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Abstract: This paper presents a step-by-step approach to assess the energy flexibility potential of
residential consumers to manage congestion in the distribution network. A case study is presented
where a selected transformer station exhibits signs of overloading. An analysis has been performed
to evaluate the magnitude of the overloading and the timing of the overload occurrence based on
their historical load data. Based on the historical load data, the four most prominent consumers
have been chosen for the flexibility assessment. Temperature load dependency has been evaluated
for the selected consumers. The paper’s novel approach focuses on selecting individual consumers
with the highest energy flexibility potential, and analysing their load patterns to address transformer
overloading. To achieve this, machine learning algorithms, specifically, multiple linear regression
and support vector machines, were used for load profile forecasting during the overload occurrences.
Based on the forecast and measured load patterns, flexibility scenarios were created for each consumer.
The generated models were evaluated and compared with the forecasting based on the average load
of the past days. In the results, three potential consumers were identified who could resolve the
transformer overloading problem. The machine learning models outperformed the average-based
forecasting method, providing more realistic estimates of flexibility potential. The proposed approach
can be applied to other overloaded transformer stations, but with a limited number of consumers.

Keywords: flexibility; baseline; demand response; distribution transformer; congestion management;
power flow control; peak shaving; load shifting; predictive models; machine learning

1. Introduction

The electric power system has undergone drastic changes in the last two decades.
The distribution network (DN) has, specifically, been put under huge constraints because
of the increasing number of distributed energy resources, such as solar and wind power
plants [1,2]. This is part of the European Green Deal programme that aims to make Europe
carbon neutral and sustainable by 2050 with carbon-neutral electric energy production. The
same programme also aims to decarbonise the transportation and housing sector through
electrification. In such a way, the introduction of electric vehicles has been proposed as an
alternative to gas-powered vehicles. However, integrating such high-intensity loads into
the DN causes many problems. As was pointed out in [2], the stochastic load pattern of
electric cars and ageing or inadequate infrastructure limits the integration process of electric
vehicles. In the housing sector, conventional heating resources such as natural gas and oil
are being replaced with heat pumps. As was presented in [3], large communities could be
heated by heat pumps, along with energy provided by solar power plants. Heat pumps
offer notable advantages, as they are characterised by their environmental friendliness
and efficiency. However, it is essential to consider certain limitations associated with these
systems. Notably, heat pumps can exhibit a considerable load, and their performance
is dependent on external factors such as air temperature and humidity. During colder
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winter months, when solar power plants generate less energy, heat pumps tend to consume
more electricity, potentially leading to energy shortages. This situation may necessitate the
implementation of battery storage solutions, particularly in micro-networks, to address the
fluctuations in energy demand and supply effectively.

Apart from high energy consumption, the usage of newly penetrating loads is not
distributed evenly across the day, which means that a high power demand usually coincides
with the peak load time and therefore causes an overload of the infrastructure. One way
of solving these issues is to reinforce the DN, which is expensive and, at the same time,
presents the risk of its infrastructure not being utilised to its maximum potential. It is
also important to acknowledge that grid reinforcement may not be able to keep up with
the increasing demand of rising consumption. The energy flexibility of consumers and
producers has been introduced to tackle this problem cost-effectively and in a fast manner.
Energy flexibility services in DNs have been explored widely, and adjusted to residential
buildings and industry [4,5]. In a DN, a demand response service is used to mitigate the
overloading of the infrastructure by shifting the load [6] or shaving peaks [7] at times of peak
demand hours. Consumers have now been put in an active role, where they adjust their
energy consumption or production to provide the necessary ancillary services for the DN
operator. Consumers with the ability to adjust production profiles or energy consumption
profiles are called prosumers. In reference [8], an energy flexibility review for household
consumers is given, along with thorough characterisation and quantification methods. The
utilisation of prosumer flexibility services presents significant prospects for enhancing
distribution grid planning and infrastructure adequacy. It can lead to a reduced reliance on
expensive grid reinforcements, and facilitate the seamless integration of renewable energy
sources [9]. Integrating the concept of prosumer flexibility into energy-based maintenance
and sustainable predictive maintenance practices can revolutionise grid management and
maintenance strategies. By analysing and predicting prosumers’ energy consumption
patterns, load-shifting capabilities, and distributed energy resources, these maintenance
approaches can identify potential grid stress points and predict maintenance needs with
greater precision. An overview of the demand response programme implementation has
been made in [10] for Europe and the United States. It was concluded that the United States
has the advantage, due to the better regulatory and policy environment in some regions of
the United States.

To identify possible energy flexibility providers, an assessment must be made of
whether the magnitude and pattern of consumption are adequate to engage load demand
services. Transformers and cables are essential components that form the foundation of
the grid. The temporary overloading of these elements is possible; however, it can lead
to a shortened life expectancy, increased losses, and, in the worst-case, outages. In [11], a
methodology was described, which correlates how much overloading is needed to justify
the willingness of DN operators to conduct energy flexibility services. Another challenge
in achieving energy flexibility realisation lies in the willingness of consumers to engage
actively in demand response programmes, as discussed in reference [12]. This willingness
to participate is contingent upon factors such as household type, appliance usage patterns,
and the financial incentives offered for their involvement. Consumers who are willing
to participate in demand response programmes sell their services through aggregators,
who combine the services of multiple prosumers and sell those on the energy flexibility
market [13]. Prosumers are then rewarded financially according to the type of demand
response service and the load difference between the forecast load (baseline) and load at
the time of the demand response event.

The same methods used for evaluating demanded response programmes can be used
for load profile identification [14]. A load profile can also be deducted by segmenting the
user’s past load profile and appliance activity, as was proposed in [15,16], together with
an optimal scheduling of appliances. Without information about appliances, a different
method has been proposed in [17], which is based on clustering consumers’ hourly load
data. In the case study of Pakistan [18], the consumer flexibility potential was calculated for
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selected household appliances using Monte Carlo simulations. Appliances were segmented
by their load patterns, and an economic analysis was conducted for each to provide savings
for consumers. In cases where measurements are lacking, reference [19] describes an
approach to assess the flexibility provision of consumers by utilising optimisation on a
range of nodal power injections for each consumer.

This article proposes a novel method of identifying the energy flexibility potential of
residential distribution network consumers to manage congestion at transformer stations,
and, at the same time, enable the integration of a higher number of distributed energy
resources and newly penetrating loads due to the green transition. Energy flexibility has
been determined by using machine learning algorithms to forecast selected consumer load
profiles and evaluate patterns of consumption relative to transformer times of loading.
We identified temperature-dependent consumers and correlated their consumption with
temperature. An energy flexibility assessment can be used by aggregators to approach
certain consumers, and motivate them to enter demand response programmes [13]. The
same energy flexibility assessments can also be used in planning DNs; hence, it can be
determined where the necessity for infrastructure upgrading is needed most.

The article is structured into six sections. As described, Section 1 serves as an intro-
duction, outlining the current issue of incorporating renewable sources and proposing
flexibility as a solution. Various methods for predicting consumption and evaluating their
ability to determine flexibility are described in Section 2. Section 3 presents a case study, to
assess the potential for the flexibility of an overloaded transformer station. In Section 4,
a comprehensive analysis of transformer station consumption is conducted to identify
overload intervals and select potential consumers for flexibility services based on their
historical load data. Section 5 illustrates a comparison between consumption forecasts
and actual data on the day of the highest overload for the selected consumers, presenting
different flexibility scenarios. Finally, Section 6 concludes the article by summarising the
findings and highlighting the novelty of the new approach.

2. Proposed Methodology of Energy Flexibility Assessment

The proposed methodology for assessing energy flexibility potential is based on
forecasting load consumption on the day an overload has occurred. A forecast is then
evaluated using evaluation metrics. Based on the evaluation of each method and forecast
pattern, an assessment of energy flexibility potential is made for each consumer. Forecast
methods for small-scale residential buildings are described in [20]. Simple average models
were proposed, along with machine learning models such as regression and artificial neural
networks. In this article, we propose one model based on averaging and two machine
learning models based on regression. Multiple linear regression (MLR) with custom features
is proposed, along with support vector regression (SVR) that has been adopted widely as a
benchmark model for short-term load forecasting in [21], where multiple regression models
were compared and tested in the case of a university campus load forecast.

The employment of probabilistic methods was also studied in [22], where a Gaus-
sian process was used, and [23] where Bayesian approach was utilised for load forecast.
Probabilistic methods focus on modelling uncertainty and providing probability distri-
butions, which can be valuable when dealing with uncertain data. Probabilistic models
are more robust to noise and can handle both linear and non-linear dependencies. Ad-
ditionally, they may require fewer training examples to achieve meaningful results. The
downside of a probabilistic models is that they are computationally intensive and hard to
interpret compared to SVM and MLR, where the focus is on understanding relationships
between variables.

The use of artificial neural networks (ANNs) is also one very commonly used method
as studied in [24], that offers the capability to capture intricate relationships and patterns
within load data, making them effective for handling complex and non-linear load be-
haviour. They can incorporate multiple influencing factors simultaneously and adapt to
changing conditions, improving forecasting accuracy. However, ANNs can be computa-
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tionally demanding and require careful tuning to prevent overfitting. The complexity of
their internal workings can make interpretation challenging, and their performance heavily
relies on data quality and the selection of relevant features.

Compared to a classic regression model, polynomial regression can capture non-linear
relationships between input features and load, making it suitable for situations where
the load behaviour deviates from linearity. Additionally, polynomial regression models
are relatively easy to implement and understand as authors described in [25]. But they
may struggle to capture highly complex and intricate load patterns compared to more
sophisticated methods like ANNs. It can also be sensitive to outliers and noise in the
data. As the degree of the polynomial increases, overfitting becomes a concern, and
selecting the appropriate degree requires careful consideration to avoid model complexity
or underfitting.

Clustering is also one commonly used method that can uncover hidden patterns
and group similar load behaviours, providing insights into different load profiles, as was
studied in [26], where each consumer load profile was estimated. It is useful for segmenting
data into distinct clusters, which can aid in developing tailored forecasting models for
specific load categories. Clustering can also help identify anomalies or unusual load
patterns. While it cannot directly provide load predictions, it does offer a data exploration
and segmentation tool. Selecting the appropriate number of clusters and deciding on the
clustering algorithm can be challenging. Additionally, clustering may not fully capture the
underlying dynamics driving load variations, and it may not be suitable for forecasting
subtle changes or fine-grained load patterns.

The use of hybrid models has become a novelty in load forecast. In [27], the authors
made a hybrid model based on data decomposition considering periodicity, trend, and
randomness of the original load time series data. A forecast of the short-term load was
made through preprocessing and analysing the original time series and using a genetic
algorithm to optimise a generalised regression neural network. The results showed good
fitting ability along with the option to approximate the actual values when dealing with
non-linear time series data with periodicity, trend, and randomness.

In comparison to other methods, such as XGBoost, AdaBoost, and Random Forest,
it is noteworthy that these ensemble algorithms can yield greater efficiency, especially in
capturing complex relationships and non-linear patterns in the data [28]. However, MLR
and SVR offer distinct advantages in terms of input features. Specifically, MLR and SVR
allow for a higher degree of customisation and simplicity in selecting input features, as
they focus on linear relationships, and, in the case of SVM, also non-linear. This simplicity
can enhance the interpretability and the ease of incorporating domain knowledge. On
the other hand, ensemble methods, while offering enhanced predictive capabilities, might
require more advanced techniques to fine-tune feature selections. Therefore, while XGBoost,
AdaBoost, and Random Forest can provide greater efficiency, it is important to recognise
that MLR and SVR excel in offering customisable and interpretable input feature options.
The choice depends ultimately on the trade-off between model complexity, predictive
power, and the need for feature customisation.

Out of all the regression models, MLR has been chosen because of its simplicity and
ease of adding and optimising input parameters, which aligns well with our objective
of exploring various input features for an enhanced model performance. MLR efficiency
has been validated in [29]. As for SVM, we recognised its significance as a benchmark
model in regression tasks [21], particularly when dealing with non-linearities. SVM’s ability
to capture complex patterns and their robustness to non-linear relationships made it a
suitable candidate for comparison with our proposed models. In the scope of this study,
the generation of a solar power plant has not been modelled because we focused on the
demands of consumers. In [30], an approach is described where the load is predicted as
the median of interpolating days, and solar power plant generation is predicted using the
Random Forest method.
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2.1. Forecast Models

Average of the last Y days: The last Y working days were selected from the last Z cal-
endar days, and then samples of the same time were averaged. While it is a straightforward
approach, it may not capture the complex patterns and dynamics present in the load profile
data due to weather changes. Two models are needed to forecast each day of the week.
For working days, only previous working days are considered (1). As for weekends and
national holidays, the same days of the week are considered in calculating the average (2)
because of different consumption patterns. The previous Sundays are selected if a national
holiday coincides with a working day. The method is described in [20], and the novelty lies
in our addition of separate considerations for working and non-working days:

P̂i =
1
k

k

∑
j=1

Pi,j, i = 1, 2, 3 . . . n (1)

P̂i =
1
k

k

∑
j=1

Pi,j·7, i = 1, 2, 3 . . . n (2)

In (1) and (2), P̂i represents an element of the vector containing the predicted 15 min
load samples for the observing day. Elements Pi,j form a matrix that contains load samples
for the previous k days of observation, where index j represents the day of observation,
and index i represents each 15 min sample, resulting in the collection of 96 samples for one
day of observation (n = 96). Another commonly utilised averaging technique is HighXofY,
which involves selecting the X days with the highest average load from the last Y working
days to construct a forecast model. In this study, the described model was not realised,
because it was outperformed by the classic average of Y days. Averaging models are
relatively easier to explain to consumers in the context of demand response programmes
compared to machine learning models, which need additional explanation.

Multiple linear regression (MLR): represents the most basic form of regression models.
The dependent (target) variable is formed as a combination of the independent (predictor)
variables in a linear manner. The assumption within MLR is that a linear relationship exists
between the dependent and independent variables. The general equation for MLR can be
represented as (3):

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ei, i = 1, 2, 3 . . . n (3)

The dependent variable is marked with yi; xip are independent variables; βp are the
estimated regression coefficients; β0 is the value of yi when all independent variables are
equal to zero; and ei is the model’s error term, also known as the residual, and accounts for
any unexplained variation in the dependent variable that is not captured by the linear rela-
tionship with the independent variables. The regression coefficients determine the impact
and direction of each independent variable on the dependent variable. The coefficients βp
are estimated based on minimising the sum of squared residuals (SSR) to minimise the
difference between the observed values and the predicted values from the model. This is
achieved by taking partial derivatives of SSR with respect to each coefficient and setting
them to zero. Solving the resulting system of equations yields the optimal values for the
coefficients, which provide the best-fitting linear relationship between the dependent and
independent variables. The formula for SSR is given below (4):

SSR =
n

∑
i=1

(
zi −

(
β0 + β1xi1 + β2xi2 + . . . + βpxip + ei

)
)

2 (4)

In (4), first part (zi) represents the measured value and the second part is the predicted
value obtained from the MLR model for the i-th data point. The dependent variable in
the case of load forecast is represented by electrical load, and the independent variables
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are given as input features to the model. We considered the model and features in [29] in
addition to our proposed features to build the MLR model (5):

P̂ = β0 + β1·Day·Minutes + β2·Month + β3·P + β4·PRA + β5 + PAVG + β6
·Holidays + β7·T·Month + β8·T·Minutes

(5)

P̂ is the predicted load profile for the observing day. Class variables were considered of
the 15 min samples, day of the week, month of the year, and national holidays. Numerical
variables such as load samples of the previous three days and load of the same day of the
week before are given as P; also, the average load of the previous day PAVG is considered.
The proposed model (5) can be assessed as a time series approach, and therefore, the mean
rolling average was used as data preparation to smooth out short-term fluctuations and
to capture the trend of the load change. A rolling moving average was used for each
sample, with a three-hour window over the past three days, and is given as PRA. To
account for seasonal variations and temperature discrepancies between day and night, a
linear interaction effect was incorporated between the temperature and classes of 15 min
samples and months. The trend of increasing consumption was not considered due to
the effect of COVID-19 and the inclusion of distributed energy resources, which caused
disturbances in model prediction. Furthermore, in [29], the exploration of second- and
third-order temperature interactions was undertaken to model temperature-dependent
consumers for both lower and higher temperature ranges. However, for the scope of our
analysis, it was found that consumers exhibited only lower-temperature dependency, thus
rendering any additional interactions unnecessary. MLR requires certain conditions to
ensure accurate predictions. In our study, we examined the linearity of temperature and
the load of individual consumers thoroughly. We also conducted tests to check if the errors
followed a normal pattern. To tackle multicollinearity, we took a proactive approach by
removing one feature from the model, improving the reliability of our results. While we
could not explore all conditions due to study limitations, these steps strengthened the
reliability of our findings significantly.

Support vector regression (SVR): It is an extension of support vector machines (SVMs),
which are used primarily for classification. SVR can exhibit both linear and non-linear
behaviour, depending on the choice of the kernel function. This flexibility makes SVR a
powerful regression technique, as it can handle a wide range of data patterns by using ap-
propriate kernel functions, unlike MLR, which can only model linear interactions between
variables. When a linear kernel is used, SVR behaves as a linear regression technique, aim-
ing to find a hyperplane in the feature space to fit the training samples, while minimising
errors and complexity. On the other hand, when a non-linear kernel is employed, such as
the Radial Basis Function (RBF) or a polynomial kernel, SVR performs non-linear regres-
sion. These non-linear kernels enable SVR to map the input data into a higher-dimensional
feature space, allowing for more complex relationships between the variables. A general
formula for SVR can be written as function (6):

f (x) = w·φ(xi) + b (6)

The vector w contains the coefficients of weights that are minimised to fit the hyper-
plane to the data. Vector φ is defined as a transformation function that transforms input
variables xi into a higher-dimensional space. The transformation is dependent on kernel
type. When a b bias term is indicated, this represents the intercept of the hyperplane in the
higher-dimensional feature space. We minimised function (7), intending to find a function
of a hyperplane that minimises the errors of deviation (ζ) from the predefined margin of
tolerance ε. For a general linear SVR model, certain conditions must be met (8), so that the
SVR model can be built:

min
1
2
‖w‖2 + C

n

∑
i=1

(ζi + ζ∗i ) (7)



Energies 2023, 16, 6168 7 of 20

yi −w·φ(xi)− b ≤ ε + ζi
w·φ(xi) + b− yi ≤ ε + ζ∗i

ζi, ζ∗i ≥ 0
(8)

There are two deviations, ζi + ζ∗i , one for the upper and one for the lower boundary
that defines the distance between ε and the training points. Factor C is the regularisation
parameter that controls the trade-off between maximising the margin and minimising the
errors. Measured points are presented as yi. Support vectors are defined as data points that
lie on or within the margin boundaries, and have the most effect on the hyperplane function.
With the first term of (7), we aimed to maximise the margin between the hyperplane and
the support vectors. With the second term, we controlled how much penalisation was
added to the deviations. An RBF kernel, also known as the Gaussian kernel, was used in
our study. It was also used in [16], because it is infinitely divisible, and is therefore smooth.
The general restrictions of SVR (8) do not apply in this case, as the RBF kernel defines
φ(xi) implicitly, and therefore, no explicit transformation is required as in the linear kernel
case. This type of kernel can also capture complex patterns and non-linearities that may be
difficult to represent in the original input space. The RBF kernel is represented by (9):

K
(
xi, xj

)
= e−γ‖xi−xj‖2

(9)

In general, (9) represents the similarity between data points xi and xj. With the
term

∥∥xi − xj
∥∥, we denote the Euclidian distance between those two data points. The

hyperparameter γ in the RBF kernel determines the influence of nearby points on grouping.
Higher γ values result in a more localised influence, where only data points very close to
the reference point have a significant impact. Conversely, lower γ values lead to a broader
influence, extending the influence of each training point to a larger region. In reference [16],
a thorough comparison of various kernels was conducted, and as a result, no additional
explanations will be provided in this context.

The input features of SVR were downsized compared to MLR because of the high
computing time of SVR. The numerical features of historical load data stayed the same.
Only categorical features were kept of the month and distinction between working and
non-working days. There was no interaction of categorical features with temperature. Some
features could be dropped because the SVR models non-linear interactions, which was
not possible with MLR. In the proposed model, the following hyperparameters were used:
C = 1, ε = 0.3, and γ was set to scale. The hyperparameters were localised by using the grid
search method on a limited range of values due to computation time restrictions.

2.2. Performance Evaluation Metrics

Commonly used evaluation metrics were used to evaluate the forecast models. Each
consumer has a unique pattern of consumption, and, for that purpose, different evaluation
metrics were used. In the following equations, zi represents a sample of the measured
variable, while ẑi represents the predicted variable, and n represents the number of obser-
vations. The mean absolute error (MAE) (10) measures the average magnitude of errors:

MAE =
∑n

i=1|zi − ẑi|
n

[kW] (10)

The mean absolute percentage error (MAPE) (11) defines the relative overall fit, and is
a method frequently used in predicting a forecast method in statistics. However, with small
values of the measured points zi, the MAPE can become relatively large and inaccurate:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ zi − ẑi
zi

∣∣∣∣ [%] (11)
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Root-mean-squared error (RMSE) (12) measures the average magnitude of the residu-
als. It is similar to MAE, but it penalises large deviations; therefore, RMSE is more effective
in the case of irregular consumption patterns where prediction errors are large:

RMSE =

√
∑n

i=1 (z i − ẑi)
2

n
[kW] (12)

In the described metric, a smaller value indicates a better performance of the model.
Another commonly used metric is R-squared (R2), which measures how closely the fitted
regression line aligns with the observed results. R-squared values range between 0 and 1,
and a higher value indicates a better fit of the model.

3. Case Study Description

For this study, a set of data has been provided by the distribution network operator
Elektro Celje for selected transformer stations, covering the period between 1 January 2020
and 1 June 2023. With the help of an advanced metering infrastructure, 15 min readings
of a transformer’s apparent power were collected, along with active power readings of
19 consumers out of the available 22. The remaining three consumers have old meters that
only measure energy consumption at one-hour intervals or daily, and therefore could not
be included in the analysis. The rated power of the transformer in the transformer station
is 50 kVA. There are seven consumers who have their own source of energy production in
solar power plants. Figure 1 illustrates the six key steps of our novel approach to determine
consumer flexibility. At point 1, all measurements from consumers and the transformer are
collected from the metering database. At point 2, the collected data are processed, cleaned,
and prepared for further analysis. In step 3a, an analysis of the transformer station’s
overload is conducted, based on historical consumption data. Simultaneously, potential
consumers for flexibility services are identified using past load information in point 3b.
In point 4, consumption forecasts are made for the day of transformer station overload
for each selected consumer. In step 5, based on the predicted consumption patterns and
critical overload intervals of the transformer, flexibility assessments are developed for
each consumer. Finally, at point 6, an evaluation of the prediction model is carried out to
assess how accurately we can determine consumer flexibility based on the predicted and
measured consumption data for each individual consumer.

Energies 2023, 16, x FOR PEER REVIEW 8 of 21 
 

 

small values of the measured points 𝑧 , the MAPE can become relatively large and inac-
curate: 

𝑀𝐴𝑃𝐸 = 100%𝑛 𝑧 − �̂�𝑧  [%] (11)

Root-mean-squared error (RMSE) (12) measures the average magnitude of the resid-
uals. It is similar to MAE, but it penalises large deviations; therefore, RMSE is more effec-
tive in the case of irregular consumption patterns where prediction errors are large: 

𝑅𝑀𝑆𝐸 = ∑ (𝑧 − �̂� )𝑛  [kW] (12)

In the described metric, a smaller value indicates a better performance of the model. 
Another commonly used metric is R-squared (R2), which measures how closely the fitted 
regression line aligns with the observed results. R-squared values range between 0 and 1, 
and a higher value indicates a better fit of the model. 

3. Case Study Description 
For this study, a set of data has been provided by the distribution network operator 

Elektro Celje for selected transformer stations, covering the period between 1 January 2020 
and 1 June 2023. With the help of an advanced metering infrastructure, 15 min readings 
of a transformer’s apparent power were collected, along with active power readings of 19 
consumers out of the available 22. The remaining three consumers have old meters that 
only measure energy consumption at one-hour intervals or daily, and therefore could not 
be included in the analysis. The rated power of the transformer in the transformer station 
is 50 kVA. There are seven consumers who have their own source of energy production 
in solar power plants. Figure 1 illustrates the six key steps of our novel approach to deter-
mine consumer flexibility. At point 1, all measurements from consumers and the trans-
former are collected from the metering database. At point 2, the collected data are pro-
cessed, cleaned, and prepared for further analysis. In step 3a, an analysis of the trans-
former station’s overload is conducted, based on historical consumption data. Simultane-
ously, potential consumers for flexibility services are identified using past load infor-
mation in point 3b. In point 4, consumption forecasts are made for the day of transformer 
station overload for each selected consumer. In step 5, based on the predicted consump-
tion patterns and critical overload intervals of the transformer, flexibility assessments are 
developed for each consumer. Finally, at point 6, an evaluation of the prediction model is 
carried out to assess how accurately we can determine consumer flexibility based on the 
predicted and measured consumption data for each individual consumer. 

Raw smart 
meter data

Data 
processing

Substation 
analysis

Consumer 
selection

Load forecast Flexibility 
assessment

Evaluation 
of forecast

1 2

3a

3b

4 5 6

 
Figure 1. Process of consumer flexibility assessment. 

The provided dataset underwent preprocessing to address missing values. Specifi-
cally, the missing data points were imputed using the load samples from the correspond-
ing week before. The same approach has been used to replace extreme values caused by 

Figure 1. Process of consumer flexibility assessment.

The provided dataset underwent preprocessing to address missing values. Specifically,
the missing data points were imputed using the load samples from the corresponding
week before. The same approach has been used to replace extreme values caused by
disturbances in the meter reading of data. Extreme values were defined as those exceeding
10 times the fuse nominal loading. The number of values that needed to be replaced varied
among consumers. On average, approximately 567 samples had to be substituted for each
consumer on a whole dataset, equivalent to 6 days’ worth of values. The generated and
consumed power was summarised for consumers with solar power plants. Following
the data processing stage, it was observed that four consumers had invalid or incomplete
readings for the entire observation period. Consequently, these consumers were excluded
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from further analysis. This was due to the machine learning’s need for training models on
valid historical load data over a longer period.

The first two years of the dataset were used for training the models, and a third year
was used for the validation of the created model. The testing of the models was conducted
on the remaining half a year of data. The split of the dataset and process of the training
model are shown in Figure 2. In [16], the share of the training set was 80% and the testing
set share was 20%. In our analysis, we considered validating models on a whole year of
data, so the testing data share was 14% and the training set share was 86%.
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In the process of machine learning, we first conducted the validation phase, where
we trained the models using the training set’s data, and then evaluated their performance
on the validation set’s data. During this iterative process, we experimented with different
parameter configurations for the two models described in Section 2. Parameters leading to
improved evaluation metrics were retained, while others were not included. Once satisfied
with the model’s performance, we proceeded to the testing phase, where we conducted the
final evaluation on the testing set. In this step, the previous validation set was merged with
the training set, and the model was trained further using this combined dataset. No further
parameter modification was carried out at this stage, so the model parameters of validation
and testing stayed the same. In the process of validation, we must avoid overfitting, so
that the model has an equal performance on the training set as it does on the validation set.
In our case, we considered overfitting by using the R2 evaluation metrics, where values
very close to 1 were considered as overfitting the model for the whole dataset evaluation.
Addressing overfitting can also be made with other techniques, such as regularisation and
cross-validation, where the train and test dataset are divided into multiple subsets.

4. Transformer Station Analysis

The selected transformer station was identified as a potential candidate for congestion
management due to overloading that occurred at certain times of the year and specific
hours. In Figure 3, the transformer measurement of apparent power for the whole period
of observation is shown, along with the rated power of the transformer.

As Figure 3 shows, overloading occurred in the winter season between November
and March. In the summer season, the power flow reversed; in May of the year 2023, the
power of the solar power plant became so large that it overloaded the transformer. To gain
comprehensive insights into the transformer load throughout the entire observation period,
cumulative histograms were performed and are presented in Figure 4, showing the load
distribution for each year of observation.

The loading of the transformer has varied over the years. The years 2020 and 2021
had the highest loading, with the year 2021 having a load of 50% rated power or higher
for 37% of the time. For the years 2022 and 2023, this type of loading was present only
25% of the time. As for the overloading, the years 2020 and 2021 have had loads higher
than the rated power for about 1% of the time, whereas the years 2022 and 2023 had it
only for 0.5% of the time. Because of the increased number of connected solar power
plants, the duration of transformer negative loading has become longer, with a higher
magnitude of load. The variance of load can be attributed to the COVID-19 restrictions and
penetration of solar power plants into the distribution grid. Figure 5 illustrates the minor
proportion of overload duration observed in Figure 4, which is challenging to illustrate
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distinctly. Overloads are cumulated for each year, and categorised based on working and
non-working days, represented using a bar diagram.
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As previously noted, the highest occurrences of overloading were observed in the
years 2020 and 2021. Throughout all the years of observation, the proportion of overloading
occurrences on weekdays versus weekends remained consistent, with the duration of
weekday overloading being twice as high as that of weekends. In Figure 6, a bar diagram
is shown, which shows which hours of the day had the most overloading over the past
two years.

From Figure 6, it can be concluded that, in the year 2023, evening overloading had
disappeared, with only the morning hours of 6 and 7 being the most critical. The drop in
evening overloading can be contributed to the ending of the COVID-19
pandemic restrictions.
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Overloading can be conducted with the above analysis pattern of the transformer. The
focus is on overloading between the hours of 6 and 7 with the emphasis on weekdays. To
identify a set of potential consumers for assessing flexibility potential, the load of each
consumer must undergo analysis. Figure 7 displays a box plot representing the consumers’
load data for the year 2022, offering an efficient approach to examine the consumption
patterns of multiple consumers simultaneously.

From the box plot, we can determine which consumer had their source of energy
generation and what was their magnitude of consumption. Furthermore, we can detect
unique patterns of consumption, as is the case of consumer 10, which had a small median
and many outliers. This indicates that there was small consumption across the day, with
exemptions where the load was very high. Consumers 5, 13, and 15 have a third quartile,
with a wide area and a high magnitude of the maximum. Consumers 5, 10, 13, and 15
were therefore selected as the most prominent candidates for energy flexibility services. As
potential candidates, consumers 3, 7, 8, and 9 were also considered, based on the number
of outliers and the third quartile range. Analysis has shown that the load patterns did not
coincide with overloading at critical hours. In Figure 8, a relationship between load and
temperature is shown for the selected candidates 5, 10, 13, and 15. The cutoff temperature
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for the lower temperature range was established at 17 ◦C, while for the higher temperature
range, a cutoff temperature of 25 ◦C was deemed appropriate.
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Figure 8. Relationship between the load and temperature for the selected consumers.

Based on the regression line, we can assume that consumers 5 and 13 were both
temperature-dependent in the lower-temperature areas. All the observations are scat-
tered evenly across the regression line compared to consumer 15, which has two constant
loads split into two areas, therefore presenting an impression of temperature dependency.
Consumer 10 has no temperature dependency. None of the selected consumers were
temperature-dependent in the higher-temperature areas. The slope of the regression line
indicates that consumer 5 was more temperature-dependent than consumer 13. The slope
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of the regression line for consumer 15 was significantly smaller in comparison to consumers
5 and 13, thereby supporting our indications of the existence of temperature dependency.

5. Results of the Energy Flexibility Assessment Study

The analysis of energy flexibility was conducted on the day of the testing set with the
highest overload at the transformer station to establish the maximum amount of energy
flexibility required. On 30 January, between 6:30 and 7:15 h, the transformer experienced its
highest overload. The peak value during that period reached 64 kVA, which indicates that the
transformer was operating at 128% of its nominal power. Theoretically, this suggests that a
minimum power of 14 kVA is required in the worst-case scenario. The external temperature
is also crucial for the actual overloading of the transformer; thus, local overloading is also
allowed on colder days, which means that it would be necessary to upgrade the model. The
load profile of the transformer for that specific day is depicted in Figure 9.
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Figure 9. Transformer load profile on the day of the overload.

Following the morning overload event, there is evidence of another peak occurring
later in the day. However, the power generated by the solar power plants mitigates this
spike. In the evening, there was almost another overload event, with the load just under the
nominal power of the transformer. Based on the observations in Figure 6, we can deduce
that the overloads occurring after 7 h were due to the solar power plant not operating
optimally, likely influenced by adverse weather conditions.

Figure 10 provides the daily measured load profile for the selected consumers, which
will be used to assess the influence of consumers on the overloading event.

In the average model, the adoption of an 8-day averaging was assumed for optimal
conditions, striking a balance between capturing specific load patterns and preventing
excessive fluctuations, by avoiding both overly long and overly short averaging periods.
Based on the presented load profiles in Figure 10, we can assume consumers’ behaviour
through the day. Consumer 5 exhibited a gradual power increase before the overload
occurrence, and once again in the evening. On the other hand, consumer 10 experienced
a rapid surge in power demand during the times of overload. Consumer 13 maintained
a consistent high-power consumption throughout the day, disregarding the generation
of solar plants. Predicting the load pattern for consumer 15 throughout the entire day
poses a challenge; however, during the time of overload, there was a constant indication
of an increase in power. As for consumers with solar power plants, their predicted power
values were significantly off target, due to missing parameters in the prediction model,
particularly the lack of accurate predicted solar observations.
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Figure 10. Load profiles of consumers 5, 10, 13, and 15 on the day with the highest overloading in the
testing dataset

Figure 11 presents the measured and forecast loads for the time of the overload and
before and after. Regression models generally provide a better match to the measured load
profile. Notably, for consumer 13, the regression models outperformed the average model
in capturing peak load behaviour. Furthermore, for consumer 15, the SVR model fitted the
measured profile during the overload interval precisely.

Based on the forecast load, the consistency of the pattern can be determined, as be-
haviour throughout the day, which helps with the energy flexibility assessment. Consumer
15 was omitted from further analysis due to the inadequate magnitude of load at the time
of the overloading event. As described, leveraging consumer energy flexibility allows us to
handle transformer overloading adeptly by decreasing the consumer, thereby mitigating
the risks of overloading. Demand response services such as peak shaving involves reducing
consumer load partially, while load shifting entails optimising specific loads at alternative
times. As mentioned in our case, to address the overloading issue between the hours of
6:30 and 7:15, an additional 15 kVA of power was required. Based on a comparison of the
forecasted and measured load pattern of each consumer from Figure 11 and transformer
overloading form Figure 9, the corelations can be made. Based on these corelations, the
following scenarios are presented for decreasing transformer overloading:

� Scenario 1: Shifting the load of consumer 10 provides around 15 kW of energy
flexibility.

� Scenario 2: By employing a combination of consumers 5 and 13, where each lowers
their load by either 80% or 50%, there is sufficient flexibility to address the overloading
problem effectively.

� Scenario 3: Any combination of load reduction and load shift of consumers 5 and 13,
or load shift of consumer 10.

Consumer 5 exhibited a higher potential for load shifting in contrast to consumer
13, as the latter exhibited a constant load pattern with no room for shifting. Moreover,
consumer 13 could provide flexibility throughout the entire day, as it maintained a constant
load pattern. Above all, it is crucial to consider the rebound effect, which could result in
overloading occurring at a different time, even after implementing load-shifting strategies.
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Careful evaluation and planning are necessary to manage potential rebound effects and
ensure a balanced and stable distribution network.

Figure 11. Load profile of consumers 5, 10, 13, and 15 in the interval of the highest overloading in the
testing dataset.

SVR and MLR presented similar results, and to assess the performance of the utilised
models, a straightforward method is to compare the predicted values with the measured
values of the testing dataset on the same plot, as shown in Figure 12 for the case of SVR. This
graphical representation enables a rapid evaluation of prediction accuracy. By comparing
the predicted and measured data points visually, any discrepancies or deviations from
the regression line can be observed, providing valuable insights into the accuracy and
effectiveness of the models.

As can be seen from Figure 12, the observations are scattered evenly across the regres-
sion line for most consumers, except for consumer 10, which exhibited noticeable residuals
and unevenly scattered observations at higher loads. Additionally, for consumers with
solar power plants, the negative load observations are not scattered evenly due to the poor
prediction model for solar generation. The irregular distribution of data points away from
the regression line indicates discrepancies between the predicted values and the actual
measurements, suggesting potential areas for model improvement and further analysis.

To provide a precise evaluation of each used model, evaluation metrics calculations
were performed, as described in Section 2.2. The results of these evaluations are presented
in Table 1 for the entire day of overload observations.

On the day of the overload event, the regression models outperformed the averaging
model consistently in all cases. While some consumers may benefit from an SVR model,
others may find better results with an MLR model. However, in general, both the SVR
and MLR models produce similar outcomes, indicating their comparable performance in
handling the overload event. The selection of the most suitable model may depend on the
specific characteristics and behaviour of each consumer’s load profile. The interval of the
overload evaluation of models is given in Table 2.
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Table 1. Evaluation of models for a day of overload.

Consumer 5 10 13 15

MAE (kW)

Averaging 1.1224 0.3225 2.6475 0.7483

MLR 0.9821 0.3053 2.2714 0.5810

SVR 1.0297 0.2724 2.5141 0.5783

MAPE (%)

Averaging 24.39 33.97 187.05 81.89

MLR 21.49 37.21 161.62 51.00

SVR 22.48 33.48 202.19 65.71

RMSE (kW)

Averaging 1.5429 0.6104 4.0271 0.9948

MLR 1.3636 0.5614 3.4253 0.6670

SVR 1.4118 0.4771 3.7908 0.7413

R2 (/)

Averaging 0.4263 0.9194 0.5300 0.2380

MLR 0.5813 0.9483 0.7531 0.6146

SVR 0.6164 0.9494 0.6961 0.5290

In the case of the overloading interval, the average model showed slightly better
performance for consumer 13 compared to the other consumers. However, for all the other
consumers, the SVR and MLR predictions outperformed the average model significantly.
The evaluations for the entire testing dataset, providing a comprehensive assessment of the
model’s overall accuracy, can be found in Table 3.

Evaluation metrics play a crucial role in selecting the most appropriate model for
each consumer in our novel approach to assess flexibility. For a general evaluation, the
averaging model proved to be superior only in cases where the consumption pattern
remained constant, as observed with consumer 10. However, for all the other cases, the
regression models outperformed the averaging model. Both the MLR and SVR models
yielded comparable results in terms of performance. It is worth noting again that the
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MLR model was constructed with more features than the SVR. However, overall, the MLR
model, with our customised parameters, was more efficient than the SVR model, as the
computation time for the MLR model was significantly lower than SVR while yielding
comparable results, which can make the process of novel energy flexibility assessment
much faster. Therefore, we can consider the proposed MLR model as the best viable option
for a quick and accurate assessment of consumer flexibility potential.

Table 2. Evaluation of models for an interval of overload.

Consumer 5 10 13 15

MAE (kW)

Averaging 0.3910 1.9206 0.7078 0.6404

MLR 0.2055 1.1813 0.7298 0.4992

SVR 0.4054 0.8699 0.7798 0.0285

MAPE (%)

Averaging 4.378 29.75 11.68 22.85

MLR 2.305 13.93 13.46 17.96

SVR 4.517 13.60 13.98 1.017

RMSE (kW)

Averaging 0.4851 1.9416 0.7371 0.7049

MLR 0.2466 1.5248 1.0999 0.5188

SVR 0.4957 0.9298 1.0378 0.0321

R2 (/)

Averaging 0.0387 0.9371 0.3380 0.1015

MLR 0.3294 0.9901 0.5171 0.0114

SVR 0.1547 0.9894 0.3278 0.9498

Table 3. Evaluation of models for the whole testing dataset.

Consumer 5 10 13 15

MAE (kW)

Averaging 1.4918 0.4671 1.7 0.9734

MLR 1.3267 0.4945 1.5103 0.9138

SVR 1.3070 0.4673 1.4892 0.8974

MAPE (%)

Averaging 144.12 44.90 187.46 203.814

MLR 126.63 52.83 226.90 177.682

SVR 121.45 46.49 210.58 178.13

RMSE (kW)

Averaging 1.9297 0.8923 2.3994 1.2985

MLR 1.76022 0.8866 2.0835 1.1798

SVR 1.7326 0.8734 2.1286 1.2035

R2 (/)

Averaging 0.6242 0.7885 0.6058 0.5848

MLR 0.6823 0.7967 0.7185 0.6700

SVR 0.6915 0.7931 0.7165 0.6486

The SVR model was optimised on a limited range, due to the lengthy computation time
involved. For consumers with solar power plants (5, 10, and 15), the MAPE values were
relatively high, attributed primarily to the poor forecasts of solar power plant generation
and values close to zero during the transition into or from the generation operation. In this
case, other validation metrics provide better accuracy over a longer observation period for
an overall comparison.

During the evaluation of the test dataset, we examined the reaction of temperature-
dependent consumer regression models to temperature changes, considering two scenarios:
one without any input feature, and another with the input of temperature. Figure 13 presents
a comparison of these two models for consumer 13, illustrating their performance with and
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without temperature incorporation into the model. With this approach, our goal was to
achieve accurate assessments of energy flexibility for temperature-dependent consumers.
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Figure 13. Comparison of the temperature-dependent and independent model in the case of the MLR
load forecast for consumer 13.

As Figure 13 illustrates, the temperature decreased on the morning of March 15. In the
temperature-independent model, at marked point (1), the load did not increase as it did in
the temperature-dependent model, and therefore moved closer to the measured load. On
the following day, at marked point (2), the temperature increased compared to the previous
day, and in the temperature-independent model, the predicted load was high compared to
the temperature-dependent model, where the load decreased.

This observation highlights the temperature-dependent model’s ability to determine
flexibility potential more accurately for temperature-dependent consumers, which helped
us in our novel approach to assess energy flexibility. By capturing load changes more
precisely based on temperature fluctuations, this model offers an advantage in managing
and optimising energy consumption for such consumers. Figure 8 portrays visually how
some consumers are responsive to temperature variations, and tend to increase their con-
sumption during colder periods, leading to heightened energy demands and increased
transformer loading. This elevated loading augments the potential for transformer over-
loading, especially when temperature fluctuations are in play.

Conversely, temperature-independent models exhibited similar behaviour to the
averaging model, indicating their limitations in considering temperature variations for
load prediction.

6. Conclusions

In response to the persistent challenges arising from ageing distribution grids and
escalating congestion due to the integration of new loads, this paper introduces an inno-
vative approach to evaluate the energy flexibility potential of DN consumers. Through a
comprehensive case study conducted on a selected transformer station, which has been
grappling with recurrent overloading issues, the research explores alternative methodolo-
gies for mitigating such problems. This paper presents a novel approach to assess flexibility,
which prioritises the most prominent consumers for flexibility services and forecasts their
load patterns to identify load profile matching with overloads. The approach suggests that
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machine learning models are the optimal methods for the quick and precise forecasting of
consumer load profiles.

In conjunction with the conventional simple averaging model, two sophisticated
regression models were employed to forecast consumption patterns during transformer
station overloading. From the set of consumers connected to the transformer station, a
careful selection process identified four candidates, with appropriate historical load data for
in-depth analysis. Ultimately, three consumers emerged as viable candidates for providing
energy flexibility services.

The precise evaluation of these models, utilising standard evaluation metrics, demon-
strated the superior performance of the regression models compared to the simple averag-
ing model. This showcases their efficacy in predicting consumption behaviour accurately
during transformer station overloading events, thus enhancing the capabilities of our novel
approach to assess flexibility. However, it is essential to acknowledge that the proposed
approach applies to a specific subset of consumers and transformer stations characterised
by high loads.

Using the case study data and our proposed novel approach for flexibility assessment
based on consumer load patterns, we offer a quick and efficient method to assess flexibility
potential for DN consumers. This unique approach provides DN operators with a data-
driven foundation to make well-informed decisions concerning energy flexibility services,
and optimise the integration of renewable energy sources into the grid. Consequently,
consumers can be integrated into the flexibility market more easily, while simultaneously
defining optimal flexibility scenarios tailored to each consumer’s unique demands. The
outcomes provide a basis for future studies and implementations aimed at enhancing the
overall efficiency and resilience of distribution networks in the face of increasing demands
and ageing infrastructure. In future work, it is possible to quantify consumer flexibility
potential by analysing their appliance activities and utilising the flexibility indicators.
Additionally, to make our assessment of flexibility potential more accurate, we can try
using different models for load forecasting, as explained in Section 2. However, we need to
keep in mind that calculating potential for each consumer takes time, which is a limitation
here. While some methods are more accurate, we might not have full control over how
exactly these models work, and they can be hard to tune.
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