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Miscarriage is one of the main causes of reproductive loss, which can lead to a number of physical and psychological
complications and other long-term consequences. However, the role of vaginal and uterine microbiome in such compli-
cations is poorly understood. To review the published data on the function of the female reproductive tract microbiome
in the pathogenesis of early miscarriages. The articles published over the past 20 years and deposited in PubMed, Goo-
gle Academy, Scopus, Elibrary, ResearchGate, and EBSCO databases were analyzed. The review presents new data on
the impact of the vaginal and uterine microbiome on the local immunity, including defense against sexually transmitted
infections, and its association with other factors of miscarriages. The studies on the microbiome of non-pregnant
women with recurrent miscarriages in the anamnesis, patients undergoing IVF, and pregnant women with miscarriages,
as well as new directions in the microbiome research are discussed. The majority of studies have demonstrated that the
dominant species of the vaginal and uterine microbiome in patients with early miscarriages are non-Lactobacillus bacte-
ria. As many of these bacteria have not previously been detected by cultural studies and their role in obstetric compli-
cations is not well defined, further research on the female reproductive tract microbiome, including the microbiome of
the cervix uteri, is needed to develop new approaches for the prognosis and prevention of miscarriages.
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INTRODUCTION

Miscarriages occur in 15% of clinically recognized
pregnancies in the general population [1,2]. Miscar-
riage has several physical (bleeding, sepsis, infertil-
ity) and psychological (depression, anxiety, suicide)
consequences and might be a risk marker of severe
obstetrical complications during the following preg-
nancies and various long-term pathological

conditions, such as venous thromboembolism and
cardiovascular diseases [2].

Up to 80% of reproductive losses occur in the
first trimester [3]. Miscarriage may be caused by
chromosomal abnormalities [4,5], antiphospholipid
syndrome [6], thrombophilias [7,8], and immune
and endocrine disorders [9–11]. One of the leading
causes of miscarriages is inflammation [12,13].
However, in up to 50% of cases, the cause of the
miscarriage remains unknown [14].

In this regard, studying the role of the female
reproductive tract microbiome in the pathogenesisReceived 18 September 2022. Accepted 8 December 2022
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of spontaneous early miscarriages is of particular
interest.

FEMALE REPRODUCTIVE TRACT

MICROBIOME

The microbiocenosis of the female reproductive
tract is an ecological niche that includes the epithe-
lial barrier, secretions of the epithelial glands,
immunocompetent cells, and specific microflora
formed under the influence of exogenous and
endogenous factors [15].

The development of non-cultural methods in the
last two decades, such as the high-throughput
sequencing of the 16 S rRNA, has resulted in sig-
nificant progress in the studies of female reproduc-
tive tract microbiocenosis [15,16]. Thus, several
microorganisms not previously associated with the
vaginal microbiocenosis (Sneathia, Leptotrichia,
Atopobium vaginae, Dialister, Eggerthela, Megas-
phera) have been identified [17], some of which may
be etiological factors in a number of gynecological
and obstetrical complications [18,19].

Vaginal microbiome

The studies of the vaginal microbiome by the high-
throughput sequencing of 16 S rRNA have identi-
fied five types of vaginal communities (community
state types, CSTs) based on the predominance of
Lactobacillus species: CST I (Lactobacillus crispa-
tus), CST II (Lactobacillus gasseri), CST III (Lacto-
bacillus iners), CST V (Lactobacillus jensenii), and
CST IV consisting mainly of obligate and faculta-
tive anaerobes without predominance of lactobacilli
[20,21].

Using the new vaginal microbiome classification
tool VALENCIA (VAginaL community state typE
Nearest CentroId clAssifier), which is based on the
nearest centroid classification, the above-mentioned
CSTs were recently divided into subtypes. CST I
and CST III were split into subtypes A and B (with
a higher and lower relative abundance of the focal
species, respectively) [22]. CST IV was divided into
3 subtypes: CST IV-A [high relative abundance of
Candidatus Lachnocurva vaginae (formerly known
as BVAB1), a moderate relative abundance of
Gardnerella vaginalis, a moderate relative abun-
dance of A. vaginae], CST IV-B (high relative abun-
dance of G. vaginalis, low relative abundance of
Ca. L. vaginae, moderate relative abundances of
A. vaginae), and CST IV-C (low relative abundance
of Ca. L. vaginae, G. vaginalis, A. vaginae, and Lac-
tobacillus spp., and prevalence of facultative and
strictly anaerobic bacteria) [22]. CST IV-C was

subdivided into five groups: CST IV-C0 (moderate
abundance of Prevotella), CST IV-C1
(Streptococcus-dominated community), CST IV-C2
(Enterococcus-dominated community), CST IV-C3
(Bifidobacterium-dominated community), and CST
IV-C4 (Staphylococcus-dominated community) [22].

Lactobacillus crispatus has the highest capacity to
produce lactic acid and, therefore, provides the low-
est vaginal pH among all CSTs [20]. L. iners has the
lowest capacity for lactic acid production because it
converts glucose through pyruvate exclusively into
L-lactate, but not into D-lactate [23,24]. Therefore,
the vaginal pH of patients with CST III is higher
than in women with other Lactobacillus-dominated
communities [20]. According to the data of France
et al. [22], L. iners-dominated (CST III) and
L. jensenii-dominated (CST V) communities have the
second lowest vaginal pH after L. crispatus-domi-
nated community (CST I). L. gasseri-dominated
communities (CST II) have the highest pH among
Lactobacillus spp.-dominated communities.

In the L. iners-dominated communities (CST
III), the ratio between L- and D-lactic acid strongly
correlates with the levels of the vaginal extracellular
matrix metalloproteinase inducer (EMMPRIN) and
matrix metalloproteinase-8 (MMP-8) in the vaginal
secretions. EMMPRIN and MMP-8 facilitate the
breakdown of the extracellular matrix, which leads
to the ascending infection due to bacterial migra-
tion from the vagina to the uterus [25]. L. iners has
almost a half-size genome compared to L. crispatus
[26]. Therefore, it has fewer enzymes, including
those involved in carbohydrate metabolism and
production of essential amino acids. This makes L.
iners more vulnerable to exogenous factors com-
pared to L. crispatus. In bacterial vaginosis (BV)
environment, L. iners upregulates the expression of
proteins involved in glycerol transport and related
metabolic enzymes, cholesterol-dependent cytolysin,
and mucin vs. healthy individuals [27]. It was sug-
gested that this can be an adaptation aimed to pro-
mote survival during the BV episodes. During early
pregnancy, vaginal epithelial cells in the presence of
L. iners exhibit a lower level of autophagy, produce
more stress-related HSP70 protein, and release
higher amounts of pro-inflammatory mediators
compared to the cells in the presence of L. crispatus
[28].

CST IV-A has the highest pH among all CSTs,
followed by CST IV-B. The CST IV-C subtypes
dominated by Bifidobacterium, Enterococcus, and
Staphylococcus are associated with lower pH, while
the Streptococcus-dominated communities have
higher pH [22].

CST IV-A and CST IV-B are the BV-associated
communities [20,22], whereas other CST IV
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communities have no direct correlation with the
Nugent score. Therefore, they were assigned to the
CST IV-C group in the new classification. The most
common CST IV-C communities in reproductive-
age women are CST IV-C1 (Streptococcus-
dominated) and CST IV-C3 (Bifidobacterium-
dominated). Despite that both Streptococcus spp.
and Bifidobacterium spp. can produce lactic acid,
vaginal pH in these communities is higher, than in
the Lactobacillus-dominated communities [22].

It was shown that in early pregnancy, vaginal
microbiome becomes less diverse and Lactobacillus
dominates in the majority of women [29]. The vagi-
nal microbiome in the first trimester of pregnancy
can depend on ethnicity. The highest rate of L. in-
ners-dominated communities in the first trimester
was found in the Chinese population [30]; L. crispa-
tus was the most common in the Canadian popula-
tion [31]. MacIntyre et al. [29] found that CST I,
CST III, and CST IV were represented in the same
proportion in women of European, Asian, and
African origin in the UK population, while CST II
was not found in women of African origin. There-
fore, the presence of the control group is important
in every research. In multicenter studies, control
groups from different regions of the world should
be initially checked for significant differences
between them, and if these differences are present,
such groups cannot be united in one control group.

The microbiome of the cervix and endometrium

The endometrial microbiome plays a key role in
several obstetrical complications [32]. However, cer-
vical and uterine microbiomes are less studied com-
pared to the vaginal microbiome [33].

To our knowledge, there are no studies on nor-
mal uterine and cervical microbiome during the first
trimester of pregnancy, for example, in patients,
admitted for legal abortions.

Meanwhile, there are studies in which uterine
samples were collected with a catheter for the
embryo transfer with an outer sheath, with the pre-
vious rinsing of the cervix by an antiseptic solution
to prevent the catheter from contamination [34–38].
In one study, cervical mucus was removed before
extraction of the catheter from the uterine cavity
[35].

Moreno et al. [35] showed that the dominant spe-
cies in the endometrial fluid of healthy fertile
women were Lactobacillus spp. The other most
common species of the uterine microbiome of
healthy reproductive-age women were Gardnerella,
Bifidobacterium, Streptococcus, and Prevotella. The
authors classified uterine microbiomes as
Lactobacillus-dominated (>90% bacteria belong to

Lactobacillus spp.) and non-Lactobacillus-
dominated (<90% bacteria belong to Lactobacillus
spp. and >10% bacteria are pathogenic or dysbi-
otic).

In the study of Kyono et al. [37], 6 out of 7
healthy volunteers were found to have the
Lactobacillus-dominated uterine microbiome (>90%
Lactobacillus spp.).

Fang et al. (2016) showed that the most abun-
dant phyla in the endometrium at the first stage of
the menstrual cycle are Firmicutes, Proteobacteria,
and Actinobacteria. The dominant genera were Lac-
tobacillus, Enterobacter, and Pseudomonas [38].

Franasiak et al. [34] demonstrated that the preva-
lent species in the uterine microbiome of
reproductive-age women were Flavobacterium and
Lactobacillus. In the study of Tao et al. [36], Lacto-
bacillus, Corynebacterium, Bifidobacterium, Staphy-
lococcus, and Streptococcus were found in the
uterine cavity. However, only infertile women
admitted for embryo transfer were examined in
these two studies.

A number of articles describe the cervical and
uterine microbiomes after hysterectomy [39–43] and
hysteroscopy [42,44]. Indications for hysterectomy
included benign proliferative conditions (uterine
fibroids, endometrial hyperplasia, etc.), and indica-
tions for hysteroscopy were menorrhagia and dys-
menorrhea. These conditions are caused by
hormonal changes. As the microbiome highly
depends on the menstrual cycle and other changes
in the hormonal status, the samples obtained in
patients with gynecological disorders cannot be
considered as normal [45]. Due to the same reason,
we did not consider as normal the cervical and
uterine microbiomes of endometriosis patients that
have not undergone hysterectomy [46]. Besides, in
the case of hysteroscopy, contamination of uterine
samples by cervical microbiota cannot be excluded
[33].

MICROBIOME AND MAIN CAUSES OF

MISCARRIAGE

Microbiome and local immunity

It was shown that in vaginal epithelial cell (VEC)
culture, A. vaginae promoted expression of mucin 1
(responsible for antibacterial defense) and mucin 3
(responsible for Th1 lymphocyte apoptosis), but
not mucin 4, mucin 16, and mucin 5AC. L. crispa-
tus and L. iners did not have a significant impact
on mucin production compared to sterile VEC cul-
ture [47].

Lactobacillus crispatus and L. jensenii did not
effect on cytokine production compared to non-
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colonized VECs [48]. Clinical observations have
confirmed that the presence of L. crispatus and L.
jensenii does not lead to inflammation and even
decreases the levels of pro-inflammatory cytokines
[49].

Cervical epithelial cells produce more proinflam-
matory cytokines interleukin (IL)-6 and IL-8 in the
presence of G. vaginalis, Prevotella bivia, and Prevo-
tella amnii and more cytokine PC1 in the presence
of Megasphaera, Clostridium, Prevotella, A. vaginae,
and Sneathia compared to L. crispatus [50].

Several authors have investigated the impact of
Lactobacillus spp. on pro-inflammatory cytokine
production in the presence of viral and bacterial
ligands. Toll-like receptors (TLRs) are signaling
receptors of innate immunity cells, which are the
first line of pathogen recognition in the female
reproductive tract [51–53]. They can induce immune
response and regulate its intensity [54]. The expres-
sion of TLRs and their signaling adaptor genes can
play an important role in the pathogenesis of early
miscarriages [55,56].

Using VEC culture, it was shown that L. crispa-
tus, but not L. jensenii, significantly reduces the
secretion of IL-6 and IL-8 induced by the polyi-
nosinic∶polycytidylic acid (PIC), a ligand of TLR3
involved in the recognition of double-stranded viral
RNA, compared to the non-colonized cultures. The
presence of L. crispatus or L. jensenii in the VEC
culture significantly reduced IL-6 and tumor necro-
sis factor a (TNFa) secretion after stimulation by
the fibroblast stimulating ligand-1 (FSL-1, ligand of
TLR2/6 involved in the recognition of lipoteichoic
acid and peptidoglycan of Gram-positive bacteria
and fungal cell wall saccharides) [48]. Hence, L.
crispatus and L. jensenii have several mechanisms
allowing to decrease production of proinflamma-
tory cytokines.

Lactobacillus iners and A. vaginae upregulated
expression of the TLR signaling adaptor genes for
IRF1, IRAK2, NFKBIA, and proinflammatory
cytokine TNFa in the VEC culture, while the pres-
ence of L. crispatus or P. bivia caused no increase
in the expression of the above-mentioned genes
[47]. Therefore, L. iners, unlike L. crispatus, induces
TLR-dependent inflammation. The similarity
between A. vaginae and L. iners allows suggesting
that the latter behaves more like a BV-associated
microorganism than a commensal bacterium.

Colonization of VECs with Staphylococcus epi-
dermidis results in a significant increase in the con-
tent of IL-1b, IL-1Ra, IL-8, granulocyte colony-
stimulating factor (G-CSF), and TNFa, compared
to the non-colonized cultures [48,57].

Other important components of the immune
defense of the female reproductive tract are

antimicrobial peptides (AMPs). They are secreted
mostly by the epithelial cells and neutrophils and
can be produced constitutively or in response to
microbial stimuli [58]. AMPs are involved in the
elimination of Gram-positive and Gram-negative
bacteria, viruses, and fungi [59] and the modulation
of innate and adaptive immune responses, including
TLR signaling [60].

The presence of L. crispatus, L. iners, A. vaginae,
and P. bivia did not affect the expression of such
AMPs as human b-defensin 1 (hBD1) and secretory
leukocyte peptidase inhibitor (SLPI) in VECs, while
the expression of hBD2 was significantly upregu-
lated by L. iners, P. bivia, and A. vaginae. Expres-
sion of CCL20 (C-C motif chemokine ligand 20)
was significantly increased following colonization
with the BV-associated bacteria (A. vaginae and P.
bivia), but not with Lactobacillus spp. [47].

It is known that normal pregnancy is associated
with the prevalence of T-helpers 2 (Th2), while Th1
dominance stimulates cytotoxicity and is observed in
patients with recurrent pregnancy loss. There is an
indication that the BV-associated microbiome can
shift the Th1/Th2 balance toward Th1, which acti-
vates the immune response against the embryo [32].

Another type of T-lymphocytes, regulatory T
cells (Tregs), provides tolerance to the allogenic
fetus. Th17 lymphocytes have a pro-inflammatory
profile and are also associated with miscarriages.
Treg and Th17 cells can differentiate into each
other under the action of certain stimuli. Patients
with the CST-III and CST-IV communities have a
higher number of Th17 cells and increased levels of
IL-17 produced by these cells [50]. This can lead to
a decrease in the content of Treg cells, which are
crucial for pregnancy progression.

Microbiome and risk of sexually transmitted diseases

Sexually transmitted diseases are risk factors for
early pregnancy loss. The majority of research on
the microbiome and early miscarriages analyze the
presence of bacteria, which are etiological factors
of these diseases. In addition, changes in the genital
tract microbiome can be risk factors for sexually
transmitted infections, including during the preg-
nancy (Fig. 1).

The L. iners-dominated community (CST III) is
associated with an increased susceptibility to
Chlamydia trachomatis [61–63] and Mycoplasma
genitalium [63]. Women with CST IV have a higher
risk of C. trachomatis infection compared to other
groups, especially CST I [51].

In vitro studies showed the ability of L. crispatus
(CST-I) and L. gasseri (CST-II) to inhibit the
growth of Neisseria gonorrheae [64].
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Patients with the CST-IV community have 8-fold
higher odds of carrying Trichomonas vaginalis com-
pared to women with the L. crispatus-dominated
communities (CST-I) [65].

In the study of monozygotic human papillo-
mavirus (HPV)-discordant twins, a lower abun-
dance of L. iners was strongly associated with the
HPV infection, while the decreased L. crispatus
content was not a risk factor for HPV persistence
[66]. The microbiome of the HPV-positive patients
was more diverse, and the presence of Sneathia and
Megasphaera was strongly associated with the HPV
infection [66]. In another study, the presence of
other anaerobic bacteria, Bacteroides plebeius,
Acinetobacter lwoffii, and Prevotella buccae, was
also found to be associated with the HPV infection
[67], while the L. gasseri-dominated community
(CST-II) was associated with the increased clear-
ance of detectable HPV [68].

Interestingly, in another study, the presence of L.
iners was associated with a further clearance of
HPV infection, while the dominance of Gardnerella
was a marker of HPV progression [69]. High micro-
biome diversity was associated with the HPV infec-
tion progression to cervical intraepithelial neoplasia
grade 2 and 3 (CIN2+) [69].

Therefore, the above-mentioned studies demon-
strated the protective effects of L. iners and L. gas-
seri against HPV infection.

Using the VEC culture, it was shown that com-
munities with a high abundance of S. epidermidis
(>104 genomic copies), A. vaginae, G. vaginalis, and
Bacterial vaginosis-associated bacteria (BVAB2) are
associated with decreased Zika virus titers. At the
same time, the Zika virus does not affect the micro-
biome composition [57]. It can be explained by the
increased secretion of pro-inflammatory cytokines
in the presence of S. epidermidis and BV-associated
bacteria, which might have a protective effect [47].
Average herpes simplex virus 2 (HSV-2) titers were
lower in the VEC cultures colonized by the micro-
biomes dominated by Lactobacillus spp. [57].

Patients with highly diverse microbiomes have a
higher risk of HIV infection [70]. Recently, it was
shown that patients with CST-IV have a 4-fold
increased risk of HIV infection compared to those
with the L. crispatus communities (CST-I) [50]. The
presence of Prevotella melaninogenica, Veillonella
montpellierensis, Mycoplasma, P. bivia, and
Sneathia sanguinegens in CST-IV was positively
associated with HIV infection. In another study,
Parvimonas, Eggerthella, Gemella, Sneathia,

Fig. 1. Vaginal microbiome and the risk of sexually transmitted diseases.
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Megasphaera, and Mycoplasma were found to be
strongly associated with the HIV infection [71]. The
L. iners-dominated microbiome (CST-III) is also a
risk factor in the HIV infection [50].

HIV-positive patients with BV have a more
diverse composition of the microbiome compared
to women with BV in the absence of HIV [72].

Microbiome, antiphospholipid syndrome, and

congenital thrombophilia

In patients with antiphospholipid syndrome and
congenital thrombophilia, an unfavorable micro-
biome can trigger blood clot formation and throm-
bosis of the chorionic bed (the so-called “two-hit
theory” [73,74]). This occurs mostly due to the
TLR4 stimulation by the lipopolysaccharides of
Gram-negative bacteria [75]. So far, the data on the
role of the reproductive tract microbiome in this
process is absent.

Microbiome and menstrual cycle disorders

Steroid sex hormones can affect the composition of
the reproductive tract microbiome. Thus, the micro-
biome before menarche and in post-menopause is dif-
ferent from the one in reproductive-age women
because of the lack of estradiol and progesterone pro-
duction by the ovaries [76–78]. The microbiome can
change depending on the menstrual cycle phase under
the influence of estrogens and progesterone [79–83].
Menstrual cycle disorders, for example, polycystic
ovary syndrome (PCOS), can lead to changes in the
vaginal microbiome composition due to changes in
the estradiol and progesterone levels [84,85]. Changes
in the microbiome in patients with menstrual cycle
disorders appear before pregnancy but might also per-
sist in early pregnancy. Patients with PCOS have a
lower abundance of Lactobacillus spp. with the preva-
lence of G. vaginalis, C. trachomatis, Mycoplasma,
and Prevotella [86,87]. Alterations in the microbiome
composition in PCOS patients can be explained by
the absence of ovulation and, therefore, progesterone-
secreting corpus luteum. It is still unclear whether the
reproductive tract microbiome itself can impact the
development of PCOS [84]. Since patients with PCOS
in the anamnesis have a higher rate of recurrent mis-
carriages [88], it is possible that the PCOS-related
changes in the pre-existing microbiome can be associ-
ated with miscarriages.

MICROBIOME AND EARLY MISCARRIAGE

Materials and methods

Here, we analyzed the articles on the role of the micro-
biome in the pathogenesis of early miscarriages published

over the past 20 years from the EBSCO, PubMed, Scopus,
Google Academy, ResearchGate, and Elibrary databases.

Keywords and inclusion and exclusion criteria for
searching are shown in Table 1.

Research with less than 10 samples in each group arti-
cles with unavailable full text conference abstracts and
studies with no control group were excluded from analy-
sis. Culture-based studies metabolomics research studies of
male reproductive tract microbiome and animal studies
were also excluded

RESULTS

The existing studies of the microbiome by high-
throughput sequencing can be divided into two
groups (Fig. 2) depending on sampling and the
presence of pregnancy.

The main results of the studies are shown in
Table 2.

Table 1. Selection strategy for the review on the female
reproductive tract microbiome and the early miscarriages

Databases EBSCO, PubMed, Scopus, Google
academy, ResearchGate, Elibrary

Search
keywords

• [vaginal microbiome] AND [miscarriage

OR early pregnancy loss OR missed abor-

tion OR spontaneous abortion]

• [uterine microbiome OR endometrial

microbiome] AND [miscarriage OR early

pregnancy loss OR missed abortion OR

spontaneous abortion]

• [cervical microbiome OR microbiome of

the cervix] AND [miscarriage OR early

pregnancy loss OR missed abortion OR

spontaneous abortion]

• [microbiome] AND [vagina OR vaginal]

• [microbiome] AND [cervix OR cervical]

• [microbiome] AND [endometrium OR

uterus OR uterine]

Other sources Additional studies were identified in
references of found articles and included
in the review

Inclusion
criteria

• Published in peer-reviewed journals over

the past 20 years

• Studies focused on early miscarriages only

• Studies on female humans

Exclusion
criteria

• Research with less than 10 samples in

each group

• Studies with no control group

• Full-text articles unavailable, including

conference abstracts

• Culture-based studies

• Metabolomics research

• Studies of male reproductive tract micro-

biome

• Animal studies
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Microbiome in non-pregnant patients with a history

of miscarriage or before IVF

In the first group of analyzed studies, the micro-
biome has been assessed in non-pregnant women
with a history of recurrent miscarriages or in
patients who underwent in vitro fertilization (IVF).
In the case of IVF patients, most authors assessed
the implantation rate, rather than the rate of mis-
carriages and live births [34,89–91]. The rate of live
births after IVF with regard to the vaginal micro-
biome was estimated in one study only [92].

Zhang et al. [93] showed that the vaginal micro-
biome of non-pregnant women with a history of
recurrent miscarriages (n = 10) had a higher abun-
dance of Firmicutes and lower abundance of Acti-
nobacteria and Bacteroidetes compared to the
healthy women (n = 10) (samples were obtained by
vaginal swabs). Three taxa (Atopobium, Prevotella,
and Streptococcus) were significantly more abun-
dant in the patients with recurrent miscarriages,
while in the control group, the most abundant taxa
were Lactobacillus and Gardnerella. The limitation
of the study was a small number of patients in each
group. The stage of the cycle was not taken into
account during sampling. No exclusion criteria,
such as the history of immune and endocrine disor-
ders, as well as chromosomal abnormalities of the
fetus, were applied to the studied groups.

In another study of the vaginal microbiome, non-
pregnant women with a history of recurrent miscar-
riages (n = 16) were found to have a higher abundance
of Atopobium compared to healthy women (n = 20),
while Lactobacillus and Gardnerella were more abun-
dant in the healthy patients [94]. Samples were taken
by vaginal scraping. The advantage of this research
was that vaginal scraping allows the detection of intra-
cellular microorganisms. The limitation of the study
was the same as for the previously described one.

Moreno et al. [35] studied the uterine micro-
biome obtained by aspiration from the uterine cavi-
ties of 35 infertile women with receptive
endometrium before the IVF and investigated its
effect on the rates of embryo implantation, miscar-
riage, and live birth. The contamination of the sam-
ples by the vaginal and cervical microbiota was
avoided by using an outer sheath for the uterine
catheter and additional removal of cervical mucus
before the catheter extraction. It was found that
patients with the non-Lactobacillus-dominated
(n = 15) communities have fewer implantations,
ongoing pregnancies, and live births, than patients
with Lactobacillus-dominated communities (n = 17).
The occurrence of miscarriages was not significantly
different between the two groups. The strong point
of the research was preimplantation genetic testing
provided for all transplanted embryos, while its lim-
itations were the absence of exclusion criteria, such
as immune and endocrine disorders, and a small
number of patients with miscarriages (n = 5).

The same authors analyzed a larger cohort of
patients (n = 342) and showed a higher abundance
of Haemophilus and Staphylococcus and a lower
abundance of Lactobacillus spp. in the endometrial
fluid before IVF in patients with further clinical
miscarriages (n = 22) compared to those with live
births [95]. The advantage of the study was a large
number of samples; the limitations were the
absence of patient selection with the exclusion of
those with immune and endocrine disorders, as
well as the absence of preimplantation genetic test-
ing of embryos. A multicenter study using the
samples obtained in Asia, America, and Europe
might have its strong and weak points. It is
known that the normal microbiome in the first tri-
mester of pregnancy can differ depending on the
country [29–31], which makes study groups more
heterogeneous.

Fig. 2. Microbiome study design.
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The uterine microbiome of 92 infertile patients
before IVF was comprehensively studied by Kyono
et al. [96]. The endometrial fluid was collected using
an IVF catheter with a special shield. The cervix
was rinsed with an antiseptic solution to avoid bac-
terial contamination by the cervical microbiome.
Only half of the patients had Lactobacillus-
dominated uterine microbiomes; other abundant
bacteria were Atopobium, Bifidobacterium, Gard-
nerella, Megasphaera, Sneathia, Prevotella, Staphy-
lococcus, and Streptococcus. The rate of miscarriage
after a single vitrified-warmed blastocyst transfer
was not different between the Lactobacillus-
dominated (n = 56) and non-Lactobacillus-
dominated (n = 36) groups, including communities
that became Lactobacillus-dominated after the
treatment with probiotics and prebiotics. The limi-
tations of the study were a small number of sam-
ples in the miscarriage group (n = 8) and
comparing Lactobacillus-dominated group versus
non-Lactobacillus-dominated group instead of mis-
carriage versus ongoing pregnancy group. Other
causes of miscarriage were not excluded. The meth-
ods of microbiome analysis were not described.

In addition, the limitations of all three above-
mentioned IVF studies were the absence of compar-
ison with the healthy controls (for example, with
the male factor of infertility).

In the recent study by Vomstein et al. [97], the
endometrial microbiome was obtained by uterine
flushing through a sterile catheter in non-pregnant
patients with a history of recurrent pregnancy loss
(n = 20) and healthy controls, who had never been
pregnant (n = 10). The absence of the vaginal contam-
ination was proved by comparing the vaginal and
endometrial samples. In the control group at a taxa
level, the authors found a high abundance of Firmi-
cutes during the follicular phase with a further
increase along the next stages of the menstrual cycle.
Proteobacteria were also detected in high abundance
at the follicular phase but significantly decreased after
ovulation. In the recurrent miscarriages group, a high
abundance of Firmicutes during the follicular phase
and its significant increase during the luteal phase
were observed. This was accompanied by the expan-
sion of Proteobacteria during the luteal phase. At a
lower taxonomic level, the Lactobacilalles family was
more abundant in the control group compared to the
recurrent miscarriages group. The limitation of the
study was a small number of samples.

Microbiome in patients with ongoing pregnancies and

miscarriages

The second group were the studies on the female
reproductive tract microbiome in early pregnancy

and on the possibility of using the obtained data
for predicting early pregnancy loss with the help of
high-throughput sequencing and quantitative poly-
merase chain reaction (qPCR) as non-culturing
methods.

Nelson et al. [98] used qPCR to estimate the
presence and quantity of seven BV-associated bac-
teria (BVAB1, BVAB2, and BVAB3, Leptotrichia/
Sneathia spp., G. vaginalis, Mobiluncus spp., Megas-
phaera phylotype 1-like spp., and Atopobium spp.)
in the vaginal microbiome during ongoing preg-
nancy under 14 weeks of gestation. In total, 418
pregnant women were included in this study, and
74 experienced miscarriages. The presence and the
quantity of Lactobacillus spp. were not estimated in
this research. The vaginal samples were self-
collected by the patients using vaginal swabs. The
patients were divided into two groups: women with
miscarriages and women with ongoing pregnancies.
The authors found that the high concentration of
BVAB3 in the vagina increased the risk of miscar-
riages by 20%. The presence of Leptotrichia/Sneath-
ia or Megasphaera phylotype 1-like species had a
protective effect and decreased the risk of early
pregnancy loss. A 10-time increase in the content of
these bacteria decreased the risk of miscarriages by
20% and 19% accordingly. The authors created the
multivariate models that included maternal age, the
content of BVAB3, and the content of Leptotrichia/
Sneathia or Megasphaera phylotype 1-like species,
for miscarriage prediction. No sensitivity or speci-
ficity for this prediction model was provided. The
limitation of the study was using the PCR method
with a small number of detected species and self-
collection of samples, which therefore can be taken
from different parts of the vagina or even contami-
nated by the microbiota of the external genitalia.
Another disadvantage was that patients with
immune, endocrine, and genetic disorders were not
excluded. Chromosomal abnormalities of the fetus
were not detected. Primers and kits for amplifica-
tion, as well as the equipment used in the study,
were not described.

Xu et al. [99] compared the patients admitted to
an outpatient clinic with a missed abortion (n = 25)
with the patients with an ongoing pregnancy
(n = 25). The samples of the vaginal microbiome
were collected using vaginal swabs. The authors
estimated the diversity and amount of Lactobacillus
spp. by microscopy of the vaginal smears and com-
pared the obtained data with the results of 16 S
rRNA sequencing. According to the microscopy,
the patients with miscarriages had a lower amount
of Lactobacillus spp. and a higher bacterial diver-
sity compared to the control group. According to
the 16 S rRNA sequencing, no differences in the
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alfa and beta diversity (alpha diversity represents
the richness and diversity of the microbial commu-
nity; beta diversity represents the similarity of the
microbial composition between samples). A signifi-
cant difference was found in the relative abundance
of species of the Erysipelotrichia and Fusobacteriia
classes, Erysipelotrichaceae family, and genera Fine-
goldia, Coprococcus, and Roseburia. The concentra-
tions of IL-2 and IL-10 in the vaginal lavage fluid
were determined by ELISA to estimate the Th1/
Th2 ratio. The level of IL-2 (produced by Th1 lym-
phocytes) in the vaginal fluid and the IL2/IL10
ratio were increased, while the level of IL-10 (pro-
duced by Th2 lymphocytes) was decreased in the
miscarriage group compared to the patients with
ongoing pregnancies. However, the authors did not
assess the correlation between the levels of these
cytokines and the presence and abundance of bacte-
rial taxa or species. The limitation of the study was
a relatively small number of samples and the
absence of detection of chromosomal abnormalities
in the fetuses. The case group included only
patients with no adverse pregnancy history, which
also might have affected the results. The taxonomic
resolution by the V4 region of the 16 S rRNA gene,
used in this research, was poor. It was not men-
tioned, which group had a higher abundance of
these microorganisms.

Liu et al. [100] examined the patients with missed
abortions (n = 22), anembryonic pregnancies
(n = 13), as well as women with ongoing pregnancies
(n = 15) of the same gestational age. The vaginal
microbiome of women with missed abortions was
more diverse and had a higher content of Staphylo-
coccus, Escherichia/Shigella, Bacteroides, Halomonas,
Crenarchaeota, Bacillus, and Acetobacter and a lower
content of Lactobacillus than the microbiomes from
the other two groups. Representatives of the phylum
Thaumarchaeota (Archaea) were found in a number
of patients with miscarriages. The CSTs were signifi-
cantly different between the miscarriage group and
the other two groups, but not between the anembry-
onic pregnancy and ongoing pregnancy groups. The
authors developed a set of markers containing 12
operational taxonomic units that can be used for
predicting missed abortion. The advantage of the
study was comparison of the patients with missed
abortions and anembryonic pregnancy. The limita-
tions were a small number of patients in the groups,
no detection of fetal chromosomal abnormalities,
and the necessity of further larger studies for defin-
ing the markers’ sensitivity and specificity. The V4
region of the 16 S rRNA gene, which has poor reso-
lution, was used in this research.

In their comprehensive research, Al-Memar et al.
[101] analyzed vaginal microbiomes of 161 pregnant

women several times during the first trimester (5–8,
8–10, 10–14, and >14 weeks of gestation) using
16 S rRNA sequencing. Among these pregnancies,
64 resulted in the first trimester miscarriages, 14 –
in the second-trimester miscarriages, and 83 – in
the full-term labor. The samples were collected by
vaginal swabs. Patients with miscarriages in the first
trimester lacked the Lactobacillus spp.-dominated
microbiomes and had a higher proportion of CST
IV communities. This was independent of vaginal
bleeding and was reported before the miscarriage.
The patients with complete and incomplete miscar-
riages had a lower proportion of Lactobacillus spp.-
dominated communities and a higher proportion of
CST IV compared to the patients with missed abor-
tions. The strength of this research was a large
cohort of patients and multiple testing before the
miscarriage. The limitations were the absence of
exclusive criteria, such as endocrine, immune and
genetic disorders, as well as no testing for chromo-
somal abnormalities in the fetus.

In a recent study by Sun et al. [102], the vaginal
microbiomes of 50 patients with missed abortions
and 54 patients with ongoing pregnancies were ana-
lyzed. It was found that the vaginal microbiome in
the case group was more diverse than in the control
group. On the phylum level, the abundance of Fir-
micutes and Saccharibacteria was decreased, while
the abundance of Proteobacteria, Actinobacteria,
Chlamydiae, and Fusobacteria was increased in the
patients with missed abortions. On the species level,
the relative abundance of L. crispatus, L. jensenii,
L. gasseri, but not L. iners, was significantly lower
in the case group. Interestingly, Mycoplasma geni-
talium and Ureaplasma spp. were significantly lower
in the case group, while the content of Mycoplasma
hominis did not differ significantly from the control
group. In total, the authors found significant differ-
ences between 345 species, but the majority did not
exceed 1%. The limitation of the study was that
other causes of missed abortion, such as chromoso-
mal abnormalities of the fetus, endocrine abnormal-
ities, and autoimmune diseases, could not be
excluded completely.

To our knowledge, so far there is no comprehen-
sive research on the uterine microbiome in patients
with miscarriages compared to patients with ongo-
ing pregnancies, admitted for legal abortions.

DISCUSSION

Most studies on early miscarriages have been per-
formed using cell cultures [103,104]. However, it
has been proved that working with cell cultures
does not allow to fully assess the composition of
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the microbiome of the lower and upper parts of the
female reproductive tract [105], which requires the
use of other research methods, for example, high-
throughput sequencing of the 16 S rRNA.

The number of studies on the female reproduc-
tive tract microbiome in patients with miscarriages
is limited; moreover, these studies have different
designs. For example, studies on the vaginal micro-
biome use different sampling methods (vaginal
swab, vaginal scrapping) and different groups (mis-
carriages vs. ongoing pregnancies or patients with
Lactobacillus-dominated microbiome vs. non-
Lactobacillus-dominated). Some studies excluded
patients with immune and endocrine disorders and
fetal chromosomal abnormalities, while others did
not, which prevents the use of meta-analysis.

According to the results, ongoing pregnancy is
associated with the Lactobacillus-dominated vaginal
and uterine microbiome. Meanwhile, on a species
level, CSTs in normal early pregnancy can depend
on the ethnicity. Therefore, in each research, the
use of the control group is essential. In multicenter
studies, if the differences between control groups
from various regions of the world are significant,
such groups cannot be united into one control
group.

To our knowledge, the studies on the micro-
biome of cervical canal in patients with miscar-
riages are absent. It is known that certain bacterial
species (Chlamydia, Mycoplasma, Ureaplasma, N.
gonorrhoeae, etc.) can live only in the columnar
epithelium, and some of them persist only inside
the cells. The vagina is lined with the stratified
squamous epithelium. In our opinion, the micro-
biome of the columnar epithelium of the cervical
canal better reflects the condition of the endome-
trial columnar epithelium. It was shown earlier that
13 bacterial taxa are constantly present in the
endometrial tissue, but not in the endometrial fluid
[106].

Another issue is that some studies do not men-
tion the medium used for the sample collection and
the time when the samples were frozen. If the sam-
ples are collected in a special transport medium
used for microbial cultivation and not frozen imme-
diately, this may increase a relative abundance of
aerobic microorganisms (which are capable to grow
in such a medium) and decrease the abundance of
anaerobic microbes. Therefore, the microbial mate-
rial must be collected in special solutions for DNA
and RNA storage.

Moreover, none of the studies have assessed the
correlation between the clinical data (age, parity,
height, weight, body mass index, gestational age,
gynecological history), microbiome composition,
and local immunity.

CONCLUSION

The microbiome composition might influence many
aspects of miscarriage pathogenesis. Changes in the
microbiome can affect the local immune status, lead
to chronic endometritis due to the abundance of
non-Lactobacillus bacteria, and are associated with
thrombosis in patients with antiphospholipid syn-
drome and congenital thrombophilia.

There is a lack of clinical research on the role of
the reproductive tract microbiome in the pathogenesis
of early miscarriages. However, the most common
observation in the majority of such studies, irrespec-
tively whether pregnant or non-pregnant patients
have been examined, is a low abundance of Lacto-
bacillus spp. and the prevalence of non-Lactobacillus
species in both the vagina and the endometrium.

Studies of the cervical microbiome, including the
differences between the microbiomes of the cervical
mucus and cervical epithelium, are required. Unlike
the uterine microbiome samples, cervical micro-
biome can be sampled at any time, including ongo-
ing pregnancy, and therefore can be used for the
prognosis of miscarriages.

We also failed to find publications on the uterine
microbiome of patients with ongoing pregnancies
(e.g., admitted for abortion) and patients with mis-
carriages (missed abortions).

Further studies are needed to develop methods
for prognosis and prophylaxis of early miscarriages.
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