Pace University
DigitalCommons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

7-1-1996

A general implementation of sequence.

C.T. Zahn

Follow this and additional works at: https://digitalcommons.pace.edu/csis_tech_reports

Recommended Citation
Zahn, C.T,, "A general implementation of sequence." (1996). CSIS Technical Reports. 126.
https://digitalcommons.pace.edu/csis_tech_reports/126

This Thesis is brought to you for free and open access by the lvan G. Seidenberg School of Computer Science and
Information Systems at DigitalCommons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an
authorized administrator of DigitalCommons@Pace. For more information, please contact nmcguire@pace.edu.

https://digitalcommons.pace.edu/
https://digitalcommons.pace.edu/csis_tech_reports
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/csis_tech_reports/126?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmcguire@pace.edu

B

——

SCHOOL OF COMPUTER SCIENCE

AND INFORMATION SYSTEMS

TECHNICAL REPORT
Number 98, Early July 1996

A General Implementation of Sequence

C. T. Zahn

Department of Computer Science
Pace University
One Martine Avenue
White Plains, NY 10606-1909

E-Mail: Zahn@PaceVM.dac.Pace.edu

C

UNIVERSITY

The current manuscript was presented in May, 1989, at the
International Conference on Computing and Information (ICCI’ 89)
held in Toronto, Ontario, and printed in the Proceedings of the
1989 International Conference on Computing and Information
published by the Canadian Scholars’ Press.

Charles T. Zahn, Professor of Computer Science at Pace University,
was the last Chairperson of Pace-Westchester’s CS Department.
Among his publications, which number over fifteen, is C Notes, which
was one of the earliest guides to programming in C.

His academic background includes eleven years at Stanford University
as a researcher in computer science specializing in pattern recognition,
graph theory, programming methodology, and language design. While
there he was also a lecturer in the Computer Science Department. In
addition, Professor Zahn spent two years as a visiting scientist at the
CERN Laboratory in Geneva.

His industrial background includes work for the General Electric
Company, Yourdon Inc, the Mobil Corporation, and Advanced
Computer Techniques as well as consulting for corporations and public
agencies too numerous to name.

A GENERAL IMPLEMENTATION OF SEQUENCE

C. T. zahn

Computer Science
Pace University
1 Martine Ave.
White Plains, NY 10606
(914) 681-4191

Abstract

We propose an abstract view of sequences of
objects which features contexts and allows an

easy description of most manipulations of
sequences, such as insertions, deletions and
context movements. Contexts refer to positions
between sequence elements and are thus more

powerful than peointers. An implementation of
seguences is presented which is faithful to this
abstraction and whose symmetry and elegance lead
to simple and efficient algorithms. Language
features suitable for inclusion in a high level
language are discussed.

0. Introduction

Many algorithms manipulate sequences of data
cbjects in a dynamic fashion, including deletions
and/or insertions at various positions in the
sequence. Text files are seguences of lines
which are themselves segquences of characters, so
most text processing operations fall into this
category. Linked allocation methods using
pointers going forward or both ways (doubly-
linked)} are typically used for this kind of
segquence manipulation.

Unfortunately, one-way linked lists present
problems since backing up is not possible, and
"search and insert before" requires an extra
pointer or unnatural looking logic. Doubly-
linked lists solve this problem but require twice
as much pointer space. In addition, the
traditional algorithms require ugly special-case

analysis for modifications at the ends of a
sequence and careful handling of the empty
sequence. Insertions are not made at an element

of the sequence, but rather at a position between
two elements, before the £first, or after the
last.

These considerations suggest the need for a
general implementation of sequence with context
variables pecinting to positions, not to elements.
There is an elegant method o©f unknown origin
which uses the bitwise exclusive or to achieve
two-way linked lists with a single 1link field.
Nothing comes for free and in this case the extra
cost is that pointers into the sequence must
record the addresses of two adjacent elements.
But this is exactly what we have called a
context!

In section 1. we present an abstract view of
sequences and in section 2. an implementation via
Doubly-linked Circular Lists with Headers, DCLH,
using the exclusive or trick. In section 3. we

review the important algebraic properties of

exclusive or and give the crucial invariant
property governing DCLH seguences. A simple
theorem is proved which illustrates the power of
DCLH symmetry --- reversing a sequence costs one
swap!

Sections 4. and 5. ©present the basic
operations and several second-level operations
based on the earlier ones. A few basic
operations are illustrated by pseudocode and some
access restrictions are suggested to protect the
DCLH data structure from improper modifications.
The normal notions of modularity and information
hiding provide guidance here. Dijkstra's two-
headed stack operations appear in our second
level as well as linear search with a sentinel.

we suggest some Pascal-like language
extensions in section 6. They include sequence
and context declarations along with syntax for
the various operations. Finally, section 7.
summarizes what we think are the advantages of
the DCLH implementation of segquence.

1. Abstract View of a Sequence

The sequence of three characters, a b ¢, can
be thought of as a seven element series, .a.b.c.
, in which even numbered positions, 0,2,4 ... ,
hold periods indicating a position between
elements of the sequence. odd numbered
positions, 1,3,5 ... , contain the successive
characters of the sequence. One can also
visualize two boundary symbols, H and T (head
and tail), so that each period is between two
symbols. A single letter, a, would appear as
H.a.T and the empty seguence as H.T .

To record a particular peosition in a
sequence we replace a period by a caret symbol,

wAv_ and call the caret a context in the
sequence. For example, H.a.b c.T represents the

character sequence, a b ¢ , with the position
between b and ¢ singled out. Moving a context
forward or backward is well-defined except when
inhibited by a boundary element, H or T.

All conceivable operations on sequences can
be naturally described in terms of such sequences
and contexts. Any insertion is at a context and
any contiguous subsequence 1lies between two
contexts. In the following sections we describe
an implementation that is faithful to this view
of general sequences. Note that most text files
can be viewed as sequences of segquences of
characters.

2. Doubly-linked Circular Lists with Headers

In the DCLH implementation of a seguence
there is a small node (e.g. Pascal record) to
represent each symbol of the sequence including
the head and tail boundary symbols. These nodes
are formed into a doubly-linked circular 1list
structure so H.a.b.T is represented by

111 % a } { b | /1

The first field of each node is for data and the
second field holds a link value allowing forward
and backward traversals of the seguence via one
link field. This is done by storing in the link
field the exclusive or of the addresses of the
previous and following nodes. This technique is
part of the lore of programming [1,2]. Each
reference to a position in the segquence must now
be represented by the addresses of its left and

right neighboring elements, and a context
variable holds a two-field position value
corresponding to a period. For example,

#.a.b"¢c.T is a chain

@ © © ® O

/17 ‘at §-N ‘c! 17/
™o?r HeQ POR oeT ReH
and the «context, Db'c , is represented by

{left,right) with values (Q,R). The context
immediately following this one is ¢°T which can
be calculated from b c by

left(c T) = right(b'¢c) = R

right(c’T) = Q @ link(right(b’e)) =T
since link(right(b'c)) = link(R) = Q @ T
and Q@ (QO®T)=(QOQ)OT-=T as shown in

the next section.

The algebraic properties of the exclusive or
operater, &, assure that, given the addresses of
any two adjacent nodes, the previous or following
node address can be recovered by an exclusive or
cf one of the addresses with the 1link field of
the node referenced by the second address.

The empty seguence is represented as

: @

/117 11/

since each has the other as both its left and
right neighbor anc H®@ H=T © T = 0.

The singleton seguence looks like

e 9 9

/177 ‘a’ 17/
TGP HOT POH

and, since there are more than two nodes in the
cycle, no links are zero! {(A @ B = 0 if and only
if A=B)

Without the double headers (head and tail)
one cannot distinguish empty from singleton (we
tried it and failed). with the proposed
structure, a zero link in the head or tail node
implies empty and otherwise (T,H) represents a
context from which the first or last element can
be found by

first = T @ link(H) = TO® T O P =P
last = H® link(T) = H® P@ H = p

To complete the structure each seguence needs a
record containing the tail and head pointers (
tantamount to a standard context). Each context
will contain a third field referring to the owner
sequence, so that context operations can check
for incorrect situations at the boundaries. For
example, it is illegal to advance past the
context at the end of a sequence, ¢ T.

The following depicts a seguence with two
contexts:

Context At Start
—e 0wner s
& H
—] Right Ce

3. Invariant Properties of DCLH

The following properties of exclusive or
(®) are crucial for the DCLH implementation of
seguences:

A®@(BO@C)=(A®B)BC
ABB=B@A

AB®O=A

A®A=0

A ®new = (A @old) © (old ® new)

The last law of ‘'substitution" says

substitute new for old in the expression, A @

old, one must simply cancel the old and

éncorporate the new by an exclusive or with (old
new).

that to

If H.aj.aj. ... ay.T is a general sequence
and we denote H = ap and T = a4, then

link(aj) = aj.; & aj.; where the subscript is
modulo” k+2. his hofds for k=0 when, of course,
we have link(H) = 1link{(T) = 0.

As a corollary we have

a542 = a5 © link(ay4q)
a% = aj+% e linkﬁag+1)

n particular, we obtain the first and last

elements of a sequence by

first{s) = T ® link(H)
last{S) = H ® link(T)

whenever link(H) or link{(T) are non-zero.

We also can
amazing

prove the following fairly

Theorem:
Swapping the head and tail peointers in a
sequence reverses the order of the seguence.

Proof: '
From the previous remark that first(S) =T @
iink(H) and last(S) = H ® 1link(T) we can see that

the swap creates a new seguence, S', such that H'
= T and T' = H. This implies

first(s') = T' @ link(H')
= H ® link(T)
= last(S)
and similarly
last(S') = first(s).

The symmetry of the exclusive or operator and the
fact that no links have been changed assures that
forward traversal of S' will mirror a backward
traversal of S. Note that swapping the left and
right field of a context has the effect of
interchanging forward and backward, but the
boundary tests are not guite correct.

4. Basic Operations

The basic low-level operations on DCLH
seqguences are

NewSeg --- to create a new empty sequence.

AtStart, AtFinish --- to determine if a

context is at a boundary.

Advance, Retreat ~-- tOo mOve a context.
Insert --- to add a node at a context.
DelAfr, DelBef ~--- to delete the node after
or before a given context.
SetStart, SetFinish =--- to
context.

Clear --- to empty a seguence.
Empty --- to determine if a sequence is
empty.

initialize a

The following pseudocode is representative of the
basic operations:

DelAft(C, P):
{ C a context, P a node pointer)

with C do
if Right = Tail(Owner) then
SequenceError
‘else

P, Link(Left), Link(Nbr), Right &—
Right, Link(Left) @& Right @ Nbr,
Link(Nbr) ® Right @ Left, Nbr
where Nbr = Left & Link(Right)

SetStart(S, C):
{ S a sequence, C a context)
with C do
Owner, Left, Right e—
S, Head(S), Tail(S) @ Link(Kead(S))

Insert(P, C):
{ P a node pointer, C a context }
with C do
Link(Left), Link(Right),
Link(P), Right e—
Link(Left) ® Right ® P,
Link(Right) @ Lcft © P,
Left @ Right, P

The user of segquences implemented as DCLH
should be allowed the following access
privileges:

1. Use Left and Right of a context.
2. Use and modify Data field of a node.
3. Copy from one context to another.
but with the following restrictions:
1. No access to Head or Tail of a sequence.
2. No access to Link field of a node.
3. No access to Data field in Head or Tail.

The user is expected to move contexts in a

sequence and interrogate as well as manipulate
sequence information by expressions of the form

Data(Right(C))
when C is not at the end of its seguence.

In a modular language like Ada or Modula-2
these twelve procedures would be packaged into a

module while hiding the actual DCLH
implementation details. The user should declare
sequence and context variables whose inner

structure is private to the module. To implement
a strict version of these hiding rules would
require the addition of three new procedures:

NewVal --- to create a new node with given
value.
ValAft,
nodes.

ValBef --- to deliver values in

5. Second Level Operations
At the next level we add the operations:

FindFirst, FindLast --- to find the first,
last element of a sequence that is egqual to
a given value. Both use a sentinel search
employing the Data field of headers.

Append --- to concatenate two sequences.
Split --- to separate a seqguence into two
sequences at a context.

and the operations suggested by Dijkstra [3):

LoPush, LQPOQ --- stack operations at head.
HiPush, HiPop --- stack operations at tail.

Other operations we have coded are:

PrintSeq --- to print the data in a
seguence. :
Strip =--- to delete from a sequence all

elements of a given value.

)
Tall — > First2 = geMi(s2) @ Link(Head(s2)
)

It is instructive to examine Append in
detail since it is very efficient with the DCLH
scheme, but there are some subtleties. .The
following diagram shows the before and after
situations associated with Append(Sl1l, S2):

The pseudocode is:

Append(S1, S2):
{ 82 to be concatenated to Sl)
if not Empty(S2) then
Link(Lastl), Link(First2),
Link(Last2), Link(Tail(sl))
Tail(sl) @ First2,
Head(S2) & lastl,
Tail(s2) @ Tail(sl),
Lastl @ Last2
where Lastl = Head(S1)®Link(Tail(Sl

O

),
),
Last2 = Head(S2) & Link(Tail(s2)

Link(Bead(S2)),
Link(Tail(s2)) — nil, nil

Referring to the diagram, we must perform surgery
in two places. The last element of S1 must be
followed by the first element of S2 and the last
element of S2 must be followed by the tail
element of Sl. Each of these requires the
alteration of two 1link fields by use of the
substitution law of exclusive or. Finally, to
keep things clean, the sequence S2 should be made
empty with no dangerous 1links to its old
contents.

6. Language Features using DCLH Sequences

It would be convenient if this elegant data
structure were made available in higher level
languages. we propose one set of language
features that might be appropriate for a language
similar to Pascal.

The programmer would declare variables:

var S : sequence of ItemType;
C : context im S;
I : ItemType;

and could then manipulate sequences as follows:

S := null; {* to clear S *)

C at °Ss; (* to set C to start of S *)
C at §7; (* ... toend of S *)
C:=1; (* to insert I at C in § *)
1 from C~; {(* move item after C to I *)
C ++; (* advance C *)

C ==; (* retreat C *)

ifC="8 {* is C at start of S? *)

Sequential file operations can be neatly
described with such linguistic features as was
demonstrated by the axiomatization of Pascal

files by Hoare and wirth [4].
7. Summary of Advantages

We feel that the DCLH implementation of
sequences has several important advantages:

Elimination of Special Case Analyses ---
Most techniques for 1linked 1lists require
special checks at the beginning or at the
end of a list, as well as extra checking to
make sure the list is not empty. So-called
header nodes are known to help in this
regard and have been employed here to good
effect.

Double Links at Single Cost --- The use of
the properties of exclusive or to allow a
single 1link to provide traversals in both
directions is in many cases a good trade-off
since nodes (where we save) are more
frequent than contexts (where we must pay
extra).

Between-Element Markers --- We suspect that
many errors in text processing and the use
of text editors may be caused by the absence
of these contexts. Insertions are made, not
at elements of a sequence, but between them,
at the beginning, or at the end.
Furthermore, any contiguous subsequence can
be defined by two contexts. This view even

allows the replacement of an empty
subsequence by another sequence without
special case analysis!

Immediate Reversal - The incredibly

efficient swap to effect sequence reversal
may be important in some applications,
although the ease of traversal in either
direction may make reversal unnecessary.

Sentinel Searches --- The exploitation of
otherwise unused data fields in the head and
tail nodes to simplify linear searches using
the sentinel technique is an extra benefit
from the use of headers.

Symmetry =--- The symmetry of the DCLE data

structure is undoubtedly the main force
behind the elegance and simplicity of our
algorithms.
References
(1) Knuth, D. E., The Art of Computer

Programming, Vol. 1, Fundamental Algorithms,
section 2.2.4, exercise 18, Addison-Wesley,
1968.

[2) Standish, T. A., Data Structure Technigues,
p. 197, Addiscn-Wesley, 1980.

[3) Dijkstra, E. W., A Discipline of Pregramming
Prentice-Hall, 1976.

[4) Hoare, C. A. R. and Wirth, N., "An Axiomatic

Definition of the Programming Language
Pascal", Acta Informatica, 2, pp. 335-355,
1973.

Supplement

U

L'\?ascal Impllmew(-w\‘wh of DCLH Seqmaq

($B-,D+,F~-,I+,L+,N-,R+,8+,T+,V+}

program DCLH;

(* Doubly linked Circular Lists with Headers #*)

uses CRT;

var Screen : text;

type NodeRef = ~NodeType:;
SegRef = ~SeqType;
NodeType = record

Data : char:;
Link : NodeRef
end;
SeqType = record
Head, Tail : NodeRef
end;
Context = record
Owner : SegqRef;
Left, Right : NodeRef
end;
procedure SegErr(N : integer):;
begin
writeln(!'****** Sequence Error #', N)
end;

function ExclOor(Q, R : NodeRef) : NodeRef;

(* required by Intel segments, far pointers #*)
begin

ExclOr := Ptr(Seg(Q*) xor Seg(R*),
0fs(Q”) xor Ofs(R*))

end; (* ExclOr *)
procedure NewSeg(var S : SeqRef);
begin (* should be done only once *)

new(S):;

with s~ do

begin

new (Head) ; Head~.Link := nil;

new(Tail); Tail~.Link := nil
end
end; (* NewSeq *)
function AtStart(C : Context) : boolean;

begin

Atstart := (C.Left = C.Owner~.Head)
end; (* AtStart *)
function AtFinish(€ : Context) :
begin

AtFinish := (C.Right = C.Owner~.Tail)
end; (* AtFinish *)

boolean;

function Empty(S : SeqRef) : boolean;
begin

Empty := (S~.Head”.Link = nil)
end; (* Empty *)

procedure Advance(var C : Context);
var temp : NodeRef:;

begin
if not AtFinish(C) then with ¢ do
begin
temp := Left:
Left := Right;
Right := Exclor(temp, Right~.Link)
end

end; (* Advance *)

procedure Retreat(var C : Context);
var temp : NodeRef;

begin
if not AtStart(C) then with C do
begin
temp := Left;
Left := Exclor(Right, Left~.Link):;

Right := temp
end
end; (* Retreat *)

procedure Insert(P : NodeRef; var C : Context);
begin
with C do
begin
Left~.Link := ExclOr(Left~.Link,
Exclor(Right, P)):
Right~.Link := ExclOr(Right~.Link,
Exclor(lLeft, P)):
P~.Link := Exclor(Left, Right);
Right := P
end
end; (* Insert #*)

procedure DelAft(var C : Context:;
var P : NodeRef);
var Nbr : NodeRef;
begin
if C.Right = C.Owner~.Tail then
SegErr(2)
else
with € do
begin
Nbr := ExclOor(Left, Right~.Link);
P := Right:

Left”r.Link := ExclOr(Left~.Link,
Exclor(Right, Nbr));
Nbr~.Link := ExclOr(Nbr~.Link,
ExclOor(Right, Left)):
Right := Nbr
end
end; (* DelAft #*)

procedure DelBef(var C Context;

var P NodeRef);
var Nbr : NodeRef;
begin
if C.Left = C.Owner~.Head then
SeqgErr(3)
else
with C do
begin
Nbr := ExclOr(Right, Left~.Link):
P := Left;

Right~.Link := ExclOr(Right~.Link,
Exclor(Left, Nbr));
Nbr~.Link := ExclOr(Nbr~.Link,
Exclor(Left, Right)):
Left := Nbr
end
end; (* DelBef *)

procedure SetStart(S : SeqRef; var C : Context);
begin
with ¢, s~ do
begin
Oowner := S;
Left := Head;
Right := Exclor(Tail, Head~.Link)
end
end; (* SetStart »)

procedure SetFinish(S : SegRef;
var C : Context);
begin
with ¢, 8§~ do
begin
Owner := S;
Left := ExclOr(Head, Tail~.link);
Right := Tail
end
end; (* SetFinish #*)

procedure Clear(S : SeqgRef);
var C : Context; P : NodeRef;
begin
SetStart(s,C):
while not Empty(S) do
begin DelAft(C,P); dispose(P) end
end; (* Clear *)

procedure FindFirst(S : SegRef; X : char;
var C : Context);

begin

s~,Tail~.Data := X; (* sentinel for search ¥*)

SetStart(s,C):

while C.Right~.Data <> X do

Advance (C)

end; (* FindFirst *)

procedure Findlast(S : SeqRef; X : char;
var C : Context):
begin
S~ .Head~.Data := X; (* sentinel for search *)
SetFinish(s,C);
while C.Left~.Data <> X do Retreat(C)
end; (* Findlast #*)

procedure Append(var S1, S2 : SeqgRef)
var Lastl, First2, Last2 : NodeRef;
begin
if not Empty(S2) then
begin
Lastl := ExclOr(S1~.Head,
S1~.Tail~.Link);
First2 := Exclor(S2~,.Tail,
S2~.Head*.Link):
Last2 := Exclor(S2~.Head,
S2~.Tail~.Link);
Lastl~.Link := ExclOr(Lastl~.Link,
Exclor(si1~.Tail, First2));
First2~.Link := Exclor(First2+.Link,
ExclOr(s2~.Head, Lastl));
Last2~.Link := Exclor(Last2~.Link,
ExclOr(s2+~.Tail, Si~.Tail));
S1#.Tail~.Link := Exclor(S1~.Tail~.Link,
Exclor(Lastl, Last2));
with $2~ do
begin
Head~.Link :
Tail~.Link :
end
end
end; (* Append *)

procedure Split(C : Context;
var S1, S2 : SegRef);
var Firstl, Lastl, First2, Last2 : NodeRef;
begin
(* assumes S1, S2 have Head, Tail
* and are Empty
*)
if (S1 = nil) or (S2 = nil) then
SeqErr(4)
else if not Empty(S1l) or not Empty (S2) then
SegExr(5)
else (* okay to proceed with split *)
begin
with C, Owner~ do
begin
Firstl := ExclOr(Tail,
Head~.Link):
Lastl := Left;
First2 := Right;
Last2 := ExclOr(Head,
Tail~.Link);
end;
with S1~ do
begin
Head~.Link := ExclOr(Tail,
Firstl);
Firstls.Link :=
ExclOr(Firstl+.Link,
ExclOor(C.Owner~.Head, Head));
Tail~.Link :=
ExclOr(Head, Lastl);
Lastl~.Link :=
ExclOr(Lastl~.Link,
ExclOor(C.Right, Tail))
end;

end;

with 82~ do
begin
Head~.Link :=

ExclOor(Tail, First2);

First2~.Link :=
ExclOor(First2~.Link,

Exclor(C.Left, Head)):

Tail~.Link :=

ExclOr(Head, Last2);
Last2~.Link :=

ExclOr(Last2~.Link,

ExclOor(C.Owner~,.Tail,
end; ’
with C.Owner~ do
begin
Head~.Link := nil;
Tail~.Link := nil
end
end
(* Split *)

Tail))

procedure LoPush(var S : SeqRef; X : char);
var C : Context; P : NodeRef;

begin

Setstart(s,C):
new(P); P~.Data := X;
Insert(P,C)

end;

procedure LoPop(var S

(* LoPush *)

SeqRef; var X :

var C : Context; P NodeRef;
begin
if Empty(S) then SegqErr(l)
else
begin
Setstart(Ss,C);
DelAft(C,P); X := P~.,Data;
dispose (P)
end
end; (* LoPop *)

char)

procedure HiPush(var § : SeqgRef; X : char);
var C : Context; P : NodeRef;

begin

SetFinish(s,C);
new(P); P~.Data := X;
Insert(P,C)

end;

procedure HiPop(var S

(* HiPush *)

SeqRef; var X :

var C : Context; . P : NodeRef;

begin

if Empty(S) then SegErr(l)
else

end;

begin

SetFinish(s,C);
DelBef(C,P);: X := P~.Data;
dispose(P)

end

(* HiPop *)

char);

Procedure PrintSeq(S : SegRef);
var C : Context; X : char;
begin '
SetStart(s,C);
while not AtFinish(C) do
begin
write(C.Right~.Data);
Advance(C)
end;
writeln
end; (* PrintSeq *)

procedure Strip(var S
var C : Context; P
begin
Setstart(s,C):;
while not AtFinish(cC) do
if c.Right~.Data = X then
begin
DelAft(C,P);
dispose(P)
end
else
Advance(C)
end; (* Strip *)

SeqRef; X : char);
NodeRef;

procedure Test;
var S, S1, 82, T : SeqRef;

C : Context;
P : NodeRef;
Ch : char;
begin
Newseq(S):

for Ch := 'A' to '2' do HiPush(S,Ch);
Setstart(s,C);
while C.Right~.Data < 'M' do
begin
write(C.Right~.Data);
C.Right~.Data := 'A?';
Advance(C)
end;
writeln;
(* Data = 'M' *)
FindLast (S, 'A', C);
(* C.Left~.Data is last 'A' #)

NewSeq(S1l); NewSeq(S2):
Split(c,s1,s82); '
Setstart(s1,C);
while not AtFinish(C) do
begin
write(C.Right~.Data);
Advance (C)
end;
writeln;
Setstart(s2,cC);
while not AtFinish(c) do
begin
write(C.Right~.Data):
Advance (C)
end;

writeln;

SetFinish(s2,C);
while not AtStart(C) do
begin
write(C.Left~.Data);
DelBef(C,P); dispose(P)
end;
write(' ':10);
SetStart(sS1,C);
while not AtFinish(C) do
begin
write(C.Right~.Data);
DelAft(C,P); dispose(P)
end:;
writeln;

NewSeq(T) ;
for Ch := 'A' to '2' do LoPush(T,Ch);
SetFinish(T,C);
while C.Left~.Data < 'N' do
begin
C.Left~.Data := ',!';
Retreat (C)
end;
FindFirst(T, '.', C);
Split(c,sl1,s2);
Clear(S);
while not Empty(Sl) do
begin
LoPop(S1,Ch); HipPush(S,cCh);
LoPop(S2,Ch); HiPush(S,Ch)
end;
PrintSeq(Ss);
Strip(s, '.');
PrintSeq(S);
writeln('Got to the end.')
end; (* Test *)

begin (* main code just calls Test *)
AssignCrt(Screen); rewrite(Screen);

Assign(input, ''); reset(input);
Assign(output, ''); rewrite(output);
Test;

Close(Screen);
end.

(mm« ewtput froma T%('\

ABCDEFGHIJKL

MNOPQRSTUVWXYZ

ZYXWVUTSRQPONM AAAAAMAARARRA
Z2.¥Y.X.W.V.U.T.S.R.Q.P.O.N,
ZYXWVUTSRQPON

Got to the end.

From: Programming on Purpose, Volume II (pages 12-13)

by P.J. Plauger
PTR Prentice-Hall, 1993

g much more clever use of the exclusive-OR is storing two pointers in a
storage cell large enough to hold only one. I believe this is one of the
exercises in Knuth’s The Art of Computer Programming (Knu68). You say you
can’t do that? Watch.

Let’s say you have a list of data elements that can be very long, and that
you need to scan either backwards or forwards. The usual technique is to
declare each data element as a structure that contains both backward and
forward pointers. So if p points to the current element (again speaking C),
p->left designates the element to the left, and p->right designates the
element to the right.

If you feel you can’t afford to set aside space for two pointers within the
structure, what you do instead is set aside a single integer large enough to
hold all the bits of a pointer. (Yes, I know there are implementations of C
that may require two or more long integers to represent a pointer. And I
know that converting between integer and pointer representations can
cause a change of representation. If you want maximum portability, you
should write all this stuff with macros so you can localize the machine-de-
pendent parts.) What you store in the integer is the exclusive-OR of the
pointers to the left and right elements. Let’s call that integer cell 1ink, and
assume it has some defined integer type INT that can represent all values
of the type PTR, which is a pointer to a list element.

Instead of a pointer to a single list element (such as p above), you must
now maintain pointers to two adjacent list elements. Let's say ple £t points
to the left element and pright points to its neighbor to the right. Then you
can move your two-element window on the list to the left by writing:

ptemp = (PTR) (pleft->link * (INT)pright);
pright = pleft;
pleft = ptemp;

And you can move your two-element window to the right by writing:
ptemp = (PTR) (pright->link ~ (INT)pleft):;
pleft = pright;
pright = ptemp;

It is a fun exercise to write full blown versions of these functions. You
need to make them safe for lists with zero and one elements. You need to
ensure that stepping left or right will not take you off the end of the list.
And you need to add functions for adding and deleting elements. Try it.

You can extend this ingenious trick to two dimensions. Say you have to
represent the grid points within an arbitrarily large contiguous blob on a
plane. Again, the usual solution requires that each element have four
pointers, for the neighbors you reach by going up, down, left, and right
from the current element. You can replace these four pointers in each
element by two integers, one for each axis. To walk the list, you must
maintain four pointers, to adjacent elements that form a square. You ad-
vance in any direction by sliding the square about the plane.

To span three dimensions, you need to store only three integers within
each data element, instead of six pointers. But you must maintain eight
pointers to walk the list in any direction. As you go to higher dimensions,
you can see the classic tradeoff between storing information and recom-
puting it as needed. The exclusive-OR trick lets you squeeze considerable
redundancy out of your stored data, but at a cost in computation.

	A general implementation of sequence.
	Recommended Citation

	tmp.1705525923.pdf.6VISP

