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The star polynomial of a graph can be used to investigate certain
models associated with random space filling problems -a type of allocation
problem. In particular, various discrete forms of Renyi's Random Parking
Problem (see Grimaldi [3], Renyi [4] and Rosen{5]) can be modeled by star
covers of chains. There are also similar finite resource allocation problems:in
Computer Sc1ence which can be investigated, by means of star polynomials of
graphs.

1. A Discrete Random Parking Model

The model used here, is a linear parking lot, with at least two parkmg
spaces; for example, parking parallel to a curb. Each vehicle which uses the
parking lot, can be accommodated in one parking space. As vehicles arrive, they
park randomly in any available parking space. We impose the restriction that
each parked vehicle must have at least one empty parking space incident with it
(so that it is not "blocked in"). Such a vehicle is properly parked. We will
assume that all parked vehicles are properly parked. The process terminates,
when no more vehicles can properly park. The parking lot is then said to the
saturated; and if m parking spaces are occupied when this occurs, then the
parking lot is said to be m-saturated, In general, we are interested in, the mean
density of the number of vehicles in a saturated parking lot.
Definitions
(i) The size of a parking lot P, is the number of parking spaces in P,
(ii) If P has size t (= 2), and there are m occupied spaces in P, then the

. i
coverage of P is —.

Let a(m) be the number of m-saturations of P; and let N be the total
number of possible saturations of P. Then, by using the coverage as a random
variable -denoted by V, the expected coverage of P is

e = 32p(v=2)- zﬂa“,‘” ,
mt t N
where the summation is taken over all the m- saturations of P. This can be
written as

Utilitas Mathematica 67(2005), pp. 81-96



5 ma{m)
ge= 20, NG|
i 1)
In this investigation, we will be interested in finding the expected coverage of |
saturated parking lots. '
We will associate with a parking lot P of size n-1, the chain ( a tree

with nodes of valency 1 and 2'only) P, ( n 2 3)with n nodes ( and therefore n-1
edges). Throughout this paper. we will assume that the chain, associated with a
parking lot. has at least two edges. Each edge of Py, will represent a parking
space. Therefore the size of P would be the number of edges in Py, Since it is
possible for two vehicles to park in adjacent spaces, a saturation of P, will be
represented by a covering of the nodes of Py, with subgraphs which are either
nodes, edges or paths of length 2. In such a covering, every component will be
separated from the next, by at least one edge and at most two. We will give
bounds for € in terms of parameters associated with star polynomials of the
chain.

2. The Star Polynomial of a Graph
The graphs considered here are finite and have neither loops nor
multiple edges. Let G be a graph with n nodes.
Definitions
(i) An m- star Sp(m = 2) is a tree with m+1 nodes, consisting of a node
(called its centre) joined to m other nodes (called its tips).
(ii) The O-star Sg is a node and the 1-star S; is a complete graph with two
' nodes.

A star cover of G is a spanning subgraph of G, whose components
are all stars. Throughout this paper, the word "cover" will mean star cover,
unless otherwise specified. '

With each star in G with r nodes, let us associate an indeterminate
(over the compléx numbers) or weight wy, We define the weight of a cover
CinG, as - "

W(C) . l-.[w(x ?
o

where the product is taken over all the components a in C. The (general) star
polynomial of G is

E(Gw) = T w(C),
where w is a vector of indeterminate, and the summation is taken over all the
star covers C in G. It will be a polynomial in the indeterminates wi, w2, w3,
... and wy. If we put wj = w for all i, then the resulting polynomial in the one
variable w, is called the simple star polynomial of G; and is denoted by
E(G;w). The star polynomial of a graph was introduced in Farrell (1).

The O-star is called "trivial". If we restrict the components of the covers
to be non-trivial stars, then the resulting polynomial is called the proper star
polynomial of G; and is denoted by E(G;w'), where w' = (0, wp, w3,... Wp).
The equivalent simple proper polynomial is denoted by E1(G;w).
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In general, the star polynomial of a graph can be useful in any
investigation involving the numbers of star covers of the graph. The sum of the
coefficients of E(G;w) is the total number of covers of G. The coefficient of w
in E(G;w) is the number of spanning stars in G. The existence of a star cover:
with k stars of specified lengths, is determined by the existence of the
appropriate term in E(G;w).

3. The Fundamental Fdge Theorem for Star Polynomials

Let a be an edge in G. By ( star ) incorporating o, we mean that o
is required to belong to every star cover of G. The edge o is then called an
incorporated edge.

The set of all star covers of G can be partitioned into two classes, (i)
those containing a specified edge o, and (ii) those which do not. The covers -
which do not contain o will be covers of the graph G' obtained from G by
deleting o. The covers which contain o, will be covers of the graph G* obtained
from G by incorporating ¢.. Thus we have the following theorem.

Theorem 1 (The Fundamental Edge Theorem for Star Polynomials)

Let G be a graph and o an (unincorporated) edge of G. Let G' be the
graph obtained from G by deleting o, and G* the graph obtained from G by
(star) incorporating o.. Then

E(G;w) = E(G)w) + E(G*,w)

The Fundamental Edge Algorithm for Star Polynomials,
consists of recursive applications of the above theorem, until we obtain graphs
whose star polynomials can be written down. We will refer to this algorithm as
the reduction process for star polynomials.

We now give a result about the graph G*, which will be useful in
applications of the reduction process. Since a cycle cannot be a subgraph, of any
star cover, we have the following result.

Lemma 1
If G* contains an incorporated cycle, then E(G*;w) = 0.

Lemma 1 provides a useful simplification to the reduction process. At
any stage of the reduction process, we can immediately remove from an
intermediate graph, all final edges which complete cycles with incorporated

edges.

4. Some Basic Properties of Star Polynomials
The general star polynomial of G, with p nodes, will be a polynomial
in tbe mdetermmates w1, w2, wW3,...and wy. Its terms will be of the form

A W1 wz ...wn , where A is the number of covers of G consisting of i 0-stars
(component nodes), ip 1-stars (edges), i3 2-stars ; etc. In the case of the simple
star polynomial E(G;w), the terms are of the form A,w!, where A; is the number

of star covers of G with r components.
The following properties of E(G;w), for a graph with n nodes, are
immediate consequences of the definitions
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Property 1
Each term of E(G;w) is of the form A wy'wy ...w? , where A is the coefficient

Property 2
The coefficient of w " is 1.
| Property 3
The coefficient of wy, is the number of spanning stars, in G.
Property 4
The coefficient of w 2w, is q -the number of edges in G.

Property 5 (The Component Theorem)
If G has k components Gy, G2, G3, .... and Gy, then

k
- EG;w) = TTE(G;;w).
i=1 :
Some immediate consequences of the above properties are the following
results. :
Lemma 2
G is connected if the coefficient of wy, in E(G;w); or the coefficient of
w in E(G;w), is non zero.
The following theorem shows that the simple polynomial has no gaps.
Theorem 2
Let G be a graph with n nodes. Let i (< n)be the smallest exponent of
w in E(G;w). Then all terms with exponents higher than i; up to w, must occur
in E(G;w) with non zero coefficierits.
Proof _
The existence of a term in w* implies the existence of a cover with i
components. By deleting an appropriate number of edges, we can obtain a cover
with r components, for all i < r < n. The results therefore follows.

5. Application of Star Polynomials

A star cover of a chain only contains nodes (Sg), edges(S2) or 2-stars
(S3). It follows that every saturation of the parking lot P can be represented by a
star cover of the associated chain Py( n > 3), We will call these covers,
saturated covers; and the corresponding star polynomial, the saturated star
polynomial. The saturated star polynomial of P, will be denoted by E'(Py;w).
Saturated star covers are therefore star covers, to which no more edges can be
added, without violating the "properly parked" condition for the corresponding
parking problem. Since components of a star cover have at least one separating

edge, the essential condition that no vehicle is "blocked in" is automatically
satisfied, for saturated star covers.
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The following diagram shows the saturated covers for chains with up to
8 nodes.

P e— — —e o— 0
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® oe—e P—s

Fi 1

The following is a table of saturated star polynomials of chains with up
to 8 nodes.
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Table 1

Saturated Star Polynomial f ins
n E'(Pp;w)
3 2wiw?
4 W12W2 + W22 o
5 wilws + 3wywy?
6 w 2Zurnl 2w 3

19W2“ + ZW1W2W3 + W2

7 4w12w2W3 + 2w1w23 + W22W3
8 wilwa3 + wi1lw32 + 8wiwolws + wo?

The number of vehicles in any saturation of P, is equal to the number
of edges in the corresponding saturated cover. Since we are interested only in the
number of edges in these covers, it will be sufficient to use the corresponding
simple saturated star polynomial of the chain. We can write the simple saturated
star polynomial of Py, as .

n
E'Ppw)= Xa,w',
r=1
where a; is the number of saturated covers with r components.
Now, a saturated cover C of P, with r components, contains r-1 edges
less than Py, does, since there is one unused edge between "consecutive" pair of
components, Therefore C contains (n-1) - (r-1) = n-r edges.

n - n n n n
= Yma(m)= Y (n-r)a,= yna - Yra=nxya, — xra,
m r=1 r=1 =1 r=1 r=1

“nE@uD) - SE'® w)| . L@
dw

w=1
where E'(Pp;1) is the polynomial obtained from E'(Pp;w) by putting w =1.
The number of different saturations of P with r vehicles corresponds to the
number of saturated covers of P with r components; that is, ar. Therefore, the

total number of different saturations of P is the sum of the coefficients in
E'(Pp;w). i.e.

N =E'(Pp;1).
We can therefore write Equation (2) as
Yma(m)=nN-D, R )

m

where D = -2— E'(P,iw)

dw 1

From Equation (1), we get (using Equation 3))
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>ma(m)

e= m _oN-D _n D
N m-DN n-1 @-IN
Hence we have the following result.
Theorem 3

Let P be a parking lot of size n-1. Then

D
e =171-—),
( nN)

where T = %
n-—
We now give a table of values of the expected coverages for parkmg
lots with up to 8 parking spaces.

Table 2
c ove of Parki t
, d
n E@®uw) —E'P,;w) N D T £
' dw
3 2w? 4w 2 4 312 0.50
4 wi+w?  3wl+ 2w 2 5- 4/3 0.50
5 4w 12w2 4 12 5/4 0.50
6 wh+3wd  4w3d+ow? 4 13 6/5 0.55
7 6w+ w3 24w3 +3w2 7 27 7/6 0.52
8 wi+10w?  5Sw?+40w3 11 45 8/7 0.56
5. S8 ials of i
The following result is also given in [1}(Lemma 1).
Lemma 3

The star polynomial of the chain Py -denoted by P(n) , satisfies the

recurrence relation
P(n) = w1P(n-1) + woP(n-2) +w3P(n-3) (n = 3),

with P(0) = 1, P(1) = w1 and P(2) = w12 + w,.
Proof

Let us apply the reduction process to Py, by deleting a terminal edge a.
Then the graph G' will consist of a component node and the chain Py_j. The
incorporated edge o can belong to either a 1-star or a 2-star. If o belongs to a
1-star, then the 1-star has weight wy and the remaining graph is Pp_2. If o
belongs to a 2-star, then the 2-star has weight w3, and the remaining graph is
P,_3. The boundary conditions can be easily verified. Hence the result follows.

87



This recurrence has been used to produce the following table of values
for P(m), forn = 1 up to n = 8. This table is also given in [2].

=

P(n)

Wi

w12 + wa

w13 + 2wiwsg + W3

w14 + 3w12 wy + 2wiws + w2

w13 + 4w13wo + 3wi2 w3 + 3wiwa2 + 2wows

w16+ Switwy + 4w 3ws + 6w12 wol + 6wywa w3 + wod + w3?
w1 + 6W1Sw2 + Switws + 10w3wo? +12w12waws + dwywo3

+ 3W1W32 + 3W22W3

8 w1 + Twibwy + 6w1Sws + 15w1% wo2 +20wq 3wy ws +10w12w2?
+ 6w12w32 +12wiwo2ws + wot +3wows2

N o s N

The corresponding proper star polynomials (wy = 0) of chains with up
to 8 nodes can be immediately obtained from the above table. They are given in
the following table.

(1) ta ia ains

=
i
A~
)
2.
£
~

1 0

2 w2

3 w3

4 W22

5 2wy w3

6 w23 + w32

7 Iwplws -

8 wod +3wows2

We can obtain a generating function and hence ar-nn explicit formula for
P(n), from the recurrence given in Lemma 3. The results are given in the
following theorem, which was proven in [1].
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- |
@ E(Pn;w>=zi%!w{w£w‘3‘,
ijik!

where the summation is taken over all non-negative integral solutions of
i+2j+3k=n .
(i) Its generating function is
E(Ppw,t) = (1 - wit - wat? - watd)'L,

By putting w; = w, for all i, we obtain the following result.
Lemma 4
The simple star polynomial of the chain satisfies the recurrence
P(n) = w [ P(n-1) + P(0-2) + P(m-3) ] (n = 3),
with P(0) =1, P(1) = w and P(2) = w? + w.

From Theorem 3, we get, by putting wj = w, for all i,

i+j+k)!
—_—w

E@qw) = I

=

P r!
twlwk = w'
itjik!
Wi =W

n
= Tbw',
r=l1
where by is the number of covers with r components. It can be easily deduced

r! .. L E
that by= Y T'k_’ where the summation is taken over all non-negative integral
1yik!

solutions of the pair of simultaneous equations i + 2j + 3k =nand i+j+k=r.
Hence we have the following result.
Theorem $

The simple star polynomial of the chain P, can be written as

o
E(Pn;W) = 2 brwr ’
r=1
g

where b= ) ; and the summation is taken over all non-negative integral

iljlk!
solutions of the pair of simultaneous equations i + 2j + 3k =nand i+j+k=r.

The following table gives the simple star polynomials, and the simple
proper star polynomials of chains, with up to eight nodes.
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Table 5
Simple Star Polynomials and Simple Proper Star

Polynomials Chains
n E(Pp;w) E1(Pp;w)
2 w2+ w w
3 w3 +2w2+w - w
4 w4+ 3w3 + 3w? w2
5 w5 + 4wt + 6w3 + 2w2 2w
6 wb + 5w5 + 10w* + 7w+ w? w3 + w?
7 w! + 6w + 15w° + 16w? +6w3 w3
8 w8 + 7w + 21w6 + 30w + 19w4 +3w3 wh + 3w3
6. he ected Coverage of Chains

We define the terms "size" and "coverage" for chains in an analogous
manner as for parking lots. We also define the expected coverage of a
chain Py in an analogous manner as Equation (1). We denote by €1 and €2,
the expected coverage of Py, with star covers and proper star COvers respectively.
Let us now define the following numerical quantities:

D, = ﬂ-}_:,(P,1 w) ,Dz= —d—E1 (Pysw)| ,N1=E(Pp;1) and
dw _ dw =
w=] w=1
N2 = E1(Pp;1). -

Then we have the following result, which is analogous to Theorem 3.
Lemma S

A D
i = 1 (1-—=1
® g1= T( )
and (ii) g,= (1 - -23—).

2
The following is a table of some of the numerical quantities defined
above. The derivatives of the polynomials are obtained from Table 5.
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n iE(Pn W) Ni D = €1
dw

2 2w + 1 2 3 2 0.50
3 3w2+ 4w+l 4 8 32 050
4 4w3+9w2+6w 7 19 453 0.43
5 SwA+16w3+18w2+dw 13 43 54 042
6 6WI+25w4+40w3+21w2+2w 24 94  6/5 042
7 TwO+36w3+75w4+64w3+18w2 44 200 76 041
8 8w/+49w0+126wS+150wH+76w3+9w2 81 418 8/7 041

The analogous table for proper star covers is the following.
: Table 7

Expected Coverage (With Proper Star Covers) of Chains with
" up_to 8 Nodes

n % E{{P,;w) N2 D, T es

2 1 1 1 2 1.00
3 1 1 1 3/2 1.00
4 2w 1 2 4/3 0.67
5 4w 2 4 5/4 0.75
6 3w22w 2 5 6/5 0.70
7 Ow? 3 9 7/6 0.67
8 4w3+9w? 4 13 8/7 0.68

7. Relationships Between the Coefficients of the Simple
Star Polynomials

In this section, we will assume the following forms of the three simple
star polynomials introduced above,

n _
(i) E'(Pp;w)= Ya,w' - the simple saturated star polynomial of Py

r=1

n
(ii) E(Pp;w)= Y b,w' - the simple star polynomial of Py

r=1
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n
and (iii)- E1(Pp;w) = Y c,w" - the simple proper star polynomial of Py,
r=1

Since every saturated star cover is a star cover, the coefficients of
E'(P,;w) are bounded above by the corresponding coefficients of E(Pp;w).
Clearly, there are star covers of Py, which are not saturations. For example, the
trivial cover , for all n; and the covers with one edge, for all values of n > 5.
Hence we have the following result.

Lemma 6

For all chains P, (n23), and forallr (1 <r<n), ar < b;.

Consider a proper star cover of the chain Py,. This is a saturated cover,
since no more edges can be added to it, without creating a component, that is not
a star, Thus, it is a "proper" saturation. But every saturation is not necessarily a
proper cover ( for example, see Figure 2). Hence we have the following result.
Lemma 7

For all chains P, (n>3),and forallr (1 <r<n), ¢; <a.

The following theorem, results from Lemmas 6 and 7. It gives both
upper an lower bounds on the number of different saturated covers with r stars.
Theorem 6

For all chains P, (n >3),andforallr (1 <r<nmn)

cr <a;<b;.

In any saturation of a parking lot, a terminal parking space and its
adjacent space, cannot be simultaneously occupied. The corresponding condition
for the chain, is that its two penultimate nodes cannot be centres of 2-stars. Let
us call these 2-stars B and y. Then covers containing B ory are forbidden
covers. Thus, forbidden covers do not correspond to saturations of the parking
Iot. We can put these covers into three (non-disjoint) classes

(i) those containing B,

(ii) those containing 7y
and (iii) those containing both [ and .

If B belongs to a cover, then the rest of the cover will be a cover of
P,.3. Similarly, if 'y belongs to a cover, then the rest of the cover will be a
cover of P,_3. If both B and Y belong to a cover, then the rest of the cover will
be a cover of Py_g. Let d; be the number of forbidden covers with r components

; and let us write bp(Py) for b, ( the coefficient of wl in E(Pp;w)). Also let 8,'

be tbe corresponding number of forbidden_proper covers with r components.
Then our discussion yields the following result.

Lemma 8
Foralln (n= 6),

@ dr = 2bp_1(Pp-3) - br-2(Pn-6)

ad (i) 8 =2cr-1(Pn-3) - or2(Pn-6) -
The following theorem is an improvement on the result given in
Theorem 6.
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Theorem 7
For all chains P, (n 21), and for allr (1 <r <n)
crsar s (br-ar).
Proof
Every saturation is a cover that is not forbidden. But, not every cover
that is not forbidden is a saturation. Therefore a; < (b, -5, ). Hence the result

follows.

8. Bounds on the Expected Coverage of Parking Lots
The following result can be easily established from Theorem 6.
Lemma 9

6y Dy <D <Dy
and (i) N3 < N < Nj.
Since Dy < D, it follows that Dy SB.
N N
But N <Nj. Therefore Dy S& S—D-.
N; N N
. D2 D g D2y B
nN; oN nN;

= t(1- &-) >1( 1- 2) =€,
nN,; nN
Similarly, we can easily show that

D D
(- —L)y<t(1- —)=¢.
nN nN)

2

; D D D
Letus put Ay =1(1- —L-), A5 = t(1- =2, y; = 1(1- =L)and
N, N, N

D
Y2 =1(1- KZ) . Then we can easily establish the following result, using a

similar analysis. It gives upper and lower bounds for &, €; and &,.
Lemma 10
For every parking lot P of size n-1 (n > 3),
@) A <e<hy

(ii) Y1Se1<Ap
i) A <ersys
and @v) Y1<EeEZL T,

Theorem 8
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Since N = No,

Db o D Dy gDy By
N N, N ~ nN, nN nN,
= 1(1- 2Ly 2 ¢(1- 2L,
nN 2

That is, y; = M. Similarly, we can show that Yy, < A,. Hence the result
follows.

Notice that the polynomials E(P,;w) and E'(P,;w) can be immediately
_ obtained from E(P,;w) -the general star polynomial of P,,. Therefore, all the
quantities Dj, Dy, Nj and N; can be easily deduced from the general star
polynomial of P,. Hence, in practice, the bounds A and A, can be easily
calculated. However, note that D is likely to be greater than nN»; and so, the

... D : . ]
quantity —nN; could be greater than 1. This could yield a negative value for Aj;
2
thereby making this lower bound (practically) useless.
The following table gives some values of €, €1 and €).

Table 8
Expected Coverage of Chains with up to 8 Nodes

n €1 € €2
3 0.50 0.50 1.00
4 0.43 0.50 0.67
5 0.42 - 0.50 0.75
6 0.42 0.55 0.70
7 0.41 0.52 0.67
8 0.41 0.56 0.68

9. Discussion

In general, there are many covers, which contain components that are
nodes, which are not saturations. But not all of them are unsaturated. In the
following diagrams, we illustrate three saturations of P12 which contain
component nodes.

Cl: ) —un ——o—2 —a ——~o—> ®

CZ: ———tt ¢  G——p e o " S— e 06—

C3 =) G P—0 = & s & > & —e
Figure 2



The characterization of these covers is crucial to an accurate count of the
saturations of Py, If there are A covers with component nodes, that are not

saturations, then
ar=br- 6 - A
If there are A' covers with component nodes, that are saturations, then
ar=cr- 8.+ A
It is desirable to be able to find a;, without having to enumerate all the
saturated covers of Py; as illustrated in Figure 1. Each of the above expressions
for a;, contain exactly one term,;
_ (A and A' respectively), which cannot be obtained from E(Py;w). It is clear that
ar can be accurately counted if either A" or A could be counted. In lieu of an
accurate count of ar, it will be useful to obtain practical bounds for € -perhaps in
terms of €1 and €7. Table 8 suggests the inequality €1 < € < €7; but we have
been unable to prove this.
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