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Abstract

In theoretical computer science it is often necessary to distinguish sets based on
their cardinality. The Church-Turing thesis, for example, formulates the capabilities of
computation by asserting that algorithms over countable sets are effectively computable.
However, algorithms for computation over uncountable sets are not possible due to to the
infinite precision required to distinguish arbitrary elements of the set. Cantor introduced
the diagonalization technique for proving infinite sets uncountable. Typically, diagonali-
zation proofs vary depending on the particular domain of the set. Over time, the
significance of the diagonal has eroded from this proof by contradiction method. Thus,

developing the ability to apply the technique to new cases may be elusive.

In this paper, a template for standardizing diagonalization proofs is developed. This
template is applied to. a number of specific examples to illustrate the proper application
of the diagonalization argument. With the use of data structures implementing sets, we
present a formal analysis of the template proof to show that countable sets do not provide
adequate information for the contradiction required by diagonalization proofs. This

further elucidates the associated computer and mathematical theory concepts.



1. Introduction

Computability theory provides the computational process with mathematical and
logical foundations. The basis for a computational model is is the Church-Turing thesis
which states that any algorithm over the set of natural numbers can be implemented on a
(Turing) machine. As such, categorizing infinite sets based on their cardinality plays an
intrinsic role in understanding the capabilities and limitations of computation on modern

machines.

Cantor (1936) introduced the diagonalization method to determine whether an
infinite set is uncountable. His original proof was applied to the set of total functions over
N. However, the diagonalization method has since been applied in different formats to
accommodate domains which are not sets of functions. This resulted in an unclear
presentation of how to transfer the technique to further cases. It has reached a point
where the notion of "diagonal” has been eroded from these approaches. In this paper,
Cantor’s original proof is abstracted by providing a standardized template proof that is
readily available for applications to different infinite sets. This is accomplished by requir-
ing a characterizing function to be defined for each element of the set under considera-
tion. Examples are presented to illustrate the strengths of the method. The critical points
are identified; these must be handled carefully in order to guarantee a valid proof. By
using data structures to implement set constructs, we show that countably infinite sets do
not provide enough information for a contradiction in the diagonalization argument.
Although the template was tailored for understanding diagonalization arguments, it also
provides an important educational tool for clarifying difficult concepts in both mathemat-

ical and computer science theory.

In the next section set constructs are analyzed. A proven 1-1 correspondence
between N and the set of finite subsets of N uses a representation for these sets which is
extended to provide a similar representation for infinite sets. A diagonalization argument

involves a proof by contradiction, which also requires an enumeration of all the elements
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of the given set. In both the countably infinite and uncountable cases, it is necessary to
consider a 1-1 correspondence between the set under consideration and N; however, in
the uncountable case, the diagonalization argument is used to prove the nonexistance of
such an enumeration. Because our academic experience has indicated student difficulty
in grasping these concepts, a template is provided in section 3 for standardizing diagonal-
ization arguments based on Cantor’s original proof to show that the set of total functions
over N is not countable. With this, P(IN) and R (power set of N and real numbers, respec-
tively) are shown to be uncountable. These examples are used to indicate the care needed
in specifying a proper diagonalizing function within the diagonalization argument in
order to yield a valid proof. With the template, the notion of the "diagonal" is clearly
defined. Students regularly raise the question as to why the diagonalization argument
fails for a countably infinite set; therefore, section 4 presents a mathematical formaliza-
tion that explains why diagonalization will not succeed when applied to a countable
infinite set. Further examples involving elements of the set of rational numbers are used
to indicate subtle flaws which can invalidate a diagonalization argument; these flaws are
elusive to students studying computability. Based on this analysis, a characterization of
countable and uncountable sets is presented that enhances the assertion of the Church-

Turing thesis.

2. Set Constructs

To analyze the properties of (un)countable sets, the set of (in)finite subsets of N will
be considered. In this context it is necessary to determine the elements of E;, the j™ finite

subset of N,

A set is an unordered collection of elements. Associated with each set is its

membership function, M(x,S) = (x € S), that is

1, xe$

MEENE 0, xé€S.
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While the elements of sets are unordered, theorems about their cardinality will require an
imposed order by putting the elements in a one-to-one correspondence with a subset of
the natural numbers. The recursive enumeration of the finite subsets of N provides such
an order. The one-to-one correspondence between N and the finite subsets of N will then
be demonstrated by the lemma, which provides for an actual implementation of these set

constructs.

The recursive enumeration of the finite subsets of N can be formulated as follows :

BASE CASE :

S, = (D} = (E,}.
RECURSIVE STEP :

Sis1=S; U{E;U{i}|E;€S;,j=0,1, - 1S;1-1}
={E;1j=0,---,21S;1-1}.
In this enumeration, the union operator assumes ordered sets for its arguments and
returns an ordered set. Thus, in the set S;,, (the set of all subsets of {0, ... ,i}), the ele-
ments of S, appear first, followed by those elements in the same order but with natural
number i added. A subsequent lemma demonstrates that E;e S, (the j™ finite subset of the
recursive enumeration) contains precisely those elements n that have a bit set to one in
the n™ position of the binary representation of j. The reader is referred to figure 1 for

examples of i =0,1,2,3.

Consider the binary representation of j =b,b,_, - b,b\b,. Let M(n, §;) =b,, Osn<k
and M,S;)=0,n>k. This induces a finite subset of N containing precisely those
numbers n such that the digits b, =1 in the associated binary representation of j. An
extension of this bitstring construct allows for a representation of the infinite subsets of N
as well; however, in this case there is no finite k such that for n>k, M(n,S;)=0. This con-
struct permits the retrieval/storage of the set associated with any bitstring. In particular,
for the finite subsets of N, this permits the retrieval/storage of the set associated with any

natural number. For example, to determine the elements of E,,, the binary representation
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of 50 is needed: 50,5 = 110010, = bsb b;b,b b, Since b,,b,, and b, are 1, Eg, = {1,4,5}.
This process can easily be reversed. Given a finite subset of N, the number representing
this set can easily be obtained. For the set {1,2,4}, b, =b, = b, = 1 and all other b, =0. The
decimal value of b,b,b,b,b, = 10110, = 22,, is therefore the unique natural number

corresponding to the set.

The next theorem guarantees the one-to-one correspondence between N and the
finite subsets of N. The significance of this theorem in our discussion is threefold. First,
the finite subsets of N are countable. Second, the theorem emphasizes the nature of a
proof which guarantees the one-to-one correspondence between an infinite set and N.
This is important when trying to categorize the cardinality of an infinite set. Third, this
theoretical construct actually provides a practical implementation of (in)finite sets for

computer science theory: namely, a bitstring data structure.
Theorem. 3a 1-1 correspondence between N and the finite subsets of N.

Proof. The following lemma demonstrates that after the i iteration of the above recur-
sive enumeration, S; is an ordered power set of the natural numbers < i. In addition, the
order in S; of the elements E; (subsets of {0,---,i-1}) is given by the binary representa-
tions of the sequence [0 ... 2'~1). Thus, this defines a 1-1 correspondence between [0 ...
2'-1] and the elements in the ordered set §;. This lemma also indicates that each Ees;
contains precisely those numbers such that the »* digit (0<n<k) of the binary representa-
tion of j =b, --- by is 1. Since this is true for all i, the above recursion enumerates the
finite subsets of N creating a 1-1 correspondence between N and the finite subsets of N.

O

Lemma. After applying the above recursive union i times the following results hold
true. §; contains an ordered power set of the natural numbers <i. This order is
enumerated by the sequence [0 ... 2'-1]. Furthermore, each E;eS; contains precisely those

numbers such that the n™ digit of the binary representation of j is 1.



Proof. By classical induction.
BASE CASE:

i = 0. By definition, S, = {@}, the power set of {}. S, is enumerated by [0 ... 2°-1] =
[0...0] = [0]. Hence, the only element of S, is E,. The binary representation of the index
of this set is 000...0. Thus, Vk, b, =0, corresponding to E, having no elements. The lemma

holds true in this case.
INDUCTION HYPOTHESIS :

Assume that S; contains the ordered power set of the natural numbers <i and each
element E;es5;, j=0,- - /2’1 contains precisely those numbers such that the »* digit of the
binary representation of j is 1.

INDUCTIVE STEP: .

Prove that S,,, contains an ordered power set of {0,---,i} and each element
E;€S,,;,j=0---2"*'-1 contains precisely those numbers such that the n* digit of the binary

representation of j is 1.

The power set of {0,---,i} partitions into the subsets which do not contain i and
those subsets which do. By the induction hypothesis, the former set of subsets S, is pre-
cisely the first IS, | elements of S;,,. Any subset of {0,---,i} which contains i, consists of
a subset of {0,---,i-1} union {i}. Since {E;U {i}|EeS;,j=0,---,2'~1} produces the last
IS; | elements of s, ,, this set contains precisely all of these remaining subsets. Hence, S,
is an ordered power set of {0,--,i }.

The induction hypothesis then indicates that each element Ejes;, j=0,- - - 2'-1 con-
tains precisely those numbers from {0,---,i-1} whose corresponding positions in the
binary representation of j is set to one. Then, after one iteration of the recursive union
above, the first 1S, | = 2' elements of the ordered power set S;,; must have the elements of

S; in the same order as S;, since S;,, =5;U --- uses the union operator that returns an

ordered set. Thus, the first 2' elements of S;,, are enumerated by the binary representa-
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tions of [0 ... (2' - 1)] in order. The next IS;1 =2' elements formed by the union in the
loop {E;U {i} | E;eS;,j=0--- 2'-1} have the same enumeration of binary representations
but with an extra bit set to one for the number i (see figure 1). The value added to each of
the numbers of the corresponding sequence is 2'. Thus, the actual values corresponding to
the new elements added are [(0+2') ... (2 -14+2)] = [2' ... (2'*' -1)]. Hence, the total
sequence of elements in S;,, has in order the finite subsets whose binary representations

correspond to the ordered sequence [0 ... (2'-1), 2 ... (2'*' -1)] =[0 ... 2@"*' - D)].

By the recursive enumeration, the first half of S,

i+l

is identical to S;. Since for §,,
M(n,E;) = b,, 0sj<2' -1, where the binary representation of j is b, - - - b, (k<i and b, =1), the
membership function for the sets in the first half of §, ,, is

bn' nsk

MEED= 10, nok

Furthermore, by the construction of §,, £, = E;U{i},0sj <2'-1. Therefore, for the sets in

the second half of §;,, the membership function is
bn J n<k
M(n ’Ej+2‘) =10, n>k and n=i
1, n=i.

Thus, each element E;es;, , =0, -- 2'*'-1 contains precisely those numbers such that the

n™ digit of the binary representation of j is 1. O

3. Standardization of Diagonalization Proofs

Cantor introduced the diagonalization method to determine the uncountability of
infinite sets. Consider the set F of total functions over the natural numbers, N. Assume
that F is countable. Then, there exists a 1-1 correspondence between F={f, | f,:N-N}
and N. Construct £, such that f_, @i)#f;(i) and £, e F. Cantor used f_, (i) =f,(i)+1.

Since f,(i)eN is uniquely defined, the same is true for f_ (i) and hence, f_, is a total
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function on N. But, then f_, e F ; hence, f,_, =f, for some k by virtue of the 1-1
correspondence between F and N. In particular, £, (k) =f,(k). However, f,_, (k»f,(k)
by the construction of f,,, . This contradiction indicates that no natural number k can be
found for 7, € F. Since there exists an f,_,eF which cannot be counted, F is not count-

able.

Thus, to apply the diagonalization method to any uncountable set Q, it is necessary

to

D1) define a property P which allows for an element to be a member of a set, say Q; (in

the above proof, P = "total functions over N")

D2) define and count (by indexing) total functions f; that distinguish (characterize) the
elements of Q; (since the above set F only contains total functions, these functions £, are

automatically defined)

D3) define q,, € Q with property P by designing its characterizing function £,,, such
that ., ()= f£,@); (.. above was shown to be total, that is it possesses property P since
Vi, fnw ()€N; also, the inequality condition was provided for by f,_,).

Having proved that this set F is not countable, a standard template for applying the
diagonalization argument to any uncountable set now emerges. This template clearly
demonstrates what this method incorporates from the "diagonal." To prove that a set Q
containing elements with property P is not countable, prove that the associated set F of

characterization functions for property P distinguishing each element of Q is not count-

able.
DIAGONALIZATION PROOF TEMPLATE

1) Let Q be an (uncountable) infinite set with elements containing property P.
2) Proof by contradiction. Assume that set Q is countable.

3) By definition of a countable set, there exists a one-to-one correspondence between the

elements of Q and N.
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4) Construct F, the set of characterizing functions distinguishing each element of Q.
Since F represents the countable set Q, F is also countable. Consequently, an index
number (subscript) can be assigned to each characterization function f,e F correspond-

ing to each ¢,e Q having property P.

S) Construct lookup tables for the outputs of the characterization functions { filieN}
with the elements of N as inputs. This creates a two-dimensional matrix with the f, on
the vertical and the natural numbers on the horizontal; the outputs f,(r) are stored in the

matrix cells. (See figure 2.)

6) Design f,, e F, the characterizing function of ¢_, e Q with property P such that
Faew ()2, (D). (It is obvious from figure 2 that the main diagonal of the matrix is being util-

ized to define £, .)

7) Since g, contains property P, the position of £, can be obtained in the countable
list of such elements by the one-to-one correspondence guaranteed in step 3 and con-

structed in step 4. Let £, be the k" element in the ordered listing of F.

8) Compute f,, (k). This equals f, (k) because of its position on the list of elements in F.
However, f,,, (k)#f, (k) by the diagonalization construction in step 6. For any &, f,_, (k)
differs from the diagonal element of row k in the matrix of lookup tables. Thus, an £, e

F (and hence the corresponding ¢, € Q) has been found which was not counted.

9) The assumption that Q and hence F is countable proves false because the contradic-
tion indicates that a one-to-one correspondence cannot exist between the elements of F

and N.
10) Conclusion: F is not countable; therefore Q is not countable.

To use this template to show that the power set of N is not countable, the three
definitions above (D1-D3) have to be stated. First, define P as the "subsets of N" (criteria
D1). Then, the characterizing function f; is the infinite bitstring implementation of the

membership function (criteria D2). Finally, the diagonalizing function £, (i) is simply
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(i) (read "NOT f£,(i)"); the elements of q,,, are precisely those j such that £, (j)=1
(criteria D3). The proof can then proceed identically with the template provided.

This bitstring implementation with its corresponding diagonalizing function in fact
suggests that two other sets are not countable. The bitstring as an abstract data type
implements not only subsets of N, but also the Boolean predicates on N. Each row of 0’s
and 1’s, which in the previous example represented a subset of N, now represents the out-
puts of P, the i* predicate function (criteria D1 and D2). Criteria D3 is satisfied identi-
cally to the previous example. This set is thus proven not countable by a similar use of
the template proof. Also the bitstring may represent the binary digits of the real numbers
between O and 1. However, it will be shown that for R, a base higher than two must be

employed for the template to produce a valid proof.

As stated above, three definitions (D1-D3) are required to make the template proof
problem specific; this enables the diagonalization method to apply to different set
domains. However, the last two (D2 and D3) are sensitive points in that they provide fer-
tile ground for creating an invalid proof. Specifically, by enumerating the f; (criteria D2),
an order is imposed on the g;. The elements of Q must have a 1-1 correspondence with N
implying that no element of Q is included more than once nor precluded from the list by
the imposed ordering. For example, for definition D1, let P be "the real numbers between
0 and 1". For simplicity, this subset of the reals is considered. If this set of numbers is

uncountable, then so is R.

Rationals are elements of R and many rationals have two decimal formats (ter-
minating and repeating). For example, 2/5 = 0.4 = 0.3999... = .39. It is important to count
each rational number with this property only once; otherwise this violates the 1-1
correspondence between Q and N (step 3 in the template proof). Therefore, when a
rational number, and hence a real number, has two decimal representations, only one of
them may be used, say the repeating decimal format. Arbitrarily select the numbers, one

at a time, and assign them sequential indices. Let f,(j ) represent the j* digit of real
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number g; (D1).

However, using the repeating decimal format alone is not sufficient to yield a valid
proof. A first attempt at defining f,,, (criteria D3) might adapt Cantor’s original diago-
nalization function for £, to the set of reals by using modular arithmetic to guarantee
that each output is in the set of digits {0,...,9}; thus, £, ()=(f;(i }*1) mod 10. But, under
this definition of f,,,, g, may be in terminating decimal format, that is ¢, could possi-
bly end with an infinite string of zeroes. Thus, ¢, may already be on the list in its
repeating decimal format. This would invalidate the proof. To overcome this problem,
correct

fiGi)+], £,()#9

e Y £:()=9.
This definition guarantees that g, is a real number between 0 and 1, and is not in ter-
minating decimal format. Satisfying criteria D3 in this way yields a valid proof. Simi-
larly, note what would happen if the bitstring (binary) representation for members of R
were used. Then, f,, ()=(f;(i)+1) mod 2=f,(i). Again, under this definition of f,_,, the
associated g,,, may be in terminating decimal format, ending with an infinite string of
zeroes. But, in base 2, no other digit exists besides 0 and 1 to correct the problem. For
definition D2, counting the terminating binary representation rather than the repeating
one, when both exist, will not alleviate the problem. Thus, some other base greater than

2 must be used to create a valid proof using the template.

While it is relatively simple to make sure that for ieN,f,_, (i)#f,(i), guaranteeing
that the corresponding g, has property P may be more difficult (criteria D3). For exam-
ple, to prove that the monotonically increasing functions are uncountable, let Q be the set
of those functions (criteria D1 and D2). After setting up the matrix as in figure 2, to
ensure that 1, (i) #=f,(i), a first attempt for f,,, might be £, (i)=f,(i)+1; but this does not
guarantee that f,, is monotonically increasing. Therefore, this results in an invalid

proof. Defining the diagonalizing function, (Sudkamp, 1989)
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) f,(i)+1, i=0
Sree ()= max (£, =1, £,(i) +1, i>0

will result in f,,, being monotonically increasing and differing from each element on the
diagonal of the table in figure 2 (D3); this yields a valid proof. These two examples of
uncountable sets emphasize that even when a valid diagonalization proof exists, a poor
choice for f,,, results in an invalid proof. In the next section, specific cases of countably
infinite sets are utilized to illustrate what can go wrong if the template guidelines are not

strictly adhered to. The flaws in these invalid proofs are elusive to most students.

4. Improper Application of Diagonalization Proofs

It has been shown that while the set of finite subsets of N are countable, P(N), the
set of all subsets (power set) of N is not. However, through computer science constructs
of sets (bitstrings), similar characterization functions f; are implemented for elements of
both set types. This seems to question the validity of the diagonalization method: can
countable infinite sets be successfully pushed through the template proof? By answering
this question, an insight into diagonalization arguments will surface which will also shed
light on the essential difference between countably infinite and uncountable sets, and

their corresponding cardinalities of N and R.

Suppose an attempt is made to apply the diagonalization template proof for uncoun-
tability to the finite subsets of N, which has already been proven countable. Then P in
step 1 of the template proof is the "finite subsets of N" (criteria D1). For step 3, set up
the one-to-one correspondence and the corresponding bitstring implementation shown
before for the finite subsets of N (criteria D2). This means that the order in the list of
functions implies the actual elements of its corresponding set and that these elements can
be identified. This specific order allows for the flaw in the proof to be located. Note that
in this case each row in the matrix is the binary representation of i in reverse order fol-
lowed by an infinite sequence of zeroes. This reversal simply follows from the fact that in

a number, the positions of digits are written from most significant (left) to least



-14 -

significant (right), whereas columns in matrices increase from lowest rank (left) to
highest (right). So, for example the binary representation of 6 is 110 and yet the
corresponding set ¢, will be stored as 011 — 01100000... in the row of the lookup matrix

for f¢. This row represents M(j , ¢4), j €N.

Consider step 6 where q,,,, is defined by BB, --- where B, =f,_, (i). Since £,(j ) can
only be O or 1 and £, (i }#f,(i), B; = f,., (i) =~ f,(i) is the only choice for .. Then, the
proof seems to proceed as normal. The next theorem indicates the subtle flaw in this
argument. Based on the characterizing functions for the elements of this countable set, it
has been shown that only a finite amount of information is necessary to distinguish the
elements of this countable (infinite) set; an infinite amount of information will be needed
to distinguish the elements of an uncountable set. This indicates where the proof fails:
there will not be enough significant information in any given row of the lookup table for

a contradiction to occur at the diagonal element.

Theorem. Ifbyb, - - b, - -- is the infinite bitstring characterization of finite subset ¢, of N

in the ordered list, then b,=0,i > 4.

Proof. ¢, represents the empty set and appears as the first element (4 =0) in the ordered
list. Its bitstring representation is an infinite string of zeroes; therefore, b, = 0,vieN. For
all 4>0, 2*<d<2"*' for some keN. The number 2* is the first (least) natural number to
require k+1 bits to represent it. Similarly, the number 2*' is the first (least) natural
number to require k+2 bits. Hence, 4 requires k+1 bits to represent it; let the binary
representation of d =b,b,_,---b,. A simple argument can be developed to show that
k<2, keN; therefore, 2°<d implies that k<d. It then follows that the associated infinite

bitstring representation for d, represented by bob, - b, b, - b, - --

in the lookup table,

contains zeroes for all other digits b,,i >k. Therefore Vi2d, b, = 0.0

The result of this theorem is now analyzed within the context of the application of
the template proof to the set of finite subsets of N. Specifically, this theorem implies that

the k+1 bits needed to represent positive d occur before the bit b, in the infinite bitstring
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corresponding to ¢, (and when 4=0, b,=0). Therefore, b, =0 whenever i=d. Hence,
(VieN) (f,(i) = 0) in the lookup matrix of step 5 of the template proof (figure 2). There-
fore, B, = £, () =" f,(i)=1,ieN. Thus, g, is characterized by the bitstring 1111... and
represents N, which is not a finite subset of N. This example stresses a very important
point which was likewise noted in the previous section. When using the template proof
for uncountability, one must be absolutely sure that the £, , constructed for step 6 of the
proof actually defines an element with the desired property P; otherwise a seemingly
"valid" proof has no validity. If it had not been observed that the f,_, in this example
represents an infinite set, it would appear that a proof exists showing that the finite sub-
sets of N are uncountable. It was the special ordering imposed on the elements of Q

which permitted the deduction that ¢ ¢ Q.

The previous attempt to prove that the finite subsets of N are uncountable failed
because the essential bits of information to define each finite subset of N are stored
before the diagonal element on each row of the lookup table; all other bits were set to
zero to fill the remaining cells of the lookup table. A similar observation can be noted
when attempting to apply the diagonalization template to any other countable set C.
Since 3 a 1-1 correspondence between C and N, the characterizing functions for C can
be based on the corresponding index in N. This allows for the special ordering imposed
on C to permit the above discussion to be applicable to any countable set. Hence, the

flaw in the proof will be detectable.

However, there exist countable sets which have legitimate infinite representations.
For example, consider the set of rational numbers, which is countable. Each rational
number can be represented by a repeating decimal. Some rationals have a decimal
representation only as a repeating decimal, for example 2/11 = .181818... = .18. Other
rationals can be represented as a terminating decimal, but such numbers also have a
repeating decimal representation, for example 2/5 = .4 = .399999... = .39. This represen-

tation bypasses the limitation of having only a finite amount of essential data to represent
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each number. The question arises as to whether this countable set can be forced through

the template proof for uncountability using the infinite representation for its elements.

In the attempt to apply the template proof to the rational numbers, it is only neces-
sary to look at the subset Q = {p/q1p.geN and 0 < p<q}, that is the rationals between 0
and 1. If this set of numbers is (un)countable, then so is the set of all rationals. To apply
the template proof to Q, the three items must be defined. First, let property P be the
"rational numbers between 0 and 1" (criteria D1). Next the characteristic function is
defined; for ¢; = .d; od; \d 2 € Q. f;(j)=d, . j» Where g; is in its repeating decimal for-
mat (criteria D2). Finally, the diagonalizing function is constructed (criteria D3). Since
the repeating decimal format is used, f,., can be chosen as in the real number case:

fiCi)+1, f(i)#9
Fan®=1 0 )=,

This definition provides for a g, that is not in terminating decimal format, that is G
does not end with an infinite string of zeroes. However, this proof cannot be completed
because there is no guarantee that g, defined by £, is actually a repeating decimal; it
could be irrational. To overcome this problem a special ordering of Q is thus required to
assure that g, is a repeating decimal. For example, when setting up the one-to-one
correspondence between Q and N, let ¢; = .d; od; d - €Q, only if d; ,, = i mod 10.
Then, f,,, as previously defined for the rationals, will produce g, as a repeating
decimal, namely .1234567891. But, the proof is invalid with this scheme. There are many
repeating decimals, besides g,,,,, which will not appear on the ordered list, for example
.1234567890 , .9876543210 , and .2252222222 , etc. It should be noted that any special order-
ing forcing gq,,, to be a repeating decimal will result in some rational numbers being
omitted from the list. These numbers are not counted because the selection of the
correspondence between Q and N omitted them, rather than because the set Q is not
countable. Thus, it is imperative that any scheme which is used to count the elements of

@ not preclude any elements of Q.
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Applying the diagonalization template proof to an uncountable set yields a ¢, that
cannot be found on the ordered list due to the fact that Q contains more elements than
can be counted. Applying the template proof in error to a countable set causes g,_, not to
be found on the ordered list because either the ordering scheme does not properly list all
elements of Q or q,.,, does not have property P. Since the sets of rationals and finite sub-
sets of N are countable, all efforts to apply the template proof to these sets will fail to

meet some requirement of the proof, but finding the flaw in such attempts can be elusive.

5. Conclusion

The standardization of Cantor’s original proof provides an important educational
tool. First, it introduces the concept of a diagonalization argument to prove uncountabil-
ity. Second, it can be used to highlight common errors that invalidate a diagonalization
proof. Third, this template proof exemplifies the incorporation of computer science con-
structs to explain mathematical theoretical concepts. In particular, the bitstring imple-
mentation defined the membership function for sets. As a result, the inherent difference
between countably infinite and uncountable sets can thus be exhibited. A correct under-
standing of this difference permits for the application of the diagonalization technique to
appropriate infinite sets. This also supports the Church-Turing thesis and enhances its

interpretation.

By analyzing Cantor’s original diagonalization argument to prove that the set of
total functions over N is uncountable, a standardized template was constructed for prov-
ing infinite sets uncountable. Characterization functions were implemented representing
the different elements of specific infinite sets. Using data structures implementing the
elements, two critical points of the proof were observed that could allow for a seemingly
valid proof which in actuality is flawed. First, to properly categorize the countability of
an infinite set, an order is imposed on the elements by putting them in a 1-1 correspon-
dence with the natural numbers N. This order must be carefully designed so that elements

of the set are neither precluded nor counted more than once in different formats.
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Generally, an arbitrary ordering of the elements of the set Q is used. The ability or need
to impose a special ordering seems to create fertile ground for a flaw to arise in the proof.
For an uncountable set, any ordering will provide a valid proof, once the characterizing
and diagonalizing functions have been properly defined. Second, the applicability of
diagonalization does not depend on the existence of a representation of members of a set
using an infinite amount of data to define each element of the set. Rather, it relies on the
nonexistence of a representation allowing a finite amount of data to define each member
of the set. While some elements of an uncountable set may be well defined with a finite
amount of data, the characterization of such elements is extended to provide a uniform

representation for all elements of the set.

Set Q is uncountable when an infinite amount of data is mandatory to define
membership for elements of Q. Proofwise this means that the template proof or any ver-
sion of Cantor’s diagonalization is applicable, and a careful choice of f,., will produce a
valid proof. It is this infinite storage requirement for distinguishing the elements of the
set that prevents computation on computing machines, since any procedure which must
process an infinite amount of information will not halt. For example, many real numbers
must have an infinite sequence of digits, and infinite subsets of N must have an infinite
sequence of bits to define the membership function. Consequently, these two sets, R and
P(N), are uncountable and hence, procedures for computation over these sets are not

effectively computable.

Set Q with property P is countable when all (but a finite number of) ge Q can be
represented by a finite amount of data to define the elements that have property P. Proof-
wise this means a one-to-one correspondence does exist between the elements of Q and
N; the ¢, as defined in the template proof (step 6) which allows for a contradiction can-
not be found. Computation over an infinite set in which each element can be character-
ized by a finite amount of information is effective over the entire (countable) set. For

example each member of the finite subsets of N can be defined with a finite number of
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bits, and each rational number can be defined using only two integers; these two sets are

thus countable and hence by the Church-Turing thesis, algorithms over these sets are

computable.

Acknowledgement: The authors would like to thank Dr. Jerry Waxman for his guidance

and useful comments.
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s3 = {Eo,EpEzyEgrE4,E5»E6vE7}
= {EqE E,Ey EU (2}, E\U {2} , EU {2}, E,U{2} }

S;=(EyE | E,E;}
= (EoE,EU(1}, E\U(1}}

={Ep, EQU(0} ]

gt s,

,§o={Eo}

E, E, E, E, E, E, E, E, E,
(@} {0} {1} {01} {2}| (0.2} {1,2}/{0,1,2) ... u;; 1
POS e=1}
0 0 [ 0 I 0 I 0 I b,
1 0 0 1 1 0 0 1 1 b,
2 0 0 0 0 (1 I [ - b,
3 0 0 0 0 0 0 0 0 b,
4 0 0 0 0 0 0 0 0 b,
k 0 0 0 0 0 0 0 0 b

Figure 1. Recursive construction of the finite subsets of N with corresponding bitstring
implementations. The example in this figure is that of the ordered set §, = 5,U {E;U {2} ]
E;eS,}. Thus, the top 2 bits for E,EEE, are the same as those for E E,.E, E, respec-
tively and the 2* bit POSition is set to one (highlighted by the box) in the ordered ele-
ments E,EEqE, indicating that 2 eE E E E, For E;, j is the decimal equivalent of
byb,_, -+ by, where b, contains the most significant bit in the column for E,.
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0 1 2 i
fo | o folD o
fi f0) £ [
fs £20 £, £22
f, £, £, fi@ - £,

Figure 2: Two-dimensional matrix of lookup tables for the characterizing functions.
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Definitions
cardinality: the number of elements in a set.
characteristic function: the membership function of a set.

characterizing function: for element ge Q, a function f on N that uniquely defines ¢
based on some general representation describing the elements of Q.

Church-Turing thesis: Any algorithm over the natural numbers is effectively comput-
able on a (Turing) machine.

computability theory: the analysis of the computational process.
countable set: a set that has a one-to-one correspondence with a subset of N.

diagonalization: a method to prove an infinite set uncountable using a diagonalizing
function.

diagonalizing function: given an infinite set Q and enumerated elements g, Q with
corresponding characterizing functions f;, a function f on N that assigns a value to f(i)
VieN, based on the value of f,(i).

b4

infinite set: a set containing a proper subset with equal cardinality.
N={0,1,2,...}.

one-to-one correspondence: a mapping between two sets such that each element in one
set has a unique associated element in the other set, and vice versa.

partition: {P,,---,P,} is a partition of set Sif U P, =S and Vi, j<n, P;~\P;=2 when i=j.
i=]

power set: the set of all subsets of a set.

recursive enumeration: an enumeration which will index every element of a set S
such that

a) one element ¢, is selected first;

b) each ¢;,,e5.ieN, is defined as a function of the previously enumerated elements.

total function: a function f:A—B such that Vae A, f(a) € B.

uncountable set: a set that does not have a one-to-one correspondence with N.
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Linearity of Equations, Graphs, and Functions in 2-D
~ Or =
The Little Truths We Sometimes Forget

by

Ronald I. Frank
Department of Computer Science

Last month the challenge was posed to find the error in this table:

This is false.

EQUATIONS GRAPHS FUNCTIONS
The equation representation | The equation representation
EQUATIONS - of a linear graph is the form: | of a linear function is the
y =mx + b. form: y=mx+b.
The graph representation of The graph representation of
GRAPHS a linear equation is a s a linear function is a
straight line. straight line.
The function representation | The function representation
FUNCTIONS | of a linear equation is the of a linear graph is the ————
form: y(x) = mx + b. form: y(x) =mx + b.
The definition of a linear function y(x) 1is:
HOMOGENEITY: y(kx) = k y(x) LINEARITY: y(x + u) = y(x) + y(u)

Note: The linear eguation V(X) = mX + b does not define a linear function!!

HOMOGENEITY: vy (kx) m(kx) + b # k[mx + b] = m(kx) + kb

LINEARITY:  y(x+u)

m(x+u) + b = fmx + b] + [mu] 74 [mx + b] + [mu + b]

{The "b" term is sometimes called the "inhomogeneous"” term, which it certainly is.]

Copyright Ronald I. Frank 1995
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