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The Totient Function of Composite Integers
h=pq

Nelson A. Carella

Abstract: In this paper it will be shown that the totient ¢(r) can be evaluated in terms of divisor
function oy(n), the counting function ry(x), and the modular form Gs(t). These results lead to
several analytical, and number theoretical algorithms for computing the values of the function
¢(n) at composite arguments n = pq, p, g primes. These techniques provide potential new tools
for the factorization of n = pq, and the analysis of cryptosystems based on the ring of integers Z,.

1 Introduction

In the last decades very extensive research and resources has been devoted to the factorization of
large integers of the form » = pg, and the equivalent problem of determining the values of ¢(n).
These efforts have resulted in a variety of factorization algorithms, but no effective solution yet.
Several elementary methods of transforming this problem into different problems will be
considered in this paper. Some of the techniques considered here are of theoretical interest and
probably are not practical.

Each of the remaining sections will treat a different technique of dealing with this problem.

2 The Number Theoretical Formulae

The divisor function is the usual o, (n) = Zd * . The recursive formula

(1)
O™ a@+hEd s S (D 2k + o (n—k(k+1)/2), if n=d(d +1)/2,
o(n)= 6 k2 . '
3 (D) 2k + o (n — k(k +1)/2), ifn=d(d+1)/2,

k21 -

can be used to determine o(n) = oy(n). A profusion of other identities for computing oy(n),
recursively, or in terms of other divisors functions are also available in the literature. Some
recent convolution identities are given in {ML].

The counting function r,(n) enumerates all the integer solutions x;, ..., x3, x; of the quadratic
form x} +x; +---+x’ =n. The function r((n) can be written in term of divisor functions and

other functions. For the parameters s = 2, 4, 6, and 8, the two functions r,(n) and oy(n) have a
simple linear relationship:

oddd.n

n(m =42, D, () =82+ (-1)"] d, @)



ro(n) =4 (_1)(‘1-1,,-2((%") -d’ ) , r(n)=16Y (-1)""d’ .
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These are given in [GR, p.121], and [IW, p.187], see also [RA, p.372]. In general, the function
ras(n) = 825(n) + ea5(n), where 8,4(n) consists of divisor functions and e,s(n) is a function of lower
order. The exact formulae for 2s < 32, appears in Acta Arith. LIV (1989), pp. 9-36, and other
sources in the literature. Recently infinite sequences of formulae have been determined for s =
4 or 4k(k + 1), k > 1, see [MN]. The function r((n) can be computed via the convolution and the
quadratic step recursion formulae

r,(n) = ’;) r (K, (n—k) and r,(n)= 2&(%11« —l)rs (n-k), (3)
respectively. In general, the kth-step recursion
1, (1) = 2Z(S : L -1)% (n—1%) (4)
I=1
can be utilized to compute number (1) of vectors solutions Xs, ..., xa, x; of the k-form

xf +x¥ +---+x! =n in the integers lattice Z°, see [ NT, p.426]. The dimension s = g(k) of the
integers lattice is the smallest s such that every integer n > 0 can be expressed as a sum of s kth
powers (Waring’s problem). This is given by g(k) = 22X+ [(3/2)" - 2, if 3¥=2kg+r andg+r<
2k The values g(2) =4, g(3) =9, g(4) = 19, and g(5) = 37 are well known.

The number theoretical formulae allow the construction of polynomial relationships between the
functions ry(n), os(n), and ¢(n).

Lemmal. Letn=pq,ands > 1. Then

@n)’ + a1 g(n)’ ™ + -+ a1ghn) + ag + o(n) = 0, (%)
where the coefficients a; = a{(n) are polynomials in n. In Particular,
(1) gn) =2(n + 1) — o(n), (6)
(2) @(n) =2(n+1) = 27ry(m),

127'r,(n)—n* -1 if p,q =1mod4,

(3) p(n)’ = 20+ 1)) + n+1 =1 B} ,
n*+1-127r,(n) if p,g=3mod4,

4) (o(n)3 - 3(n+1)¢(n)2 + 3(n2+n+1)¢(n) —(n+ 1)3 -1+ o3(n) =0,

(5) @(n)* = 3(n+1)p(n)* + 3(n*+n+1)(n) — (n + 1)° —n® — 1 +27*rg(n) = 0.



The new identities immediately lead to new algorithms for computing ¢(n) recursively, and
eventually factoring n = pg, at least in theory. Two of these algorithms are given by

on)=2n+1) - %g(’—ikl—l};(n—kz), (7
and
Pn)=2n+1)— ()
()7d(d +1)2d +1) | S ()M @k +Do(n—k(k+1)/2), ifn=d(d+1)/2,

6 i1
DDk + o (- k(k+1)/2), ‘ ifn=zdd+1)/2.

k2l

Although these algorithms are not efficient, it is conceivable that the sequences of numbers
ra(n-1), ra(n—4), r4(n-9), ra(n-16), ..., or o(n-1), o(n-3), o(n-6), o(n—10), ... are easily
computable for certain n. A recursive formula for o(n) slightly more efficient than the one
employed above is given in [EW].

3 The Analytic Formulae
The change of variable map 7 — g = ¢'“"" appearing in the various equations below identifies the
complex upper half plane 3 = { 7=x+ iy : y > 0 } with the open unit disk D(0,1)={|g|<1:gq

-~

e 3 }.
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The divisor function o;(n) has a power series expansion of the form

o—;-:<n>=¢<s)§%, (FFe(s) > 1), ©)

where the ith coefficient is the Ramanujan’s sum

c(my= T = Sduk/d), (10)

ged(x k) dlk.d n
see [HR, pp. 140-142]. Further, the kth coefficient cy(n) = (k) forallk<p <gq.

The theta function and the sth power of it are defined by the power series

9(T)=iqk2 :irz(k)q" and 6°(r) = irk(k)qk. (11).

The kth coefficient of the Fourier series expansion of the sth power of the theta function is
precisely the number of representations of k4 as a sum of 2s squares. Further, the functional



equations 8(r) = 8(z +2), and 8°(~1/7) = £°6*(r) classify it as an automorphic form of weight
1/2 and level 2.

The modular form of weight 2s is defined by

Go()= Y — (12)

b
wmy=0.0) (UT + V)zs

see [AP, p. 69], [CH, p. 83] or similar text. Further, the summation formula below provides a
rapidly convergent power series.

Lemma?2. Let 7=x+iy:y>0,and s> 1. Then

s -nmf!

1 S 1 - 127drr
— = 13
2° ST+ v)‘ I(s) ,; (13)

The proof of this result appears in [KN, p. 65]. After some algebraic manipulations, this function
can be rewritten in two different ways as power series:

st(r>=24(2s)+2(;2’?)§°j 0100 (" =2 25 >+z‘(ﬂ)—’zz g (14)

The analytical formulae bring the representation of ¢(n) into the realm of modular forms and
theta functions.

Theorem 3. Letn=pgq,ands 2 1. Then

o) 2s -1 1 d
W Do) =52 - A 1s)
2(2m)7 L wamon T+ V)7 g
Ck (n)
2) Za p(n) = (s )Z
where a; € Z, ¢ = €™, and Im(7) > 0. In particular,
-3 i dq

(3) o(n)’ =3(n+Dp(n)* +3(n* +n +Dp(n)—(n+1)’ —n’ -1=
167* gizr (W)=(0,0) (utr +v)* q"

(4) p(n)’ =3(n+Dp(n)* +3(n* +n+De(n) - (n+1)’ —n* —1=—n’ 4(4)25_(_3,



Proof of (1): Since the constant functions are analytic on the open disk DO ={lqg|<ri},r>
0, the integral of the modular form G,(t) times the local uniformizer ¢ reduces to the ri ght side
of the equation. [ |

The elliptic function g will be utilized to derive a result in the next proposition. This function is
defined by

(z):zi2+2 LU (16)

O=wel (Z + a))Z w

The index set in the summation is the lattice [ = { © = ontom }, T = /o, a lattice is an
additive subgroup of the complex numbers, see [AP, p. 10], [CH, p. 85] or a similar source.

Theorem 4. 1f n = pq then the followings are equivalent.

1) o(m) = 2(n+1)- =2 540 a7
@) o(n)=2(n+1) - ja“(r)f’—q— :

8iq|=r q"

w} o,(1+7) ) dg
(3) p(n)=2(n+1) +?rq£ SO(——Z'—)—" .

Proof of (3): The theta function satisfies the identity e, —e, :(%j 0*(r), where the terms
w

e = go[%], e, % go(%} and e, = p(a)] ;a)zJ are the roots of the cubic differential equation

07%(z) = 4[03(2) — 824 (z) — g3. Now observe that for a fixed real o, the root ei(wr) is constant
and the corresponding integral vanishes. L
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