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Abstract: Sodium monofluorophosphate (Na2FPO3, MFP) is mainly used as an ingredient in fluoride-
based dentifrices as it has a high safety profile, with one-third of the toxicity of sodium fluoride
(NaF), as well as the ability to reach deep into the dentin. The purpose of this study was to assess the
prevention of dentin erosion by MFP upon exposure to citric acid, which has a chelating effect, and
to compare the effects to those of the conventional acidulated phosphate fluoride (APF) application
method. Bovine dentin was used, and four groups were created: (i) APF (9000 ppmF, pH 3.6) 4 min
group; (ii) acidulated phosphate MFP (AP-MFP, 9000 ppmF, pH 3.6) 4 min group; (iii) AP-MFP
2 min + APF 2 min (dual) group; and (iv) no fluoride application (control) group. Compared with
the conventional APF application method, the application of AP-MFP was shown to significantly
reduce substantial defects, mineral loss, and lesion depth; better maintain Vickers hardness; and
promote the homogenous aggregation of fine CaF2 particles to seal the dentin tubules, enhancing
acid resistance in their vicinity. The ∆Z value of the AP-MFP group was 2679 ± 290.2 vol% µm,
significantly smaller than the APF group’s 3806 ± 257.5 vol% µm (p < 0.01). Thus, AP-MFP-based
fluoride application could effectively suppress citric acid-induced demineralization and could become
a new, more powerful, and biologically safer professional-care method for preventing acid-induced
dentin erosion than the conventional method.

Keywords: dentin; erosion; fluoride; demineralization; preventive dentistry

1. Introduction

The recent worldwide surge in health consciousness has led to many alterations in
dietary habits, and one of the effects of this phenomenon is a prominent escalation of dental
erosion across a broad spectrum of age groups, from young to older individuals. This
can be attributed to various factors, such as a shift towards vegetarianism, the increase in
consumption of citrus fruits, and the habitual intake of beverages containing citric acid and
phosphoric acid [1,2]. Dental erosion is defined as the demineralization of teeth through
chemical processes unrelated to microbial activity [1]. Although several acids, including
lactic, phosphoric, acetic, and citric acids, have been implicated in dental erosion, it is well
established that the demineralization potential of citric acid, which possesses chelating
properties, is significantly higher than that of other acids [1–3]. Citric acid is predominantly
found in citrus fruits and is consumed frequently nowadays, and prolonged and habitual
intake of citrus fruits or citrus-based beverages is known to have the potential to lead to
severe dental erosion [3].

Furthermore, most edentulous older individuals over 65 years of age are reported to
have physiological or pathological gingival recession and therefore exposed root dentin in
the oral cavity [4]. Dentin has a higher collagen content than enamel, as well as a higher
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critical pH range (6.0–6.2), making it more susceptible than enamel to the detrimental
effects of acids [4]. Consequently, dentin erosion has a faster progression and wider extent
than that of enamel, emphasizing the need for its early and effective management in
clinical dentistry.

Although the primary preventive measure for dental erosion is the enhancement of the
acid resistance of the tooth structure through the application of fluoride, it is worth noting
that most previous studies evaluating the effectiveness of this approach have focused
on the enamel. As a result, there is limited evidence regarding the prevention of dentin
erosion [5], as well as valid concerns that these preventive measures may not provide
sufficient protection against it, particularly in cases of exposure to substantial acid levels
beyond the buffering capacity of saliva within a short period of time [5–7]. Toothpastes
containing fluoride have not proven effective in preventing erosion, and no significant
correlations were found between the type of toothbrush used and its frequency of use in
231 children [6]. Therefore, the development of preventive methods that specifically target
dentin erosion is urgently needed.

Monofluorophosphate sodium (MFP) is a fluoride compound primarily used as a
therapeutic ingredient in toothpastes formulated for self-care purposes [8]. No significant
differences in caries prevention efficacy have been observed between toothpastes containing
MFP and those containing sodium fluoride (NaF) [9]. Nevertheless, it has been established
that toothpastes containing MFP promote demineralization inhibition and remineralization
of both enamel and dentin [10]. One more advantage of MFP from the perspective of
clinical applications is its significantly low systemic toxicity, which can be attributed to its
containing fluoride ions in a complex state. According to a report published by White et al.
in 1983, the toxicity of MFP was approximately one-third that of NaF [11,12]. MFP is also
quite soluble and is reported to result in a three-fold higher fluorine ion concentration than
NaF when considering the molar mass of fluorine atoms in solution [12]. In the presence
of a substantial calcium ion concentration in solution, the fluoride ions of NaF readily
react to form calcium fluoride (CaF2), leading to a significant reduction in the fluoride ion
concentration in the tooth-surface microenvironment [13]. However, MFP is capable of
preserving the structure of the fluoride ion complex even in solutions containing calcium,
which can result in fluoride ion concentrations 70 times higher than those in solutions
with NaF [13]. Furthermore, a significant advantage of utilizing MFP in oral care products
and within the oral cavity is its property of not reacting with saliva or even with solutions
supersaturated with calcium ions [14]. Notably, when MFP reacts with tooth enamel,
it exhibits lower immediate effectiveness and inferior near-surface-layer (0–50 µm) acid
resistance compared to NaF [13]; however, due to differences in the mechanisms of action
of MFP and NaF, MFP has the potential to penetrate not only the surface layer but also the
deeper regions (50–300 µm) of the tooth enamel to form a thick and uniform acid-resistant
layer [12,15,16].

Nevertheless, despite having several advantages over NaF, the application of MFP
remains limited to self-care toothpastes with a maximum concentration of 1500 ppm [8].
However, by using MFP at higher concentrations, it would be possible to develop highly
biocompatible, professional-care tooth-surface application methods for preventing dental
erosion that can also effectively target the deeper dentin layer. The objective of this study
was to leverage the superior biocompatibility of MFP and its ability to impact the deeper
layers of the dentin in order to develop a novel strategy to prevent dental erosion. Specifi-
cally, we also aimed to evaluate its effectiveness in enhancing the resistance of the dentin to
citric acid by comparing it with conventional preventive treatment methods.

2. Materials and Methods
2.1. Preparation of Dentin Samples

A set of 36 bovine mandibular incisors was used in this study. Subsequently, dentin
samples (dimensions: 1 cm × 1 cm × 1 cm) were meticulously fashioned and subjected to
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a thorough polishing process using water-resistant abrasive paper (grit sizes: #1000, #2000,
and #4000), resulting in a mirror-like surface finish.

2.2. Fluoride Application and pH-Cycling Acid Challenge

The samples were divided into four groups: (1) control group (no fluoride application);
(2) acidulated phosphate fluoride (APF) (9000 ppmF, pH 3.6) 4 min group; (3) AP-MFP
solution (9000 ppmF, pH 3.6) 4 min group; and (4) AP-MFP 2 min + APF 2 min dual group
(n = 9 samples in each group). In order to establish both an experimental and control
window on the same surface, dental wax (Inlay Wax Soft, 27B2X00008000028; GC Co. Ltd.,
Tokyo, Japan) was applied to half of each mirror-polished dentin surface.

A pH-cycling test was subsequently performed using a Stefan curve-based protocol
as described by Matsuda et al. [17–19]. Each cycle consisted of exposure to a pH of 5.5 or
less (continuous pH change with a minimum pH of 4.0 due to citric acid demineralization
solution, average duration: 37 ± 5 min) and recovery to pH 7.3 (continuous pH change
from pH 5.5 to pH 7.3 with addition of remineralization solution, duration: 23 ± 3 min),
with the total average duration from the start of the cycle to the return to the initial pH
value of 7.3 being 60 ± 5 min. After fluoride application, all samples were immersed in a
remineralization solution (0.02 M HEPES buffer solution, Ca: 1.5 mM, P: 0.9 mM, pH 7.3,
degree of saturation: 5.5) for 1 h at 37 ◦C. After the remineralization treatment, samples
were immersed in a demineralization solution (0.1 M citric acid buffer solution, pH 4.5)
for 37 ± 5 min of pH cycling at 37 ◦C. Citrate buffer solution was prepared by mixing
6.72 g of citric acid (7447-40-7, Fujifilm wako, Osaka, Japan) and 4.41 g of sodium citrate
(68-04-2, Fujifilm wako, Osaka, Japan) in 1000 mL. HEPES buffer was composed of 0.1M
CaCl2 (10043-52-4, Fujifilm wako, Osaka, Japan) 15 mL, 0.1M KH2PO4 (7778-77-0, Fujifilm
wako, Osaka, Japan) 9 mL, KCl (7447-40-7, Fujifilm wako, Osaka, Japan) 9.69 g, and HEPES
(7365-45-9, Fujifilm wako, Osaka, Japan) 4.77 g, mixed up to 1000 mL and adjusted to pH
7.3. Each cycle (fluoride application, remineralization, and demineralization treatment)
was repeated ten times.

2.3. Three-Dimensional Laser Microscopy

After wax removal, the samples were dehydrated using an ascending ethanol series.
For evaluating the differences in step height profile between the experimental surface
(ES) and reference surface (RS) following the pH-cycling procedure, a three-dimensional
(3D) measurement laser microscope (LEXT OLS4000; Olympus Corp., Tokyo, Japan) was
employed. Tooth defects resulting from the acid challenge within a 645 µm × 645 µm area
were assessed, with photographs taken at the boundary between the acid-demineralized ES
and wax-protected RS. The samples were also analyzed to determine the average roughness
(Sa) of the ES in the 645 µm × 645 µm area. Wavelengths >80 µm were excluded from the
cross-sectional curve to obtain the roughness curve. The number of substantial defects and
Sa were measured at five distinct points per sample at the boundary between the ES and
RS, and the mean and standard deviation (SD) values were calculated.

2.4. Vickers Hardness Measurement

After dehydration, the Vickers hardness of the samples was measured using a hardness
tester (HMV-1; Shimadzu Corp., Tokyo, Japan) and an indentation load and time of 0.49 N
and 20 s, respectively. To account for individual sample differences, the change in hardness
before and after the experiment (∆HV = RS hardness − ES hardness) was calculated.
Vickers hardness and ∆H values were recorded at five locations per sample, and the mean
and SD values were calculated.

2.5. Cross-Sectional Morphology Assessment Using Scanning Electron Microscopy (SEM)

Following pH cycling, the surface of each sample was rinsed with xylene and then
subjected to carbon vapor deposition. Thereafter, the tooth surfaces were examined using
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a scanning electron microscope (SU6600; HITACHI Ltd., Tokyo, Japan) at an accelerating
voltage of 15 kV.

2.6. Contact Microradiography (CMR)

The imaging conditions and analysis methodology employed in this study were based
on those used in a previous study by Sato et al., with reference to Angmar’s formula [20,21].
To prepare polished, 100 µm thick sections, the samples were embedded in a polyester resin
(Rigolac; Nisshin EM, Tokyo, Japan). Soft X-ray imaging was conducted using a 20 µm
Ni filter, while light microscopy at 200× magnification was performed using a glass plate
(High Precision Photo Plate, HRP-SN-2; Konica Minolta, Tokyo, Japan). The following
parameters were used for imaging using the CMR-3 system (Softex, Tokyo, Japan): tube
voltage, 15 kV; tube current, 3 mA; radiation time, 8 min. Subsequently, the acquired images
were analyzed using the Image Pro Plus software (version 6.2; Media Cybernetics Inc.,
Silver Spring, MD, USA) and an image analysis system (HC-2500/OL; OLYMPUS Corp.,
Tokyo, Japan) to obtain the concentration profiles. Mineral loss (∆Z) and lesion depth (Ld)
were determined to compare the extent of demineralization. The values were converted
to a histogram with a mineral value of 0% and a healthy enamel section of 100%. Ld was
defined as the distance from the enamel surface to the location of a lesion where the mineral
content was greater than 95% of that in the sound enamel. To calculate the ∆Z value for
each specimen from the profiles, the area under the curve was subtracted from the assumed
area of the sound enamel before demineralization.

2.7. Statistical Analysis

The statistical significance of the results was determined using Kruskal–Wallis one-way
analysis of variance (threshold value, p < 0.01). The Bonferroni test was used for subsequent
post hoc comparisons. The Origin 2023 software (Lightstone Corp., Tokyo, Japan) was used
for data analysis and graph generation.

3. Results
3.1. Step Height Profiles after pH Cycling

Figure 1 depicts the surface profile measurements obtained using 3D laser microscopy
after pH cycling. In Figure 1a–d, the RS, which was not demineralized and was protected
using wax, can be seen on the left, whereas the demineralized ES can be seen on the right.
In the control group, the ES was significantly demineralized (mean defect size on the dentin
surface: 23.157 ± 2.290 µm; Figure 1a,e). In the APF group, the difference in height between
the RS and ES was much lower (7.531 ± 1.885 µm), and there was a significant inhibition of
demineralization compared with that in the control group (p < 0.001) (Figure 1b,e). The
AP-MFP group had an even smaller height difference (7.482 ± 0.941 µm) compared with
that in the APF group. Among the four groups, the extent of dentin demineralization
was the lowest in the AP-MFP group (Figure 1c,e). The difference in the dual group was
8.356 ± 1.065 µm, which was significantly more than those in the APF and AP-MFP groups
(Figure 1d,e). There were no significant differences among the APF, AP-MFP, and dual
groups (p > 0.05, Figure 1e).

3.2. Calculated Average Roughness after pH Cycling

The calculated average roughness results are presented in Figure 2, with the mean
values indicated using gray squares, the medians as horizontal lines, the lower quartiles
as the lower limits, and the upper quartiles as the upper limits. Significant irregularities
on the dentin surface were observed in the control group (mean Sa: 0.295 ± 0.021 µm,
median: 0.295 µm [0.283–0.312]), and there were significant differences between the control
group and other groups (p < 0.001). The Sa value was highest in the AP-MFP group (mean:
0.381 ± 0.027 µm, median: 0.383 µm [0.351–0.409]); however, no significant difference was
observed compared with that in the APF group (mean: 0.339 ± 0.038 µm, median: 0.334 µm
[0.310–0.377]; p > 0.05). The Sa value was lowest in the dual group (mean: 0.250 ± 0.016 µm,
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median: 0.247 µm [0.236–0.267]) and was significantly different from those in all the other
groups (p < 0.001).
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Figure 1. Step height profiles measured using 3D laser microscopy. Boundary images of the reference
and experimental surfaces (RS and ES, respectively) after pH cycling in the (a) control (no fluoride),
(b) APF, (c) AP-MFP, and (d) dual groups. In panels (a–d), the RS, which was protected using wax
and was therefore not demineralized, is seen on the left, and the ES, which was not protected and
was therefore demineralized, is seen on the right. (e) Graphical representation of the defect sizes after
demineralization. n = 9 per group; * p < 0.001.

3.3. Vickers Hardness and Changes after pH Cycling

Figure 3a shows the results of the Vickers hardness analysis for the demineralized
surfaces in each experimental group. The mean Vickers hardness value in the control
group was 19.889 ± 2.004 (median: 20.713 [18.654–21.936]), which was the lowest among
all the groups. The Vickers hardness was higher in the APF group compared with that in
the control group (mean: 28.397 ± 1.707, median: 28.342 [26.801–29.333]), and significant
differences were observed compared with those in the other groups as well (p < 0.01).
The Vickers hardness was highest in the AP-MFP group (mean: 33.041 ± 2.123, median:
33.224 [30.811–35.124]), and there was a significant difference between the APF and AP-
MFP groups (p < 0.01). The hardness in the dual group was similar to that in the AP-MFP
group (mean: 32.736 ± 1.617, median: 32.729 [31.476–33.989]), with no significant difference
between the two (p > 0.05).

Figure 3b shows the delta HV data, which indicate the changes in Vickers hardness
before and after pH cycling. The mean change in Vickers hardness was highest in the
control group (25.538 ± 5.771, median: 23.299 [21.786–28.328]), and it was significantly
different compared with the changes in the other groups (p < 0.01). The mean value
in the APF group was 15.308 ± 2.315 (median: 14.781 [14.011–16.811]), demonstrating
a significant decrease compared with that in the control group. The smallest change in
Vickers hardness was observed in the AP-MFP group (mean: 10.050 ± 2.971, median:
9.557 [7.969–12.685]). However, there was no significant difference between the AP-MFP
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and APF group values. The change in the dual group was similar to that in the AP-MFP
group (mean: 11.665 ± 2.949, median: 11.734 [9.194–14.342]), with no significant difference
between the two (p > 0.05).
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3.4. Dentin Surface SEM Observations after pH Cycling

Representative SEM images of the demineralized dentin surface after pH cycling are
shown in Figure 4. The control group exhibited an expansion of the dentinal tubule orifices
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due to demineralization by citric acid; moreover, no particle formation was observed
in the surrounding dentin tubes and dentin matrix (Figure 4a,e). Partial closure of the
dentinal tubules and aggregates of particulate matter within the tubules were observed
in the APF group (Figure 4b,f). Additionally, fine spherical particles could be observed
adhering to the surface of the dentin surrounding the tubules (Figure 4f). The AP-MFP
group exhibited findings similar to the APF group, with closure of the tubular orifices and
the presence of fine particles adhering to the surface; however, the particles observed were
noticeably distinct, as spherical particles of a larger diameter were identified (Figure 4c,g).
When observed at high magnification, these particles appeared as secondary aggregates
composed of finer particles and were found not only in the surrounding dentin tubes but
also penetrating into the tube interior (Figure 4g). The dual group exhibited a smooth
texture with few overall irregularities, and, as in the APF group, fine adherent particles
were observed (Figure 4d,h). The closure of tubule orifices was almost complete, and a
few large secondary particles, as observed in the AP-MFP group, were found in the dentin
tubules (Figure 4h).
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3.5. Cross-Sectional SEM Imaging after pH Cycling

Representative reflected electron microscopy images of the cross-sectioned deminer-
alized regions after pH cycling are shown in Figure 5. In the control group, a region
with decreased signal intensity, indicative of a reduction in dental calcium density, was
observed approximately 15–20 µm from the surface due to demineralization by citric acid
(Figure 5a,e). Lateral expansion of dentin tubules was also observed in the area affected
by surface demineralization (Figure 5e). In the APF group, a gradual decrease in signal
intensity was observed approximately 20–30 µm from the surface, creating a gradient-like
pattern (Figure 5b,f). Notably, a significant decrease in signal intensity was observed
localized around the dentinal tubules, indicating progressive demineralization centered
around the tubules (Figure 5f). The overall signal intensity in the APF group was higher
compared with that in the control group, although there was a recovery of signal intensity
in the superficial 2–5 µm deep layer (Figure 5f). In the AP-MFP group, the decreased signal
intensity was localized to the superficial 5–10 µm, in contrast to that in the other groups,
and the signal intensity beyond 10 µm remained uniform (Figure 5c,g). Particles were ob-
served within the dentinal tubules, causing their closure, and no demineralization pattern
was observed around the tubules (Figure 5g). The dual group exhibited a gradient-like
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decrease in signal intensity at 20–30 µm from the surface, similar to that in the APF group
(Figure 5d,h). Under 5000-fold magnification, a reduction in signal intensity around the
dentinal tubules and a lateral expansion of the tubules themselves were observed in the
dual group, with the decreased signal intensity extending along the tubules (Figure 5h).
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3.6. Measurement of Mineral Loss and Lesion Depths Using CMR Analysis

Figure 6 shows CMR images of dentin cross-section after pH cycling and the variations
in mineral content (vol% µm) with respect to depth in each group. In the control group, a
region with low signal intensity was observed in the surface layer of the dentin at a depth
of 25–35 µm, and a rise in the curve was observed at around 30 µm (Figure 6a,e). In the
APF group, the rise in the curve was at a shallower depth (20–25 µm from the surface of
the tooth) compared with that in the control group (Figure 6b,e). In the AP-MFP group,
the mineral content was over 80% in the 20–25 µm depth range, with the content at the
shallowest depth being the highest among the four groups (Figure 6c,e). The mineral loss
characteristics in the dual group were similar to those in the APF group, with the graph
rising shallower than in the APF group but with a lower slope (Figure 6d,e).

Figure 7 shows the mineral loss (∆Z, vol% µm) and lesion depth (Ld, µm) values in each
group as assessed using CMR. The ∆Z value in the control group was 5985 ± 319.9 vol% µm,
which was significantly greater than those in all the other groups (p < 0.01, Figure 7a). The
APF group showed a reduction in the ∆Z value to approximately two-thirds of that in the
control group, with a value of 3806 ± 257.5 vol% µm. The AP-MFP group had the lowest ∆Z
value (2679 ± 290.2 vol% µm), approximately half of that in the control group. A significant
difference was observed between the APF and AP-MFP groups (p < 0.01; Figure 7a). The
value in the dual group was similar to that in the APF group (3772 ± 376.1 vol% µm). The
difference between the AP-MFP and dual groups was significant (p < 0.01).
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prior to the demineralization experiment up to a site with 95% healthy dentin.

The Ld value was largest in the control group (52.17 ± 9.548 µm), with significant
differences observed between the values in the control, APF, AP-MFP, and dual groups
(p < 0.01, Figure 7b). The Ld value decreased to 36.66 ± 3.572 µm in the APF group
and to 24.46 ± 3.562 µm in the AP-MFP group. A significant difference was observed
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between the APF and AP-MFP groups (p < 0.01; Figure 7b). The value in the dual group
(36.44 ± 3.713 µm) was similar to that in the APF group and was significantly different
compared with that in the AP-MFP group (p < 0.01).

4. Discussion
4.1. Resistance of Dentin to Citric Acid after AP-MFP Treatment

A substantial reduction in dentin loss was observed in the AP-MFP and dual groups,
similar to that in the conventional APF group, after citric acid demineralization (Figure 1).
These findings align with previous research indicating the capacity of MFP to enhance the
acid resistance of hydroxyapatite (HAP) and dentin, as well as with the results of a study
that used surface application of AP-MFP to enamel at a concentration of 9000 ppmF [13,22,23].
APF application reduced enamel loss to a more significant extent than AP-MFP application;
however, there was no difference in dentin loss between the AP-MFP and APF groups in
this study [23]. This suggests that the improvement in acid resistance achieved by AP-
MFP may be higher in dentin than in enamel. Compared to enamel, dentin has a porous
structure characterized by the presence of tubules and a higher proportion of collagen, and this
composition offers several advantages in terms of ion permeability and reaction kinetics [4,24].
These characteristics of dentin structure and composition may explain why AP-MFP showed
a higher demineralization inhibitory effect on dentin than on enamel. Previous studies
comparing the effects of APF solutions on enamel and dentin also showed that fluoride
application on dentin is more effective than on enamel [4]. Taken together, all these results
suggest that AP-MFP, similar to APF, effectively inhibits dentin demineralization.

The calculated average roughness increased in both the APF and AP-MFP groups
compared with that in the control group, with only the dual group showing a significant
decrease (Figure 2). The surface SEM analysis revealed the partial closure of the dentin
tubules in the APF group, whereas the closure of the dentin tubule orifices and the presence
of secondary particles formed by the aggregation of fine particles were observed in the
AP-MFP group (Figure 4c,g). The overall surface texture was smoother and less rough in
the dual group (Figure 4h). When the APF solution was applied to dentin, a rapid reaction
occurred between fluoride ions and the calcium ions in the tooth structure, forming particles
within the surface layer of the tooth and inside the dentin tubules [25–27]. Moreover, surface
SEM images showed abundant formation of CaF2 particles in the APF, AP-MFP, and dual
groups (Figure 4). The increased surface roughness in the APF and AP-MFP groups in this
study may have been due to both dentin dissolution by citric acid demineralization and
the formation of CaF2 particles. In particular, the formation of many secondary particles
larger than the expected size of CaF2 particles was observed in the AP-MFP group, which
may have caused the surface roughness in the AP-MFP group to be higher than in the APF
group (Figures 2 and 4). It has been shown that APF is superior to AP-MFP in terms of
dentine acid resistance in the surface layer of enamel (at 5–10 µm) [23,28]. The surface
roughness results in this study may indicate that APF is superior to AP-MFP in terms of
acid resistance in the surface layers of dentin and enamel.

CaF2 particles were observed to be smaller in the dual group than in the APF group,
whereas the number of secondary particles was lower than that in the AP-MFP group
(Figure 4). It has been shown that CaF2 particle formation and diameter are influenced
by fluoride ion concentration and reaction time [25–27]. The dual group had a short APF
reaction time of 2 min, which may have resulted in the formation of fewer CaF2 particles.
Additionally, the AP-MFP group reaction time of 2 min was also insufficient, which is likely
to have resulted in the formation of fewer secondary particles. It is speculated that, owing to
the deficiency of CaF2 particles, most of the particles in the dual group were demineralized
after citric acid treatment and did not remain on the surface, thereby reducing surface
roughness (Figure 2).

In this study, we conducted a qualitative assessment of acid resistance based on Vick-
ers hardness and cross-sectional SEM observations, as well as a quantitative assessment of
mineral loss (∆Z) and lesion depth (Ld) using CMR (Figures 3–7). The Vickers hardness
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was highest in the AP-MFP group and was significantly higher than that in the APF group
(p < 0.01, Figure 3a). Vickers hardness is used as a measure of the degree of internal struc-
tural damage to dental tissue and is reduced when this internal tooth structure is disrupted,
for example, by acids [29]. The extent of the decrease in signal intensity in demineralized
areas in the cross-sectional SEM images was smaller in the AP-MFP group than in the APF
group, providing supporting evidence for the Vickers hardness results (Figures 3 and 5).
In the AP-MFP group, lateral expansion of the dentinal tubules and demineralization in
their vicinity were observed, in contrast to the findings in the dual group. However, no
demineralization was observed around the tubules in the AP-MFP group, and the extent
and depth of demineralization were smaller and shallower, respectively (Figure 5g,h). The
enhanced acid resistance in the deeper layers of dental tissue observed in the AP-MFP
group is consistent with the findings of MFP permeating the dental tissue and forming an
acid-resistant layer at a depth of 100–300 µm [14,28]. The significant inhibitory effect of
AP-MFP on demineralization was also quantitatively supported by both ∆Z and Ld values,
as these were lowest in the AP-MFP group and showed significant differences compared
to those in the APF and dual groups (p < 0.01, Figure 7). A study comparing the acid
resistance of HAP treated with NaF and MFP at the same concentration demonstrated that
the MFP treatment resulted in higher acid resistance than the NaF treatment [15]. Therefore,
the results of previous studies and the present study suggest that applying AP-MFP to the
tooth surface improves the acid resistance of dentin and inhibits citric acid demineralization
better than the conventional APF method.

The main difference between the AP-MFP and dual groups lies in the presence of
APF and the reaction time of the solution application. In the AP-MFP group, a single
fluoride agent was applied for 4 min, whereas in the dual group, two fluoride agents were
applied for 2 min each. Therefore, it was necessary to consider whether the reaction times
of APF and AP-MFP were sufficient for each of the dual group results. The recommended
reaction time for the APF solution with regard to tooth surface application in dental practice
is 4 min [30,31], and fluoride uptake improves with increasing application time, with a
4 min application resulting in approximately 1.2 times the fluoride uptake of a 1 min
application [32]. Bruun et al. reported that, based on the amount of CaF2 formed, the
reaction between NaF and enamel reached a plateau in approximately 1 to 1.5 min [31].
Additionally, Nishida et al. reported that there was approximately 80–90% fluoride ion
uptake in dentin (10–200 µm) within 1 min compared to 4 min of application [30]. Therefore,
it can be predicted that a 2 min application is sufficient for APF to provide adequate acid
resistance. However, there have been no reports on the application time or fluoride ion
uptake of MFP at a concentration of 9000 ppmF. APF exhibits immediate effectiveness
owing to the formation of CaF2 shortly after application [31]. In contrast, the mechanism by
which MFP results in acid resistance involves the penetration of the dental tissue by MFP
ions, which results in a relatively slower onset of action than that of APF [15,16]. Therefore,
it is possible that the 2 min application time of AP-MFP in the dual group was insufficient
to provide an adequate effect, as it may not have allowed enough time for an optimal action
to occur. Indeed, it can be inferred that the longer MFP application time in the AP-MFP
group compared to that in the dual group is the reason why the AP-MFP had improved
acid resistance in dentin. The dual group was designed with the expectation of harnessing
the effects of APF and AP-MFP through a combined application. However, it is believed
that the anticipated effects were not achieved because of insufficient AP-MFP application
time on the dental surface in the dual group. This study revealed that the effectiveness of
AP-MFP, similar to that of APF, is also dependent on application time. The application time
of AP-MFP was set to 4 min to align with the conventional method. However, whether
4 min is the optimal application time for AP-MFP requires further investigation in future
studies to establish a clearer understanding.
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4.2. Dentin Acid Resistance Mechanism of AP-MFP

In the case of tooth-surface coating using a high NaF concentration, a complex dis-
solution reaction occurs between HAP and fluoride, resulting in the deposition of CaF2
and CaF2-like deposits (weakly bound fluorides) on the tooth surface [33,34]. When the
pH of the oral cavity decreases, CaF2 acts as a reservoir, gradually releasing low concen-
trations of fluoride ions, thereby improving the acid resistance of dental tissue [33,34]. In
acidic environments, NaF forms an intermediate product known as dicalcium phosphate
dihydrate (CaHPO4·2H2O), which effectively facilitates the incorporation of fluoride ions
into HAP [35]. It has been reported that AP-MFP, similar to NaF, may have mechanisms
that promote fluoride ion uptake into enamel in acidic environments [23]. Two hypotheses
have been proposed regarding the mechanism by which MFP enhances acid resistance in
the dentin when applied to the dental surface. The first hypothesis suggests that MFP is
hydrolyzed by phosphatases in the oral cavity, leading to the release of fluoride ions, which
then exhibit mechanisms of action similar to those of NaF [36,37]. The second hypothesis
proposes that PO3F2− ions replace HPO4

2− in HAP [15,16]. Both hypotheses provide
potential explanations for the mechanism of acid resistance improvement in dentin through
the dental surface application of AP-MFP. No plaque or saliva samples were used in the
present study. However, it is highly probable that phosphatases remain within the dentinal
tubules and residual collagen. Therefore, it is likely that the acid resistance enhancements
described in both hypotheses were observed in this experimental system.

There are multiple reports regarding the substances generated on the surface of dentin
through the application of MFP. Tanizawa et al. reported the formation of CaF2 and CaPO3F
on HAP surfaces using electron spectroscopy for chemical analysis following the appli-
cation of a high concentration of MFP (10,000 ppmF) [13]. Yamagishi et al. hypothesized
the formation of MFP-Ca salts with lower aqueous solubility and the generation of MFP-
modified HAP, suggesting their presence in addition to that of CaF2 [14]. In the surface
SEM images obtained in this study, large-diameter secondary particles were observed
in both the AP-MFP and dual groups (Figure 4). Although no previous studies have
reported similar findings regarding these secondary particles, their presence was consis-
tently observed in all samples from both groups. The particle size and amount of CaF2
formed after fluoride application increase depending on the fluoride ion concentration
and the reaction time [25–27]. The presence of MFP enhances the formation reaction of
CaF2 and promotes the generation of fluorapatite, thereby improving acid resistance and
remineralization [28,38,39]. Due to Van der Waals forces, smaller particles tend to aggregate
because of their high surface energy and instability [40]. Therefore, it is possible that
the fine CaF2 particles generated through reaction enhancement by MFP in the AP-MFP
and dual groups underwent homocoagulation. This hypothesis was supported by the
SEM images from the AP-MFP group, which revealed that the surfaces of the secondary
particles consisted of aggregates of smaller particles (Figure 4g). The presence of larger
secondary particles, observed exclusively in the AP-MFP-treated group, implies that the
CaF2 formation reaction was facilitated by MFP, leading to homogenous aggregation and
subsequent particle growth.

4.3. Limitations of Research Methods and Prospects for Clinical Dentistry

In this study, the efficacy of AP-MFP was experimentally tested using citric acid,
which possesses chelating properties and poses a high risk of dental erosion. However,
it should be noted that various acids, such as phosphoric acid, acetic acid, hydrochloric
acid, and oxalic acid, are known to contribute to dental erosion. Additionally, their disso-
ciation constants, pH levels, and factors such as dietary or occupational sources can vary
significantly [1,2]. Therefore, it is necessary to elucidate the ability of AP-MFP to induce
dentin resistance to these other acids as well. Furthermore, it should be noted that this
study was conducted in an in vitro setting in the absence of saliva and plaque, which may
lead to different characteristics in the actual oral environment where saliva proteins and
enzymes are abundant. Therefore, further investigations are also warranted to assess the
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oral stability of AP-MFP in the presence of MFP-degrading enzymes. Future experiments
should be conducted with human teeth. Considering the higher biocompatibility of MFP
compared to that of NaF in dental clinical practice, AP-MFP is believed to be particularly
effective for pediatric patients with a higher fluoride uptake requirement and oral condi-
tions necessitating fluoride ion penetration into the deep layers of dentin, such as white
spot lesions. In this study, the application time was set to 4 min based on the conventional
method. However, to enhance the effectiveness of the relatively slow-acting MFP, it may
be preferable to extend the application time beyond 4 min or apply it in the form of a
high-viscosity gel to allow continuous and prolonged contact with the tooth surface. Thus,
the appropriate application time and formulation characteristics of AP-MFP will also need
to be determined in future studies.

5. Conclusions

The application of AP-MFP was shown to significantly reduce substantial defects, ∆Z,
and Ld and maintain Vickers hardness compared with the conventional APF application
method, as well as to improve acid resistance both qualitatively and quantitatively. Further-
more, AP-MFP promoted the formation of CaF2, leading to the homogenous aggregation
of fine particles on the surface of the dentin, sealing dentin tubules, and enhancing acid re-
sistance in their vicinity. These results indicate that the AP-MFP-based fluoride application
method suppresses the demineralization caused by citric acid and could emerge as a new
professional-care method for preventing acid-induced erosion that is more powerful and
biologically safer than the conventional method.
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