the average driving
time for a common citizen is approximately 7200 seconds (120 minutes), which
means that EV’s energy efficiency can increase.

• According to the simulation results and considering improving the energy effi-
ciency performance, the strategy showed that the best results are obtained when δ

is 10%. However, according to the Fig. 4.7 is possible to determine that the major
efficiency increment is when δ is between 5-6%. Therefore, this scenario can be
considered to obtain the greatest increase in efficiency with low speed variation.
The use of lookup tables and PSO for solving the optimization problem generates
an alternative for implementation.

• The simulations have shown that the optimizer finds the best solution for each
sample of DC in a 55 milliseconds average, considering that samples of DC have
a rate of 0.5 seconds; thus, the optimizer has enough time to complete the whole
process.

In future work, lateral forces and trajectories with curvature on the road can be
considered for energy efficiency analysis. Furthermore, a combination of metaheuristics
and machine learning algorithms can be applied to solve the optimization problem;
However, it should be considered that the execution time increases, according to the
reviewed literature.



Chapter 5

Assisted Regenerative Braking Control
System

Advances in the electrification of transport are directed toward green mobility, focusing
efforts on improving the performance of EV and HEV . The EV and HEV development
main topic is increasing the driving autonomy range, which is the fundamental require-
ment. Consequently, regenerative braking control strategies are essential to increase
vehicle autonomy.

The regenerative braking system (RBS) and the hydraulic braking system are essen-
tial to design a robust coordinate control strategy to recover braking energy. Existing
research is mainly focused on developing control strategies to increase recovered energy
while complying with braking regulations on emissions, energy consumption, safety and
comfort ([91, 92]).

The control architecture of the RBS has various subsystems such as brake controller,
regenerative brake controller, et al. In EV and HEV , the braking controller receives
real-time inputs from various sensors such as wheel speed, battery SOC, motor, battery
current and other vehicle inputs ([93]). With the inputs from the various sensors, the
regenerative braking controller operates to maximize the regenerative braking efficiency
and optimal usage of the stored battery power. After controller action, the respective
output signals are sent to the motor control unit to optimize the vehicle’s braking ([93]).

This chapter proposes an assisted control strategy applied to both mechanical and
regenerative braking systems of electric vehicles, including model estimation algorithm
and torque input limits.
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5.1 Model of Energy Recovery System

As the braking torque is to be controlled, both mechanical friction brake and regenerative
brake, it is fundamental to analyze the vehicle’s braking system and generate a model
that describes its dynamics.

The full braking force output demanded by the driver is achieved by combining
hydraulic and regenerative brakes. In the event of a regenerative brake failure, the
hydraulic brake system supplies the full braking force demanded by the driver. The
general scheme of the braking system is presented in Figure 5.1.

Data Signal

Hydraulic Flow 

APS
Signal

Wheel Speed Friction Brake

Target Regen
Brake Torque

PSU
Pressure Source Unit

iBAU
Integrate Brake
Actuation Unit

Fig. 5.1 The general architecture

The brake system is composed of the Pressure Source Unit (PSU) and the Integrated
Brake Actuation Unit (iBAU). The PSU generates the hydraulic pressure required for
braking comparable to the boosting effect when the driver steps on the brake pedal in a
system equipped with a vacuum booster. The hydraulic pressure stored in the cylinder is
supplied to provide pressure on the entire brake line (front and rear wheels) ([94]).

The iBAU delivers pressure generated by the PSU to a caliper on each wheel. Addi-
tionally, the iBAU determines the necessary torque in the regenerative braking system.
The level of brake force is determined by the brake pedal pressure and the wheel speed
sensor.
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In order to obtain the measurement of pressure in the wheels (front and rear) during
braking, pressure sensors are placed at the end of the break hydraulic line, as shown in
the Fig 5.2.

Fig. 5.2 Pressure sensor placed at the end of the hydraulic brake line

Fig.5.3 shows the results of the experimentation on the brake system. The figure
shows that the pressure in the front and rear wheels cylinders are similar.
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Fig. 5.3 Pressure sensor data

However, to calculate the torque is necessary to consider the characteristics of the
friction brake, which refers to details of the calipers and brake discs on the front and
rear wheels, as shown in the Fig.5.4.

Equation (5.1) shows the relationship between torque and pressure brake.
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Fig. 5.4 Braking mechanism

Tbreak = P(t)πr2
bRmNµk (5.1)

where P(t) is the brake pressure shown in Fig. 5.3, rb is the inner radius of the disc
piston, Rm is the mean radius of brake pad force application on the brake rotor, N is
the number of brake pads in the disk brake assembly and µk is the coefficient of kinetic
friction of the mechanical brake ([95, 96]). It is essential to mention that the kinetic
friction value is defined according to experiments detailed in ([97–99])

The value parameters are shown in Table 5.1.

Table 5.1 Parameters for Mechanical Friction Brake

Parameter Value Unit

Coefficient of kinetic friction 0.37 –
Front disc brake outer radius 0.150 mm
Rear disc brake outer radius 0.142 mm

Front disc piston inner radius 0.030 mm
Rear disc piston inner radius 0.019 mm
The mean radius of brake pad 0.12 m

Tire radius 0.325 m
Number of brake pad 2 –

Alternatively, also is possible to obtain the force information using the following
equation
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Fbreak =
P(t)πr2

bRmNµk

rt
(5.2)

were rt is the radius of the vehicle tire. Using the information of pressure sensors
and applying Equations (2.1), (5.1) and (5.2), it is possible to determine the friction
brake torque contribution on front and rear wheels during the braking event, as is shown
in Fig. 5.5.
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Fig. 5.5 Torque calculation in braking mechanism.

On the other hand, it is also possible to determine the contribution of the torque
generated by RBS and the information of regenerative current during braking obtained
through the OBD port directly from the ECU of EV used by the authors in [55]. Fig.5.6
shows the behavior of regenerative brake torque and the current generated while the
vehicle speed decreases.
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Fig. 5.6 Torque and recovered current of the RBS.
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The experimental tests were realized considering regulation # 13 of the Economic
Commission for Europe of the United Nations (UN/ECE) that provisions concerning
the approval of vehicles with regard to braking ([100, 101]). In the process of braking
on a horizontal road and the braking rate is defined as

z =
Ff +Fr

mg
(5.3)

were Ff and Fr are the braking forces at the front and rear axles respectively, corre-
sponding to the same front brake line pressure.

In order to guarantee the safety, stability and economy of braking and based on
the recommendations in regulation # 13, the experimental data take into account the
following considerations:

• The intensity of the braking rate to prevent wheel lockup or activation of the
anti-lock braking system (ABS) must be less than 0.2.

• The emergency brake signal will not activate security safety systems while the
vehicle deceleration is less than 4m/s2.

The results of the braking process of the experiment are found in Table 5.2. In this
table, five columns represent the braking characteristics, where it is possible to verify
that the brake rate and acceleration values are according to the safety ranges analyzed
previously.

Table 5.2 Performance Experimentation test

Braking Average Deceleration Braking Initial Speed Final Speed
Rate (z) (m/s2) Time (s) (km/h) (km/h)

Test 1 0.12 1.43 4.58 40 14.9

Test 2 0.13 1.51 4.10 32.74 9.30

Test 3 0.19 2.20 4.46 50.22 14.48

In order to design the optimal controller, a simplified discrete time-invariant multi-
variable model from experimental data is necessary. The input signals are the mechanical
brake torque and regenerative brake torque. The output signals are the speed vehicle and
the recovered current.
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The model is developed by employing the Numerical Subspace State Space System
Identification (N4SID) method ([102]). N4SID is considered due to the benefits of
having improved performance in the presence of noise ([103, 104]).

The sampling time of the data acquisition measurements is 0.02 seconds. After
acquiring the input-output data sets, the N4SID method in the system identification
toolbox of MATLAB is used to identify a conical linear state space model.

xk+1 = Amxk +Bmuk

yk =Cmxk
(5.4)

where xk ∈ Rn are the estates, uk ∈ Rp are the data inputs, yk ∈ Rq is the estimated
outputs, Am ∈ Rnxn, Bm ∈ Rnxu, and Cm ∈ Rrxn are the state transition and output
matrices respectively.

The best fit during the identification process is for a four-state multivariable model;
therefore, n = 4, p = 2, q = 2 and r = 2. The fit for speed and current outputs of the
model are 93.87% and 77.71%, respectively, as shown in Fig. 5.7.
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Fig. 5.7 Numerical Subspace State Space System Identification (N4SID) performance.

The detailed values of the matrices are presented in Equations (5.5), (5.6) and (5.7).
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Am =


0 1 0 0

0.478 0.236 0.2067 −0.235
0 0 0 1

0.2634 −0.450 −0.581 1.558

 (5.5)

Bm =


0.0267 0.0195
−0.0383 −0.019
−0.0312 0.002

0.001 −0.011

 (5.6)

Cm =

[
1 0 0 0
0 0 1 0

]
(5.7)

The eigenvalues of the A matrix are calculated in order to determine the system’s
stability, as shown following.

λ1 = 0.6503

λ2 = 0.6094

λ3 = 0.8487

λ4 = 0.9874

(5.8)

According to 5.8, it is possible to verify the absolute value of the dominant eigenvalue
less than 1 (λ4); therefore, the identified discrete system is stable; even if a small
perturbation is added to the system’s states, it is asymptotically stable.

5.2 Proposal optimal torque control strategy of energy
recovery system

The main objective of assisted control is to generate a braking torque control law that
enhances the performance of the RBS of the vehicle, specifically increasing the amount
of current recovered during the braking process. During this process, it is fundamental
to consider that the desired braking torque is divided between the electrical and the
mechanical system. This strategy must be adapted to the driver’s driving profile by
developing small changes in the target torque signals, both in the mechanical braking
system and regenerative braking, as shown in Figure 5.8.
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Fig. 5.8 General architecture of the control proposal.

5.2.1 Formulation of assisted optimal control strategy

In order to find the minimized solutions to the tracking speed signal established by the
driver during the braking process, it is necessary to transform it into a model-based
predictive control (MPC) problem, which is expressed by

Jcost =
Hp−1

∑
i=1

[(yk+i− yrk+i)
T Q(yk+i− yrk+i)]+

Hc−1

∑
i=1

[∆uT
k+iRuk+i] (5.9)

where Q≥ 0 is the weighting matrix that reveals the system’s ability to follow the
reference road trajectory and R≥ 0 is the penalty matrix of the state vector. The solution
of the MPC instance is to minimize the objective function of Equation (5.9) subject to
the constraints in Equation (5.10) at each time step.

min
u

Jcost

s.t.
xk+1 = Amxk +Bmuk

yk =Cmxk

yk ≤ wk

uk−1(1−α)≤ uk ≤ uk−1(1+α)

∆umin ≤ ∆uk ≤ ∆umax

k = 1,2, ..., i

(5.10)
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where wk is the value of the vehicle speed for each sample time obtained from the
driver’s driving profile, it is essential to mention that wk ≤ yk to ensure that the braking
is done in equal time or less than the initial braking process. The α parameter defines
the variation of the input signals. This parameter sets the input constraints that define
the upper and lower limit.

5.3 Simulation results and analysis

Table 5.3 Results of energy efficiency in EV applying the driver cycle optimizer in 3 tests with
different variations in the reference speed.

Alpha Regenerative Current Braking Time Braking Time
Parameter Improvement without control (s) with control (s)

0.10 6.11% 4.54 4.38
Test 1 0.15 6.41% 4.54 4.32

0.20 6.51% 4.54 4.28

0.10 5.52% 4.06 3.82
Test 2 0.15 7.02% 4.06 3.80

0.20 8.02% 4.06 3.76

0.10 7.36% 4.42 4.12
Test 3 0.15 10.6% 4.42 4.00

0.20 13.4% 4.42 3.88

Simulations were performed to verify the feasibility and effectiveness of the assisted
MPC controller for the RBS. According to the proposal control diagram shown in Figure
5.8, the RBS model obtained and the assisted control strategy described in section 5.2.
The performance of the assisted multivariable control strategy in the braking system is
evaluated by MATLAB simulations.

The proposed control strategy aims to make small changes set by the parameter (α)
in the inputs of the EV braking system; this means that variations in friction braking
torque and regenerative torque are defined, maximizing the current recovered by the
RBS without affecting the braking process provided by the driver. To maintain a stable
braking intensity according to the user’s driving profile, the controller considers the
speed and acceleration at the beginning of the braking process. The control action
generates changes in this process, both in the friction brake torque signal that regulates
the pressure in the brake cylinder and the commanded torque of the electric brake, as
shown in Fig. 5.8



64 Assisted Regenerative Braking Control System

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

0

500

1000

T
o

rq
u

e
 [

N
m

]

Demand Regenerative Brake

upper limit

lower limit

 Original

Optimal

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

0

200

400

600

800

T
o

rq
u

e
 [

N
m

]

Demand Mechanical Brake

upper limit

lower limit

 Original

Optimal

Fig. 5.9 Regenerative and friction braking torque generated by the MPC controller for test 2

Three braking process experiments have been considered to analyze the performance
of the assited controller proposed. The results of the control performance simulations are
shown in Figs. 5.9, 5.10 and 5.11. For each test is possible to verify that the controller
generates variations in the input signals that represent the electrical and mechanical
torque of the brake system. The variations of the input signal are limited according to
the restrictions established in Equation 5.10.

During the simulation, the following information is required from the ECU : vehicle
speed and recovery current, which represent two of the four system states described in
Equations (5.5), (5.6). The other states are estimated using a KF. Figs 5.12, 5.13 and
5.14 show that in all cases, the assisted control guarantees the following speed generated
by the user during the braking process. In fact, to ensure driving safety, the braking time
provided by the controller is less than the braking time without the controller.

According to the results of the three scenarios, it is possible to determine that the
significant increase in current recovery is reached when α is 0.2. However, it is essential
to note that increasing α also reduces braking time, affecting the user’s driving profile.
One of the objectives of this research is to improve energy recovery, minimally affecting
the user’s driving behavior. In other words, the proposed assisted control must generate
changes in the system in order to improve its performance without replacing the driver
as the principal operator of the system.

In accordance with the table 5.3 and considering α = 0.2 in test 1, it can be verified
that there is a maximum braking time decrease of 0.26 seconds and a recovered current
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Fig. 5.10 Regenerative and friction braking torque generated by the MPC controller for test 2

improvement of 6.13%. In test 2, there is a maximum braking time decrease of 0.3
seconds and a recovered current improvement of 8.02%. Finally, in test 3, a reduction
in the maximum braking time of 0.54 seconds and an improvement in the recovered
current of 13.4%.

On the other hand, it is essential to indicate that the evolution in the recovered
current is greater when the variation is between α = 0.1 and α = 0.15. Table 4 shows
an increase in current improvement of 0.3%, 1.5% and 3.24% for tests 1, 2 and 3,
respectively.

Additionally, it is possible to verify in Figure 5.15 the comparison of the percent of
recovery current according to the α parameter.

In addition, it is possible to verify with these results that the most significant current
recovery is generated when the vehicle speed before the braking process is greater,
as shown in Table 3. However, it is essential to consider that for the assisted control
algorithm to go into operation, it is fundamental to consider the braking and acceleration
intensity conditions mentioned in the Chapter 2.
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Fig. 5.11 Regenerative and friction braking torque generated by the MPC controller for test 3

5.4 Conclusions of the chapter

In this research, an assisted control strategy was proposed in the RBS in order to improve
current recovery during the braking process. This proposal is based on mathematical
models, experimental data and optimal controller design using MPC definitions. The
main conclusions are:

The variations in the pressure line of the friction brake and the target torque requested
in RBS follow the trajectory of the values delivered by the iBAU according to the
controller constraints based on the braking profile of the driver.

Due to the fact that the proposed assisted controller will work at low vehicle speeds
and according to the restrictions considered by the UN/ECE regulations, a linear model
in RBS state space has been estimated. This methodology could be applied to other
vehicles that have RBS, such as HEV and plug-in hybrid vehicles (PHEV ).

The results of the proposed assisted control performance were analyzed and it is
verified that α is 0.15 is an appropriate value. This variation value shows that the
assisted control intervention is almost imperceptible to the user or driver who operates
the vehicle.
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Fig. 5.12 Regenerative and friction braking torque generated by the MPC controller for test 1
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Fig. 5.13 Regenerative and friction braking torque generated by the MPC controller for test 2
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Fig. 5.14 Regenerative and friction braking torque generated by the MPC controller for test 3
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Chapter 6

Conclusions

The aim of the presented research is to develop assisted control strategies for EV systems,
focused on enhancing the energy efficiency performance during driving operation and
energy recovery through RBS. In the literature, EV system models and experimental test
results have been reported. Selected models and lookup tables that are potentially useful
for providing dynamic feature systems of EV have been considered. Therefore, the
second chapter of this work presents a framework that defines the mechanical-electrical
model of the system and the methodology to find them. In the framework, the steps are:
to analyze the vehicles’ battery, motor and dynamic models, taking into account their
energy performance. These models are combined with experimental results to establish
control and optimization strategies. In order to improve the efficiency of energy on EV s,
this research proposes solutions to these challenges that are divided into three cores.

The first core proposes a design of a virtual current sensor replacing the conventional
sensor in case of failure or complex measurement. This virtual sensor uses other variables
available during EV operation, applying PCA and machine learning tools to establish a
successful estimation, obtaining a fitting of 91% from PCA+GK−SV R. The current
measurement or estimate and the battery model are essential for determining the SOC.
The virtual current sensor is validated using experimental data from EV ; these results
were compared with the sensor and SOC data captured from the CAN bus.

The second core of this research deals with a methodology to improve de EV
efficiency, considering the result in Chapter 2. The optimization strategy generates
a correction in the rotational speed and torque for PMSM, ensuring minimal energy
consumption between the battery pack and the wheel over the road during driving. This
methodology uses a metaheuristic algorithm, specifically the PSO particle algorithm,
to solve the optimization problem. During the simulation, the PSO algorithm shows
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that solutions can be found in an average of 55 milliseconds, opening the possibility of
implementation in future works.

Finally, the third core deals with generating an assisted control proposal for the
RBS. This proposal has shown that assisted control improves the recovered current
during a braking event. The simulations have shown the controller performance on the
model obtained from the recovery system of the EV and the best results in the current
recuperation considering an alpha factor of 0.15.

As future work, current results lead to consider that the key point is in the assisted
controllers structure, which must be consistent with the plant structure; this would require
specific considerations about the plant prior to estimating controller parameters. The
experiments shown in this document must consider adequate instrumentation equipment
and access from the vehicles ECU . Then, considering the proposals in this thesis, it is
possible to generate future works that establish suggestions to implement control and
optimization algorithms both during EV operation and in braking events. An alternative
that can be examined is the intervention on a controller area network of the RBS, VCU
and the intervention on the IBAU output signals.
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Appendix A

Dynamometric Bench MAHA

In this Appendix, the dynamometric bench LPS 3000 MAHA is presented based on
[9]. The hardware features used to generate the experimentation in this research are
presented in Table A.1.

Table A.1 Parameters for the dynamometric bench whit Roller Set R200/2

Parameter Value Unit

Roller Length 900 mm
Roller Width 1100 mm
Roller Height 800 mm

Roller Diameter 318 mm
Roller axle separation 656 mm

Axle load 15 tons (t)
Smallest test-able wheel 12 inch

Weight incl. packing 2500 kg
Lifting Bar up to max. 40 bar

Eddy current brake 2x200 kW
Power supply 400v/60Hz −−

Test speed max 200 km/h
Wheel power max 400 kW

Traction 15 kN
Measurement accuracy ± 2% −−

Adittionally, It is possible to drive according to a speed profile with a fixed time and
a speed run on the dynamometer using the Drive cycle button.



Appendix B

Support Vector Regression

Support Vector Regression (SVR) is a supervised machine learning algorithm which
can be used regression challenges.In this algorithm, we plot each data item as a point in
n-dimensional space (where n is number of features you have) with the value of each
feature being the value of a particular coordinate.

SVR is considered a non parametric technique because it relies on kernel func-
tions. The relationship between the independent and dependent variables is given by a
deterministic function, defined as:

f (x) =W T
φ(x)+b (B.1)

where x is the input data in Rn , f (x) is the output value in R, W is controls the
smoothness of the model, φ(.) is a non-linear mapping function from input space Rn,
and b is the input data.

To maximize flatness, a vector w with a small norm is desired; for this reason the
coefficients of ware estimated by minimizing:

min
w,ξ ,ξ ∗

1
2

wT w+C∑
i
(ξi +ξ

∗
i )

2 (B.2)

subject to constraints

wT φ(xi)+b− yi ≤ ε +ξ ∗i

yi−wT φ(xi)+b≤ ε +ξi
(B.3)

where ε is the acceptable output error. C represents a positive constant that deter-
mines the degree of penalized loss when a training error larger than ε occurs. ξi and ξ ∗i
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are non negative slack variables specifying the upper and lower “additional” training
errors with respect to the allowed error tolerance ε .

The optimization dual problem is solved using Lagrangian multipliers, where the
optimum is a saddle point of the Lagrangian Eq. (B.4) subjected to Eq. (B.5).

min
1
2

N

∑
i, j=0

(αi−α
∗
i )(α j−α

∗
j )⟨φ(xi),φ(x j)⟩

+ ε

N

∑
i, j=0

(α j +α
∗
j )−

N

∑
i, j=0

yi(α j−α
∗
j

(B.4)

subject to

∑
N
i=0(αi−α∗i ) = 0

0≤ αi,α
∗
i ≤C

i = 1,2, ...,N

(B.5)

where N is the number of training samples.

The approximation function f (x) is represented as the following equation:

f (x) =
N

∑
i=0

(αi−α
∗
i )G(xi,x)+b (B.6)

where G is the kernel function



Appendix C

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a non-linear mataheuristic algorithm using collec-
tive behavior to converge to a solution into the parameter search-space. We implemented
a constriction PSO, which stabilizes the algorithm by dampening the velocity of the
particles in the search space. We used the optimal settings described by [85]. The
topology of the swarm of particles establishes a measure of the degree of connectivity
of its members to the others. It essentially describes a subset of particles with whom a
particle can initiate information exchange.

The velocity vi and position ψi are updated as follow:

vi = vi + c1r1[pbi−ψi]+ c2r2[gb−ψi] (C.1)

ψi = ψi + vi (C.2)

where c1 and c2 are positive constants, and r1 and r2 are two random functions in
the range [0, 1] and are different for each dimension and each particle.

The parameters c1 and c2, are weights that capture how much a particle should weigh
moving towards its cognitive attractor (pb)or its social attractor (gb). The exchange of
information between particles mean they are inherently cooperative, thus implying that
an unbiased choice of the acceleration coefficients would make them equal.

The following equations describe the velocity and position update mechanisms in a
standard PSO algorithm:

vi+1←− vi + c1r1[pbi−ψi]+ c2r2[gb−ψi] (C.3)
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ψi+1←− ψi + vi+1 (C.4)

The procedure of particle swarm optimization algorithm is given in Algorithm 1.

Algorithm 1: PSO algorithm to determine the best rotational speed of the
PMSM

Initialize population P
Initialize velocity v
Input: w, c1, c2, itermax, P
while iter < itermax do

iter=iter+1;
for i = 1 P do

if F(ψi)< F(bp) then
F(bp) = F(ψi);
bp = ψi;

end
if F(bp)< F(gb) then

F(gp) = F(pbi);
gp = pbi;

end
r1 = rand();
r2 = rand();
vi=vi+c1r1[pbi−ψi]+c2r2[gb−ψi];
ψi = ψi + vi

end
end
Result: ψ best global

According to the PSO algorithm, the code in Matlab is presented.

function [EfiOp1, rpmop1 ,PotOP1 ,Top1]= Optimizer(T, rpm, Pbat,PP)
v1= [ 99.7500 99.4500 99.4500 99.2500 99.2500 99.0497 99.0477 99.0457... 99.0417
99.0317 99.0099 99.0012 98.8352 98.4135 98.3627 98.2013... 98.0646 98.0280 98.0051
97.8760 97.5246 96.8411 96.5071 95.6584... 95.2380 94.9754 94.9097 95.0961 94.7861
94.9544 94.4073 93.010];

x1= [0 500 1000 1500 2000 2500 3348.775 3482.726 3683.652 3884.579... 4085.505
4286.432 4487.359 4688.285 4889.212 5090.138 5224.089... 5425.016 5625.942
5826.869 6027.795 6161.746 6362.673 6563.599... 6764.526 6965.452 7166.379
7367.305 7501.256 7546.269 7554.234 8000] ;

v2= [73.7932 73.7932 73.7932 73.7932 75.1829 78.3659 79.2471 80.8057... 82.0410
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83.3204 84.1930 84.7308 84.6597 84.9331 85.4738 86.0920... 86.0809 86.4555 86.2524
86.6050 86.7047 86.4594 86.4950 86.1859... 85.7237 85.7339 85.7750 85.5122];

x2= [ 0 100 1000 3348.775 3482.726 3683.652 3884.579 4085.505 4286.432... 4487.359
4688.285 4889.212 5090.138 5224.089 5425.016 5625.942... 5826.869 6027.795
6161.746 6362.673 6563.599 6764.526 6965.452... 7166.379 7367.305 7501.256
7546.269 7554.234];

Max_iter=40; % max iterations
Part_N=30; % Number of particles
x=zeros(Part_N,2);
obj_func=zeros(Part_N,1);
Nva_obj_func=zeros(Part_N,1);
EfiOp1=EfiOp
rpmop1=rpmop;
PotOP1=PotOP;
Top1=Top;
if isempty(Pbat);Pbat=0;end
if isempty(rpm);rpm=0;end
if isempty(T);T=0;end
Wm=rpm*2*pi/60;
if Wm<1
if isempty(Wm); Wm=1;end
Wm=1;end
% Lower and Upper boundaries are calculate
if rpm<=100
l= [0 , 0];
u=[284 , rpm]; else
l= [0 , rpm-rpm*PP];
u=[284 , rpm+rpm*PP];end
% % % % Initial Positions % % % %
x(:,1)=l(1)+rand(Part_N,1).*(u(1)-l(1));
x(:,2)=l(2)+rand(Part_N,1).*(u(2)-l(2));
% % % % % % % % % % % % % %
% % % The objective function is evaluated % % %
for i=1:Part_N
obj_func(i,:)=(T*interp1(x1,v1,x(i,2))*interp1(x2,v2,x(i,2))*(x(i,2)*2*pi/60))/(Pbat);
end
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% % % % % % % % % % % % % % % % %
% % % The best global vector % % [global_opt ind]=max(obj_func);
G_opt=ones(Part_N,1);
G_opt(:,1)=x(ind,2);
Mejor_pos=[x(ind,2)];
Loc_opt=x(:,2);
v=zeros(Part_N,1);
t=1;
while t<Max_iter
% % % The new speed values are calculated % %
v = v+rand(Part_N,1).*(Loc_opt-x(:,2))+rand(Part_N,1).*(G_opt-x(:,2));
% % % The new position values are calculated % %
x(:,2)=x(:,2)+v;
for i=1:Part_N
% % % constrain particle positions % %
if x(i,2)>u(2); x(i,2)=u(2);
elseif x(i,2)<l(2); x(i,2)=l(2);
end
Nva_obj_func(i,:)=(T*interp1(x1,v1,x(i,2))*interp1(x2,v2,x(i,2))*(x(i,2)*2*pi/60))/(Pbat);
if Nva_obj_func(i,:) > obj_func(i,:)
Loc_opt(i)=x(i,2);
obj_func(i,:)=Nva_obj_func(i,:);
end
end
% % %The best value of the particles is obtained% % [Nvo_global_opt ind]=max(obj_func);
if Nvo_global_opt>global_opt
global_opt=Nvo_global_opt;
G_opt(:,1)=x(ind,2);
Mejor_pos=[x(ind,2)];end
t=t+1; end
EfiOp=global_opt;
rpmop=x(ind,2);
PotOP=T*interp1(x1,v1,x(i,2))*interp1(x2,v2,x(ind,2))*(x(i,2)*2*pi/60);
Top=Pbat/(interp1(x1,v1,x(i,2))*interp1(x2,v2,x(ind,2))*(x(i,2)*2*pi/60));
% % % Algorithm output values % % Top1=Top;
EfiOp1=EfiOp;
rpmop1=rpmop;
PotOP1=PotOP;
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