Pace University

DigitalCommons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

6-1-2006

Building a steganography program including how to load, process,
and save JPEG and PNG files in java.

Mary F. Courtney

Follow this and additional works at: https://digitalcommons.pace.edu/csis_tech_reports

Recommended Citation

Courtney, Mary F.,, "Building a steganography program including how to load, process, and save JPEG and
PNG files in java." (2006). CSIS Technical Reports. 135.
https://digitalcommons.pace.edu/csis_tech_reports/135

This Thesis is brought to you for free and open access by the lvan G. Seidenberg School of Computer Science and
Information Systems at DigitalCommons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an
authorized administrator of DigitalCommons@Pace. For more information, please contact nmcguire@pace.edu.

https://digitalcommons.pace.edu/
https://digitalcommons.pace.edu/csis_tech_reports
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/csis_tech_reports/135?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmcguire@pace.edu

TECHNICAL REPORT

Number 227, June 2006

Building a Steganography Program
Including How to Load, Process, and Save JPEG and PNG files in Java

Mary F. Courtney
Allen Stix

RACE

UNIYERSITY
IVAN G. SEIDENBERG
SCHOOL OF COMPUTER SCIENCE
AND INFORMATION SYSTEMS

SCHOOL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

The present paper was published in

Mathematics and Computer Education
Winter 2006; Volume 40, Number 1; Pages 19-35

copyright MATHEMATICS AND COMPTUER EDUCATION

Mary F. Courtney is Professor of Computer Science at Pace University, based in
Westchester, where she has been teaching courses in programming, algorithms,
and graphics for over 25 years.

Professor Courtney holds a B.A. in Mathematics from the College of Mount Saint
Vincent, an M.A. in Mathematics from Lehman College, an M.S. in Computer
Science from Pace University, and an Ed.D. in the College Teaching of

Mathematics with an emphasis in Computer Science from Teachers College,
Columbia University.

Allen Stix is Associate Professor in the Computer Science Department at Pace
University, based in Westchester.

- MATHEMATICS AND COMPUTER EDUCATION -

BUILDING A STEGANOGRAPHY PROGRAM
INCLUDING HOW TO LOAD, PROCESS, AND
SAVE JPEG AND PNG FILES IN JAVA

Mary F. Courtney and Allen Stix
Department of Computer Science

Pace University

Pleasantville, New York 10570-2799
mcourtney@pace.edu, astix@pace.edu

ABSTRACT

Instructors teaching beginning programming classes are often
interested in exercises that involve processing photographs (i.e., files
stored as .jpeg). They may wish to offer activities such as color inversion,
the color manipulation effects achieved with pixel thresholding, or
steganography, all of which Stevenson et al. [4] assert are sought by
students. However, instructors may not find textual support for these
topics since widely used introductory textbooks do not illustrate the
needed techniques, and the professional Java literature obscures these
straightforward operations in elaborate discussions. This paper presents
the code to make image processing accessible through fragments used to
hide a text message in a read-in JPEG file, store the image as a PNG file,
and extract the message from the stored image.

INTRODUCTION

Computer Science 1 (CS1) and Computer Science 2 (CS2)
instructors report that today’s students are motivated more by assignments
involving graphics, graphical user interfaces, and image processing than
by traditional exercises involving numbers, strings, and data structures.
To this end, graphics may be used to teach about methods, derivation, and
polymorphism. Digressions into Graphical User Interfaces (GUIs) may be
used to spice up learning about more general and pertinent concepts.
However, teachers may shy away from image processing because of the
difficulty of reading-in an image, displaying the image, converting the
image to an array that may be manipulated, converting that array back to
an image, and finally saving this new image. Yet articles advocating
steganography as an assignment [2], [4] so intrigued us that we were
motivated to spend a good deal of time studying the manuals.

This article shows the code, in Java 1.4, for accomplishing all the

19

- MATHEMATICS AND COMPUTER EDUCATION -

actions that we found interesting. The segments are presented, cookbook
fashion, with documentation but a minimum of explanation. The
ensconcing context is a program for embedding a text message within an
image read-in as a .jpeg file (which could just as well have been a .png
file) and storing the image as a .png file. Also included are reading-in the
stored .png file and extracting the message. In other words, the context is
a system for steganography. Space does not allow the entirety of the code
to be given here, but the full code may be obtained from the authors. As
teachers, we were impressed with the potential of building a
steganography system as a project for students nearing the end of CS1 or
starting CS2. Such a project would offer tremendous opportunities to
exercise problem-solving skills as well as a great glimpse into the
problems associated with building and debugging a software system larger
than the typical assignment. En route, students would learn about the RGB
color model and the operators for the bitwise AND, the bitwise OR, the
left shift, and the right shift, and would use some new APIs from Java and
simple instances of the try-catch clause. Yet, for all this, the only
presupposed experience is with the basic procedural constructs, one-
dimensional arrays, and building a class with instance variables,
constructors, and instance methods.

BACKGROUND: STEGANOGRAPHY, IMAGE FILES, AND THE
RGB COLOR MODEL

Steganography, i. e., message hiding, predates electronic computation
by over two thousand years. The ancient Greeks tattooed messages on the
heads of messengers who were dispatched after their hair grew back.
Later, invisible ink was used to embed secret text within letters [5]. In
computing, the bits-comprising a text are scattered within a picture in such
a way that their presence is imperceptible to the eye. Steganography in
computing is usually encountered in data assurance classes in conjunction
with cryptography. The intent of steganography is to conceal the presence
of a message. The intent of encryption is to scramble a message so that it
is indecipherable to all but the intended recipients. Good explanations of
digital steganography may be found in [2], [4], and [7].

Because steganographic applications read and write image files, the
different storage formats become a practical issue. Photographs, as from a
digital camera, are customarily stored as JPEGs. JPEG stands for Joint
Photographic Experts Group. This storage format allows for over 16
million different colors, and files in this format are found with the
extensions .jpeg, .jpe, and .jpg. Clip art and line drawings are customarily

20

- MATHEMATICS AND COMPUTER EDUCATION -

stored as GIFs. GIF stands for Graphics Interchange Format. This format
allows for 256 colors, and files in this format have the extension .gif.
PNG stands for Portable Network Graphics (and is pronounced “ping” as
in ping-pong). The JPEG and GIF formats emerged around 1990. The first
version of the PNG format appeared in 1996 and version 1.1 (the current
version) appeared in 1998. The PNG format is more versatile than the
other two, but the trade-offs complicate discussions of best choice. An
excellent practical introduction and comparison is given in [1].

The advantage of working at the high level of abstraction afforded
by the application programming interface of standard Java is that the
formatting details are non-issues. As our students say, all you have to
know is how to call a method on an object. Java versions 1.4 and up read
JPEGs, PNGs, and GIFs using the same objects, methods, and
procedures. Likewise, they store JPEGs and PNGs with the same code. It
is crucial that files with a hidden message, for the steganography system
present here, be saved as PNGs. This is because PNG compression is
lossless while JPEG compression is lossy. What is lost are the visually
insignificant bits that hold the embedded message.

Each individually addressable spot on the grid making up the
display screen is a pixel. Every pixel is composed of a red sub-pixel, a
green sub-pixel, and a blue sub-pixel, and the brightness of the light
emitted by each may be set to an intensity within the range of 0 to 255
inclusive. The intensities of the sub-pixels determine the pixel’s color. The
RGB (red, green, and blue) intensities of {135, 206, 235} give skyblue
[7]. The brightest pure yellow is {255, 255, 0}. When all three sub-pixels
are at an intensity of O the color is black. When all three are at 255 the
color is white. Between black and white are the grays, produced when the
intensities of the sub-pixels are equal.

The binary representation of 255, the setting for maximum
intensity, requires eight bits: {1111, 1111}. A group of eight bits is a
byte. Thus, for every pixel, three bytes of storage are required by the
RGB color model. Notice that when we represented the bit-string, for
readability we separated the high-order half-byte or (“nibble”) from the
low-order nibble with a comma.

Steganographic message hiding takes advantage of the limits of
human thresholds for color perception. For instance, a pixel consisting of
{133, 208, 236} would almost certainly be indistinguishable from a pixel
at the defined value for skyblue, {135, 206, 235}. Processing works by
distributing the bits in the ASCII representation of characters over the
Jow-order bits in a succession of sub-pixels. For instance, the ASCII value
of ‘A’ is 65, {0100, 0001}. Each of these bits, respectively, may be

21

- MATHEMATICS AND COMPUTER EDUCATION -

inserted as the lowest-order bit in a succession of eight sub-pixels.
Similarly, these bits may be taken in pairs, replacing the two lowest-order
bits in four sub-pixels. For the present demonstration of steganography,
we worked in units of nibbles: the high-order nibble of a character was
moved into the low-order nibble of a sub-pixel, and the low-order nibble of
this character was moved into the lower-order nibble of the next sub-pixel.

AN ACCESSIBLE, LARGE-SIZED PROJECT
OFFERING MANY LESSONS

As we wrote the code for our steganography system we were
impressed with its potential to serve as a substantial project which tied
together everything from CS1. It requires much problem-solving of many
types. '

You can encourage diagrams to guide the development of code for
analyzing procedural processes (e.g., distributing the bits from a
character’s byte into the eight-bit segments of ints storing a pixel's R, G,
B values). At the design level, students will need to decide whether to
mark the end of the embedded message with a sentinel, begin the message
with a character count, or call the system a prototype and simply display a
fixed number of characters. If this last alternative is chosen and more
characters are extracted than were in the message, trouble can result with
“garbage” which is non-printable (i.e., values in the collating sequence of
less than 32, which is the space). Another fundamental design decision is
the format of storage of the bits from the message. If the message is stored
one bit per sub-pixel, eight sub-pixels are needed to store each character.
With three sub-pixels per pixel (a red, a green, and a blue), this puts one
character into 2% pixels. Should the remaining sub-pixel be left unused,

giving a clean packaging of one character per clump of three pixels, or
should storage of the next character start right there? More elaborate
formats could -be devised than using the sub-pixels in consecutive pixels.
Furthermore, the message’s embedding does not need to begin with the
pixel in the image’s first row and first column. An interesting experiment
could be to display the original image and the message-laden image side-
by-side to determine the amount of perceptible distortion. This could be
enhanced with a discussion of its mathematical description and
considerations of steganalysis.

Object-oriented design can be made more or less prominent
depending upon the students’ readiness to consider deriving the
responsibilities of “server” objects and the needs of “client” objects. A
server that comes to mind immediately is fashioned on the idea of the

22

- MATHEMATICS AND COMPUTER EDUCATION -

StringTokenizer. Objects would be instantiated with the message, and each
call to the nextClump() method would return the next bit (or sequence of
bits) to be placed within the succeeding sub-pixel. We wrote nextClump()
to return a String holding a nibble (that is, four bits) such as “0100”. A
fancy MessageTokenizer might have a constructor that accepts both the
message and an int specifying the length of clumps.

This project could also provide insight into the area of software
testing. Students could learn to construct drivers to verify the functional
correctness of individual modules instead of waiting until the entire
program is done which is the wrong approach. They would get practice
following the values of variables. Writing utilities to help with testing,
such as a method for displaying ints in a binary format such as {0000
0000, 0110 1101, 1001 0111, 0100 0011} or a utility to display bytes,
would be recognized as a time-saver.

This project, with a collection of parts that may be built and tested
individually, introduces the need for the methodical organization of
software development. It exemplifies the problems addressed by software
engineering which are not evident in a short program written to illustrate a
single construct or for the sake of a narrow piece of problem-solving.

Finally, there is the issue of the system’s delivery, which is up to
you as the instructor. It could be presented to hypothetical users as an
application programming interface for use in a console environment, or it
could be presented in with a graphical user interface. Incidentally, it is not
pretentious to term this program a system inasmuch as it has
interdependent parts similar to any other kind of information storage and
retrieval system.

THE ESSENTIAL PARTS OF THE PROGRAM

The remainder of this paper presents the central segments of the
steganography program that we wrote. While the complete program is not
present, every operation is exemplified. We make no claims about the
elegance of our logical constructions nor any other aspect of our code.
Clarity and correctness were our chief concerns.

READING AND DISPLAYING AN IMAGE

What follows is a complete program for reading-in and displaying
a JPEG file. The program is comprised of the two classes, Mainl and
ImageHolder, each in a file of its own. For the program to work, the
JPEG file must be in the same directory as the program’s files, or its
complete path must be specified. Remember that when paths are given as

23

- MATHEMATICS AND COMPUTER EDUCATION -

String literals within code, double backslashes are needed. The file being
displayed is WaterLilies.jpg.

Images inside a Java program need to be stored in an instance of
class descending from java.awt.Container such as a class declared to
extend java.awt.Canvas. The Canvas class is commonly subclassed to
display images and drawings. Nothing in this short program that reads-in
and displays an image is superfluous. The comments marking particular
locations indicate where statements will be inserted in the enhanced
version, given next, in which the read-in image is stored within an int
array for processing. Images from PNG and GIF files may be read-in with
no modification apart from the file’s name.

//file; Mainl.java
import javax.swing.JFrame;
import java.awt.Container;

class Mainl
{
public static void main (String[] args)
{
JFrame frame = new JFrame (;
frame.setSize(500,450);
frame.setVisible(true);
frame. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

String fileName = “WaterLilies.jpg* ; //Name of file holding image

Container contentPane = frame.getContentPane();
contentPane.setLayout(null);

ImageHolder picture = new ImageHolder(fileName);
picture.setBounds(10, 10, 450, 400);
contentPane.add(picture);

//Pointl <=======
}
}

//file: ImageHolder.java
import java.awt.Canvas;
import java.awt.Graphics;
import java.awt.MediaTracker;
import java.awt.Image;

import java.awt.Toolkit;

//Point2 <=======

class ImageHolder extends Canvas

{

Image image = null;

24

- MATHEMATICS AND COMPUTER EDUCATION -

ImageHolder(String fileName) //constructor

{
MediaTracker tracker = new MediaTracker(this);

image = Toolkit.getDefaultToolkit().getImage(fileName);
tracker.addImage(image, 0);

try
{
tracker.waitForID(0); // throws a checked Exception
}
catch(InterruptedException e)
{
}
}
public void paint(Graphics g)
{]
g.drawlmage(image, 0, 0, this);
//Point3 <=======
}

STORING THE IMAGE AS AN ARRAY

A java.awt.image.PixelGrabber object copies an image into an int
array, putting one pixel from the image into each int element. Pixels are
copied in a row-major fashion. First, the top row of pixels from the image
is copied, going left-to-right. Then, the second row of pixels is copied,
going left-to-right, and so on. The pixel on the left-end of the top row
goes into the element with subscript 0. If the image were w pixels wide
and h pixels high, it would be comprised of w*h pixels, and the array’s
length would be w*h.

An int in Java is comprised of 32 bits. Alternately, we could say
that an int in Java is comprised of four bytes. (In Java, a variable of type
byte is eight bits. When interpreted numerically, the byte’s leftmost bit is
construed as its sign.) Looking at the four consecutive clumps of bytes that
constitute an int from left to right, relative to the storage of a pixel, the
first byte is unused. The second byte (bits 9 through 16) stores the value
of the red sub-pixel. The third byte (bits 17 through 24) stores the value of
the green sub-pixel. And the fourth byte (bits 25 through 32) stores the
value of the blue sub-pixel.

Three additions to the program above are needed to create this
array and copy-in the image’s representation so that it is available for
manipulation:

The comment labeled Point 1 is at the bottom of the main() method

25

- MATHEMATICS AND COMPUTER EDUCATION -

inside the class Mainl. At that point, install the following statement. It
activates the method to be added to the ImageHolder class that returns the
array. While the present program does nothing with this array, you could
add a statement that displays its length.

int[] intArrayWithPixels = picture.getlmageAsIntArray();

The comment labeled Point 2 is inside the ImageHolder class. At
the comment labeled Point 2, install this:

import java.awt.image.PixelGrabber;

At the comment labeled Point 3, inside the ImageHolder class,
install the following method:

int[] getImageAsIntArray()

{
int imageWidth = image.getWidth(this);

int imageHeight = image.getHeight(this);
int[] imageGrabbed = new int[imageWidth * imageHeight];
PixelGrabber grabber = new PixelGrabber(image, 0, 0,

imageWidth, imageHeight, imageGrabbed, 0, imageWidth);
try

{
grabber.grabPixels(); //throws a checked Exception

}

catch(InterruptedException €)

{
}

return imageGrabbed;

}

CONVERTING THE ARRAY BACK TO AN IMAGE AND SAVING
THE IMAGE ‘

The following program, comprised of Main2 and an enhanced
version of ImageHolder, provides the techniques for capturing images,
creating the int array that may be used to manipulate their pixels, and for
saving the array as an image. These techniques will create accsssible
steganography exercises as well as exercises involving image inversion,
thresholding, linear mapping, and histogram computation as described by
Hunt [3, p. 88]. To keep the code unencumbered, this program does not
create a JFrame for the sake of displaying the image. To view the saved
image, use either Windows Explorer or MyComputer to access the folder.

The image is saved as a PNG file because PNG compression is
lossless, which we need for steganography. With lossy compression, as

26

- MATHEMATICS AND COMPUTER EDUCATION -

when saving an image as a JPEG, the low-order bits in sub-pixels are
sacrificed. These are the ones representing embedded content.

However, in case you want to save an image in JPEG format, the
change in the code is minimal. Replace the png with jpg in these two
statements copied from the program immediately below:

File file = new File (“savedImage.png*);
ImagelO.write(image, “png*, file);

The ImageHolder class is augmented with “get” methods that
return the image’s height and width.

//file: Main2.java

import java.awt.image.BufferedImage;
import java.io.File;

import java.io.IOExteption;

import javax.imageio.ImagelO;

class Main2

{

public static void main (String [] args)
{
String fileName = “WaterLilies.jpg* ;
ImageHolder originalPicture = new ImageHolder(flleName);

int width = originalPicture.getWidth();
int height = originalPicture.getHeight();

originalPicture.setBounds(10, 10, width, height);
int[] imageArray = originalPicture.getlmageAs int_Array();

BufferedImage image =
new BufferedImage (width, height, Bufferedlmage. TYPE_INT RGB);

image.setRGB(0, 0, width, height, imageArray, 0, width);
try
{

System.out.println(“Saving to savedImage.png®);

File file = new File(“savedlmage.png*);

ImagelO.write(image, “png* , file);

catch(IOException e)

{
}
}

}
//file: ImageHolder.java

import java.awt.Canvas;
import java.awt.Graphics;
import java.awt.MediaTracker;
import java.awt.Image;

27

~- MATHEMATICS AND COMPUTER EDUCATION -

import java.awt.Toolkit;
import java.awt.image.PixelGrabber;

class ImageHolder extends Canvas /lversion 3

{

Image image;

ImageHolder (String fileName) //constructor

MediaTracker mediaTracker = new MediaTracker(this);
image = Toolkit.getDefaultToolkit().getImage(fileName);
mediaTracker.addImage(image, 0);

try
mediaTracker.waitForID(0); // throws a checked Exception

catch(InterruptedException e)

{
}
}

int[] getimageAs_int_Array()
i

int imageWidth = image.getWidth(this);
int imageHeight = image.getHeight(this);
int[] imageGrabbed = new int[imageWidth * imageHeight];

PixelGrabber pixelGrabber = new PixelGrabber(image, 0, 0,
imageWidth, imageHeight, imageGrabbed, 0, imageWidth);
try

{
pixelGrabber.grabPixels(); //throws a checked Exception

}

catch(InterruptedException €)

{ .
}

return imageGrabbed;
}
public int getHeight() //public because overrides a public method

{

return image.getHeight(this);
}
public int getWidth() //public because overrides a public method

{
return image.getWidth(this);

}
}

28

- MATHEMATICS AND COMPUTER EDUCATION -

EMBEDDING THE MESSAGE

Our approach to embedding the message is to copy the characters,
nibble by nibble, into the low-order nibble of consecutive sub-pixels. The
coding constructs are illustrated by the following method, installRed(). Its
argument is the subscript of the element in the array holding the current
pixel, and it gets the current nibble from the message by a call on a
specialized object fashioned to work like a StringTokenizer. Its action is to
overwrite the four low-order bits of the red sub-pixel with the four bits
from the message. The red sub-pixel is in the second clump of & bits,
starting from the left, in the int from the array. The first clump of 8 bits is
unused in representing the image, so it is ignored.

Within installRed(), the first task is to create and use a mask for
replacing the four low-order bits of the red sub-pixel with zeros. The next
task is to get a nibble (half a character) from the message with a call on a
MessageTokenizer object to nextNibble(). For the character ‘A’, that has
an ASCII value of 65 (which is 0100 0001 in binary), the first call to
nextNibble() returns 4 (which is 0000 0100) and the next call returns 1
(which is 0001). This nibble is re-expressed in binary as a String of Os and
1s embedded within a 24-character String placed to be aligned with the red
sub-pixel’s low-order bits. In other words, this nibble will be the 17th
through the 20th characters in a String with Os in all other places. The 24-
character String is converted to an int, and this int is ORed with the int
storing the pixel. ORing like this replaces the Os masked into the red sub-
pixel with the nibble from the message but does not change any of the
other pixel’s other bits.

The steganography program we wrote includes an installGreen()
method and an installBlue() method that are similar in function and
construction to installRed().

//method overwrites the low order bits in the red sub-pixel
/Iwith a nibble from the message

void installRed(int subscriptIntoPixelHolderArray)

{ -
Integer intObj = Integer.valueOf(“111100001111111111111111% , 2);

int firstMask = intObj.intValue();

//puts 0000 in the low order nibble of the red subpixel
image[subscriptIntoPixelHolder Array] =
image[subscriptIntoPixelHolderArray] & firstMask;

byte nibble = tokenizer.nextNibble();
String nibbleAsOs_and_1s = convert_byte_ToBinaryString(nibble);

String nibbleAligned =

29

- MATHEMATICS AND COMPUTER EDUCATION -

“0000“ + nibblesAsOs_and_1s + “0000000000000000¢ ;

intObj = Integer.valueOf (nibbleAligned,2);

int secondMask = intObj.intValue();

image[subscriptIntoPixelHolderArray] =
image[subscriptIntoPixelHolderArray] | secondMask;

}

String convert_byte ToBinaryString(byte b)
{
Byte ByteObj = new Byte(b);
int x = ByteObj.intValue();
String str = Integer.toBinaryString(x);
return padWithLeadingZeros(str);

;

String padWithLeadingZeros(String str) //brings str to a length of 4
{

int originalL.ength = str.length();
for (int j = 0; j < (4 - originalLength); j++)

{
str = “0“ + str;
}
return str;

}

The MessageTokenizer class is below. The String holding the
message is passed to the constructor. As all Strings in Java, it is a
sequence of characters in Unicode, which means that each character is
stored in two bytes (16 bits). Because the Unicode collating sequence is
the same as the ASCII collating sequence for regular letters, numerals,
and special symbols, we only need to be concerned with values small
enough to be stored in a byte. Accordingly, as an intermediate step, the
message is put into an array of bytes (messagelnBytes). Each element of
this array is split in half, bitwise, and the respective halves are stored as
two elements in an array called nibbles. The four leftmost bits of the value
from messagelnBytes go into nibbles[i] and the four rightmost bits go into
nibbles[i+1]. To get the four leftmost bits, the original byte is right
shifted by four bits. To get the four rightmost bits, the original byte is
ANDed with 15 (which is 0000 1111).

The nextNibble() method, similar to the StringTokenizer’s
nextToken() method, returns the subsequent value in the nibbles array. To
do this, the MessageTokenizer object uses a private instance variable
called cursor that keeps track of its place.

//file: MessageTokenizer.java

class MessageTokenizer

30

- MATHEMATICS AND COMPUTER EDUCATION -

{
byte[] nibbles;
int cursor = -1;

MessageTokenizer(String message) //constructor

{
nibbles = new byte [message.length() * 2];
byte[] messagelnBytes = message.getBytes();
int nibbleCount =0;
for(int i = 0; i <messagelnBytes.length; i+ +)

{
nibbles[nibbleCount] =
(byte)(messageInBytes[i] >> 4); //right shift of 4 bits
/1to get the left hand bits
nibbleCount+ +;
nibbles[nibbleCount] =

(byte)(messageInBytes[i] & 15); //masking off the left bits
/1to get the right hand bits

nibbleCount + +;

}
}

byte nextNibble()

if ((cursor + 1) < nibbles.length)
{

cursor ++;
return nibbles[cursor];

3

else
return (byte) ¢ ¢;
}
}

EXTRACTING THE MESSAGE

The first step is to retrieve the image with the embedded message
and to recover the message as an int array using the services of a
java.awt.image.PixelGrabber object. This may be done with the same
ImageHolder class built for embedding the message.

The logic for recovering the message needs to reverse that of
embedding the message. Consecutive sub-pixels are used in embedding,
skipping none. This design maximizes the space available in the image but
makes for the awkward three-to-two storage of characters across pixels. The
nibbles of every other character are stored across two pixels, meaning in the
blue sub-pixel in one element of the array and in the red sub-pixel within the
next.

31

- MATHEMATICS AND COMPUTER EDUCATION -

The message is recovered in the constructor of our
MessageExtractor. The centerpiece is a while loop, each iteration of which
processes two elements from the imageGrabbed array and concatenates
three characters onto the String constituting the extractedMessage. A
simple 20 elements of the array are processed, regardless of the message’s
actual length. This is fine for the purpose of “prototyping” or “proof of
concept,” but would not fit the bill for a finished product.

Specialized methods called extractRed(), extractGreen(), and
extractBlue() pull the values of nibbles from respective sub-pixels out of
an imageGrabbed element. These methods work similarly, with -a mask
and, for the nibbles in red and green sub-pixels, a right shift. To
exemplify, extractRed() is shown.

A character’s high nibble and low nibble are put together by left-
shifting the high, then ORing it with the low. The reason for testing an
assembled character to be within the range of the space (ASCII 32) and
ASCII 127 before appending it to the extractedMessage is to be sure it is a
normal, printable character. Because the while loop may process beyond
the last character of the message, bogus values may be encountered.
Certain values designate carriage control (e.g., backspace) and could
perturb the extracted message, mimicking a logical fault.

//file: MessageExtractor.java

class MessageExtractor

{
int[] imageGrabbed;

String assembledMessage= “¢ ;

MessageExtractor(String name_of PNG_file)
ImageHolder picture = new ImageHolder(name_of PNG_file);
imageGrabbed = picture.getlmageAs_int_Array(); .
int cursor = 0; //subscript of current element in imageGrabbed

while(cursdr < 20) //20 elements stores 30 characters

{

//extracting the first character
int high = extractRed(cursor);
int low = extractGreen(cursor);

byte together = (byte)(thigh <<4) | low);
char nextChar = (char)together;

if (nextChar > = ‘¢ && nextChar < = (char)127)
assembledMessage = assembledMessage + nextChar;

//extracting the second character

32

- MATHEMATICS AND COMPUTER EDUCATION -

high = extractBlue(cursor);
cursor+ +; /lon to next element of imageGrabbed

low = extractRed(cursor);

together = (byte)((high <<4) | low);
nextChar = (char)together;

if (nextChar > = ¢ ¢ && nextChar < = (char)127)
assembledMessage = assembledMessage + nextChar;

//extracting the third character
high = extractGreen (cursor);
low = extrac¢tBlue(cursor);

together = (byte)(high <<4 | low);
nextChar = (char)together;

if (nextChar > = ‘ ¢ && nextChar <= (char)127) -
assembledMessage = assembledMessage + nextChar;

cursor+ +; //on to next element of imageGrabbed
}
System.out.println(The message is “ + assembledMessage);
}
int extractRed(int cursor)
{

//create a mask for extracting the message nibble
//in the lower four bits of the red sub-pixel
Integer intObj = Integer.valueOf(“000011110000000000000000% , 2);

int mask = intObj.intValue();

//extract the nibble
int messageNibble = imageGrabbed[cursor] & mask;

//move the nibble to the right-end of the int
messageNibble = messageNibble >> 16;

return messageNibble;

}

/! int extractGreen(int cursor) goes here
/! int extractBlue(int cursor) goes here

}
CONCLUSION

The given code uses a built-in facility for performing binary-to-
integer conversions. It also uses a facility that represents a captured JPEG
as a straightforward int array and another that turns the array back into an
image. Programming is increasingly taking place in an environment of
abstractions, and it is interesting that abstractions are provided both for

33

- MATHEMATICS AND COMPUTER EDUCATION -

operations that used to be considered part and parcel of fundamental
programming as well as for operations that are extremely elaborate.

Some instructors view the latter abstractions as legitimate but feel
that the former are depriving modern-day students of essential learning
experiences. We disagree. It has always been the job of high-level
programming languages to provide the necessary tools for the ad hoc
problem domain. FORTRAN provided operators for floating point
arithmetic, facilities for input and output, and a square-root facility.
COBOL made file-processing easy and made dollar and cents arithmetic
exact with binary coded decimal. APL supplied abstractions for
manipulating vectors and matrices, and SNOBOL supplied abstractions for
manipulating strings. If Java gives us more, it is for two reasons: (i) It is
possible to supply more and (ii) The age of graphical user interfaces,
multimedia, and the Internet requires more.

Programming, however, has not been reduced only to calling
methods on objects, as the forgoing exercise should demonstrate. Nor
have patterns and object-oriented design obsoleted logical problem-
solving. Problem-solving and the traditional issues of efficient and robust
design remain central.

Quoting Bill Gates [8], “In a certain sense...the curriculum has
changed, but say somebody came for an interview and they said, ‘Hey, I
read the Art of Computer Programming, that’s all I ever read, and I did all
the problems,” I would hire them right then...even if they didn’t do the
double-star problems...just the fact that they’d read the whole book....
Those are the kinds of things you need to know to be a good
programmer...the kinds of algorithmic thinking that’s promoted there.”

Continuing, Mr. Gates says of a computer science curriculum
suitable for today, “So, in a sense, we want to teach the same thing, but
we’d like to teach it in a forum that’s most interesting.... But what you're
really teaching the person about is pretty much the same as what you
wanted to teach them 30 years ago.” Yet it is pedagogically important to
“make sure that the person learning those things feels like they’re doing
something very cool and very interesting.”

REFERENCES

1. B. Crispen, and K. Crispen, GIF, JPEG, or PNG (2004).
http://toolkit.crispen.org/formats/index.html .

2. K. Hunt, “A Java Framework for Experimentation with Steganography”, Proceedings
of the Thirty-Sixth Technical Symposium on Computer Science Education, ACM
SIGCSE Bulletin, Volume 37, No. 1, pp. 282-286, ISSN: 0097-8418 (2005).

34

- MATHEMATICS AND COMPUTER EDUCATION -

3. K. Hunt, “Using Image Processing to Teach CS1 and CS2”, ACM SIGCSE Bulletin,
Volume 35, No. 4, pp. 86-89, ISSN: 0097-8418 (2003).

4. D. E. Stevenson, M. R. Wick, and S. J. Ratering, “Streganography and Cartography:
Interesting Assignments that Reinforce Machine Representation, Bit
Manipulation, and Discrete Structures Concepts”, Proceedings of the Thirty-
Sixth Technical Symposium on Computer Science Education, ACM SIGCSE
Bulletin, Volume 37, No. 1, pp. 277-281, ISSN: 0097-8418 (2005).

5. B. Schneier, Secrets and Lies: Digital Security in a Networked World, Wiley
Publishing, Inc., Indianapolis, Indiana, pp. 245-246, ISBN: 0-471-45380-3
(2000).

6. K. J. Walsh, RGB to Color Name Mapping (Triplet and Hex), 2005,

http://eies.njit.edu/ ~ kevin/rgb.txt.html and http://web.njit.edu/ ~ walsh/rgb.html.

7. H. Wang and S. Wang, “Cyber Warfare: Steganography vs. Steganalysis”,
Communications of the ACM, Vol. 47, No. 10, pp. 76-82, ISSN: 0001-0782
(2004).

8. Remarks by Bill Gates, Chairman and Chief Software Architect, Microsoft
Corporation, and Maria Klawe, Dean of Engineering and Applied Science,
Princeton University, at the Microsoft Research Faculty Summit 2005 in
Redmond, Washington on July 18, 2005,
http://www.microsoft.com/billgates/speeches/2005/07-18FacultySummit.asp .

35

	Building a steganography program including how to load, process, and save JPEG and PNG files in java.
	Recommended Citation

	tmp.1705526282.pdf.6cZ1L

