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Abstract

Given a positive rational number -%(0 <a <b), we identify families of

connected graphs G, such that the ratio of the number of matchable edges to the

total number of edges in G -denoted by 7t(G), is %. We call ©(G), the

matchable ratio of G. For certain kinds of rational numbers, we identify the
smallest connected graphs with the property. This problem was initially
discussed in [1].

1. Introduction

The graphs considered here are finite, and contain neither loops
nor multiple edges. Let G be a graph. An edge of G is called matchable, if and
only if it belongs to a perfect matching in G. This paper continues the
investigation into matchable edges started in [1], where we focused on totally
matchable graphs, that is, graphs in which every edge is matchable. We now
turn our attention to graphs which are not totally matchable. These are graphs
which contain non-matchable edges.

Definition
Let G be a graph with b edges; i.e. of size b, and with a matchable

edges. Then the ratio 1(G) = % is called the matchable ratio of G.

The following are additional definitions, which will apply to the
material that follows.
Definiti
(i) A 1-cycle and a 2-cycle is a vertex and an edge respectively. A
cycle with more than two vertices 18 called a proper cycle.
In the material that follows, "cycle” will mean "proper cycle”, unless
otherwise specified.
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(ii) A graph G is non-matchable (matchable) saturated if and

only if no more non-matchable (matchable)edges can be added to it.

(iii) An edge joining two non-adjacent vertices of a cycle is a chord

(The 3-cycle has no chords).

(iv) An even n-cycle is canonically labeled, if an only if its
vertices are labeled in some agreed order, with the consecutive
integers from 1 to n. - i i
order to be a clockwise,

(v) Ina canonically labeled cycle, a chord joining two odd (even)
labeled vertices is called odd (even); otherwise it is mixed.

(vi) A graph, consisting of a canonically labeled r-cycle Cr, with s odd
chords and no even chords added, will be denoted by G,-, s- The
subgraph Cy, is called its boundary.

(vii) A chain is a tree with nodes of valency 1 and 2 only. A
boundary chain of Gy, is any connected subgraph of its

boundary.

From the definition, the graph Gy, 5 contains r > 4 vertices and
r+s edges. The graph Gr,( is the cycle Cr.

In [1] we identified graphs with certain matchable ratios. We
also established the existence of a graph for any given matchable ratio (Theorem
3.3). The proof of this result also provides an-algorithm for the construction of
such graphs. The graphs obtained from this theorem, may be disconnected. It is
therefore interesting to be able to construct connected graphs with a given

. . a . o .
matching ratio ; Even more interesting, is the construction of a connected

graph having precisely size b and with a matchable edges. In this paper, we give

constructions for such graphs. Moreover, we identify the smallest order graphs

with this property.

2. Graphs with matchable ratio a/b, where a = 2n (n > 1),
0<a<bh and b-a < (:)

Le a
In the graph Gy s, every chord is non-matchable.

Proof
Figure 1 shows a canonical drawing of Gr,s.
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Eigure 1
All chains referred to, will be boundary chains. It can be easily seen that a chain
has odd order, if and only if the labels of its end-vertices have the same parity.
Let us assume that there exists a perfect matching M containing the (odd) chord
xy Now, remove vertices x and y from Gy, s . Since x and y are odd and there are
no even or mixed chords in Gy 5, we have in Gy, s-x-y vertices x-1, x +1, y -1
and y+1 each having valency 1 (see Figure 2) and all other even vertices have
valency 2. In particular, the edges ( x-1, x-2), (x+1, x+2),(y -1,y-2)and
(y+1, y+2) must all be in M.

¥-2
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The edge joining x+1 to x+2 must belong to M. This forces the edge joining
“x+3 to x+4 to be in M. By continuing in this manner, we get that the edge
joining y-3 and y-2 must belong to M. But the edge (y-1, y-2) is in M. This is
a contradiction; since(by assumption) M is a perfect matching. Thus our
assumption is false. The chord xy is non-matchable. Hence the result follows.

Theorem 1
Letr=2n(n=1). Ifs= (z), then the graph Gr,s is non-matchable

saturated.
Proof
From the lemma, all the chords of Gy, g are non-matchable.

There are n odd labelled vertices in Gy, 5. Any pair of these can be joined to form

an odd chord. The number of such pairs is (’2‘) Therefore, when s takes this -

value, every pair of odd labelled vertices are joined by an edge, so that all odd
chords are included.

We must now show that no more non-matchable chords can be
- added to-Gr, 5, that is, every new chord is matchable. Let us add a new chord xy.
Then xy must either be (i) even or (ii) mixed. Call the resulting graph G.

Case (i) (x i )

Let us remove vertices x and y from G. In the resulting graph
G', vertices x-1 and x+1, being odd vertices, will be joined by an edge (being
odd labelled vertices); and so too will be vertices y-1 and y+1. Thus, the
resulting graph will contain a new boundary cycle Cy.2. Since r is even, r-2 is
even. Thus, G' has a perfect matching; and the chord xy is matchable in Gy, s.
Case (i) ( if is mixed) '

Without loss in generality, we will assume that x is odd and
that y is even. Again, let us remove vertices x and y from G to obtain a graph
G'. Then, G’ will contain two boundary chains-one chain connecting vertex
x+1 (even) to vertex y-1 (odd); the other, connecting vertex x-1 to vertex y+1.
Since the chains have endnodes with different parities. They will be even chains;
and consequently, have perfect matchings. Hence G’ has a perfect matching.
Adding the chord xy to this matching, yields a perfect matching in Gy, s.

We conclude therefore, that no more non-matchable edges can
be added to Gy, 5. Hence Gy, s is saturated. '

Corollary 1.1

Leta = 2n (n 2 2) and b be positive integers, with a <b and 0< b-a < [;)

Then the graph Gg p.q is a connected graph such that ©(Gg,b-q) =

.

o
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Proof
Let the number of added (0odd) chords be €. Then (from Theorem 1) we get

0<e< | .
2

Since C has a edges, total number of edgesin Gis a+e. °
a

a+e

But £ = b-a. Therefore, the result follows. D

= 1m1(G) =

3. Graphs with matchable ratio a/b, with a = 2n+1 ( n >1),

0< a<b am:lb-asi

400
Definiti
The graph Hy is a canonically labeled r-cycle, with a chain of length 2,
attached to one of its vertices; and with the vertex of valency 2 and 1, labeled
r+2 and r+1 respectively. The graph Hy,s is the labeled graph Hy, with s odd

chords added ( See Figure 3).

r+1 T2

10

I

I-1
Figure 3
This graph is essentially the graph Gy s, with a chain of length 2 attached to one
of its boundary vertices., By definition, the graph Hy, s contains r+2 vertices and
r+2+s edges.

55



The following lemma is analogous to Lemma 1.
Lemma 2

In the graph Hy g, every chord is non-matchable.
Proof

In Figure 3, we show a canonical drawing of a labeled graph Hp s.
The attached chain does not affect the arguments given in the proof of Lemma 1,
since the edge joining r+1 to r+2 must be used in every perfect matching. Hence
the result follows.

This lemma implies that we can still add non-matchable odd (or even)
chords to the subgraph Gy, s of Hy 5. Also, it is clear that the edge joining the

vertex r+1 to the boundary is non -matchable. Therefore, Hy g will have r+1
matchable edges and s+1 non-matchable edges. In Hy, s new kinds of edges can
join the" external" vertices r+1 and r+2 to vertices on the boundary of Gp,s. Itis

difficult to tell which ones are non-matchable, since the presence of these edges
could even spoil the non-matchability of chords. We can however saturate the
Gr, s subgraph of Hy,s, so that the resulting graph is saturated with non-
matchable c¢hords. This yields the following analogy to Theorem 1.
Theorem 2

Let n be an integer greater than 2, and let a = 2n+1 . Then the graph

Hjg.] s is saturated with non-matchable chords , when s= (121]

The following result is immediate from Theorem 2; and is analogous to
Corollary 1.1.

Corollary 2.1 -
Leta =2n +1 (n = 2) and b be positive integers, with a < b and

0<ba< (;) Then the graph Hg_1 p.g+]1 is a connected graph such that
a
n(Ha-1,b-a+1) = - O

4. Graphs with matchable ratio a/b in which b-a is not bounded

n
above by :

We now consider the case in which 0 <a <b and b-a is not
bounded above by (;J In the results above, b-a is bounded above by (;j -the

number of chords that can be added to the boundary cycle. This excludes many

classes of rational numbers. For example, the rational number 1—1— is not
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covered by the results above, since they all are based on the condition that Cg
is a proper cycle. In fact, the smallest even value of a is 4 (Corollary 1.1) and
the smallest odd value is 5 (Corollary 2.1). Therefore the numerator of the

fraction must be at least 4. In this case the fraction will be & .
When b-a is bounded, as defined above, we have identified a

connected graph G of size b with a matchable edges, such that (G) = %.

However, for some rational numbers, it will be impossible to find a graph;
connected or not, with this property. For example, for the rational number

1
ﬁ;’ one would have to find a graph with 100 edges in which exactly one edge

belongs to a perfect matching. No such graph exists. We will therefore consider

the related problem of finding a connected graph G, such that n(G) = %. This

means that there are no restrictions on the size of the graph. Our technique is

based on the simple fact that the rational numbers 2 and L3 are equal, for all

non-zero values of k. This will allow us to use the construction given in
Sections 2 and 3, since we can always arrange for ka to be even. We will do

better than this. We will identify a smallest order graph obtained by our
construction, that is, a smallest order Gy ;.

The following result is crucial.
Lemma 3

For all positive integers a and b, with b > q, there exists a positive
integer k such that o

kb -ka < (kaz/ 2) , when ka is even. Furthermore, the smallest value of k for

which the condition holds is { £ (i (b—a)+ lﬂ
a\a
Proof

Since b > a, then b-a 20 and [z[i (b—a)+ lﬂ is a positive integer.
ala

Choose k > F—[i(b —a)+ lﬂ Then % 2 (i)(b —a)+ 1. From this, we
a\a a

4

obtain E—12
2 a

)(b —a), which in tumn, implies thatb —a < %(E;i ~1).
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Thus k(b—-a) < %(_k;a_ -1)= (kaz/ 2), when ka is even.~ Hence there exists

2
_such a positive integer k. It can be easily shown that if k < [— (i(b -a)+ lj-l,
a\a

the inequality no longer holds. Hence the result follows. H

This lemma identifies the range of values of k which would
make the ka-cycle (when ka is even ) large enough so that there would be
enough "room" to add the necessary number (kb-ka) of chords. We can now

construct a graph G, for which n(G) = t—:. This is the gist of the following

theorem.

Theorem 3

Let % be a positive rational number. Then, for n = ka and
| 2( 4
s = k(b-a), where k 2 [—(—(b -a)+ 1)] , the graph Gy s has the property
_ ala

that ®(Gp g) = %, when ka is even.When ka is odd, the graph Hy,. ] 5 has the

) a
property that t(Hp-7 5 ) = =

Proof
The result follows immediately from Corollary 1.1, Corollary 2.1 and
Lemma 3.
This theorem gives the range of values of k for which graphs
of the types G,,s and Hy s can be constructed with a given matchable ratio.

Example 1

Let % =1. Then a = b. In this case, b-a =0, so that k= -2-=1, n=ka=2
a
and s= k(b-a) =0. The resulting graph is Gn,s = Ga,0 ; which is a 2-cycle with
no chords added. Therefore, the graph is an edge.
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S Example 2

1
Let %= -IFO- Then a =1 and b =100. In this case, the smallest value of k is

b - 79400

Therefore resulting graph is G794 79400. This graph has 794 vertices, 79400
edges; and contains
79400 -794 =78606 chords.

2
[T[%(loo D+ 1}] = 2(397)=794. Therefore %—: o

It will be interesting to find out how good is this lowest value
of k. We will therefore find the maximum number of (odd) chords that the

794-gon can contain. It is

(794 / 2}(397) _ s

2 2
This means that the graph G794,79400 is saturated. Thus, we have indeed found
the smallest order graph of the form Gy s. In the above
Example (ii), the smallest order graph belonging to the family of graphs of the
form Gr, s was found. However, it is a large graph. The natural question at this

stage is the following. Can we find a smaller order graph; maybe from an
entirely different family with %: Té—o? This question motivates the material in
the next section.

5. The smallest connected graphs with matchable ratio

If the matchable ratio % is 0 or 1, then the smallest connected graphs

are obvious, For % = (), the smallest connected graph is P3 . For % =1, every

edge is matchable. In this case, the smallest graph is an edge. We will therefore
consider only matchable ratios which are neither O nor 1.

We will denote vertex and edge sets of a graph G, by V(G) and E(G),
respectively.

Let A and B be graphs. We sill say that A is smaller than B if and only if
VA < IV(B)l and IE(A)| < IE(B)! and at least one of the inequalities is strict.
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Lemma 4
Let r be a positive integer.suéh thatr = (;J , for some even

positive integer n. Then the smallest order connected graph with r matchable
edges is Ky. Otherwise, the smallest order connected graph with r matchable
edges is Gr0,if risevenandr>4; and is Hy.1,if risoddand r 2 5.
Proof -

If a graph has r matchable edges, then it has at least r edges. Hence, any
connected graph G with r > 0 matchable edges must have the following
properties.

(i) G has at least r edges.
(ii) G has an even number of vertices (since it must have a perfect matching).

Case (1) r-even
For r= 2, the smallest graph is P4 - the chain with 4 vertices.
When r'is even, and greater than 2, two connected graphs satisfy the minimum
value of Condition(i), i.e. every edge is matchable; and Condition (ii). They are
the r-cycle and the complete graph K, , where

r= (121) , for some even positive integer n. It follows that when r is even, and

greater than 2, the smallest connected unsaturated graph with r matchable edges
is the r-cycle. Case (2) r-odd

When r =1, the smallest connected graph, must have at least
two vertices, by Condition (ii). Hence it must be an edge, When r=3, two
graphs satisfy the above conditions; the chain Pg and the chain P5, with a
pendant edge attached to its centre vertex. Both graphs are trees with six vertices.
For r 2 5, we can start off the unique smallest connected matching unsaturated
graph with r-1 (24) matchable edges-which is Cy., and then add one more
matchable edge, in the "cheapest” way. The desired graph G must have at least
r+1 vertices. So ideally, we would like to add one matchable edge and exactly
two vertices (if possible). This can be achieved in only one way; that is, by
attaching a P3 to a Cy.1. It follows that when r is odd, and greater than 3, the
smallest connected graph with r matchable edges is an r-cycle, with a P3
attached. Hence the result folllows. O .

In order to construct a minimum graph with a prescribed
number of matchable and non-matchable edges, we would start off with the
smallest graph with the desired number of matchable edges and then add non-
matchable edges, so as to minimize the number of additional vertices. Clearly, if
we can add the non-matchable edges to the smallest graphs, without adding any
new vertices, then the resulting graphs must be the smallest possible. This
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means that our initial smallest graph should be unsaturated. Thus, a complete
graph cannot be used. Therefore, the smallest graphs with r matchable edges and

s non-matchable edges and with appropriate restriction on s, are the graphs Gr,s
and Hp ¢ defined in Section 2. Our discussion, together with Corollaries 1.1 and

2.1, lead to the following result.
heorem 4
Leta =2n (n> 1) and b be positive integers, such that a < b and

O0<ba< (;J Then the smallest connected graph of size b with a matchable

edges and with matching ratio %, is the graph Ggp.q. Ifa=2n+1(n>1),
then the smallest connected graph of size b with a matchable edges and with

matching ratio % is the graph Ha-1,5_a_1.

6. Discussion :
At this stage, there is still one unanswered question.

Problem Given % (0 < a <b), find a smallest graph G, relative to either order
of size, such that ©(G) = -:—.
As discussed in Section 4, for some matchable ratios -E—, it

might be impossible for any graph with a matchable edges to have size b.
Therefore, a smallest graph does not exist. So the next best thing, is to look for
the smallest graph with gqual matchable ratio. This case is still unsolved. Is
the graph with 794 vertices and 79400 edges, in Example (ii), the smallest

connected graph with matchable ratio LO?
Lemma 3 gives the smallest multiple of the ratio, which will

yield a cycle large enough to accommodate the necessary unmatchable edges. We
are assured that the smallest graph of the G, ; and H,. ; forms are found. But for

the cases where b-a > [121} we are not sure that these types of graphs are the

smallest connected graphs.
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