
Kennesaw State University Kennesaw State University 

DigitalCommons@Kennesaw State University DigitalCommons@Kennesaw State University 

Faculty and Research Publications Faculty Works Hub 

12-8-2023 

Adaptive Social Distancing Strategies for Controlling Infection Adaptive Social Distancing Strategies for Controlling Infection 

Inequality in Emerging Infectious Diseases Inequality in Emerging Infectious Diseases 

Asma Azizi 
Kennesaw State University, aazizi@kennesaw.edu 

Caner Kazanci 
University of Georgia 

Sunmi Lee 
Kyung Hee University 

Follow this and additional works at: https://digitalcommons.kennesaw.edu/facpubs 

Recommended Citation Recommended Citation 
Azizi, Asma; Kazanci, Caner; and Lee, Sunmi, "Adaptive Social Distancing Strategies for Controlling 
Infection Inequality in Emerging Infectious Diseases" (2023). Faculty and Research Publications. 6931. 
https://digitalcommons.kennesaw.edu/facpubs/6931 

This Article is brought to you for free and open access by the Faculty Works Hub at DigitalCommons@Kennesaw 
State University. It has been accepted for inclusion in Faculty and Research Publications by an authorized 
administrator of DigitalCommons@Kennesaw State University. For more information, please contact 
digitalcommons@kennesaw.edu. 

https://digitalcommons.kennesaw.edu/
https://digitalcommons.kennesaw.edu/facpubs
https://digitalcommons.kennesaw.edu/faculty
https://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F6931&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs/6931?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F6931&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu


LETTERS IN BIOMATHEMATICS
An International Journal

RESEARCH ARTICLE OPEN ACCESS

Adaptive Social Distancing Strategies for Controlling

Infection Inequality in Emerging Infectious Diseases

Asma Azizi,a Caner Kazanci,b,c Sunmi Leed

aDepartment of Mathematics, Kennesaw State University, Marietta, GA 30060; bDepartment of Mathematics, University

of Georgia, Athens, GA 30602; cCollege of Engineering, University of Georgia, Athens, GA 30602; dDepartment of

Applied Mathematics, Kyung Hee University, Yongin, Republic of Korea

ABSTRACT

People fare in outbreaks of emerging infections based on social factors shaping their

exposure and vulnerability to the virus. This di�erent exposure cause a dispro-

portionate share of prevalence among people with various socioeconomic statuses.

Therefore, socioeconomic-based control strategies are needed to control the dis-

crepancy in prevalence among socioeconomic groups. We propose and analyze a

SIR mathematical model that is grouped based on individuals' income level (rep-

resenting socioeconomic status). For the model's parameter, we use properties of

a real-world social network of individuals residing in New Orleans, Louisiana. We

then distribute the social distancing practice among di�erent groups to minimize a

multi-objective function of infection characteristics (�nal epidemic size) and the dis-

crepancy of prevalence among them (infection inequality). Our result con�rms the

importance of the heterogeneous distribution of social distancing practices among

various socioeconomic groups to reduce observed infection inequality. At the same

time, it does not considerably impact the �nal epidemic size.
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1 Introduction

The socioeconomically disadvantaged population continues to experience a disproportionate share of emerging infectious dis-
eases. For example, historical accounts of influenza pandemics demonstrated that Low-income people were affected by the 1918
pandemic more than High-income ones in the United States (Sydenstricker, 1931), or the distribution of Ebola outbreaks tied
to a particular group of people living in poverty, and health care workers who serve the poor community, but not others in close
physical proximity (Farmer, 1996). In the recent pandemic of SARS-Cov-2, people of low socioeconomic status were at high risk
of catching the infection because of cramped living conditions, lack of self-isolation, higher rates of many of the comorbidities
such as hypertension, and lack of opportunity to work from home that renders them exposed to other individuals at their work-
place (Mackenbach et al., 2008; Tjepkema et al., 2013; Álvarez et al., 2011; Anderson et al., 2020; Cardoso et al., 2004). Social
factors originating from poverty and social inequalities are linked to many other emerging infectious diseases such as malaria
and tuberculosis (Farmer, 1996; Uscher-Pines et al., 2007). Thus, it is crucial to focus on social determinants deriving health
inequality in preparedness planning for emerging infections (Quinn and Kumar, 2014). Blumenshine et al. (2008) mentioned
the need for systematic and concrete planning to minimize the disparities that can occur in the face of natural disasters, such as
emerging infection spread.

Mathematical models are excellent tools for understanding the underlying epidemiology of diseases and how they correlate
to the social structure of the infected population (Del Valle et al., 2005, 2007; Hyman and Li, 1997a,b; Hyman et al., 1999,
2001). These models help the medical/scientific community anticipate the spread of diseases and evaluate the potential impact
of different approaches, such as Social Distancing (SD), for bringing the epidemic under control. Without any pharmaceutical
treatments or vaccines, SD is an effective approach to reducing emerging infection and mortality (Block et al., 2020; Bayham
et al., 2015; Desclaux et al., 2017). But it works unevenly across various socioeconomic classes (VoPham et al., 2021) because
of many reasons, such as being unable to afford SD by lower socioeconomic classes. During the outbreak, this uneven share of
behavior change causes the socioeconomic class to play a key role in the discrepancy in prevalence among various communities,
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which we have observed and continue observing in many disasters such as the recent pandemic of COVID-19 (Clouston et al.,
2021; Zelner et al., 2021; Kamis et al., 2021; Sweeney et al., 2021). Despite the importance of this unsolved issue, limited math-
ematical models have accounted for the social and structural factors such as socioeconomic classes or race when modeling SD
to bring the epidemic under control (Jacquez et al., 1988; Azizi et al., 2016). Zelner et al. (2022) raised the question, “Why do
epidemiological models of emerging infections typically ignore known structural drivers of disparate health outcomes?” Related
to this question, we raise the main goal of our work under the question, “How epidemiological models of emerging infections can
be used to control infection inequality among different socioeconomic classes?"

Our focus is to provide an equitable SD strategy to control the infection characteristic and reduce disparities in the burden
of emerging infections. We know that mandated SD can change the course of infection. However, our recent work indicates
that its implementation method may cause adverse results on disease spread (Azizi et al., 2022) or possible amplification of the
health disparity. For instance, School Closure increased the attack rate in the 2009 H1N1 influenza pandemic (Lee et al., 2010;
Maharaj and Kleczkowski, 2012). We want to explore a complementary trend: How to distribute the SD effort among various
socioeconomic groups to minimize the epidemic and infection inequality responses? To this end and in continuation of our
previous work (Azizi et al., 2022; Komarova et al., 2021; Azizi et al., 2020), we propose a Susceptible-Infected-Removed (SIR)
group-based model with contact and social characteristic taken from a real-life social network of individuals residing in New Or-
leans, Louisiana (Eubank et al., 2010; Azizi, 2023; Eubank, 2008). We define the infection inequality by measuring the difference
in prevalence in various groups and then use optimization to find the SD distribution that minimizes our objective function,
which is a function of infection characteristics and inequality. Given the limited source for mandated SD implementation, its
proper management of distributing SD among various socioeconomic groups will enable us to control infection inequality, even
if it has yet to have a practical impact on containing infection characteristics.

The structure of our paper is as follows: In Section 2, we develop our model, conduct model analysis, and introduce optimal
social distancing problems to control infection inequality. Section 3 provides numerical simulations of the model to compare
various social distancing scenarios and their impact on infection inequality. We end the paper by discussing the importance of so-
cial distancing distribution management among various socioeconomic classes and how this management can control infection
inequality.

2 Method

Assuming a closed steady-state population of N individuals, we stratify it into K different socioeconomic groups. These indi-
viduals are in contact and, therefore, cause an infection spread via a Susceptible-Infected-Recovered (SIR) structure, shown in
the system (1):

dSk
dt

= μkNk −
K∑︁
i=1

βkCki
Ii
Ni

Sk − μkSk,
dIk
dt

=
K∑︁
i=1

βkCki
Ii
Ni

Sk − (γk + μk)Ik,
dRk

dt
= γkIk − μkRk, (1)

where Nk, Sk, Ik, and Rk are the number of all, susceptible, infectious, and recovered individuals in group k, respectively, for
k ∈ {1, . . . ,K}. The parameter βk > 0 is the probability of transmission per contact for group k, γk is the recovery rate for group
k, μk is the natural birth or death rate for group k, and Ckk′ is the number of contact between two individuals in groups k and k′

per unit time. Let Ck denote the total number of contacts per time for an individual in group k. We first need to ensure that Ck

is partitioned among all the groups, and hence,
∑K

i=1 Cki = Ck. Then, we consider the desirability of contact between people in
two groups k and k′. That is, if all people in group k make, say, L contacts with all people in group k′, then all people in group
k′ also make the same amount of L contacts with all people in group k. The number of contacts that all individuals in group
k make with individuals from group k′ is Ckk′Nk, and the contacts that all individuals in group k′ make with individuals from
group k is Ck′kNk′ . These two values are equal, and hence, Ckk′Nk = Ck′kNk′ .

Defining theK×K contact matrixC = (Ckk′ ), and implementing these two criteria gives us the balanced conditions defined
as follows:

K∑︁
i=1

Cki = Ck, Ckk′Nk = Ck′kNk′ . (2)

There are various ways to define the elements of matrix C using the balanced condition (2), such as proportional mixing (Nold,
1980) that assumes the mixing is constrained by the activity levels, that is, the number of contacts any group i has with a typical
group j is proportional to the relative activity levels of group j, Cij = Cj∑

k Ck
. Here, we use a real social network of contacts, so the

matrix C is entirely well-defined.
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2.1 Model analysis

De�nition 1 (Connected groups). We say two groups k and k′ are connected if there is at least one contact between their
members, that is, Ckk′ > 0 and, therefore, Ck′k > 0.

Theorem 2.1. The connected groups have the same behavior:

(a) If the system is at equilibrium and there is no disease in group k, then there is no disease in all the other connected groups k′.

(b) If the system is at equilibrium and group k is at endemic state, then the disease is at endemic for all the other connected
groups k′.

Proof. (a) Because the system is at equilibrium and there is no infection in group k, then, Ik = 0, also dIk
dt = 0, thus

0 =
K∑︁
i=1

βkCki
Ii
Ni

Sk − (γk + μk)Ik =
K∑︁
i=1

βkCki
Ii
Ni

Sk.

Because all terms in the summation above are non-negative, all terms—including the k′-th term—should be equal to zero; there-
fore, βkCkk′

Ik′
Nk′

Sk = 0. At equilibrium Sk ≠ 0, because

dSk
dt

= μkNk −
K∑︁
i=1

βkCki
Ii
Ni

Sk − μkSk = 0,

thus,

μkNk −
(

K∑︁
i=1

βkCki
Ii
Ni

+ μk

)
Sk = 0.

Then, solving the equation for Sk, we have

Sk =
μkNk

βk
∑K

i=1 Cki
Ii
Ni

+μk
≠ 0.

Hence, βkCkk′
Ik′
Nk′

= 0, The non-negativity of parameters guarantees βk > 0 and because the groups k and k′ are connected
Ckk′ > 0, thus, Ik′ = 0.

(b) When the system is at equilibrium and is endemic at group k, then Ik > 0. Suppose there is a group k′ connected to
group k such that Ik′ = 0 therefore,

0 =
dIk′

dt
=

K∑︁
i=1

βk′Ck′i
Ii
Ni

Sk′ − (γk′ + μk′ )Ik′ =
K∑︁
i=1

βk′Ck′i
Ii
Ni

Sk′

Because all terms in the summation above are non-negative, all terms—including the k-th term—should be zero, then we have
βk′Ck′k

Ik
Nk
Sk′ = 0. Because of the same reasoning in part (a), at equilibrium Sk′ = μk′Nk′

βk′
∑

i Ck′ i
Ii
Ni

+μk′
≠ 0. Also, because of the

positivity of parameters βk′ > 0 and because groups k and k′ are connected Ck′k > 0, we have that Ik = 0 which contradicts the
assumption of the theorem. We conclude that Ik′ > 0 for all k′ = 1, . . . ,K . □

We rewrite our model in matrix form to calculate the basic reproduction number of the model denoted by R0 and the
final epidemic size relation. We define S⃗ = [S1, . . . , SK ]T , I⃗ = [I1, . . . , IK ]T , R⃗ = [R1, . . . ,RK ]T , N⃗ = [N1, . . . ,NK ]T ,
β⃗ = [β1, . . . , βK ]T , γ⃗ = [γ1, . . . , γK ]T , and μ⃗ = [μ1, . . . , μK ]T . We can rewrite the system (1) as a matrix form

d⃗S

dt
= D( μ⃗)N⃗ −D (⃗S)D (⃗β)CD(N⃗ )−1⃗I −D( μ⃗)⃗S,

d⃗I

dt
= D (⃗S)D (⃗β)CD(N⃗ )−1⃗I −D (⃗γ + μ⃗)⃗I ,

dR⃗

dt
= D (⃗γ)⃗I −D( μ⃗)R⃗,

(3)

where the operator D (⃗x) is a diagonal matrix with D(i, i) = xi , 1 ≤ i ≤ K .
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Basic reproduction number. The basic reproduction number R0 is one characteristic of an epidemic that measures the
number of people a typical infected individual can infect at the early stage of the epidemic when almost all population is sus-
ceptible. Since there are a few infected individuals and no recovered ones at the early stage of the epidemic, it is reasonable to
assume almost all of the population is susceptible at the early stage, that is, S⃗ ≈ N⃗ . Doing so, we can rewrite the infection state
of the system (3) as

d⃗I

dt
≈ J I⃗ ,

where
J = −D (⃗γ + μ⃗) + D(N⃗ )D (⃗β)CD(N⃗ )−1.

Case 1: In the simplest homogeneous case, we assume all groups are connected and all groups’ transmission, recovery, and
birth/death rates are identical. Namely Cij > 0 for all i and j, βk = β, γk = γ, and μk = μ for k = 1, . . . ,K . Without loss of
generality, we re-scale time by γ + μ, then

J = −D (⃗1) +
β

γ + μ
B,

where D (⃗1) is identity matrix and B = D(N⃗ )CD(N⃗ )−1. We use λmax (A) to represent the largest real part of the eigenvalue of a
typical matrix A. The disease Free Equilibrium (DFE), where I⃗ = 0⃗, is stable when λmax (J ) = −1 + β

γ+μ λmax (B) < 0. Obviously,

λmax (B) = λmax (C). Then, the stability of DFE corresponds to the condition −1 + β
γ+μ λmax (C) < 0; otherwise, the Endemic

Equilibrium (EE) is stable. The condition −1 + β
γ+μ λmax (C) < 0 is equivalent to β

γ+μ λmax (C) < 1. This proves that the basic
reproduction number of model is

R0 =
β

γ + μ
λmax (C).

Case 2: For the general case when groups are heterogeneous in terms of infection propagation, that is, when βk ≠ βk′ , γk ≠ γk′ ,
and μk ≠ μk′ for at least a pair of k and k′, for k, k′ = 1, . . . ,K , then the next generation matrix calculated through next-
generation approach (Van den Driessche and Watmough, 2002) is

X = D(N⃗ )D (⃗β)CD(N⃗ )−1D (⃗γ + μ⃗)−1. (4)

The R0 for the whole system is spectral radius of matrix X, ρ(X ). But our goal is to dig into elements of matrix X to understand
their meanings. That way, we can know about appropriate ways to control infection in the system. Each element X is given as

X (i, j) = βiCij
Ni

Nj

1
γj + μj

, (5)

By balanced condition Cij
Ni

Nj
= Cji , therefore,

X (i, j) =
(

Probability of disease
transmission in group i

) (
Number of contacts a person in

group j makes with people in group i

) (
Infection period for infected
and alive person in group j

)
= βi Cji

1
γj + μj

.

We denote elementX (i, j) byR j→i
0 as the number of people in group iwhere get infected by an individual in group j (Diekmann

et al., 2010; Hartemink et al., 2008). For example, the diagonal element of matrix X, X (i, i) = R i→i
0 , is the average number of

infected cases belonging to group i produced by a typical infected individual belonging to the same group i. We call this value
R i→i

0 the basic reproduction of group i.

Final size relation. Using (Arino et al., 2007), we have final size relation

ln

(
S⃗0

N⃗ − R⃗∞

)
= D (⃗β)CD(N⃗ )−1D (⃗γ + μ⃗)−1R⃗∞ = D(N⃗ )−1XR⃗∞, (6)

where logarithmic function and fraction on the left-hand side of equation (6) operate element by element, R⃗∞ is the vector of
recovered individuals at final time, when t approaches to ∞, and S⃗0 is the vector of susceptible individuals at the initial time.
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The k-th component of vector form (6) is

ln
(

Sk0

Nk − Rk∞

)
=

∑︁
j

βkCkj

Rj∞

Nj (γj + μj)
=

1
Nk

∑︁
j

R
j→k

0 Rj∞, k = 1, . . . ,K , (7)

where Rk∞ is the k-th element of R⃗∞ , and Sk0 is the k-th element of S⃗0. We note that the balanced condition CkjNk = CjkNj is
used to derive the second equality in the equation in (7). Equation (7) implies that the final size Rk∞ of group k is an increasing
function of the final sizeRj∞ of other groups j that are connected to k (Ckj ≠ 0.) Thus, the final size of group k can be controlled
by the the final sizes of connected groups j via interventions.

Theorem 2.2. Suppose the reproduction for group k is less than one, that is, R k→k
0 < 1. Then reducing the final size Rk′∞ for

group k′ connected to group k causes a reduction of the final size for group k.

Proof. Without loss of generality, we assume that we have only two groups called k and k′. Then by (7) we have

Rk∞ = Nk − Sk0e
− 1

Nk
(R k→k

0 Rk∞+R k′→k
0 Rk′∞ )

Dividing both side of equation by Nk and then defining continuous variables x = Rk′∞
Nk′

∈ [0, 1] and y = Rk∞
Nk

∈ [0, 1], we have

y = 1 − Sk0

Nk
e
−(R k→k

0 y+ Nk′
Nk

R k′→k
0 x)

Taking the derivative of both sides with respect to x, we have

dy

dx
=
Sk0

Nk
(R k→k

0
dy

dx
+
Nk′

Nk
R k′→k

0 )e−(R k→k
0 y+ Nk′

Nk
R k′→k

0 x)

=
Sk0

Nk
(R k→k

0
dy

dx
+
Nk′

Nk
R k′→k

0 )Nk

Sk0
(1 − y)

= (R k→k
0

dy

dx
+
Nk′

Nk
R k′→k

0 ) (1 − y).

Therefore,

[1 −R k→k
0 (1 − y)]

dy

dx
=
Nk′

Nk
R k′→k

0 (1 − y).

We note that the R.H.S. of the above equation is always non-negative. On the other hand, by the assumptions R k→k
0 ≤ 1 and

y ∈ [0, 1], it can be shown that 1 −R k→k
0 (1 − y) ≥ 0. That results in dy

dx ≥ 0, which proves our theorem. □

The basic reproduction number of the whole system, R0, is a function of all Ri→j
0 for all i and j, as it is the spectral radius of

the matrix X whose elements are Ri→j
0 . Therefore, even if the basic reproduction number of group k is less than one, Rk→k

0 < 1,
group k still can experience an outbreak if R0 > 1. However, based on the theorem above, we can control the epidemic (reduce
the final size) in group k by implementing Non-Pharmaceutical Intervention (NPI) such as SD on another connected group k′.
On the other hand, if the reproduction of group k is so big that causes thatR k→k

0 (1− y) = R k→k
0

Sk∞
Nk

> 1, then, implementing
an NPI to control the final size of a connected group k′ results in increasing final size for group k.

2.2 Social distancing and infection inequality

In mandated SD, the decrease in social contacts is regulated centrally and affects the entire population or specific subpopulations
(Glass et al., 2006; Valdez et al., 2012). To this end, if the level of mandated SD is σ ∈ [0, 1], then the level of contact is reduced
by σ . We assume an individual in group k practices SD with level σk ∈ [0, 1]. Thus, a person in group k reduces contact from
Ck to (1 − σk)Ck. Doing so, the second equation in balance conditions (2) will change to

(1 − σk)Ckk′Nk = (1 − σk′ )Ck′kNk′ .

We assume the given parameter σ ∈ [0, 1] is the SD level for the whole population, that is, if average contact for all population

is C̄ =
∑K

k=1 CkNk

N , where N =
∑

k Nk is total population size, then all population practice SD by reducing the contact level to
(1−σ)C̄ . Then, the question is how to distribute σ over the groups. In other words, if σk is level of SD for group k = 1, 2, . . . ,K ,
then given σ how can we specify σk. To answer this question, we first need to define an objective function related to infection
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characteristics and infection inequality. The infection inequality is defined so that differences in prevalence in all groups are
minimized. If we define ik (t) = Ik (t)

Nk
as fraction of infected individuals in group k at time t, then we define

D(t) =
∑︁
k,k′
k<k′

|ik (t) − ik′ (t) |, DT =
∫ T

0
D(t)dt. (8)

D(t) is called infection inequality at time t, and DT is the total infection inequality defined in the whole infection time frame
[0,T ]. On the other hand, suppose r∞ = R∞

N =
∑

k Rk∞
N is final size fraction of the population, fraction of all people who got

infected at some time during the infection spread, which is measured by the number of recovered people at final time divided by
population size. Therefore, our optimization problem is stated as

min
σ1, ... ,σK

Λα = αDT + (1 − α)r∞ s.t.
K∑︁
k=1

σkCkNk = σC̄N 0 ≤ σk ≤ 1, for k = 1, . . . ,K (9)

where again C̄ =
∑K

k=1 CkNk

N is the average contact of the whole population before any SD implementation, and the weight
α ∈ [0, 1] is an indicator of the importance of controlling total infection inequality (DT ) over controlling final epidemic size
(r∞); smaller α, more focus on reducing r∞, and bigger α, more focus on reducingDT . We solve the problem by finding optimal
SD strategy (σ∗1 , σ∗2 , . . . , σ∗K ) that minimizes function Λα = αDT + (1 − α)r∞. The constraint in the optimized problem means
that the sum of the total number of contact reduction of group k as a result of σk SD implementation should be equal to the
total number of contact reduction as a result of σ SD implementation in the whole population. We note that this constraint
means compliance with SD is mandated, and the budget for implementing mandated SD is limited. Therefore, based on the
model assumption, if one group practices SD weakly, the other has to practice it more strongly. Thus, the focus is to manage the
SD effort distribution to our best benefit, minimizing Λα.

3 Result

3.1 Parameter value

The definitions of parameters of the proposed model and their baseline values are given in the Table 1. To find contact param-
eters, we used a social network based on the synthetic data generated by Simfrastructure, a high-performance, service-oriented,
agent-based modeling and simulation system for representing functioning virtual cities. Simfrastructure represents entire urban
populations at the level of individuals, including their activities, movements, and locations, on a second-by-second basis. The
data that we used was generated by researchers at Biocomplexity Institute at Virginia Tech (Eubank et al., 2010; Eubank, 2008),
and technical report (Azizi, 2023), that are publicly available on GitHub (Azizi, 2023). The data is in the form of a social net-
work of N ∼ 150,000 synthetic people as nodes of the network. Each edge ij between two nodes i and j shows contact between
two corresponding individuals and is weighted by some label that reflects the type of connection (Household, Work, School,
Shopping, and Others, such as entertainment gatherings or religious activities) as well as the amount of time the two individuals
spend with each other. The minimum duration of all contact types is 15 minutes, enough time to spread emerging infections
such as COVID-19 (Keeling et al., 2020). The X - and Y -coordinate of household location and per year household income of
each individual in the network is given. In Figure 1, we have plotted the income distribution based on the household location
of individuals (left panel) and contact probability as a function of household dimensionless distances (right panel). This plot
shows that individuals cluster based on their income and have mostly contact with (physically) close people; that is, the chance
of contact between two individuals decreases as their household physical distance increases. The plot reveals some correlation
between income and contacts. To measure this correlation, we divided the population into three groups: Low-income, Middle-
income, and High-income. Individuals with per year household income less than $48000 are considered as Low-income (57%
of the whole population), the ones with per year household income within the range [$48000, $145500] are Middle-income
(32% of the whole population), and the ones with per year household income higher than $145500 are High-income (10% of
whole population) (Snider and Kerr, 2023). Incorporating this class stratification, we can find contact matrix as follows: for
every individual in group i ∈ {L (Low-income), M (Middle-income), H (High-income)} we count their number of contacts
which are in class j ∈ {L, M, H}, lets call it cij . Then Cij is the average of all the values cij for all individuals in group i. Using
this approach, we found CLL,CLM ,CLH ,CML and CMM . For the rest elements of contact matrix (CMM ,CMH ,CHL,CHM , and
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Table 1: Parameters’ notations, definitions, units, and baseline values. The values with ∗ sign were rounded up to two digits
for reporting in the table.

Contact Parameters

Notation Description Baseline Value (Unit)

N Number of people 154,240 (People)
NL Number of Low-income people 88,445 (People)
NM Number of Middle-income people 48,946 (People)
NH Number of High-income people 16,849 People
CL Contact numbers for a Low-income individual per unit time 12.11 (Contacts/Day)
CM Contact numbers for a Middle-income individual per unit time 10.91 (Contacts/Day)
CH Contact numbers for a High-income individual per unit time 8.06 (Contacts/Day)
CLL Contact numbers between two Low-income individuals per unit time 7.40∗ (Contacts/Day)
CLM Contact numbers a Low-income individual makes with Middle-income

ones per unit time
3.63∗ (Contacts/Day)

CLH Contact numbers a Low-income individual makes with High-income
ones per unit time

1.07∗ (Contacts/Day)

CML Contact numbers a Middle-income individual makes with Low-income
ones per unit time

6.57∗ (Contacts/Day)

CMM Contact numbers between two Middle-income individuals per unit time 4.08∗ (Contacts/Day)
CMH Contact numbers a Middle-income individual makes with High-income

ones per unit time
0.26∗ (Contacts/Day)

CHL Contact numbers a High-income individual makes with Low-income
ones per unit time

5.64∗ (Contacts/Day)

CHM Contact numbers a High-income individual makes with Middle-income
ones per unit time

0.75∗ (Contacts/Day)

CHH Contact numbers between two High-income individuals per unit time 1.67∗ (Contacts/Day)

Infection and Intervention Paramters

Notation Description Baseline Value (Unit)

β Prob. of transmission per contact 0.033 (1/Contact)
ρ = γ + μ Removal (death or recovery) rate 0.1 (1/Day)

σ Fraction of contacts that are cut by all population Changing value (1)
σL Fraction of contacts that are cut by Low-income individuals Changing value (1)
σM Fraction of contacts that are cut by Middle-income individuals Changing value (1)
σH Fraction of contacts that are cut by High-income individuals due to SD Changing value (1)
α Optimization parameter 0.5 (1)
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Figure 1: The map of the household location, income level (left panel), and probability of contact as a function of household
distance (right panel). Low- (high-) income individuals live in clusters in the same neighborhood. Individuals are primarily in
(any type of) physical contact with others nearby.

CHH ), we use the balanced condition (2). Below is the result matrix C :

C =

Low-income Middle-income High-income
Low-income 7.40 3.63 1.07

Middle-income

 6.57 4.08 0.26

High-income 5.64 0.75 1.67
.

The total average number of contacts per day for group i is the sum of the contact matrix’s i-th row. We observe that the
connectivity level of individuals inversely correlates with their socioeconomic status; the average number of contacts per day for
a person in the Low-income group is the highest, CL = 12.11, followed by that of the Middle-income, CM = 10.91, and the
lowest belongs to High-income group, CH = 8.06. Although the contact matrix is not diagonally dominant, if we scale it by
population sizes of groups (dividing each column j by the population size of group j), we observe that the result matrix becomes
diagonally dominant, which means a strong assortativity in socioeconomic status; people are better connected to others of their
socioeconomic class than to others (Leo et al., 2016).

The infection-related parameter values, such as transmission probability per contact and recovery rate reported in Table 1,
have been chosen similarly for all groups and are realistic for respiratory infections such as COVID-19. Recovery rate for
COVID-19 was estimated to be around 0.1 (Yang et al., 2021), and R0 was estimated in the range from 1.5 to 6.49, with an
average of 4.2 (Cao et al., 2020; Tang et al., 2020). Therefore, assuming theR0 without any SD implementation to be around 4,
we calculated the transmission rate accordingly. With the baseline values reported in Table 1, we have R0 = 3.77, basic repro-
duction number for Low-income group R 1→1

0 = 2.44, basic reproduction number for Middle-income group R 1→1
0 = 1.35,

and basic reproduction number for High-income group R 1→1
0 = 0.55.

3.2 Social distancing distribution

Using the global sensitivity analysis on SD parameters σL, σM , we explore the potential impact of SD distribution on Λα reduc-
tion. We navigate the (σL, σM) parameter space for σL ∈ [0, 0.99] and σM ∈ [0, 0.99] with a step-size of 0.001 and choose the
(σL, σM) pair that minimizes Λα. Figure 2 gives the prediction of the Λα for α = 0.2, 0.5 and 0.8 under different scenarios of
σ = 0.2, 0.4, and 0.7 and different combinations of σL and σM while other parameters are kept as in Table 1 and σH is computed
using the constraint in equation (9). The Figure shows the optimal distribution when Λα is minimized at (σ∗M , σ∗L) marked by
red circle. First, we observe a feasible region for SD parameters, which is striped because of the implementation of two con-
straints in equation (9). The first constraint does not guarantee that σL, σM , and σH remain in interval [0, 1]. Therefore, we only
choose the values for which (σL, σM , σH ) ∈ [0, 1]3. The optimization parameter α has an impact on (σ∗L, σ∗M , σ∗H ); for small α
-which is when reducing final size dominates reducing infection inequality- the lowest level of SD is devoted to the Low-income
group while Middle- and High-income groups share the SD. However, when the importance of reducing infection inequality
increases (α increases), the discrepancy of the level of SD among different groups decreases; that is, all groups should share SD.
This discrepancy of the level of SD among different groups also decreases by increasing the SD level σ ; As σ increases all σ∗i s for
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Table 2: The optimal values (σ∗L, σ∗M , σ∗H ) for different values of weight α and social distancing σ . All the values are rounded
up to three digits.

α = 0.2 α = 0.4 α = 0.5 α = 0.6 α = 0.8

σ = 0.2 (0.002, 0.335, 0.999) (0.231, 0.196, 0.00) (0.231, 0.193, 0.00) (0.235, 0.192, 0.00) (0.239, 0.183, 0.00)
σ = 0.4 (0.019, 0.875, 0.99) (0.444, 0.383, 0.165) (0.444, 0.383, 0.162) (0.446, 0.382, 0.162) (0.448, 0.380, 0.159)
σ = 0.7 (0.544, 0.877, 0.999) (0.722, 0.691, 0.584) (0.722, 0.691, 0.584) (0.722, 0.691, 0.584) (0.723, 0.693, 0.583)

i ∈ {L,M,H} increase but the optimal point (σ∗L, σ∗M , σ∗H ) stays on a straight line, meaning that the trend remains the same as
σ changes. In the Table 2 we listed the optimal distribution (σ∗L, σ∗M , σ∗H ) for various α and σ values.

In Figure 3, we plotted the time series of both the total fraction of infected cases (left panel) and infection inequality (right
panel) for two scenarios of Equal Share of SD (ESD: SD implementation of an individual does not depend on his/her group),
and Optimized Share of SD (OSD: when SD is distributed among groups such that Λ0.5 is minimized), and for three level of
low SD, σ = 0.2, medium SD, σ = 0.4 and high SD, σ = 0.7. The plots and x- and y-axis for low and medium levels of SD
σ = 0.2, 0.4 are in black, while the plots and x- and y-axis for high levels of SD σ = 0.7 are in blue. The values of (σL, σM , σH ) for
ESD are the optimized solutions listed in the third column of Table 2, α = 0.5. While there is no significant discrepancy between
ESD and OSD in the time series of infection fraction, within the OSD scenario, infection inequality is significantly smaller than
that of the ESD scenario.

Figures 2, 4, and 5 take into account the variations in σL and σM but not σH . This is because the results of the model are not
significantly affected by σH as the proportion of the number of contacts for the high-income-level group is only 9%. In Figures
4 and 5, we show the optimized distribution of SD, (σ∗L, σ∗M , σ∗H ), versus contact levels for Low- and Middle-income groups, CL

and CM , for σ = 0.2, Figure 4, and σ = 0.4, Figure 5. For the contact ranges we choose baseline values ±3, thus CL ∈ [10, 15]
and CM ∈ [7, 13]. Then choosing the pair (CL,CM) in domain [10, 15] × [7, 13] and for given SD level σ , we detected the best
triple (σ∗L, σ∗M , σ∗H ) that minimizes Λ0.5. Then we plotted each component of this triple in separate panels in Figures 4 and 5.

The Strategy detection plot, shown in the bottom right panel, is the combination of the other three plots in Figures 4 and 5.
This plot helps us detect the optimized SD distribution given SD level σ and the number of contacts for Low- and Middle-
income groups, CL and CM . We specify the color red for when the best strategy is that only Low-income individuals practice
SD, that is, σ∗M = σ∗H = 0. Similarly, we specify the color green for when the best strategy is that only Middle-income individuals
practice SD, that is, σ∗L = σ∗H = 0. Finally, we use the color blue when the best strategy is that only High-income individuals
practice SD, that is, σ∗L = σ∗M = 0. Then for every pair of points (CL,CM) we find the best strategy (σ∗L, σ∗M , σ∗H ) and then
define σ∗ = σ∗L + σ∗M + σ∗H and color that point using RGB color code ( σ

∗
L

σ∗ , σ∗M
σ∗ , σ∗H

σ∗ ) in MATLAB. The Strategy detection plot is
helpful to visually detect the best strategy to control Λα when the resource for SD implementation is limited- for small values of
σ . Therefore, we only simulated the heatmap of optimized SD parameters along with their strategy detection plot for σ = 0.2
and σ = 0.4, shown in Figures 4 and 5.

As we observe in Figures 4 and 5, the best strategy is highly dependent on the level of SD σ and contact levels CL and
CM . For instance, when σ = 0.2 High-income group does not practice SD for almost all regions (when the contact level of
the High-income group is smaller than the contact level of at least one of the other groups) or practices it highly for a small
region of CL ∼ 10 and CM ∈ [8, 10] (when contact level for all groups are almost equal). On the other hand, we observe
that when the contact level of a group (Low- or Middle-income) increases, then its share of optimized SD increases, which is an
intuitive result of our model. Nevertheless, the striking result is that the speed of increasing σ∗M as the contact for the Middle-
income group increases is much smaller than that of Low-income ones; dσ∗M

dCM
<

dσ∗L
dCL

, that is, the result is more sensitive toward
behavior of Low-income group than Middle-income one. As the strategy detection plot shows, the share of color for almost
all regions (CL ≥ 11 and CM ≥ 10) is between red (representing the Low-income group) and green (representing the Middle-
income group). The intensity of the red color increases (decreases) as CL increases (decreases), while the intensity of the green
color increases (decreases) as CM increases (decreases). That means the share of SD between Low- and Middle-income groups is
proportional to their contact level. Increasing the SD level to σ = 0.4, we observe a completely different strategy. Looking at the
strategy detection plot, we observe several points. First, the trend of increasing σ∗i as a function of Ci for i equal to the Low- or
Middle-income group is not observed for σ = 0.4; there is a complete non-linear relation between Ci and σ∗i , that means, other
factors besides the sole contact level come to play a role. Second, for a much bigger region, there is an almost equal share of SD
among all groups (a gray area). Finally, for a higher level of contact for the Low-income group (CL ≥ 12) and a lower level of
contact for the Middle-income group (CM ≤ 10), a share of SD among Low- and High-income groups (purple area) occurs,
while the contact level for High-income group remains negligible. But whenCM increases, this share of SD moves between Low-
and Middle-income groups, bigger CM higher share of SD for the Middle-income group.

It is challenging to understand the reasons for the partitioned strategy. Many factors, such as population sizes, the contact
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Figure 2: Sensitivity of Λα against two SD parameters: σM (x-axis) and σL (y-axis) for α = 0.2 (a), α = 0.5 (b), and α = 0.8 (c),
and σ = 0.2, 0.4, and 0.7 specified in the subfigures. Each scenario’s optimum points (σ∗M , σ∗L) is marked as a red-filled circle.
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Figure 3: Time-series of infection fraction (Left panel) and infection inequality (Right panel) for scenarios of Equal share of
SD (ESD) and Optimized SD (OSD) and various levels of SD σ = 0.2, 0.4 and 0.7. The black curves (refer to σ = 0.2, 0.4) are
measured by the left and bottom axis specified by black color, and the blue ones (refer to σ = 0.7) are measured by the right and
top axis defined by blue color.
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Figure 4: Optimal strategy versus contact levels for low- and Middle-income groups for σ = 0.2; The elements of optimized SD
distribution (σ∗L, σ∗M , σ∗H ) versus contact level for Low-income group (CL in x-axis) and contact level for Middle-income group
(CM in the y-axis) are shown in top panels and bottom left panel. The strategy detection panel (bottom right) combines all three
plots by representing each with a different primary color—red for σ∗L, green for σ∗M and blue for σ∗H . For example, for point A
(CL,CM) = (10.5, 9) the first three figures indicate that (σ∗L, σ∗M , σ∗H ) = (0.2, 0.2, 0.2). As a result, point A is colored gray on
the strategy panel, as all primary colors are represented equally. On the other hand, for point B (CL,CM) = (14, 8) we have
(σ∗L, σ∗M , σ∗H ) = (1, 0, 0). Point A is colored red on the strategy panel, as blue and green have no representation (σ∗M = σ∗H = 0).
The strategy panel clearly outlines the regions where a certain SD effort strategy provides the best outcome.

Figure 5: Optimal strategy versus contact levels for low- and Middle-income groups for σ = 0.4; The elements of optimized SD
distribution (σ∗L, σ∗M , σ∗H ) versus contact level for Low-income group (CL in x-axis) and contact level for Middle-income group
(CM in the y-axis) are shown in top panels and bottom left panel. The strategy detection panel (bottom right) combines all three
plots by representing each with a different primary color—red for σ∗L, green for σ∗M and blue for σ∗H . Two examples are provided
in the caption of Figure 4.
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levels between each group (elements of matrix C), the total budget for mandated SD (σ in this context), and even the objective
of SD (α in this context) can affect the best decision. However, such strategy detection plots are useful for finding the decision
region.

4 Discussion and Conclusion

The disparity in infection incidence and prevalence among individuals with various socioeconomic statuses directly relates to in-
dividuals’ decisions during the outbreak. These decisions depend on multiple factors primarily related to the income/education
of those making them (Azizi et al., 2020). Therefore, one the main factor in controlling the infection discrepancy is managing the
decisions in responding to outbreaks. One way of this management is to use an engineered mandated (public) social distancing
according to socioeconomic status. To implement such social distancing, we developed a group-based mathematical model with
a SIR structure to simulate emerging infection in K connected socioeconomic groups. Then, we assessed the role of mandated
social distancing distribution among the groups in controlling infection inequalities and the final epidemic size. The data for
our multi-objective model was from a real-world synthetic social network of individuals living in New Orleans, Louisiana. This
population is proper for our study because it suffers from high health disparity rates during the COVID-19 outbreak (Louisiana
Department of Health, 2020).

Our model suggested that proper social distancing management could be an effective factor for reducing the differences in
infection epidemiology among socioeconomic groups, see Figure 3. Furthermore, the results suggest that the efficiency of social
distancing distribution on infection inequalities reduction highly depends on the level of social distancing for all population,
denoted by σ , as well as the activity level of the groups. Because when we slightly change the social distancing level or contact
level for some groups, the optimum strategy changes drastically, see Figures 4 and 5.

One main point of this work is that individuals voluntarily respond to an emerging infection by considering many factors,
such as fear or risk of infection and economic factors. If policies designed to control infection interfere with selective choices,
it may cause unfavorable results (Azizi et al., 2022; Lee et al., 2010; Maharaj and Kleczkowski, 2012). Therefore, it is crucial to
consider individuals’ decisions when making mandated policies such as lock-down. One central question is how such a strategy
can be implemented in reality, as it is not feasible to implement different mandated NPIs individually. However, our social
network data shows that there is a homophily (McPherson et al., 2001) in socioeconomic status; people are more prone to
have physical contact with others with similar socioeconomic status. One reason is their closer physical proximity, see Figure 1.
Therefore, by implementing a region-based (or community-based) (Bhoi et al., 2021) mandated social distancing, we will be able
to, indirectly, implement socioeconomic-based social distancing.

The proposed model, like any other mathematical modeling study, has the luxury of experimenting with social issues in a
virtual environment while attempting to imitate a real-world situation (Mago et al., 2013). One of the limitations of this work is
ignoring detailed information in the data such as type or time of contacts when generating contact matrix C. We only assumed
a contact is a person, not a time × person. Using all this detailed information could be helpful when developing an agent-based
model, which can be the direction of future work. We also ignored other social factors besides income, which may impact
socioeconomic status, factors such as race and education level. Further, we have yet to consider other commonly practiced NPI
or Pharmaceutical Intervention (PI), such as isolation, vaccination, and treatment in our model. Including such intervention
besides behavioral change may affect the result. The other limitation of this work is incorporating only mandated SD, which the
government rules and individuals must follow. This assumption and limited source of ordering SD caused the forced behavioral
change of the individuals to be interdependent; that is, if a group practices a low level of SD, the others have to practice a high
level of SD. In reality, individuals follow many other types of SD independent of what others do, non-mandatory self-regulated
SD, which we did not consider here. In future work, we will study this effect and will measure the impact of such SDs on the
efficiency of the mandated SD proposed in this work. Finally, to have a more realistic representation of our model, we need
to analyze its dynamics under a limited budget scenario; that is, we need to consider the cost of selecting one strategy over the
others. For example, suppose the cost of social distancing distribution among groups to control infection inequality is too high
to afford. In that case, we must update the strategy for the most effective combination.

For future work, we will extend our model to an agent-based network model that can improve our assumptions, such as
contact, social factors, and behavior characterized by income level, ethnicity, social groups, education level, and geographic
location. We will focus on validating the model predictions and identifying which trends and quantities we can or cannot
predict within the model uncertainty limitations. We will also include each strategy’s cost and conduct a cost-benefit and cost-
effectiveness analysis to evaluate each strategy’s social or economic analysis.

It is not possible to fully capture all the micro-level social interactions leading to infection inequality. However, the present
study aims to capture critical population-level average social and environmental influences and their impact on the dynamics of
emerging infection and infection inequality. Although the model is still simplistic in directly guiding policymakers to alleviate
this social issue, and it does not intend to do so, the qualitative trends predicted by our simulations can help design studies to
quantify the effectiveness of the proposed social distancing management.
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