Pace University
DigitalCommons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

4-1-1994

The object-oriented course in data abstraction.

Joseph Bergin

Follow this and additional works at: https://digitalcommons.pace.edu/csis_tech_reports

Recommended Citation
Bergin, Joseph, "The object-oriented course in data abstraction." (1994). CSIS Technical Reports. 102.
https://digitalcommons.pace.edu/csis_tech_reports/102

This Thesis is brought to you for free and open access by the lvan G. Seidenberg School of Computer Science and
Information Systems at DigitalCommons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an
authorized administrator of DigitalCommons@Pace. For more information, please contact nmcguire@pace.edu.

https://digitalcommons.pace.edu/
https://digitalcommons.pace.edu/csis_tech_reports
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/csis_tech_reports/102?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmcguire@pace.edu

CLAL UAPH §SRIHATRL COLLEGE OF WHITE PLAINS
) -'(Y#—P:»ba‘tn NERSITY
Pace UD.].VGZ"C;I -~ fr

SCHOOL OF COMPUTER SCIENCE

AND INFORMATION SYSTEMS

I TECHNICAL REPORT
Number 72, April 1994

L) @
L) @

.\'(-

..4 .’

The Object-Oriented Course
in Data Abstraction

Joseph Bergin

Department of Computer Science
Pace University
Pace Plaza
New York, NY 10038

Ref.

QA
76

i UNIVERSITY

Joseph Bergin is Professor of Computer Science at Pace University,
with an office on the New York Campus. Professor Bergin holds a
doctorate in mathematics from Michigan State University. His
research interests are in programming languages, especially object-
oriented languages and type systems.

Professor Bergin’s central project during the past several years has
been the writing of a textbook introducing data structures and
algorithms by way of the object-oriented paradigm. The book, Data
Abstraction: The Object Oriented Approach Using C+ + was
published by McGraw-Hill late last year. Currently, Professor Bergin
is preparing similar materials in other languages, most importantly
Modula-3. He has received support for this latter from the Digital
Equipment Corporation. A possible course based on this book is
described in the paper presented herein.

The present paper has been published several times in different
versions. The first was at the SOOPPA (Symposium on Object-
Oriented Programming Emphasizing Practical Applications) conference
at Marist College in 1990. It was presented at OOPSLA (Conference
on Object-Oriented Programming Systems, Languages, and
Applications) at Vancouver in 1992. Most recently it appeared last
year in the journal of Computer Science Education.

"The Object-Oriented Course in Data Abstraction,”
from Computer Science Education (1993: volume 4,
pages 63-76), is reprinted with permission form
the Ablex Publishing Corporation.

.""" A T y'n| TN LV T
ZRADUATE CEl VIER LIBRARY
Pace U niversity
COMPUTER SCIENCE EDUCATION 4, 63-76, (1993)

The Object-Oriented Course
in Data Abstraction

Joseph Bergin

Pace University

This article describes the design of a course in data structures and data
abstraction from the object-oriented standpoint. It discusses objectives
and how they are met as well as course materials and strategies. This
course has been offered to sophomores at Pace University since 1990. It
does not depend on prior knowledge of object-oriented languages or tools
and develops skills that may be used with or without object-oriented
language support and thus fits into a standard curriculum. The course
uses a large library of data structures, based loosely on the collection and
magnitude classes of Smalltalk. Materials, including a manuscript for a
textbook, have been developed in both C+ + and Object Pascal.

1. INTRODUCTION

Data structures and the idea of data abstraction have been fundamental
to computer science education since its early days. In Curriculum 68 [1]
there was a separate course covering data structuring techniques and
simple algorithms for their manipulation. Material covered included
lists, trees and graphs as well as searching and sorting algorithms. A
decade later, Curriculum ‘78 [2] included much of this material in the
second course offered to undergraduate computer science majors, incor-
porating simple notions of efficiency, complexity, and correctness. More
recently, the Task Force on the Core of Computer Science [4] has in-

A preliminary report on this project was presented at the Symposium on Object-
Oriented Programming Emphasizing Practical Applications (SOOPPA) held at Marist
College, Poughkeepsie, NY, in September 1990. More recently, it was presented at the
Educator’s Symposium at OOPSLA ‘92 in Vancouver, BC. The book on which this course
is based is due to be published by McGraw-Hill in 1993.

Correspondence and requests for reprints should be sent to Joseph Bergin, Pace Univer-
sity, Computer Science Department, One Pace Plaza, New York, NY 10038.

63

64]. BERGIN

cluded this material as the first of nine fundamental areas of computer
science.

Examination of these course proposals shows a trend in computer
science education of migrating topics, techniques, and ideas from ad-
vanced, graduate, and professional levels down to lower levels and even
introductory levels. Program verification [5], for example, was once
thought to be a very advanced topic suitable for graduate students.
Today it is commonly introduced in the second course [6].

The data structures course fits early in the overall curriculum—
immediately after students have learned the rudiments of small scale
programming and have become familiar with the use of a language.
Ideally, the course should prepare students for creating larger programs
by emphasizing various abstraction that can be defined, built, tested,
and used. The course described in this paper is an evolutionary develop-
ment of the data structures course that hopes to strengthen students’
development in the early semesters by introducing and emphasizing the
ideas of abstraction and encapsulation through the use of object-
oriented techniques. The course is evolutionary in the sense that it does
not depend on object-oriented techniques in earlier courses, nor does it
assume that students will necessarily be using the techniques in later
courses.

2. COURSE OBJECTIVES

The following, though not a complete list, gives an idea of the thinking
of the author in developing this course and its materials. It was believed
that evolutionary change from existing courses, as exemplified in Data
Structures & Program Design by Kruse [7], was better than a revolutionary
approach, in that it would be more likely to find acceptance and be less
risky for the students involved. If the curriculum is not to be made
wholly object-oriented then the students will need techniques that they
can transfer to other languages if they are not able to use them directly.

1. Introduce and reinforce the idea of abstraction, especially pro-
cedural abstraction and data abstraction.

2. Develop and emphasize interrelationships between data abstrac-
tions.

3. Modularize programs and emphasize data encapsulation and data
hiding.

4. Give students the opportunity to see, use, and modify larger
programs. Programs should be sufficiently large and complex that
simple software engineering techniques are required.

5. Introduce, develop, and thoroughly integrate object-oriented pro-

OBJECT-ORIENTED DATA ABSTRACTION 65

gramming technology and style as a way to approach data ab-
straction.
6. Introduce fundamental data structuring techniques and algo-
rithms.
Introduce and develop programming with “indirection.”
Introduce and develop algorithm verification.
Introduce and develop algorithm analysis.
Introduce development of programs from specifications.
Introduce students to topics fundamental to computer science
and its history, such as finite automata, grammars, data represen-
tation, etc.
12. Use a language that is small and easy to master. The purpose is
not to teach a language.

—_ =
= oW >N

3. CHOOSING AN OBJECT-ORIENTED LANGUAGE

Because the course emphasizes data encapsulation, an early decision
was to employ object-oriented technology. The concept of class in object-
oriented programming closely matches the concept of data abstraction
with close binding between data structures and the procedures that
modify them. Object-oriented programming also typically relies on a
large library of classes that a programmer uses as a software tool kit.
This aids in the quick development of larger programs and can be useful
in meeting the objectives of this course since the students may see
relationships from the structure of the library. They may also build parts
of the library, resulting in a personal tool kit that they may use in other
courses and projects. Also, the emphasis in object-oriented program-
ming on data-centered design seems to match the main goals of this
course quite well since the emphasis is on the structuring of data and on
algorithms for its manipulation.

It was felt that merely employing an object-oriented style in a
language like standard Pascal was not appropriate. Standard Pascal’s
chief drawback in the curriculum is that it already requires too much
from the programmer’s “’style” to mitigate its drawbacks. For example,
the lack of binding between a “stack” and the operations that manipu-
late it require artificial means (comments) to establish conceptual links
for users. Requiring more in this regard seems to be a step backwards.
Choice of language then becomes a problem. The obvious choice is
Smalltalk, but this seemed to require changes in following courses that
many instructors would not be willing to make. If the goal were to
choose an object-oriented language for the entire curriculum (or most of
it) then Smalltalk would be a good choice.

Languages that were considered for this project include Smalltalk,

66 J. BERGIN

Simula, Fiffel, C+ + [7), and Object Pascal [8]. Other possible languages
are Modula-3 and the latest Object Extensions to Pascal as they are being
defined by the Joint Pascal Committee of ANSI/IEEE. With the hope that
the complexity could be contained through use of a suitable subset of the
language, the choice was made to develop materials in C+ + and in
Object Pascal. The book I have written on which the course is based [3]
is built around a class library of approximately 90 base classes, with over
a thousand methods, distributed into about 40 compilation units. This
library was developed specifically for this course to emphasize the
pedagogical objectives. I have begun the development of similar mate-
rials in Modula-3.

4. COURSE CONTENT

The data structures course must deal first with the ideas of data abstrac-
tion and second with the design and implementation of several common
algorithms. Data abstraction provides the theoretical basis on which the
data structures and algorithms stand. Typically, the data structures
presented are stacks, queues and other linear structures as well as
binary trees and some types of general trees. Some, but not all courses,
will deal with various numeric representations (large integers, complex
numbers, etc.). More ambitious courses will deal with simpler aspects of
graphs and their representations. For all of these, various implementa-
tions are presented, and there is a discussion of the tradeoffs inherent in
the various implementations. Algorithms typically taught are searching
and sorting, including tree walks and binary search trees of various
kinds.

In object-oriented programming the programmer normally has a large
software library in source form at his or her disposal. Program develop-
ment proceeds by examining the library (class hierarchy) for classes
providing functionality similar to what is needed in the current applica-
tion and either using them directly, or specializing the existing classes to
create new ones using inheritance and compositional mechanisms.
Much of the functionality is inherited from the classes already in place
and does not need to be rewritten. A typical application consists of more
than 75% existing code. A typical class library contains two rather
different kinds of components. The first of these is “interface” compo-
nents that implement the application’s user interface. Generally this
code consists of classes to create windows and menus, handle the
keyboard and mouse, and handle common functions like printing and
filing. The course does not consider the interface level of component.

The second major kind of functionality in the class library contains
low level or “data level” constructs that are used across a wide range of

OBJECT-ORIENTED DATA ABSTRACTION 67

applications. These fall primarily into two categories, the collections,
and the magnitudes. Collections consist of lists, stacks, queues, etc.,
and are responsible for managing aggregates of objects. Magnitudes
include things that can be compared by “’size,” such as the numeric
classes as well as associations, which are used as elements of diction-
aries. The data structures course focuses on this latter level of func-
tionality.

The application programmer using a class hierarchy will write
“bridge” or “glue” code, to connect the “interface level” components to
the “data level” components, and which implements the specific fea-
tures of the application. While the professional programmer must cer-
tainly be an expert in the use of the interface level code to create an
application, the content of this code is too rich in detail and too poor in
intellectual content to spend much time with in a foundation course.
(Note: The design of the user interfaces themselves does, of course,
require a great deal of “intellectual content.” But that is another issue for
other courses.)

The key idea of the course is to examine the elements in the class
hierarchy of Figure 1 (inheritance is shown using indentation), and to
use objects of these classes in several moderately large applications of
varying difficulty. Students must also implement key methods in most
of these classes. For example, they must build the important insertion
and deletion methods of lists, and the searching and sorting methods of
lists and arrays.

Most of the source code for the class library of Figure 1 is made
available to students. All of the interfaces of all of the units are made
available in machine readable source form. All methods that are trivial to
implement but needed for the correct operation of interrelationships in
the library are also provided. Other methods that we expect students to
build are given to students in “skeleton’” form such as:

void SList::insert (PObject o){
error(“‘SList::insert. Student must implement”’);
|7

The entire library is also available to the students in linkable-execut-
able form so they may use the entire library before they have built parts
of it. This makes it possible to do sophisticated examples early in the
course that depend functionally on material developed later. In fact, it
may be useful to present all of the library in source form, with the idea
that here we have one implementation, and some assignments will be to
improve it, and others will be to replace major parts of it with better
implementations. Some instructors will prefer the latter approach. In
giving hundreds of procedures to students in source form, students will

SObject
SCharacter

SMagnitude

SString .
SBoolean SPosition
Sinteger SGraphPosition
SFraction SBinaryTreePosition
SLargelnteger STreePosition
SPair SRegistrationTreePosition
SAssociation SBinarySearchTreePosition
SCollection SListPosition
SList SMultiListPosition
SSortedList SSortedListPosition
SMultiList
SQueue
SDEQueue
SStack
SBinaryTree Slterator
SBinarySearchTree SHashDictionarylterator
SRegistrationTree Sintervaliterator
STree SBinaryTreelterator
SArray SDynamicArraylterator
SSet SSetlterator
SDictionary SPriorityQueuelterator
SFDSet SMultiListiterator
SHashDictionary SListlterator
SGraph SBaglterator
SHeap SArraylterator
SBag SAQueuelterator
Sinterval SGraphlterator
SAQueue
SDynamicArray
SPriorityQueue
SVertex
SEdge
SListNode
SMultiListNode
SDFANode

Slterator eee

SPositioneee

SBinaryTreeNode
STreeNode

Figure 1. The Major Classes

OBJECT-ORIENTED DATA ABSTRACTION 69

see and use a larger quantity of software than they can be expected to
write. The quantity is sufficient that structuring mechanisms are neces-
sary for its understanding. The components of the library are not all
handled to the same level of detail. Instead we focus on the linear and
tree structures within collections as this is the area richest in algorithms.
It is also necessary to deal with associations and some of the numeric
classes within magnitudes to give balance (not everything is a collection)
and to present fundamental ideas about internal data representation (of
integers, Booleans . . .) and implementation needed at this level in the
curriculum.

It is important in presenting this material that the instructor do more
(much more) than present various implementations. It is necessary at all
times to reinforce the ideas of software specification and the idea that if
we can trust that software meets the specification it can be used without
regard to the implementation. This encourages a decoupling of the ideas
of a data structure from its implementation in the minds of the students.
Therefore the course (and the book) proceeds from:

1. a general discussion of object-oriented programming, to

2. a general description of a specific class hierarchy, to

3. a specific discussion and description of the specifications of the
classes, to

4. applications which use the above classes in important ways, and
finally to

5. implementations of major elements of the classes.

Examples of applications that can exercise the class hierarchy are:
finite automata simulators (using lists, stacks, and dictionaries), symbol-
ic calculators (lists, trees), infix to postfix translators (stacks, strings,
queues), and simple database or spreadsheet programs (lists, sets, nu-
meric, and string classes). Applications such as these have the addition-
al advantage of showing students some of the intellectual background of
computer science, such as the Turing machine.

Two more complex applications are program parsers and verifiers
(using trees) and database design normalizers (strings, sets). A program
verifier is an especially rich area, in that it teaches much about several
fundamental ideas of computer science as well as requiring solid data
structuring mechanisms for its organization.

It is important to impart a notion early in the course that the software
may be used once its specification is understood. This can be achieved
through a discussion of the interfaces of several important classes.
Figure 2 is an (unannotated) version of the interface for the list class and
Figure 3 presents its associated position and iterator classes. Pre- and
post-conditions should be developed in class for many of the methods,
especially those like SList::insertFirst and SList::remove which modify

70 J. BERGIN

//REQUIREMENTS For Use
// initLists();

class SList;
class Slistlterator;
class SlistPosition;

typedef SList * PList;
typedef SListiterator * PListlterator;
typedef SListPosition * PListPosition;

enum WhereFound {IsHere, isNext, NotFound};

class SList: public SCollection {

public:
SList(void);
virtual ~SList(void);
virtual PObject first(void);
virtual void insert(PObject);
virtual void remove(PObject);
virtual void removeFirst(void);
virtual Plterator newlterator(void);
virtua! PListPosition newPosition(void);
virtual char empty(void);
virtual char element(PObject);
virtual void writelt(void);
protected:

class SListNode;
typedef SListNode *PListNode;

// nested protected class SListNode
class SListNode : public SObject {

public:
SListNode(PObject);
virtual PObject value(void);
virtual void writelt(void);
virtual PListNode next(void);

}; // end list node class

}; // end list class

Figure 2. The List Class

OBJECT-ORIENTED DATA ABSTRACTION 71

class SListPosition : public SPosition {

public:
SListPosition (PList L);

virtual void next(void);
virtual void insertFirst(PObject);
virtual void insertAfter(PObject);
virtual PObject at(void);
virtual void atPut(PObject);
virtual char last(void);
virtual void toFirst();
virtual void deleteNext(void);
virtual WhereFound search(PObject);

b

class SListiterator: public Siterator {

public:
SListlterator(PList L);
virtual char nextitem(PObject&);
virtual void reset(void);

|5
void initLists(void);

Figure 3. The classes associated with lists (positions and iterators)

the storage structures. (Most of the nonpublic members have been
omitted from the listing as have all of the comments.)

Only a small part of the interface needs to be presented initially. Note,
however, that an attempt has been made to separate functionality into
four classes: nodes hold references to data, a list is a linked list of nodes,
positions refer abstractly to locations in the list (physically, to nodes),
and iterators implement ways of applying some function to all elements
of a list. The nodes, however, are implemented as a hidden nested class,
which means that, to a client program, they are invisible. Thus, to a
client, the list consists of a list of values, not nodes. Ideally, the imple-
mentation variables of the classes (not shown here) are not presented in
the first cycle, so that the fact that we have a linked implementation is
not obvious at first.

Once the specifications of the classes in the hierarchy have been
discussed in some detail students may proceed to examine applications
that use these classes. Figure 4 is a complete declaration of a determinis-
tic finite automaton simulator class. The implementation uses the string,

72 J. BERGIN
PDFANode newDFANode(char isFinal);

class SDFANode: public SObject{

public:
SDFANode(char final = FALSE);
virtual ~SDFANode(void);
virtual char member(classtype c);
virtual void writelt(void);

virtual void addNeighbor(PDFANode nbr, PCharacter transition);
virtual void run(PString tape);
virtual PObject Clone(void);
protected:
PDictionary fNeighbors;
char filsFinal;
virtual int sizeOf(void);

5

//REQUIREMENTS For Use
// initLists();
// initCharacters();

Figure 4. The Deterministic Finite Automaton Class

character, association, and dictionary classes. Implicitly, it also uses lists
and sets.

This class implements a DFA as a distributed set of nodes. Each node
maintains a dictionary containing the names and references to its neigh-
bors; in effect, a projection of the transition function onto a node. A
dictionary is a set of associations (pairs) and a set is built from a list.
Importantly, we may use list and association abstractions before examin-
ing their implementations. The run method of a DFA object proceeds by
examining the string it is sent; if it is not empty it strips the first
character, looks in its (the object’s) dictionary for a match, which, if
found, causes the node to send a run message to the corresponding
neighbor node, passing the remainder of the string.

Following development of a few such applications using the class
library, students begin to examine the implementations of the classes
and to develop parts of it themselves. Emphasis is on the development
of general purpose, reusable, well-designed components, carefully im-
plemented. It is here that one emphasizes abstraction, encapsulation,
information hiding, representation, and the separation of specification
and implementation. Emphasis is, of course, on those methods exhibit-
ing interesting algorithms such as searching and sorting.

This is the most important segment of the course, dealing as it does

OBJECT-ORIENTED DATA ABSTRACTION 73

with the fundamental data structures and their implementation, and the
algorithms necessary for their manipulation. It is here that object-
oriented programming techniques have their greatest benefit. To use
C+ +, itis necessary to design and write down a specification for a class
before you write down an implementation. The specification is nicely
encapsulated in a class declaration and made public by a compilation
unit using a header file. One can then develop various implementations
of the class and easily integrate them into software designed to use
them. In the above example, a dictionary is a specialization of a set,
which has a list member variable, which currently has a linked represen-
tation. As a class exercise, students might change the implementation of
a dictionary or a set, link the changed classes to the above DFA unit and
explore the differences in efficiency.

It is also necessary to teach the various logical relationships between
abstractions and how they translate to relationships between classes.
Students should learn about “isA”’, ““isLike”’, ““hasA,” and ““collaborates
with”’ relationships. They should also learn that inheritance may be
used to implement all but the last of these relationships, but with
different degrees of success, especially in large projects.

5. CHALLENGES FOR THE OBJECT-ORIENTED COURSE

There are a number of difficulties in presenting these materials that must
be creatively overcome. The first, and most important difficulty is that
object-oriented programming is a different paradigm than students may
be familiar with. It is important to specifically provide a mental model of
programming that is useful in OOP. The model of autonomous actors
interacting via messages, able to send and receive messages, and able to
save and modify a purely local state has been very useful here. I have
augmented this model with the idea of a processor being passed along
with a message and the receiver using the processor to execute a method
in fulfillment of the message, returning the processor along with any
returned results to the sender. The instructor must be specific in defin-
ing programming as doing data decomposition of a system rather than
procedural decomposition. In other words, the data decomposition
comes first, with the procedural decomposition following.

The challenge comes from the relative complexity of C+ +. I address
this complexity issue by building a library using only a subset of avail-
able features, thus reducing the learning requirements of the language
allowing students to focus on the ideas of data abstraction and design.
The library does not use reference variables (except reference parame-
ters), operator overloading, tricky syntactical forms, or many of the
operators of C+ +. It also focuses entirely on indirect (pointer to)
objects. On the other hand, it makes extensive use of inheritance and

74]. BERGIN

virtual functions, as well as a limited amount of class nesting and
multiple inheritance (mixin classes). The library was developed with
pedagogical rather than commercial goals as the primary consideration.
It has been used successfully, however, in a number of applications.

The third issue concerns the overall methodology of creating a general
purpose library of low level reusable service modules, which does not
lend itself well to programming with arrays. The data structures course,
however, traditionally discusses sorting and searching of arrays. In this
library, the array class, which treats arrays as objects, overcomes this
difficulty. The array class also shows how to treat arrays as expandable
data structures. We may therefore treat all of the standard topics in an
object-oriented framework.

Another difficulty, to some, will be the use of explicit pointer vari-
ables. Students will be programming extensively with pointers so as to
obtain the benefits of polymorphism through virtual function. In stan-
dard imperative languages there is almost a prohibition against aliasing.
This has arisen because of the difficulty of writing correct programs that
contain aliases. In object-oriented programming aliasing is a fundamen-
tal technique. It is the basis of the collection classes. Two different “sets”
can contain references to the same objects, rather than different objects
with the same bit representation. The problems with aliasing don’t go
away however, as C+ + does not have garbage collection. It is neces-
sary, therefore to deal conceptually with the idea of object lifetimes, and
the creation/disposal problem.

Some of the classes discussed are an attempt to overcome the fact that
C+ + is a hybrid language. It has well-designed objects, but it also has
simpler constructs like integers, characters, and structs. We want to
have a generic “‘stack” class in which we may hold data of any type.
Therefore we declare stacks to be stacks of “objects” and implement a
class of integers and one of characters so that we may stack these as well
as more complex things. But then there are conceptual issues relating to
the identity of the instances of such classes. For example, in the integer
class there should be only a single object representing “’six.”” Different
references to an object “‘five” should all refer to the same object. This
requires careful implementation and introduces a natural use of hash
tables within the system itself. As such, the difficulty has been turned to
an advantage as it shows an important use of one of the structures
developed in the course. Another possible solution to this would be to
use templates, but I have not done so to avoid a level of complexity in
the class structure that is only needed in a few cases. This solution also
makes heterogeneous collections natural.

Another difficulty that arises in the use of C+ + is that the language
does not give full support to interrelated data abstractions. If “friend-
ship” (which opens the implementation of one class to another) were

OBJECT-ORIENTED DATA ABSTRACTION 75

inherited then this could be easily overcome, but, as it is, it is occa-
sionally necessary to chose to implement a class as a subclass of another
class to obtain visibility of certain implementation details, when it would
be more natural to use an instance variable instead. An example occurs
when trying to build a “bag” abstraction using a list. If bag doesn’t
inherit from list (logically it should not) but uses an instance variable of
type list, then you have no access to the nodes out of which the list is
built. Even if bag does inherit from list it is difficult to build a more
suitable node class for bags and still get full access to it through the
existing list code. Solutions to this in C+ + are hard to find. One option
is to make nodes public, but then clients may manipulate them. One
option is to rewrite the list classes so that bags are friends. Another is to
inherit from list and use protected functions of the parent classes for
access. Finally, one may rebuild much of the list infrastructure to gain
the added functionality. All of these have drawbacks. Unfortunately,
the cleanest way is to rebuild, which entails redoing much of the work of
positions and iterators as well as lists and nodes.

Finally, instructors should be aware that this course contains a large
amount of material to cover. In fact, however, the time spent discussing
the concepts of object-oriented programming and the structure of the
library can be made up later due to the increased efficiency with which
one can teach when students have a structure in which they may see the
overall relationships, and also have a growing library of modular units
on which they may build.

6. BENEFITS OF THE OBJECT-ORIENTED PARADIGM

The largest benefit of using object-oriented programming in the data
structures course is that an object-oriented language like C+ + naturally
uses data encapsulation (into classes), which makes it easier to empha-
size data abstraction. Such a language also permits separation of func-
tionality into related classes. This was shown in the list class, in which
the ideas of nodes, list, positions and list iterators are built in different
classes, and their relationship emphasized by inclusion in the same unit.

The basic structure of this object-oriented approach can be realized in
many other object-oriented languages, including Smalltalk, Simula, Ob-
ject Pascal, Modula-3, and Eiffel. The structure of the class hierarchy
makes clear the relationships between the collection types, so that they
are not perceived as being unrelated to each other. It also reinforces the
difference between design and implementation and the choices that
must be made in each domain.

I have had a chance to examine the later work of students who have
learned this approach. My experience is that students will use this

76 J. BERGIN

methodology later, even when programming in languages that do not
support the object-oriented paradigm at all (e. g., Pascal). They seem to
do a better job than others in decomposing their programs rationally.
Their data structures are single purpose, with clearly defined interfaces,
manipulated only through associated procedures. They partition a prob-
lem logically into compilation units that implement a single abstraction
or set of related abstractions. They also tend to re-use more of their
previous work than other students do. To achieve this, however, re-
quires that the student truly understand the concepts of object-oriented
programming. Those who see it as a mechanical approach to reuse, or as
a simple addendum to “regular” programming, do not do so well.

7. CONCLUSION

It is time that we brought more powerful paradigms into the computer
science curriculum. Object-oriented programming is a powerful method
with advantages for learning as well as for efficient software construc-
tion. To be successful, it should be introduced at an early point where it
will have the greatest benefit. And it must be completely adopted, and
not treated as an “add on” to a traditional course. To be object-oriented,
it must deal with issues beyond language, such as the class hierarchy.
As an interim step, the data structures course seems to be a good choice
for the introduction.

REFERENCES

[1] W. Atchison, S. Conte,]. Hamblen, T. Hull, T. Keenan, W. Kehl,
E. McCluskey, S. Navarro, W. Rheinboldt, E. Schweppe, W. Viavant,
D. Young, “Curriculum ‘68, ACM Curricula Recommendations for Computer
Science, Vol. 1, 1983.

[2] R. Austing, B. Barnes, D. Bonnette, G. Engel, G. Stokes, “’Curriculum 78,”
ACM Curricula Recommendations for Computer Science, Vol. 1, 1983.

[3] J. Bergin, Data Abstraction: The Object-Oriented Approach using C+ +, to be
published by McGraw-Hill in 1993.

[4] P. Denning, D. Comer, D. Gries, M. Mulder, A. Tucker, A. Turner,
P. Young, “Computing as a discipline,” Commun. ACM V32 (1), January
1989.

[5] M. Ellis, and B. Stroustrup, The Annotated C+ + Reference Manual, Addison-
Wesley, 1990.

[6] D. Gries, The Science of Programming, Springer-Verlag, 1981.

[7] R. Kruse, Data Structures & Program Design, 2nd Ed. Prentice-Hall, 1987.

[8] L. Tesler, “Object Pascal Report,” Apple Computer, 1985.

Drive by Wire

Gas pedal/brake pedal/steering wheel are not directly connected to engine/brakes/
wheels, but to a computer. They are, in effect instructions to be interpreted by

the program in the computer which in a few microseconds decides from all of its
inputs, including yours, what is required and issues the commands it thinks best to
the brakes or engine or steering mechanism, all of which are driven by simple
electric motors connected by wires to the computer. The programs are written by
expert programmers who create a few millions of instructions intended to anticipate
your every driving need. If some aspect of the program doesn't appeal to you you are
free of course to reprogram the computer (using C++, of course). Even your teen-age
son will be able to completely reprogram the system to maximize performance and

driving enjoyment.

Traditional (expensive and bulky) steering wheel can be replaced by a cheap and
simple joy stick easily replaceable at your hobby center

Brakes no complex hydraulics, simple plugs/wires. If the brakes cease to function
you can easily replace the actuator motors or the connecting wires yourself
without going to an expensive mechanic.

The computer itself will be easily replaceable in case of the inevitable system crash.
Computer will of course be designed to have a comfortable mean time between
failures of 10000 hours. -

The car it -1f will be moving through a sea of radar waves emitted by itself and other

similarly equipped automobiles. This permits @ positioning system that will keep your

car separated from others to front, rear, and to the sides. These radar signals

(potentially hundreds of separate simultaneous signals) are just one more input to the

very complex on board computer system. They also explain why the computer must

occasionally override the instructions from the human operator (driver). The computer
may sense some hazard of which the driver is unaware and take evasive action on its
own.

Extensive Windows™ displays/Flip a switch and you can control/ select options with
joystick or mouse

Computer will run day and night, making it possible to program the heating/cooling
system so that the interior will always be at a comfortable temperature.

Turning too tightly/ stopping too quickly. Computer may override your instructions
and do what it thinks best to protect you.

For safety, of course, the kids won't be able to play their walkman's or those
annoying video games, as the stray electro-magnetic fields from those devices could
disrupt the on board electronics. However, the passenger compartment can easily be
equipped with a multi-channel entertainment system individually programmed by the
passengers nnd controlled by the CPU.

Note: If you find this appalling note two things. There really is a proposal to build such
cars. Second, there already exist airliners (the Airbus and the next Boeing airliner) that
are built on this principle. Ah, the arrogance of engineers--and others.

Joe Bergin

	The object-oriented course in data abstraction.
	Recommended Citation

	tmp.1705525562.pdf.JkDcB

