
Journal of Cybersecurity Education, Research and Practice Journal of Cybersecurity Education, Research and Practice

Volume 2024 Number 1 Article 12

12-11-2023

Turnstile File Transfer: A Unidirectional System for Medium-Turnstile File Transfer: A Unidirectional System for Medium-

Security Isolated Clusters Security Isolated Clusters

Mark Monnin
mark.monnin@maine.edu

Lori L. Sussman
University of Southern Maine, lori.sussman@maine.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/jcerp

 Part of the Information Security Commons, Management Information Systems Commons, Other

Computer Engineering Commons, and the Technology and Innovation Commons

Recommended Citation Recommended Citation
Monnin, Mark and Sussman, Lori L. (2023) "Turnstile File Transfer: A Unidirectional System for Medium-
Security Isolated Clusters," Journal of Cybersecurity Education, Research and Practice: Vol. 2024: No. 1,
Article 12.
DOI: 10.32727/8.2023.36
Available at: https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12

This Article is brought to you for free and open access by the Active Journals at DigitalCommons@Kennesaw State
University. It has been accepted for inclusion in Journal of Cybersecurity Education, Research and Practice by an
authorized editor of DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/jcerp
https://digitalcommons.kennesaw.edu/jcerp/vol2024
https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1
https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12
https://digitalcommons.kennesaw.edu/jcerp?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2024%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2024%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2024%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2024%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2024%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2024%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2024%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Turnstile File Transfer: A Unidirectional System for Medium-Security Isolated Turnstile File Transfer: A Unidirectional System for Medium-Security Isolated
Clusters Clusters

Abstract Abstract
Data transfer between isolated clusters is imperative for cybersecurity education, research, and testing.
Such techniques facilitate hands-on cybersecurity learning in isolated clusters, allow cybersecurity
students to practice with various hacking tools, and develop professional cybersecurity technical skills.
Educators often use these remote learning environments for research as well. Researchers and students
use these isolated environments to test sophisticated hardware, software, and procedures using full-
fledged operating systems, networks, and applications. Virus and malware researchers may wish to
release suspected malicious software in a controlled environment to observe their behavior better or gain
the information needed to assist their reverse engineering processes. The isolation prevents harm to
networked systems. However, there are times when the data is required to move in such quantities or
speeds that it makes downloading onto an intermediate device untenable. This study proposes a novel
turnstile model, a mechanism for one-way file transfer from one enterprise system to another without
allowing data leakage. This system protects data integrity and security by connecting the isolated
environment to the external network via a locked-down interconnection. Using medium-security isolated
clusters, the researchers successfully developed a unidirectional file transfer system that acts as a one-
way “turnstile” for secure file transfer between systems not connected to the internet or other external
networks. The Turnstile system (source code available at github.com/monnin/turnstile) provides
unidirectional file transfer between two computer systems. The solution enabled data to be transferred
from a source system to a destination system without allowing any data to be transferred back in the
opposite direction. The researchers found an automated process of transferring external files to isolated
clusters optimized the transfer speed of external files to isolated clusters using Linux distributions and
commands.

Keywords Keywords
file transfer, asynchronous file transfer, transport processes, file servers, isolated clusters, file systems

This article is available in Journal of Cybersecurity Education, Research and Practice:
https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12

https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12

Turnstile File Transfer: A Unidirectional System for

Medium-Security Isolated Clusters

Mark Monnin

Department of Technology

University of Southern

Maine

Portland, Maine

https://orcid.org/0009-0003-

7365-8882

Lori L. Sussman

Department of Technology

University of Southern

Maine

Portland, Maine

https://orcid.org/0000-0003-

3667-0340

Abstract

Data transfer between isolated clusters is imperative for

cybersecurity education, research, and testing. Such techniques

facilitate hands-on cybersecurity learning in isolated clusters, allow

cybersecurity students to practice with various hacking tools, and

develop professional cybersecurity technical skills. Educators often

use these remote learning environments for research as well.

Researchers and students use these isolated environments to test

sophisticated hardware, software, and procedures using full-fledged

operating systems, networks, and applications. Virus and malware

researchers may wish to release suspected malicious software in a

controlled environment to observe their behavior better or gain the

information needed to assist their reverse engineering processes.

The isolation prevents harm to networked systems. However, there

are times when the data is required to move in such quantities or

speeds that it makes downloading onto an intermediate device

untenable. This study proposes a novel turnstile model, a mechanism

for one-way file transfer from one enterprise system to another

without allowing data leakage. This system protects data integrity

and security by connecting the isolated environment to the external

network via a locked-down interconnection. Using medium-security

isolated clusters, the researchers successfully developed a

unidirectional file transfer system that acts as a one-way “turnstile”

for secure file transfer between systems not connected to the internet

or other external networks. The Turnstile system (source code

available at github.com/monnin/turnstile) provides unidirectional

file transfer between two computer systems. The solution enabled

data to be transferred from a source system to a destination system

without allowing any data to be transferred back in the opposite

direction. The researchers found an automated process of

transferring external files to isolated clusters optimized the transfer

speed of external files to isolated clusters using Linux distributions

and commands.

Keywords Secure file transfer, secure asynchronous file transfer,

secure transport processes, secure file servers, isolated clusters,

securing file systems

I. INTRODUCTION

Cybersecurity educators and researchers urgently require
advanced isolated clusters for essential lab work and critical
investigations, where students can safely develop vital
technical skills using various hacking tools. These isolated
environments are crucial for probing high-risk malware and
testing potentially dangerous hardware and software,

simulating realistic network systems without external risks.
However, the pressing challenge arises in transferring large
volumes of data or at high speeds, where traditional methods
falter, underscoring an immediate need for innovative solutions
to maintain the continuity and effectiveness of these vital
cybersecurity operations.

Such is the situation when performing cluster maintenance.
Practitioners create these environments using
hypervisor/virtual machine solutions such as VMware vSphere,
Linux KVM, and Xen [1]. These clusters contain multiple
virtual systems within a virtualization platform and may have
dozens to thousands of interconnected virtual systems. By
design, these isolated clusters do not have direct access to any
outside network, including the commodity Internet.
Additionally, networks within these systems only communicate
with other networks within the environment and do not extend
outside the domain. This isolation aims to prevent any activity
within the environment from affecting systems outside the
cluster. For example, malware released within the isolated
cluster cannot infect computer systems outside.

Transferring external files into these groups is necessary for
the environment's users and the overall cluster's administration.
While some of these isolated clusters have internal, complex
simulations of the Internet, by design, this does not provide a
method to move data from Internet sites into the isolated
environment. This study proposes a novel turnstile model, a
mechanism for one-way file transfer from one enterprise system
to another. This system protects data integrity and security by
connecting the isolated environment to the external network via
a locked-down interconnection. This research shows a more
reliable file transfer approach that eliminates system states with
mixed versions.

This research focused on solutions for medium-security
clusters. High-security clusters like air-gapped systems would
only permit users to transfer files with a highly controlled,
human-centric, manual process. At the other end of the
spectrum are low-security systems. A simple firewall with
restrictive traffic rules in these systems might provide a
sufficient balance between protection and access. However,
many medium-security systems exist where any external

1

Monnin and Sussman: Turnstile File Transfer

Published by DigitalCommons@Kennesaw State University, 2023

https://orcid.org/0009-0003-7365-8882
https://orcid.org/0009-0003-7365-8882
https://orcid.org/0000-0003-3667-0340
https://orcid.org/0000-0003-3667-0340

network-oriented connection is not warranted, but users desire
an automated approach to file transfer [2].

II. BEST PRACTICES FOR TRANSFERRING LARGE EXTERNAL

FILES

Transferring data and software between your workstation
and a remote computer is standard for scientific workflows.
Sometimes, these files are enormous but still should be
transmitted securely. Data transfers between cloud storage and
computing facilities are becoming increasingly common. There
are several utilities available to help accomplish these essential
tasks.

According to reference [3], transferring external files into
isolated clusters generally involves:

1) Identify the location of the external files that you want
to transfer. Destination examples include files stored
on a local machine, a network share, a cloud storage
service, or another location.

2) Determine the method of transfer. Depending on the
source and destination of the files, you may need to use
different transfer methods. For example, if transferring
files from a local machine to an isolated cluster, you
could use a tool like rsync, a command-line tool for
copying files and directories between local and remote
systems, or Secure Copy Protocol (SCP). On the other
hand, if transferring files from a cloud storage service,
you might use a cloud-based transfer tool or
Application Programming Interface (API).

3) Set up authentication and access controls. One must
authenticate with the cluster to transfer files into an
isolated cluster and provide the appropriate access
controls. This control could involve creating and
managing user accounts, setting up SSH keys, or using
other forms of authentication [4].

4) Initiate the transfer. Once you have identified the
location of the files, determined the transfer method,
and set up the appropriate authentication and access
controls, you can initiate the transfer. Depending on the
size and complexity of the files, this process could take
a few minutes or several hours.

5) Verify the transfer. After the user transfers files into the
isolated cluster, one should verify that they moved the
files correctly and these files are accessible within the
cluster by running a checksum on the files or testing
their functionality within the cluster environment.

The choice of data transfer utility depends on how much data the
user wants to transfer, preferences for transfer, and priorities.
Reference [5] defined transfer speed, ease of use, security, and
validation priorities. This project offers a new transfer process
for isolated clusters where large amounts of data must be
transferred from a sandbox or dirty cluster into a production or
clean cluster environment using the reference [5] framework for
measures of success.

Transferring external files into isolated clusters can be a
complex process that requires careful planning and attention to
security and access controls. Therefore, it is essential to follow

best practices for secure file transfer. That way, the
administrator can ensure that the users carry out the process
safely and efficiently.

III. CURRENT TECHNIQUES FOR TRANSFERRING EXTERNAL

FILES

Several techniques exist to transfer external files that
can be adapted to work with semi-isolated clusters,
depending on your specific needs and available tools. Here
are some common methods:

1) SCP is a secure file transfer protocol that uses the SSH
protocol for authentication and encryption. It allows
you to copy files from a remote server to your isolated
cluster or vice versa. Unix-based operating system
developers build SCP into varieties available via third-
party clients for Windows systems. It is one of the
most straightforward transfer protocols suitable for
smaller transfer sizes (<= 100 GB). However, its slow
speed for larger amounts of data will lead to long
transfer times and increase the likelihood of failures.
In addition, SCP uses Secure Shell (SSH) to transmit
encrypted versions of your credentials and data,
increasing security [4].

2) Secure File Transfer Protocol (SFTP) is like SCP but
provides a more comprehensive set of file transfer
capabilities. Developers also build SFTP into most
Unix-based systems and are available as third-party
clients for Windows systems. It is another suitable
protocol for transferring smaller amounts of data (<=
100 GB). It provides the interactive functionality of
FTP, but like SCP, it uses SSH to communicate with
remote systems [4]. This secure remote capability
gives the user powerful functionality and securely
transmits your encoded credentials and data. However,
the challenge of using SFTP is that it transfers data
slower than SCP and FTP.

3) File Transfer Protocol Secure (FTPS) is an extension
of the FTP protocol that uses Secure Sockets Layer
(SSL)/ Transport Layer Security (TLS) encryption for
secure file transfer [6]. It lets you transfer files
between your isolated cluster and an external server
over an encrypted channel. FTP is a venerable
protocol for transferring files. An FTP transfer
requires establishing a connection between a client on
the local machine and an FTP server on a remote
machine. Once the user establishes the connection,
one should transfer files between the local and remote
systems. At the same time, the administrator can
perform some file management operations on the
remote system.

4) FTP was once the most popular way to transfer files
between systems, but this is no longer true. Newer
protocols and utilities have resolved the primary
limitations of FTP, which are:

a) In default FTP, the user's login and password
are sent unencrypted, posing security risks.

2

Journal of Cybersecurity Education, Research and Practice, Vol. 2024, No. 1 [2023], Art. 12

https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12
DOI: 10.32727/8.2023.36

b) Administrators often run FTP servers in
"passive" mode, which opens more ports to
traffic and poses a security risk to avoid
problems with client firewalls.

c) Like all TCP applications, FTP can suffer
significant slowdown over bad connections.

d) FTP does not support partial file transfers,
making it impossible to recover from
interruptions [6].

5) Hyper Text Transfer Protocol Secure (HTTPS) is a
secure web communication protocol that transfers files
between your isolated cluster and an external server
[7]. Practitioners can transfer files using a web-based
client or by writing custom HTTPS code. If you need
to transfer files over the internet, you can use HTTP or
HTTPS to transfer files securely. HTTPS is the more
secure option, as it encrypts the connection between
the two machines [7].

6) Network File System (NFS): a distributed file system
that allows you to share files between machines. It is
commonly used in clustered environments, making it
a good option for transferring files to an isolated
cluster [8].

7) Cloud-based file transfer services like Dropbox,
Google Drive, and Amazon S3 can provide secure file
transfer capabilities [9]. These services can transfer
files between your isolated cluster and the cloud-based
service, and users can access them from anywhere
with an internet connection.

When selecting a technique for transferring files, it is crucial to
consider factors such as security, ease of use, and compatibility
with your existing infrastructure [10]. Additionally, you should
always verify that the file transfer is successful and that the files
are accessible and complete. Finally, regardless of the chosen
technique, securing the connection is vital to prevent
unauthorized access or data breaches during transfer [11].

IV. LIMITATIONS OF EXISTING FILE TRANSFER TECHNIQUES

Transferring files onto an isolated cluster is a bit different.

Practitioners often use isolated clusters to protect sensitive data,
applications, or workloads from internal or external threats. In
many cases, the administrator will disconnect isolated clusters
from the external network or only have minimal connectivity to
reduce the risk of unauthorized outgoing data transfers or other
data breaches. However, even in this case, the practitioner needs
techniques to transfer external files to isolated clusters to move
data or files between an external network and an isolated or
secured network.

Therefore, there is a compelling need to safely import data
to isolated clusters when there is a requirement to protect
sensitive data, applications, or workloads from cyber threats and
when compliance with data protection and privacy regulations
is required. These researchers developed a unidirectional file
transfer system for medium-security isolated clusters designed
to allow the secure transfer of files from one system to another

in a controlled and one-way manner. This research aims to
develop a system to transfer sensitive information between
systems while minimizing the risk of information leakage or
intrusion.

Looking at medium-security isolated clusters, the
researchers developed a unidirectional file transfer system that
acts as a one-way “turnstile” for secure file transfer between
systems not connected to the internet or other external networks.
Unidirectional file transfer systems solve this problem by
enabling data to be transferred from a source system to a
destination system without allowing any data transfer back in
the opposite direction. This type of system can be advantageous
in heavily regulated environments where there is a need to
transfer sensitive data securely between different systems.
Organizations can use a unidirectional file transfer system to
reduce the risk of data breaches, unauthorized access, and other
security threats. During the setup and design process, the
investigators attempted to address the following research
questions:

1. How can we automate the process of transferring
external files to isolated clusters that still optimizes the
transfer speed of external files to isolated clusters?

2. What security measures can protect data already
transferred from being retransmitted to the non-
isolated (“outside”) environment?

3. How can we ensure the integrity and compatibility of
transferred external files to isolated clusters?

The Turnstile File Transfer (TFT) approach builds on
techniques to send files between systems without creating a
potential backchannel. The researchers intend to use it in
distributed computing environments where data transfers
between clusters or systems that are isolated from each other.
TFT ensures that data is transferred securely and without any
loss or corruption.

The rest of the paper provides some related file transfer
techniques. A robust discussion of Turnstile File Transfer (TFT)
concepts follows the technique section. The researchers use
these concepts to describe a prototype based on the TFT model
with TFT implementation details. Examples and evaluations
demonstrate how to deploy services and scale the solution
rapidly. Finally, the researchers present limitations, conclusions,
and recommendations.

V. RELATED WORK

A. Firewall-based Solutions

A simple solution is connecting the isolated environment to
the external network via a locked-down firewall. Unfortunately,
this approach requires application whitelisting enforced at the
device level, and many potential attacks are possible. As such,
administrators create scripts that perform functions such as
implementing firewall policies. These scripts can configure
clients and servers, including protocol, port, IP, and application,
to help reduce attack vulnerabilities [12]. Administrators can
populate scripts with the host names and/or internet protocol
(IP) addresses of your domain resources, creating precise
firewall rules for your domain. While appropriate in some
circumstances, this would likely not provide sufficient security

3

Monnin and Sussman: Turnstile File Transfer

Published by DigitalCommons@Kennesaw State University, 2023

for anything beyond a low-security cluster due to its
susceptibility to sophisticated attacks.

B. Block-Based File Systems

One solution would involve having two computers share a
common drive, physically or logically, at a low-level “block-by-
block” method. It is possible to use this option in a virtual
environment by creating a read/write partition available via
iSCSI to the external cluster and then extending the same
partition to the isolated cluster in a read-only manner. While this
method allows data transfer, most modern file systems do not
expect this dual-homed configuration. As a result, file system
caching becomes problematic and can lead to data corruption
issues. Administrators design distributed file systems for dual-
homed (or multi-homed) scenarios. This design has the clusters
rely on a shared network for cache control and file or block-
locking messages. Systems in the isolated cluster would not be
able to be active participants in these distributed solutions.

A workaround for this would be to have the two clusters, the
isolated cluster, and the external cluster, alternate between
which of the two systems has the file system mounted. A
method to synchronize the time between the two clusters would
be necessary. However, it could still lead to race conditions and
only permit periodic data transfer, not on-demand, continual
data transfer.

C. Media Transport Protocol (MTP) Device Access

A second approach would be to leverage existing file-based
USB transfer, mimicking data transfer from USB smartphones
to larger desktop systems. The Media Transport Protocol
(MTP) is a common protocol well-suited for this application.
This approach uses a shared file system extended to isolated
clusters using the same methods that some smartphones and
digital cameras transfer files to desktop computers.

Instruments can implement MTP as an additional "logical"
USB interface. In many cases, instruments can add an MTP
interface with firmware modifications, thus avoiding needing a
new physical connector and hardware changes [13]. When
sharing files with MTP, the instrument retains control of the
shared files and moves them in one way only. This on-demand
feature works but cannot handle large numbers of files easily,
nor can it take symbolic links.

D. Serial Communication Protocols

Administrators use serial data communication strategies
and standards when they can secure limited lines (channels) for
communication [14]. These strategies and standards are the
primary modes of transfer in long-distance communication.
Also, administrators use this protocol when embedded systems
with various subsystems share the communication channel, and
the speed is not a critical issue (Dawoud & Dawoud, 2020). The
slow speeds, bi-directionality, and vulnerability to serial line
attacks by hackers using network links using PPP or other L2
network protocols make this technique unsuitable.

VI. METHODOLOGY

The study design used two virtual system clusters (one
isolated, the other Internet-connected) to demonstrate a unique
unidirectional system for medium-security isolated clusters.
The researchers explored ways to automate the process of
transferring external files to isolated clusters that optimized the
transfer speed of external files to isolated clusters. However,
equally important were the security measures used to protect
external files during transfer to isolated clusters while
minimizing the risk of data corruption. The investigators used
integrity and compatibility of transferred external files to
isolated clusters as success measures.

A. Turnstile Design Goals

The research aim was to create an automated tool to
integrate into an academic organization’s Security by Design
(SbD) controls. The turnstile approach allowed an
administrator another means to layer the formalized
infrastructure design and automate security controls. In
practice, this approach added to defense in depth (DiD),
allowing educational and research systems to build security into
every part of their IT management process but allowing student
flexibility. As such, the Turnstile used standardized coding and
repeatable, automated architectures and remained consistent
across multiple environments for audit standards. As such, the
goals for this prototype included:

1) Avoiding network and telecommunication links;

2) Permitting multiple, concurrent access;

3) Providing a self-serve kiosk for individuals to
push/pull files;

4) Handling mirroring of large repositories (such as
Linux distribution repositories);

5) Providing sufficient bandwidth for multiple users;

6) Using existing common off-the-shelf (COTS)
hardware components;

7) Using existing software libraries as much as possible;

8) And limit the additional security risks to the isolated
environment.

These goals provided a strategy for using multiple layers of

security to protect the organization’s assets and delay attackers’

advances.

4

Journal of Cybersecurity Education, Research and Practice, Vol. 2024, No. 1 [2023], Art. 12

https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12
DOI: 10.32727/8.2023.36

B. Physical Connection

Turnstile used a pair of Linux systems connected via a
single USB cable: one acting as the server, while the other acts
as the client (or optionally the relay). The server needed to
support USB device mode (sometimes called USB On-The-Go
[OTG]). The prototype used a Raspberry Pi 4 as the server
system since this system permits the administrator to configure
one of its USB ports in device mode. The other system, the
client or relay system, did not need to support USB device
mode. For this reason, it could be either a physical or virtual
system with a USB port attached. For example, one could use
the hypervisor’s USB pass-through capabilities.

The researchers connected each system to their respective
networks: the isolated network for the client system and an
Internet-connected network, or other less restrictive network,
for the server. Typically, this is via a physical or virtualized
Ethernet connection. In the prototype case, the administrator
configured both links for IP networking. Since the USB link
does not use IP (or any network protocol), the two networks (or
clusters) continued to be separate (Figure 1).

FIGURE 1. TURNSTILE ETHERNET CONNECTION

Note. The network connections can be physical or virtualized.

These configurations were for the automated process of
transferring external files to isolated clusters and allowed for an
optimized transfer speed of external files to isolated clusters.

C. Low-Level Transfer using USB

The turnstile transfer protocol provided low-level USB bulk
transfer operations and Linux’s GadgetFS and
ConfigFS/FunctionFS API systems on the server. This type of
transfer avoids introducing any logical networked or high-level
data communication interfaces on either system and limits the
attack surface from the client system. Once the administrator
started the turnstile server, the connection appeared as a new
USB device with a custom vendor ID and product ID on the
client system. It presented a single pair of bulk transfer USB
endpoints on the client system as if the administrator plugged a
USB device into it, known as a hotplug.

The Turnstile system aimed to mitigate apparent attack
vectors for data exfiltration. The goal was to continue safe
operation and to ensure both the server and the client remained
uncompromised. Using only low-level USB API routines
reduced the attack surface from the client to the server. No
additional endpoints were available on the client system, and if
the turnstile daemon on the server exited for any reason, the
USB endpoints were closed. In this way, the turnstile added
security measures that limited connection hijacking attacks and
protected data already transferred from being retransmitted
back to the non-isolated or other “outside” environments.

D. Turnstile Packets over USB

Turnstile used single USB bulk transfer packets to
communicate between the two systems. Physically, the USB
bulk transfer packets were limited to 64, 512, or 1024 bytes,
depending on the USB revision negotiated. However, Linux
will invisibly fragment and recombine a single transactional
packet into and out of these lower-level packets and
automatically compute and verify data integrity using a CRC
checksum. Turnstile used this larger bulk transfer
fragmentation technique to transmit significant amounts of data
as a single operation (transferring up to 32KB by default). For
the remainder of this paper, the term TPacket will represent
data transmitted using a single Linux Bulk Transfer request.

All communication to the server was via a simple
request-response system. Only the client system was permitted
to initiate a request. All requests and all responses only use one
TPacket. Larger data transfers required the client to send
multiple “continue” requests to receive all of the data
completely. The first byte of the TPacket represented the
request command (if the client) or the response status code (if
the server). Since Turnstile used a single byte as the request or
response, a maximum of 256 different requests and 256
different responses were possible. However, the prototype did
not define all possible requests/responses. As currently
implemented, there were eleven requests [all encoded as capital
letters] and four responses [all encoded as lowercase letters].

A sample request/response event was:

C: <request [1-byte]> <optional argument [0+ bytes]>

S: <response [1-byte]> <transaction-id [1-byte]>

<response data [0+ bytes]>

If the requested data fitted into a TPacket, the system returned
a response code of “l” (indicating the last packet), the
transaction ID set to 0, and the system appended the requested
data. If the requested data could not fit into a single transaction,
then the system responded with “d” (indicating a non-last
packet) along with a randomly selected transaction ID and
returned the first segment of the data. The client could then
request subsequent segments of data using the “continue”
request and the corresponding transaction ID. A sample file
transfer (“get”):

C: G <path>
 S: d <trans-id> <first segment>

C: C <trans-id>
 S: d <trans-id> <next segment>

C: C <trans-id>
S: d <trans-id> <next segment>

C: C <trans-id>
S: l <trans-id> <last segment>

Internally, the Turnstile system used the transaction ID to
deploy a relay between the clients and servers, allowing
multiple requests to occur concurrently. This technique
assured the integrity and compatibility of transferred external
files to isolated clusters while permitting concurrent access.

5

Monnin and Sussman: Turnstile File Transfer

Published by DigitalCommons@Kennesaw State University, 2023

E. Turnstile Requests

The client system initiated all data transfers using single-
byte commands. The researchers modeled after the FTP system
but made it simpler and more limited. For instance, while FTP
supports sending and receiving files, the Turnstile system only
supports receiving files. Implementing this technique explicitly
limited exfiltration-style attacks, although some side-channel
attacks might still be possible.

The researchers used four primary requests for data transfer.
The Get (“G”) command requests the server to transmit a file to
the client. The List (“L”) command requests a list of files and
subdirectories within a specified directory. The Stat (“S”)
command returns metadata (e.g., file creation date, permissions,
and file type) about a single remote file. Finally, the Symlink
(“K”) command returns the destination path of a remote name.
This approach was for simplicity.

The administrator gave the system process paths to the
server through a mapping function. This approach precluded
the clients from seeing the actual file system structure, but the
server administrator could specify access to specific
subdirectories for the clients. The researchers also placed
further restrictions on these commands to minimize data
leakage. All commands did not provide information on files that
were neither files nor directories (e.g., block files) and would
respond as if the file did not exist. Likewise, the system checked
all requested symbolic links on the server beforehand and
ignored any pointing to files or directories in non-approved
directories.

Lastly, the stat command returned limited information. It
returned only the file size, the creation and modification times,
the file permissions, and three flags indicating if the item is a
file, a directory, and a symbolic link. Turnstile does not return
User ID, Group ID, and inode and link count information. The
client system could use the stat command to synchronize the
permissions of files and directories. Synchronizing permissions
and modification dates were essential when creating local
mirrors of distributions and other data sources, as some systems
used this information to update files.

F. Turnstile Relay and Turnstile over UDP

Turnstile used a singular USB endpoint from the

server. This approach could require multiple clients to

coordinate access to the server by connecting to the server one

at a time. The Turnstile relay addressed this need and allowed

multiple clients to issue request data concurrently. The clients

then talked to the relay using the same Turnstile protocol,

wrapped within a User Datagram Protocol (UDP) packet.

These UDP packets never left the isolated cluster; thus, the

system maintained the “no networking” requirement between

the two clusters. By default, the turnstile relay only accepted

UDP packets from the system it was on (“localhost”), and

clients could not use the service from other virtual/physical

systems within the isolated cluster (Figure 2).

Figure 2

Two clusters with a relay placed between the clients and the

server

FIGURE 2. CLUSTERS WITH RELAY BETWEEN CLIENT & SERVER

Note. UDP transmits packets (datagrams) directly to the target
device without setting a connection, specifying packets’ order,
or examining how they are delivered.

The relay implemented a prioritized queuing system. Each
command had a different priority, allowing directory-oriented
commands to take priority over file transfer commands.
Additionally, the clients could raise or lower their base priority
to allow interactive uses of the connection to take precedence
over background/batch uses, such as mirroring a distribution
directory tree. This dynamic prioritization could lead to
starvation (DoS) attacks on Turnstile within the isolated cluster.
Still, since the Turnstile maintained the isolated nature of the
cluster, these attacks were considered out-of-scope in trying to
mitigate.

G. Turnstile Command-Line Tools

Turnstile provided two methods for isolated cluster uses to
transfer data users: via command line tools and a web interface.
For the command line tool method, Turnstile delivered a small
set of Linux programs (Table 1).

TABLE 1 TOOLS MODELED AFTER STANDARD LINUX rcp & scp
UTILITIES

 Command Description

 t-cat View a remote file similar to “cat.”

 t-ls View a remote directory, similar to

“ls.”

 t-mirror Copy files/directories as necessary,

similar to “rsync”

 t-rcp Copy remote files, supports Linux

system wildcards and recursive

requests

 t-status Determine if the server and/or relay

is working, similar to “ping’

 t-sum Display the SHA512 hash for a

local and/or remote file

Note. The functionality of the Linux SCP command is
analogous to the older RCP command. As with RCP, the SCP
syntax on the command line follows the CP command used to
copy the files on the local system.

The commands cannot access any files that do not already
exist on the server system. The administrator designed
command line utilities to assist the network (or cluster)
administrators. Non-administrative users of the isolated
environment typically would use the web interface.

6

Journal of Cybersecurity Education, Research and Practice, Vol. 2024, No. 1 [2023], Art. 12

https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12
DOI: 10.32727/8.2023.36

The commands could directly talk to the Turnstile relay or
the Turnstile server and use the relay by default. The t-mirror
command permitted upgrading Linux-like systems in the
isolated cluster from a local mirrored copy of the distribution as
if they were on a commodity Internet. This approach allowed
an otherwise air-gapped system to pull packages locally and
copy requisite patches to the physical media for an update (see
Appendix A).

H. Turnstile Push/Pull Web Interface

Once the researchers deployed Turnstile, users could
transfer files to the isolated cluster via a web interface without
needing intervention from an administrator. The system used
two separate web servers: one on the isolated cluster and the
other on the outside cluster or network (Figure 3).

FIGURE 3 TURNSTILE SYSTEM USING TWO WEB SERVERS

Note. In this configuration, only the webserver must be public-
facing, and the turnstile server itself can be protected behind a
firewall if desired.

Users started the transfer process from the outside network
and on a web server called the TStorer system, which had
access to the Internet or internal corporate network. This
system should be separate from the turnstile server to avoid
attacks on the web server that could affect the turnstile server.
Docker or other container systems could provide this
separation. The TStorer webserver and the turnstile server
shared a common directory through an NFS-mounted directory.

The TStorer system used Linux’s built-in authentication
system, PAM, to require a valid user before initiating a file
transfer. Since the system used PAM, an external authenticator
like Microsoft’s Active Directory or any corporate LDAP-
based authentication system, it could respond to authentication
requests. A user could upload a file, enter text (via an HTML
textbox), or download a file from an external URL on the user’s
behalf. The web server then provided the user with a short URL
similar in format to bit.ly or another URL shortener. The user
then entered that URL into the isolated cluster for retrieval. On
the isolated cluster, one could use any virtual or physical system
web browser, and this approach did not require authentication
to retrieve the file. However, the storing web server and the
retrieving webserver logged all transfers so administrators
could audit to ensure integrity.

I. Protecting Data Integrity

In this application, the investigators used two techniques to
protect data integrity. The USB protocol itself provided a
certain level of data integrity. The second protection
mechanism was from the Turnstile. USB Bulk Transfers
packets at the lower level included a CRC16 field [15]. These

two protection techniques avoided nearly all physical/logical
layer data corruption issues and provided equivalent protection
to what an Ethernet packet would provide [16].

Beyond this protection, the Turnstile protocol included a
TPacket command for a client to request the server return a
SHA512 hash of a remote file. Both the copy command (t-rcp)
and the mirror command (t-mirror) included an option to
require all file transfers to be verified by comparing the local
and remote hash. Additionally, one could use a separate
command (t-sum) to request the SHA512 hash of a remote file
and have identical output to an existing Linux command
(sha512sum).

The designers used the hashing functionality as part of the
development process. They performed a system test using files
containing random data cache anytime they made substantial
changes to the underlying code. Test files sweep in size from 1
byte to 65,600 bytes. The researchers used this test to verify that
the system had no edge-case issues with packet sizes.
Additionally, they used larger files (1 MB to 8 MB) to look for
other problems, such as buffering and performance.

It is important to note that currently, Turnstile does not use
any encryption between the client and server. As such,
protecting the physical access of the server, the client, and the
USB connection was still essential to avoid man-in-the-middle
style confidentiality/integrity attacks [17]. Files transferred
using Turnstile may still be encrypted before transfer to provide
another layer of defense.

J. Bootstrapping the Client

Since one expects placing the client system on an isolated
network, the researchers designed Turnstile to need very few
additional packages beyond what a Linux operating system
typically installs, even in a “lite” installation. The researchers
wrote Turnstile in Python (v3), and the client only needed one
additional distribution package (typically named “python3-
usb1”) before enabling the Turnstile command line tools (for
example, t-rcp) that could transfer other desired files. On
Ubuntu and Raspberry Pi OS, this package depends on two
packages, python3 and libusb1, and both vendors typically
install these packages with the initial operating system. The
web retriever requires additional packages, including Python’s
flask package (python3-flask), but one can transfer those other
packages using the included t-rcp command. As such, the
Turnstile prototype was compatible with various standard
environments.

K. Testing Assessment Approach

The researchers measured performance between a Turnstile
server and client testing a Raspberry Pi 4 and a Raspberry Pi
with a virtualized Intel-based Linux system as servers and
clients. The researchers did not include the Turnstile relay in
the performance testing environment for consistency. The
hardware and software attributes of the testing environment
were extensive and specific (Appendix B).

L. Performance Testing Procedure

Researchers created test files using random data (initially
created via the Linux dd command using /dev/random as the
source). The pilot used random data to avoid any unintentional

7

Monnin and Sussman: Turnstile File Transfer

Published by DigitalCommons@Kennesaw State University, 2023

compression or caching interactions. Prototype files were
transferred to and from a RAM disk file system (a.k.a. tmpfs
mounted on /tmp) to limit any effect of local file systems on the
transfer speed. File transfer duration was measured on the
client system using the Linux time command. The pilot used
the overall (sometimes called “real” or “wall clock”) time for
the measurement. The pilot tested a variety of file sizes, as well
as an assortment of USB transaction packet (TPacket) sizes.

VII. RESULTS

The Turnstile automated process for transferring external
files to isolated clusters optimized the transfer speed of external
files to isolated clusters. Turnstile had an adequate bandwidth
of approximately 110 Mbps when the client and server systems
were Raspberry Pi 4 computers. Replacing the Raspberry Pi
client with an Intel-based virtual computer client effectively
doubled file transfer performance to approximately 220 Mbps
(Figure 4).

FIGURE 4 RESULTANT SPEED BETWEEN FAST ETHERNET &
GIGABIT ETHERNET CONNECTION

One parameter controlling the overall transfer speed was the

USB transaction packet size, also known as the size of the
TPacket. Since Turnstile is a simple request/response system,
the larger the packet, the more efficient the overall transfer
speed. However, a large packet size will affect the wait time
for queued requests if multiple clients use the relay. Regardless,
this automated transferring of external files to isolated clusters
optimized the transfer speed of external files to isolated
clusters.

File transfer speeds improved with the increase of TPacket
size, but the improvement was less pronounced beyond a packet
size of 64KB (Figure 5).

FIGURE 5 TPACKET SIZE EFFECT ON PERFORMANCE

Researchers chose a TPacket size of 32KB as the default value
for the server as a compromise between file transfer
performance and latency issues when connecting multiple
clients to a single server via a relay. The network administrator
can specify a different maximum TPacket size when starting
the server, and all client programs will query the server for this
value before file transfers.

VIII. CONCLUSION

One of the primary goals of Turnstile is to prevent protected
data in the isolated cluster from being transferred to the non-
isolated (“outside”) environment. The Turnstile system (source
code available at github.com/monnin/turnstile) provides
unidirectional file transfer between two computer systems. As
discussed earlier, an administrator has no protocol command to
transfer a file in this direction. One can only use a “GET”
operation, not any “PUT” operation. An attacker could modify
the code to add such a command. Still, defense in depth makes
this more challenging to achieve, as an attacker would need to
have two separate successful attacks (one against the client
system and another against the server system) and modify both
the client and server software.

The Turnstile also includes mechanisms to ensure the
integrity of the files transferred through low-level packet
checks (via CRC16 verifications) and a file-level check (via
SHA512 hash verification). The two systems work in concert
and ensure that any alteration of the data during transmission is
detected. Turnstile also tries to keep a low administrative
overhead for the system's support staff. The client system’s
command line utilities only require one additional Python
module beyond what distributions provide in a typical Python
installation package. Thus, the command line utilities permit
Turnstile users to transfer any other files necessary, such as
those needed to deploy the web interface. Additionally, all
command line utilities are modeled after existing Linux
commands, so a seasoned Linux administrator will learn the
commands quickly.

Using medium-security isolated clusters, the researchers
successfully developed a unidirectional file transfer system that
acts as a one-way “turnstile” for secure file transfer between
systems not connected to the internet or other external
networks. The Turnstile provided unidirectional file transfer
systems. The solution enabled data to be transferred from a
source system to a destination system without allowing any data
to be transferred back in the opposite direction. The researchers
found an automated process of transferring external files to
isolated clusters that still optimized the transfer speed of
external files to isolated clusters using Linux distributions and
commands. The USB and turnstile architecture protected data
transferring and prevented that data from being retransmitted
back to the non-isolated (“outside”) environment. Using
physical security and architectural design, the Turnstile assured
data integrity and compatibility of transferred external files to
isolated clusters.

The researchers built the Turnstile File Transfer (TFT)
approach using techniques to send files between systems
without creating a potential backchannel. Administrators can
use it in distributed computing environments where data
transfers between clusters or systems that are isolated from each

8

Journal of Cybersecurity Education, Research and Practice, Vol. 2024, No. 1 [2023], Art. 12

https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12
DOI: 10.32727/8.2023.36

other. TFT ensures that data is transferred securely and without
any loss or corruption. This TFT system can be advantageous
in heavily regulated environments where there is a need to
transfer sensitive data securely between different systems.
Organizations can use a unidirectional file transfer system to
reduce the risk of data breaches, unauthorized access, and other
security threats.

REFERENCES

[1] A. Blenk, A. Basta, M. Reisslein & W. Kellerer, Survey On Network

Virtualization Hypervisors For Software Defined Networking. (Seventh
Ed.). Ithaca: Cornell University Library, arXiv.org, 2016.

[2] A. R. Mamidala, S. Narravula, A. Vishnu, G. Santhanaraman, & D. K.
Panda, D. K. On using connection-oriented vs. connection-less transport
for performance and scalability of collective and one-sided operations:
Trade-offs and impact. Paper presented at the 46-54.
https://doi.org/10.1145/1229428.1229437, 2007.

[3] J. L. Hennessy, and D. A. Patterson, Computer Architecture: Quantitative
Approach (5th ed.). Morgan Kaufmann/Elsevier, 2012.

[4] D. J. Barrett, R. G. Byrnes, & R. E. Silverman, SSH, The Secure Shell:
The Definitive Guide (2nd ed.). O'Reilly, 2005

[5] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, & A. Nataraj.
Benchmarking The Effects Of Operating System Interference
On Extreme-Scale Parallel Machines. Cluster Computing, 11(1), 3-16.
https://doi.org/10.1007/s10586-007-0047-2 , 2008.

[6] C. Fan, A. Karati, & P. Yang. Reliable File Transfer Protocol with
Producer Anonymity for Named Data Networking. Journal of
Information Security and Applications, 59, 102851.
https://doi.org/10.1016/j.jisa.2021.102851, 2021.

[7] E. Rescorla. RFC 2818, HTTP Over TLS. Internet Engineering Task
Force. Retrieved from https://www.rfc-editor.org/rfc/rfc2818, May 2000.

[8] B. Callaghan. NFS illustrated. Addison-Wesley, 2000.

[9] J. Taheri, A. Y. Zomaya, H. J. Siegel, & Z. Tari. Pareto Frontier for Job
Execution and Data Transfer Time in Hybrid Clouds. Future Generation
Computer Systems, 37, 321-334.
https://doi.org/10.1016/j.future.2013.12.020, 2014.

[10] R. U. Rasool, H. F. Ahmad, W. Rafique, A. Qayyum, & J. Qadir. Security
and Privacy of Internet of Medical Things: A Contemporary Review in
the Age of Surveillance, Botnets, and Adversarial ML. Journal of
Network and Computer Applications, 201, 103332.
https://doi.org/10.1016/j.jnca.2022.103332, 2022.

[11] L. P. Davis, C. J. Henry, R. L. Campbell Jr., & W. A. Ward Jr. High-
performance computing acquisitions based on the factors that matter.
Computing in Science & Engineering, 9(6), 35-44.
https://doi.org/10.1109/MCSE.2007.115, 2007.

[12] Steve_N. Windows Defender Firewall, PowerShell Scripts/GUI Tools,
GitHub. Retrieved on April 21, 2023, at
https://github.com/SteveUnderScoreN/WindowsFirewall, Nov 21, 2019.

[13] A. Purcell. Get Instrument Screen Captures and Data Files Quickly Using
USB: Implementing the USB Media Transport Protocol (MTP) Helps
Facilitate File Sharing. Electronic Design, 62(11), 36, 2014.

[14] D. S. Dawoud, & P. Dawoud. Serial Communication Protocols and
Standards: RS232/485, UART/USART, SPI, USB, INSTEON, Wi-Fi and
WiMAX. River Publishers. https://doi.org/10.1201/9781003339496,
2020.

[15] Compaq Computer Corporation, Hewlett-Packard Company, Intel
Corporation, Lucent Technologies Inc, Microsoft Corporation, NEC
Corporation, Koninklijke Philips Electronics N.V. Universal Serial Bus,
Revision 2.0., USB Implementers Forum. Retrieved July 26, 2023, at
https://www.usb.org/document-library/usb-20-specification, April 27,
2000.

[16] IEEE Xplore. IEEE Standard for Ethernet, in IEEE Std 802.3-2015
(Revision of IEEE Std 802.3-2012), vol., no., pp.1-4017, doi:
10.1109/IEEESTD.2016.7428776, March 4, 2016.

[17] J. Axelson. USB complete: The developer's guide (Fifth ed.). Lakeview
Research, 2015.

9

Monnin and Sussman: Turnstile File Transfer

Published by DigitalCommons@Kennesaw State University, 2023

https://doi.org/10.1145/1229428.1229437
https://doi.org/10.1007/s10586-007-0047-2
https://doi.org/10.1016/j.jisa.2021.102851
https://www.rfc-editor.org/rfc/rfc2818
https://doi.org/10.1016/j.future.2013.12.020
https://doi.org/10.1016/j.jnca.2022.103332
https://doi.org/10.1109/MCSE.2007.115
https://github.com/SteveUnderScoreN/WindowsFirewall
https://doi.org/10.1201/9781003339496
https://www.usb.org/document-library/usb-20-specification

 10

Appendix A: Packet Format for Requests and Responses

 Requests (Client to Server):

Command Name Description Comments

C<trans-

id>

Continue Get the next packet in a

larger response

The only command that sends a transaction ID.

G<path> Get Get a file (can use

multiple "P" packets

prior)

Returns an error code if the path is not a [normal] file

H<path> Hash Return a SHA512 hash

for a filename

Returns value as a hexadecimal string and not as binary

bytes

K<path> Symlink Return the destination if

the path is a symbolic

link

Returns an empty packet if valid, but not a symlink)

L<path> List / ls Performs a simplified

“ls” on a directory

If the path is a directory: Returns the name (but not the full

path) of all files/dirs in that dir (non-recursively)

(\0 between items)

If a path is a file: Returns two \0\0 if the file exists

If a path is neither a file nor a directory:

Returns an error code

M Max Packet Get MaxPacket Set by the server or relay. Returns the maximum packet

size as a 32-bit number

N<data> No Op It does nothing on the

relay/server but has a

valid response packet.

Relay special case: If data is a NUL (or is not present), then

the relay answers the NoOp; otherwise, it forwards the

request to the server (that way, a client can check both

entities)

P<ppath> Prefix Path Allows for paths > 511

bytes long

Since the path might take multiple packets, one can send

multiple "prefix" packets ahead of the actual command

packet.

(e.g., P<path1>, P<path2>, G<path3> would request a "get"

operation with a longer file path).

The server responds with a continue packet

Q<prio> Queue

Priority

Set the priority of the

connection

Used by the relay, ignored by the server

S<path> Unix-like

stat(2)

command

Return (limited/filtered)

metadata about a

file/directory

Returns flags, mode, size, mtime, and ctime. Mode does

NOT include file type. Returns an error code if the path is

not a file or directory.

Flags:

LSB: 0=file, 1=dir

MSB: 1=symlink, 0 otherwise

If a directory: a returns a single item, not the contents of the

directory.

Z Reset Clears/deletes all partial

transfers

(aka resets incomplete transactions)

10

Journal of Cybersecurity Education, Research and Practice, Vol. 2024, No. 1 [2023], Art. 12

https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12
DOI: 10.32727/8.2023.36

 11

Responses (Server to Client):

Response Name Description Comments

c Continue Continue with

command

Only used with Path (“P”) requests

d<id><data> Data First/next Data Packet Data from the server with more unsent data

l<id>[<data>] Last The last/only data

packet

Completes the transaction. An empty data

section is permitted.

z<id> Error An error response to a

request

11

Monnin and Sussman: Turnstile File Transfer

Published by DigitalCommons@Kennesaw State University, 2023

 12

Appendix B: Performance Testing Environment

 Turnstile Server Turnstile Client A Turnstile Client B

H/W Raspberry Pi 4 Model B Raspberry Pi 4 Model B Virtualized Linux system

O/S Raspberry Pi OS; Debian

Version 11

Raspberry Pi OS; Debian

Version 11

Ubuntu 20.04 LTS

CPU Broadcom BCM2711 Broadcom BCM2711 (Virtualized)

Intel 12 core vCPU

RAM 8 GB 8 GB (Virtualized) 12 GB

Virtualization Environment for Turnstile Client B

Motherboard Asus ESC8000 G4

CPU [Dual] Intel Xeon Gold 6225R (@ 2.90 Ghz)

RAM 768 GB

Hypervisor VMWare ESXi 7.0u3

12

Journal of Cybersecurity Education, Research and Practice, Vol. 2024, No. 1 [2023], Art. 12

https://digitalcommons.kennesaw.edu/jcerp/vol2024/iss1/12
DOI: 10.32727/8.2023.36

	Turnstile File Transfer: A Unidirectional System for Medium-Security Isolated Clusters
	Recommended Citation

	Turnstile File Transfer: A Unidirectional System for Medium-Security Isolated Clusters
	Abstract
	Keywords

	tmp.1702312252.pdf.P3qqz

