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We kick-off the new academic year with two distinguished papers.

Carroll‘s paper is his first write-up what appears to be a major discovery. I
hope its appearance here generates some local excitement and brings him the
critique, commentary, and informed praise so needed to nurture an intellectual
creation.

pietrich’s paper should remind us that we, as individuals of learning, are
responsible to work for social betterment in general. That same perspicacity
enabling us to make technical and scientific contributions provides the acuity for
effective participation in addressing the problems of our society and the world.
(The last Technical Report from Dietrich was number 47, in December 1991, which
was a reprint of hie article from Parallel Computing "On Superlinear Speedups.")
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Charles T. Zahn, a Professor of Computer Science at Pace University,
was the last chairperson of Pace-Westchester’s CS Department. Among
his publications, which number over fifteen, is C Notes, which was
one of the earliest guides to programming in C.

His academic background includes eleven years at Stanford University
as a research computer scientist specializing in pattern
recognition, graph theory, programming methodology, and language
design. While there he was also a lecturer in the Computer Science
Department. In addition, Professor Zahn spent two years as a
visiting scientist at the CERN Laboratory in Geneva.

His industrial background includes work for the General Electric
Company, Yourdon Inc., the Mobil Corporation, and Advanced Computer
Techniques as well as consulting for corporations and public
agencies too numerous to name.
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Dietrich Fischer, a Professor of Computer Science in the Westchester
Computer Science Department, earned his doctorate in computer
science at New York University’s Courant Institute.

He is an active researcher, writer, and speaker on international
security and world peace. His three books are:

Preventing War in the Nuclear Ade, which was hailed as
"perhaps the most important book ever written about nuclear
war" when the arms race was still in high gear the Soviet
Union was a feared military adversary

Warfare and Welfare, with Nobel laureate Jan Tinbergen

Winning Peace: Strategies and Ethics for a Nuclear-Free
World, with N. Nolte and J. Oberg
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A Boolean Calculus and its Application
to the Simplification of Boolean Functions

by C. T. Zahn
Abstract

Quine's original hope to find a simplest formula for a boolean
function without generating all rows of a truth table has been
realized by an algorithm which obtains all prime implicants from an
arbitrary sum-of-products formula. The algorithm is based on a
calculus for representing and manipulating boolean faces in an N-
cube corresponding to simple product formulas. A key concept of
this theory is the joining face that spans the edges between two

faces that have a Hamming distance of one.

Although the results are preliminary at this time, it appears
that the information generated by the search for all prime
implicants ( maximal faces) is exactly what is needed to adapt the
Quine/McCluskey minimal set covering algorithm without having to

deal with the individual points.

The time complexity of the algorithm to find all prime
implicants seems to be roughly proportional to the sguare of the
number of prime implicants and independent of the number of

variables.

An improved bottom-up version of the Quine/McCluskey method is
described which avoids searches and the duplicate face discovery

that occurs in standard Quine/McCluskey.

Unate functions and a separability criterion introduced by

Quine are also discussed vis a vis the new approach.
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1. Introduction to Boolean Calculus

Every boolean function can be expressed in sum of products
(SOP) form (also known as disjunctive normal form). Using the
distributive law and DeMorgan to flatten out the nesting and push
negations down to the letters themselves we can reduce f to

n

f=t +t, +...+¢t

where each tk = 11 ° 12 s o o 1m

and each l, is a positive letter like A or a negated letter like A
(We will use lower case a to represent &)

Example : a(B+c) +C (A + D)
= aB + ac + cCad

Any boolean function can be expanded from SOP form to one in which
every term t, involves all letters involved in f. Such terms are
called mpinterms. Each term t missing a letter like X is replaced by
the equivalent tX + tx and this process is repeated until all
remaining terms are minterms.

aBC + aBc
aBCD + aBCd + aBcD + aBcd

ample : aB

Problem : Interpret the above in terms of truth tables and show
the relationships that obtain.



In defining the minimal cost SOP form of a function the cost of

each term is the number of letters and terms appearing in it. There
is not always a unigque such minimal sop for f, pbut there is a
unique minimal cost and at least one representative soP. The total
cost of an SOP is, of course, the sum of the costs of its terms.

Example : aB + ac + cad has cost 3 + 3 + 4 =10

problem : What is the cost of the minterm SOP equivalent to

aB + ac + Cad ?

starting with any poolean function f we can express £ in SOP form
and then minterm sopP form . We can then look for all formulas ¢
that are single terms, imply f and such that no ¢' exists with ¢ =
o' = £. In other words, dropping any one letter from ¢ results in
a term that does not imply £. These terms are called the prime
implicants of the function and it is not hard to prove that any

minimal soP for f consists of a sum of prime implicants.

Quine (1952) and McCluskey (1956) devised a systematic method to
determine a minimal SOP. The function is transformed to minterms

and then the uniting theorem
¢a + ¢A = ¢

is used to combine pairs of minterms into terms with one letter
missing. These are then combined to form terms missing two letters
etc. until no more combinations are possible. This rather
exhaustive process jeads to the set of all prime implicants of the

original function.

The second part of the solution involves the selection of a subset
of these prime implicants that is implied by f and has minimum
total cost. A two dimensional table is constructed with each row

corresonding to a prime implicant and each column to a minterm.
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The principal techniques for selection are :

1) a column with one X means the row is essential since its
pi uniquely covers the t (t, above = pin will be selected)

2) a row all of whose Xs are covered by those of a second row
is dominated and can be eliminated from consideration since
it will always be as cost effective to choose the pi
corresponding to the dominant row rather than the dominated
one (so long as its cost is no greater ).

(pi3 is dominated by pi2 above)

3) a column which dominates another can be dropped from
consideration since coverage of the dominated t will ensure
coverage of the dominating t. (t; >> t; above)

4) otherwise backtracking on the smallest column etc.

To understand these methods better and to see how Quine/McCluskey
actually calculate the prime implicants we introduce the N
dimensional hypercube and show how the boolean functions of N
letter variables, minterms, SOPs and general terms are interpreted
geometrically. The new boolean calculus we shall present relies
almost entirely on this N-cubes view of a boolean function and its

geometry.



Rather than jumping immediately into general N-cubes we start with
the 3-cube which represents all 8 points in 3-dimensional space
with coordinates 0 or 1. If we consider 1 as true, 0 as false then
these 8 triples of bits correspond to the 8 rows of a truth table
for any boolean function of 3 variables. We illustrate the basic
concepts with an example f = ac + BC + abC .

If we expand this to minterms we get

f = abc + aBc + aBC + ABC + abcC

corresponding to the truth table

A B ¢ ¢ letter minterms
6) 0 O O 1 abc
1) o 0 1 1 abC
2) 0 1 o 1 aBc
3) 0 1 1 1 aBC
4) 1 0 O 0 Abc
5) 1 0 1 0 AbC
6) 1 1 O© 0 ABc
7) 1 1 1 1 ABC

It is standard practice to label the truth table with increasing

integers starting at zero and writing the binary equivalent for the

truth values as shown. Because of this correspondence any boolean

function of N variables is equivalent to a subset of binary strings

of length N (or alternatively a subset of integers in the range
0 .. 2" - 1). Here is the 3-cube with its nodes labeled 0..7

7




Two nodes are connected by an edge if and only if their binary
representations vary in exactly one bit position. We see this most
readily by labeling the nodes by the binary versions:

01

Remembering that each bit string corresponds to a minterm letter

formula we can redraw the 3-cube as

S

Now we can represent the function:

ac + BC + abC = abc + aBc + aBC + ABC + abC

by the 3-cube with solid nodes for the 5 minterms



BC

The most important thing to notice here is that the 8 nodes
correspond to 3-letter minterms, the 12 edges to 2 letter terms,
the 6 faces to single letter terms and the entire 3-cube to the
constantly true term 1. The 5 points of our simple function can be
grouped into two terms a and BC corresponding to a face and an edge
as shown.

Also notice that the face a consists of opposite parallel edges in

two ways

Each edge is the sum of its end nodes via the uniting theorem. For
example aBC + abC = aC. The entire face is the sum of a pair of
parallel edges via the same theorem. For example,

a = ac + aC = aB + ab.

These concepts are not limited to 3-dimensional space. They apply
uniformly to boolean functions of any number of variables. It is
easier to "see" the geometry, however, in the easily visualized 3
space.

Another way to depict the 3-cube as a directed acyclic graph is
shown here with decimal node labels

9



level 3

level 2

level 1

level O

The levels correspond to the count of 1 bits in the node's binary
representation and edges are directed toward the larger numbered
node. It is no accident that the population of levels follows  the
binary coefficients 1,3,3,1.

Here is the 4-cube using hexadecimal labels (nibbles) for the 4-bit
strings

We might call this an ordered multipartite directed graph, meaning

that the node set can be partitioned into an ordered family of

subsets (So,s o g SN) with all edges directed from Sk to Sk+1'

2'..
10



No edges enter S, or exit Sy- There is more structure than this
implies and we will soon see it.

Quine/McCluskey exploits the levels to cut down on pairs that must
pe tested for being "united" into a larger face. Notice that larger
faces correspond to terms with fewer letters and, hence, lower
cost.

Problem : Analyze the cost trade-off involved in an application of
the uniting theorem

The first step in Quine/McCluskey is to array the points as
pitstrings segregated by levels as depicted below

level points
0 000
1 001 010
2 011
3 111

Rather than checking all (3) = 10 pairs of points for a potential
edge, we may simply try pairs in adjacent levels (there are only
5). It turns out that all 5 are actually edges in this function.

The edges are commonly denoted in a ternary notation with X
representing a position for a letter missing from the term.

Here are the 5 pairs and the resulting edges:
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000 | 001 - 00X
000 I 010 - 0XO

001 | 011 ~ 0X1
010 I 011 - 01X

011 | 111 - X11

All points participated in at least one edge so they are all marked
as non-maximal. The edges are still arrayed in levels and the next
round of 2-d face construction can use the same restriction to test
the 6 pairs of edges in adjacent levels. Here we are looking for
ternary strings that are identical except in one position where
they differ (0 vs. 1). We obtain

00X l 01X = O0XX
0X0 | 0X1 - O0OXX

Notice that we obtain the face a (= 0XX) in both ways,
corresponding to the two pairs of opposite parallel edges depicted

earlier.

We thus get edge BC (= X11) and face a (= 0XX) as the prime
implicants (maximal faces) for f.

The covering table is

abc aBc ab aBC ABC Essential
a ® X X X J
BC x 8 Y

and circled.®s indicate unique covers establishing essential faces.
Both faces are essential and cover all columns so the minimal SOP
is

12



a + BC

Problem : Find a minimal SOP for the function of 3 variables that
is false for abc and ABC, true at the other 6 points.

2. Boolean calculus

We begin our presentation of the boolean calculus by defining our
representation of an arbitrary face of the N-cube. Any such face F
can be represented uniquely by a base point and an internal
structure. We write F = b(A) where both b and A are N-bit strings
and b A A = 8. The A operation is vector "and" bit by bit and & is

directions of the edges of face F. If p and g are neighboring
points (nodes) of an N-cube then the vector direction for the edge
joining p and q is just p @ g. The number of 1 bits in A gives the
dimension of the face.

Returning to an earlier example we illustrate these definitions:

The function f = ac + BC + abC consists of three faces with
the corresponding b(A) forms

ac : 000(010) = 0(2)
BC : 011(100) = 3(4)
abC : 001(000) = 1(0)

Face ac consists of two points abc and aBc or in binary 000 and
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010. Hence the face contains a single edge whose direction is
000 @ 010 = 010. Clearly 000 is the base since it is 6. Face abC is
a single point and hence has zero internal structure.

~ A more instructive examéle is the face "a" which is represented by
000(011) = 0(3). It can be depicted as a subgraph of the 3-cube: .

Notice that this face has 4 edges, 2 with direction 1, and 2 with
direction 2. The internal structure is 3, indicating a 2

dimensional face.

The b(A) format separates the shape and size of a face from its
base. As a result we can easily detect when two edges combine to
form a face. The edges 0(2) and 1(2) in northeasterly direction
above have identical internal structure and we call such faces
parallel. since the base nodes 0 and 1 form an edge we may conclude
that the two edges combine to form the face 0(3). The base is the
smaller of the two bases (0 < 1) and the internal structure is
gotten by including 0 e 1 = 1 with the common edge structure, 2.

It is easy to check whether a point p is contained in face b(A).
The answer is yes precisely when p A & = b. For example, with
p=7, b(d) = 0(3) we get

pAR=7A73 =111 A 011 = 111 A 100 = 100
but b = 0 = 000 so the answer is no.

If p=1ve get
p A& =001A 100 = 000 = b so yes.

14



In the 4-cube (see Introduction) with hexadecimal labels we have,
for example, the 3-cube face 0(E) consisting of points
0,2,4,8,6,A,C,E. We shall usually give points of a face from base
to top through ascending levels with points in numerical order
within a level. The structure vector, A = E,, = 1110, has 1 bits at

2 = 4, and 2' = 2, precisely the

positions corresponding to 25 =8, 2
bits corresponding to the vector directions from any of the 8

points to its 3 neighbors in the 3-cube.

Let's redraw this 3-cube with edge vectors shown. Notice that all
edges go from a level to the level immediately above and if p is
pelow its neighbor g, then the direction vector is given by either
p e g or alternatively q - Pp.

Notice, for example, that edge (4, C) has direction 8 since
4 ® C = 0100, ® 1100, = 1000, = 8
but that C,, - 4,4 = 12 - 4 = 8 also.

Edges with the same direction vector are indeed parallel as we have

been calling themn.

A fairly obvious question is "What is the relationship between an

15



arbitrary pair of faces in an N-cube ?". The structure of an N-cube
has such an overwhelming symmetry that it is natural to expect that
intersecting faces will form a face rather than some irregularly
shaped set of points. Examples in the 3-cube do nothing to damage
this hope. Indeed, it is generally true but more is true, as we
'shall soon see.

Any two points of an N-cube have a so-called Hamming Distance
HD(p,q) which is the shortest path length connecting p to qd in the
graph of the N-cube. If p and q are represented by bitstrings then

HD(p,q) = B(p @ q)

where B(s) is the bitcount of bitstring s, the total number of its
1 bits.

[(This is the same Hamming Distance that plays such an important
role in the error detection and error correction schemes,
especially Hamming codes]

In the 4-cube HD(1,E) = 4 since
l e E= 0001 2110 = 1111

which has a bitcount of 4. Searching for a shortest path visually
is somewhat more difficult. One such path, (1, 0, 2, 6, E) might be
considered as canonical since it proceeds downwards to 1 A E and
then upwards to E, smaller vectors first.

We can now define the Hamming Distance between any pair of faces as
the smallest HD between two points one from each face. This is
exactly analogous to the usual definition of the distance between
two point sets.

In the 4-cube the two edges (7,F) and (0,8) are at distance 3 which
is not so easy to determine visually, although the levels tell us

16



it cannot be less than 2. We can exhaustively check all 4 point

pairs

7 @ 0 = 0111 & 0000 = 0111 - 3
7 @ 8 = 0111 & 1000 = 1111 -~ 4
F o 0= 1111 @ 0000 = 1111 - 4
Fe 8 = 1111 & 1000 = 0111 =~ 3

and see the minimum is 3. What do we do if we need to find the
distance between two 10-cubes in 16-space? It would certainly be
convenient if we could finesse the (20 - 2'9)/2 = .5 -10% point to
point comparisons. Happily we can and at a cost of about 5
bitstring operations readily available on typical computers. The
one not available is bitcount which we come back to later.

Let F, = b,(4,) and F, = bz(Az) be any two faces in an N-cube. We
don't exclude F, = F,; also, either or both of F, may be points or
the entire N-cube. Two points p, and p, can be calculated,
representing a closest approach between F, and F,. That is, p, and

p, are at the minimum distance HD(F,, F,).
The formulas for the p, are similar,
p,=b1+A1/\b2 p2=b2+A2/\b1

where "+" can be implemented as V, @ or arithmetic +(!)

The Hamming Distance is then just

HD (F,, Fz) = B(p, @ pz)
A Hamming Distance of zero, of course, means that F, and F,
intersect and in that case the points common to F, and F, form a

face whose representation b(A) is given by the following simple

calculation :

17



b(8) a2 = Py (A A 4))

[Note that HD(F,, F,) = B(p, @ p,) =0 implies that p; @ p, = 6 and
therefore p; = p; ]

Thus the p, are both equal to the common point of F, and F, closest
to the origin point 6.

Tt is time to look at some examples. First, the edges (7,F) and
(0,8) that we claimed were at a distance of 3. These faces have
b(A) form 7(8) and 0(8) respectively so

p,=7=8A0=7 p,=0+8A7=0

Then we get p, @ p, = 7 @ 0 = 7 so that

HD (7(8), 0(8)) = B(p, @ p,) = B(0111) = 3.

A second example, whose faces intersect is the 3-cube face 0(7) and
the 3-cube face 4(B). These faces have the points

0(7) = (0, 1, 2, 4, 3, 5, 6, 7)
and
4(B) = (4I 5' 6! CI 7! DI EI F)

We can see that the faces intersect in the 4 points (4, 5, 6, 7)
and can readily check that this forms the face 4(3).

Now let's do it the calculus way !

7 A 4 = 0111 A 0100 = 0100 = 4
4

p, =0+7A4
p,=4+BAO

B(4 ® 4) = 0 and the intersection face is

So HD(0(7), 4(B))

18



b(A) o7y nae = 4(7 A B) = 4(0111 A 1011) = 4(3)
as we suspected from doing it the long way.
It is always a good practice to check formulas in simple or
degenerate cases so let us calculate the distance from point 1 to
point E. They have face representations 1(0) and E(0) so we get

P, =1+0AE-=1 p,=E+0A1=E

and so the Hamming Distance for point faces is just the Hamming
Distance for the points

B(p, ® p, ) = B(1 ® E) = 4

Problem : Show that the point in face test is a special case of the

face comparison calculation.

Problem : Try calculating the intersection between two 3-cubes in
4-space, both based at the origin and spanning levels
0..3. Can you prove that all choices lead to a
quadrilateral face (i.e. 2-dimensional) ?

We know that F, N F, » e has four possible subcases:

A) F, =T,
B) F, cF,
C) F, cF
D) F, - F, e and F,- F, » o

can we determine which of these cases holds with simple
calculations as before ? Once we know that F, N F, » o, case D is
assured by the negation of the first 3. Otherwise, using the
obvious test for equality (b, = b, and A, = 4,) and the following
test for ¢, we can resolve the first 3 cases.

19



F, c F, iff A, c A,

Where ¢ for bitstrings means that the set of positions of 1 bits in
A, is a subset of the set of positions of 1 bits in A,. This is
. equivalent to the following calculation

A, A A, = A, » or A, V A, = A,.
Let's try the example F, = 2(5) and F, = 0(7).

P, =2 +5A0=2 P, =0+7A2=2
p, ep, =0 so HD =0 and
b(A)py ns2 = 2(5 A7) = 2(5)

We can clearly detect F, ¢ F, by F, N F, = F, and similarly for F,.

We could have tested 4, A Zz'= S A7 =5A8=2506
since 0101 A 1000 = 0000.

We also get all 4 subcases of F, N F, *» o immediately by the
following decision tree (truth table) :

F,LOF, =F_ 2 FLNF, =F, 2 Case
false false D
false true C

true false B
true true A

Intersections and face containments are important since they
correspond to 1logical operations, "and" and implication,

20



respectively. However, we have found that the key concept missing
from earlier work on boolean formulas and their manipulation is
what we call the join between two faces at Hamming Distance 1. So

here goes !

If HD(F, , F,) = 1 then B(p, ® p,) = 1 so there is at least one edge.
joining a point of F, and a point of F,, namely (p; , P;). There may
be more single edges between the two faces but if there are more
then they all go in the same direction and they all have the same
direction vector (p, ® p,) = §,,. Furthermore, the points of F, that
are end points of such bridging edges form a subface of F, (call it
F' ) and similarly for F, whose subface we call E . Somewhat
surprisingly, F and E turn out to be parallel faces of the same
size, shape, orientation and p,, p, are their respective bases.

Since these bases are neighbors, the points of E'and g'combine to

form a single face F, join F, (denoted F, | F,) whose base is the
smaller of p, , p, and whose internal structure consists of the

common structure of F, and F, along with the bridging vector §,, =

Py, & P;.

This can be depicted by
F2

Fl

F, | F, = min (p,, p,) (4, A 4, V §,,)

In case F is all of F, and E is all of F2 our join subsumes both

original faces

21



F,cF | F and F, cF, | F,

and this gymmetrijc djoin is the basis for the Quine/McCluskey
generation of all maximal faces (aka prime implicants). The
.theoretical basis for this is the well-known Uniting Theorem of °

Boolean Algebra.

We shall see later that the more general join of arbitrary faces at
distance 1 is related to the so-called Consensus Theorem of Boolean
Algebra:

XY +X2=XVY+ X2+ Y2

in the cases where X is a single letter and Y and Z are not
contradictory (i.e. do not differ vis a vis any letter). In any
case Y-Z = 0 implies that we learn absolutely nothing from the
consensus theorem. The formulas X'Y and X:-Z represent two faces

whose join is the extra term Y- Z.

Let's investigate some examples of joins. First we try F, = 0(3) ,
F, = A(5) in 4-space.

P,=0+3AA=2 p,=A+5A0=A
p,®p,=2eA=238 so that
HD = 1

F, | F, = min (2, &) (3 A 5V 8)
= 2(9)

(2, 3, A, B)

Another example is F, o(c), F, = 2(5).

]
o

P, =0+ CA2 p,=2+5A0=2

22



=Py @p, =2 SO HD =1
and
F, | F, = min (0,2) (C A 5 + 2)
= 0(6)

As a check we shall do it the long way

F, = 0(c) = (0, 4, 8, C)
F, = 2(5) = (2, 3, 6, 7)

The 16 pairs compare as follows

P q HD pedg Bridge?
0] 2 1 2 v/
3 2 3
6 2 6
7 3 7
4 2 2 6
3 3 7
6 1 2 v/
7 2 3
8 2 2 A
3 3 B
6 3 E
7 4 F
C 2 3 E
3 4 F
6 2 A
7 3 B

So the two bridging edges form face (0, 2, 4, 6) = 0(6).

Quine (1952) originally hoped to find the minimal sum of products
formula for a boolean function given as a sum of products without
exploding the formula into the totality of its minterms (i.e.
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single points or rows of the truth table). To this end he defined
two ways to incrementally shorten an SOP formula without changing
the actual function. One flavor of shortening amounted to
recognizing one of the terms as a face that could be united with a
parallel face in the function and replacing the joinable face by
the resulting join that is one letter shorter. This was a perfectly
reasonable idea. Unfortunately, the second flavor of shortening
involved dropping an entire term that is superfluous in the sense
that after eliminating the term the reduced formula represents the
same function as before. This term corresponds to a face covered by
all the other faces. This was a bad idea for the reason that it
ljeaves one with a formula covering all points but not all edges,
admittedly a subtlety since ultimately we need only cover points.

Quine discovered, much to his dismay, a very small example in which
an irreducible formula was not minimal. Indeed, the example shows
that irreducible formulas may be missing some key prime implicants
(maximal faces).
Quine's example in 3-4d is

Ab + aB + Bc + bC
which corresponds to 4 edges in face notation:

4(1), 2(1), 2(4), 1(4)

and can be depicted as

There are two minimal SOP, each consisting of an alternating triple
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around the 6-cycle DAG of the function.

What is wrong here is that there are 6 maximal faces, the above 4

edges and the other 2 that are not in Quine's original formula
1(2) and 4(2)

Not only does Quine's reducibility operation fail to add in the two
new terms, he actually could produce the 4 terms from all 6 by
dropping the two.

What I noticed early on from this simple example is that all the
missing maximal faces are faces that bridge between existing faces.
I therefore struggled to understand those joining structures and in

time came to the calculus above.

I had been developing, with considerable success, an improved
version of the bottom-up Quine/McCluskey procedure for finding all
maximal faces, but the idea of a top-down procedure that avoids the
combinatorial explosion into minterms was, of course, to be greatly
prefered. It is easy to write down formulas in 20 variables that
involve hundreds of thousands of points but only 10 or 50 faces.
There are several orders of magnitude difference between operating

on points versus faces.

The key ingredient along with our face calculus is a small theorem
that gives us a sufficient condition for a set of faces to include
each and every maximal face of its function without any

duplications or other non-maximal faces.

Theorem: A reduced* family of faces F representing a function f
consists of the set of all maximal faces of f if every
join between two faces of F is contained in some face of

F. (* no pair related by c.)
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This leads to an efficient algorithm taking us from any set of
faces covering all points of f to the set of maximal faces. The
algorithm can be applied to the raw points but in that case I
suspect our improved Quine/McCluskey may be better. There are some
~interesting data structure and heuristic issues involved in this
algorithm but I consider its development to have been simple
professional technique given the face calculus and the joins
theoren.

Now to get back to the theory and show off a bit.
First try a little exercise:

Problem: See if you can work out the 2 maximal faces for the
earlier problem, ac + BC + abC, using the join concept and
the face calculus. Calculate the face to face
intersections also for all pairs of maximal faces.

The set of all maximal faces for a function is a unique signature
or canonical form. Many SOP formulas can represent the same boolean
function (identical set of minterms or points) but they all have
exactly the same maximal faces. Quine (1952) was aware of the
potential usefulness of this canonical form. The nice thing is that
the set of maximal faces may be of reasonable size when the point
set is ridiculously large.

Note this minimal SOP is not a canonical form.

Equality of two SOP boolean formulas can now be determined by a
systematic procedure - find the MF(f,) and MF(f,) and test for
identity. This could be shortened by a sorting order for maximal
faces or a hash code for quickly rejecting certain function pairs
as unequal.
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We can also test f = g represented by F, € by calculating C* =
MF (€) and determining if every F in F is contained in some G in G°.

Another useful manipulation of boolean formulas is that of
factoring, one of the two ways to apply the distributive law,
X-(Y + 2) = XY + X 2.

Factoring in the context of face calculus has a somewhat different
appearance. Given two faces X and Y, how large a common factor 2
exists such that 2 ‘(S + T) = X + Y and, of course, what exactly
are 2, S, T?

An example might be X = AbC, Y = Abd with the solution Z = Ab,
s =c¢c, T =d.

If we denote the X and Y faces as b, (4)), by(AY) then faces Z, S and
T can be calculated in b(A) form by :

i =3, Vi, V (b e b))

b, = YA b, = BY¥A b,
A, = A,V A
= X
b, = b, A b}
A; = A, VDRV
- THEX
b, = b, V b}
A, = 4, V B

Note that b"‘;" gives the bits corresponding to letters that are the
same in X and Y.

Applying these formulas to the example AbC + Abd we obtain using
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® b, = 1010 e 1000 = 0010
x V 4, = 0001 V 0010 = 0011

b= 0011 V 0010 = 0011 = 1100 (A and B)

b, = 1100 A 1010 = 1000 }

A, = o011 8(3) = ab
b, = 1010 A 0011 = 0010 }

A, = 0001 V 1100 = 1101 2(D) = ¢
b, = 1000 A 0011 = 0000 }

A, = 0010 V 1100 = 1110 O(E) = d

Problem : Work out the factoring of Ad + BcD and decide if you like
it. Just for fun try Ab + Ab.

Problem : Try to prove that the calculations do the correct thing
when X = Y.

It turns out that we can interpret Hamming Distance, intersectijion
faces and joins in terms of letter formulas (terms).

The Hamming Distance between two products of letters is simply a
count of the number of letters that appear in contradictory form in
both formulas. For example, AbCd and abcd differ in the letters A
and C so they are at Hamming Distance 2. In fact, with point faces
this is quite obvious.

Two formulas are non-contradictory iff they differ in no letter.
For example, AbC and Bd are contradictory, differing as they do in
letter B. On the other hand, Abd and bcd are non-contradictory and
their conjunction is AbCd gotten by concatenéting the formulas and
suppressing any duplicates.
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their conjunction is Abcd gotten by concatenating the formulas and

suppressing any duplicates.

In case two formulas are at distance 1 the consensus or joining
face is gotten by concatenating the two formulas while suppressing
any duplicates and eliminating all reference to the single
differing letter. For example, HD(AbC, Bd) = 1 and

AbC | Bd = AcCd
You can check all this using the calculus for faces.

It is natural to ask what logical negation looks like in our face
calculus and it turns out there are two answers. First we point out
that the negative of any formula f can be expressed
as

f=iAEf=1-°¢

So we shall develop a calculation (actually 2) for the difference

of two faces assuming one is contained in the other.

lLet F and G be faces of an N-cube with G ¢ F. Let dim (F) = n and
dim(G) = k. Then the points of F - G can be expressed as a sum of
a sequence of increasingly larger faces forming a chain at Hamming
Distance 1 from one another. The smallest face has dimension k and
the largest has dimension n-1 so there are in all (n-k) faces. They
partition F-G. In general, this partition is not unique.

We present an example in 4-space which represents the negation of
ab, that is ab .

In face notation we desire O(F) = 0(3)
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This picture shows that
O(F) - 0(3) = 4(3) + 8(7)

Starting from 0(3) we select any direction vector not in 0(3). We
have chosen 4. The face 4(3) parallel to 0(3) and joinable to it is
our first face. We form the symmetric join 0(3)|4(3) = 0(7) and
repeat. This time there is but one choice and we add face 8(7)
parallel to 0(7) joined via direction 8. This time the join is i so

we stop.

DeMorgan's Law tells us that ab = A + B whereas the previous

construction gave us
ab = aB + A

The construction that represents DeMorgan's Law is the one that
calculates i1 - 0(3) as the sum of two faces of dimension 3 based at
the neighbors of 0 that are not in 0(3). These are the same two
direction vectors we used in the earlier chain.
Hence

O(F) - 0(3) = 4(B) + 8(7)

This represents the maximal faces of the difference whereas the
earlier form represents the most economical non-overlapping form.

Both probably have their uses.
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I just noticed that there is an easy way to partition F - G into
faces exactly parallel to G and the same size, at least when G =

0(4,) .

First calculate (A, - A;) = A", the vector directions of the larger

F not in the smaller G.

Then if B(A") = k we get exactly 2 faces based at nodes of b, A Iy
(A") with internal structure A;. One of these is A, itself and the
remaining 2% - 1 partition F - G. The base nodes for the 2% faces
are exactly the nodes of the unique face of dimension k, containing

b, and having internal structure A".

Note that B(A") = k = dim (F) - dim (G).

About the smallest face spanning two points

If p and q are points of the N-cube, then there is a smallest
face containing both and this face ¢(p,q) has internal structure
(p # q) and base p Apegq=p - (p & q)

But peg=pg+pg=(p+4q) * (p+ Q)
sopApeqgq=p- (p+q * (p+ Q)

pPPq + pPap
=pAgq

[Note: there is a partition of 1 - 0(3) into 3 faces parallel to
0(3) -- 4(3), 8(3), C(3) and, in general, F - G can be
partitioned into (2" - 1) faces parallel to G]
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¢(p,9) = pAqg (pegq) with top=p Vg

Presumably we could prove (p Vq) e (pAg) =p @ q.
We can use the previous formulas to obtain the maximal faces of a
difference (F - G) where G ¢ F.

Take any point in G (say its base b ) and compute its antipode in
F(call it t) by:

t =Db, e A

which inverts those and only those bits of b, that are internal

structure vectors of F.

For each direction vector §, in A, - A. we construct the spanning

face
F, = ¢(bc ® 6, t)

as depicted below (n = dim(F) - dim(G))
t
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We finish this section with two useful formulas for the
manipulation of boolean faces.

It is useful in some circumstances to transform the coordinate
system of the N-cube to one with a different origin. Because of the
geometrical symmetry this does not change a function nor does it
change any of its faces or maximal faces. It does change the base

(delta) representation as follows. Any face b(A) will have the
representation

(b @ w) A A (4)
in the N-cube with origin transformed to point w. This shows that
the internal structure of a face is invariant to coordinate

transformation which is a pleasant if not surprising result.

The antipode p; of any point p in face F with respect to face F can
be calculated by

P =p e A,
and, in particular, the antipode of p in the entire N-cube is
p* =peil=p [since N-cube = &(1))

which we knew already.

3. Improved OQuine/McCluskey solution to the Maximal Faces

determination

The proposed method builds from points to the set of all
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maximal faces in bottom-up fashion as does the standarg
Quine/McCluskey method. It begins exactly as the earlier method by
joining points to obtain all edges (l1-faces) of the given function
exploxtlng bitcounts to control the search somewhat. It should be
noted that edges can be constructed from their end points in’
exactly one way so there are no duplicates in this round of
joining.

It is at this point that our method deviates from
Quine/McCluskey. In subsequent joining stages we shall generate
each face of the function exactly once, whereas the earlier method
generated each k-face exactly k times and incurred some overhead to
check the duplication. Furthermore, our method involves minimal
searching after the first round collects all the edges.

We exploit the DAG(directed acyclic graph) of a boolean
function f by using the local information about each point that may
be inferred from the points of the function that share an edge. The

essence of the approach can be appreciated by looking at the simple
5-point function we used earlier

f = abc + aBc + aBC + ABC + abC = a + BC
The five points correspord to the numbers
f=2(0, 11 2' 3I 7)

The DAG of f is a subgraph of the DAG of the 3=-cube and is shown
below with the vector directions of each edge:
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Notice the following important facts that emerge from

considerations of purely local graph structure at each node:

(1) Node 7 has degree 1 and therefore cannot participate in any
face of dimension > 1.

(2) Node 1 has degree 2 and is connected to its 2 neighbors by
direction vectors 1 and 2 which limits node 1 to at most a
2-face and in particulor to a 2-face with internal structure
1+ 2 = 3.

(3) Node 2 has degree 2 and belongs to maximal 2-face 0(3)
which means that node 2 is uniquely covered by 0O(3) among
maximal faces since node 2 would require at least one more
edge to belong to a second maximal face.

(4) The four points (0, 1, 2, 3) of face 0(3) all share the
property that the set of adjacent edge directions contains
both 1 and 2, the constituents of the internal structure of
0(3). Indeed this is a necessary condition.

(5) If we attribute a Thru structure to each point which is the

sum of adjacent edge directions then we have

Point Thru UpTo UpFrom
0 3 0 3
1 3 1 2
2 3 2 1
3 7 3 4
7 4 4 0

where we have separated out the incoming UpTo edge
structure from the outgoing UpFrom edge structure. This
tells us that point 0 is the base of two edges 0(1), 0(2)
and that point 3 is the top of two edges 2(1) and 1(2) as
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well as the base of edge 3(4).

(6) If we define the Thru, UpTo and UpFrom structure of any
face of the DAG in the appropriate way then we can
immediately tell if the face is maximal or not and in the
latter case how it can be extended. When nodes 1 and 3 form
edge 1(2) we get

Thru = UpTo + Delta + UpFrom
or
3=14+2+0

the value of Thru showing that edge 1(2) can be at most in
a 2-face with structure 3, the value of UpTo indicating the actual
existence of a face extending 1(2) downwards via direction 1. UpTo
records edge directions incoming to all (both) points of edge 1(2).
Upfrom is defined similarly.

(7) The 5 edges with their relevant structure are

Edge Delta UpTo UpFrom Disposition

0(1) 1 0 2 Lower canonical
0(2) 2 0 1 Non-canonical
1(2) 2 1 0 Non-canonical
2(1) 1 2 0 Upper-canonical
3(4) 4 0 0 Maximal

This local edge information allows us to recognize each
face in exactly one way. The non-canonical join 0(3) =
0(2) | 1(2) has UpFrom, UpTo respectively for 0(2), 1(2)
both < Delta. On the other hand, the canonical join 0(3)
= 0(1) | 2(1) has values of UpFrom, UpTo > Delta. We
define the unique canonical join for any face to be
created via the largest direction vector connecting
parallel faces of smaller dimension whose internal
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parallel faces of smaller dimension whose internal
structure consists of the remaining direction vectors. For

exanple,
2(D) = 2(5) | A(5) via 8

since D = 1101, and 1000, is the largest vector and 0101,
= 5 is the remainder.
The algorithm progresses by keeping all faces that are lower
canonical joins in an active queue and holding all upper canonical
joins in small lists associated with their base nodes. This should
reduce the searching considerably. It does require an array of
pointers of size 2" or some form of hash coding to avoid the large

array.

By keeping track of the minimum node degree of each face we can
determine the essential and the inessential faces by testing the
face dimension against the minimum degree. Equality means

essentiality, inequality the opposite.
Formulas for calculating the structure of joins are:

Thru(F | G) = Thru(F) A Thru(G)

Delta(F | G) = Delta(F) + (Base(F) @ Base(G))
Base(F | G) = min(Base(F), Base(G))

MinDegree(F | G) = min(MinDegree(F), MinDegree(G))

and the derived structures:

UpFrom(F) = (Thru(F) - Delta(F)) -~ Base(F)

UpTo(F) = Thru(F) A Base(F)
When a face has Thru = Delta or equivalently, UpTo = UpFrom = 0 we
have a Maximal Face and otherwise a non-maximal Face, so our

stopping condition is quite direct.
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4. A Top Down Algorithm to determine the Maximal Faces of a

Boolean Function given in SOP form

This algorithm starts from a family of boolean faces
represented as pairs b(d), each face being a product term of the
desired function. It terminates with a family of faces, no pair
satisfying F ¢ G, and each face a maximal face of the function. 1In
addition, a face intersection/join graph FIJG is calculated which
has edges between each pair of maximal faces that intersect or are
at Hamming Distance 1 apart.

The original faces are placed into a family called Try and
moved one by one from there to an initially empty family called
Good or else discarded. An invariant relationship governs this
principal iteration until Try is finally empty. This relationship
assures that the formula represented by all terms from Good and Try
is always the function f given by the original Try family.
Furthermore, the faces of Good contain no duplicates and no
containments (F, € F;). Finally, the property that makes everything
work:

Every face H that is a join between two faces of Good is
subsumed by some face of either Good or Try.

When the algorithm terminates Good is a family of terms that
represents the original function f and subsumes all its pairwise
joins. A theorem stated earlier implies such a family is indeed
precisely the set of Maximal Faces of f.

Each principal iteration step disposes of one face in Try by

comparing it to all faces in Good, discarding it immediately as
redundant if it is subsumed in a face of Good. If not discarded it
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enters Good causing deletion of some faces originally in Good. Its
intersections and joins with faces of Good are recorded in the FIJG
and the new join faces are added to Try if they are not subsumed in
Good or Try.

The termination of this process is governed by a function which
measures the size of Try plus the number of faces of f not yet
subsumed in Good or Try. Each step starts by decreasing Try by one.
Each new join face that is added to Try is one not subsumed by Good
or Try since we check for these possibilities. Each addition to Try
increases the size of Try and decreases the number of non-subsumed
faces by at least one.

[Note: our last adjustment to this algorithm was the check for
joins being subsumed in Try, added to make the algorithm conform to
the termination proof.]

To restrict the set of faces in Good that must be compared to the
candidate face E from Try we keep references to both parents F, G
of each join H=F | G. If E=F, | F, is a join then the only faces
of Good that might intersect or join with E are faces that are
adjacent to F, or F, in the FIJG. This graph of intersections and
joins was originally designed to make the maximal faces algorithm
more efficient, as also the recording of parents for each join.
Subsequently, we have found this information to be crucial for
efficient solution of the minimum cover problem after the maximal

faces have been found.

The termination argument actually gives a rather precise bound on
the number of steps required by the primary iteration. The bound is
the original number of faces plus the number of faces of the
function not subsumed by the original faces. This tells us with
some precision that starting from raw points will take quite a
while but the method may converge rapidly if the original faces are
"near maximal".
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Returning to our previous little example we can depict the faces of
f = a + BC as a partially ordered set based on set inclusion:

There are 11 faces in f including 5 points and the two maximal
faces. These maximal faces are easily recognized as relative
maximal in the poset.

If we start the maximal faces algorithm from the 5 points then the
size of Try is 5 while the deficit of non-subsumed faces is 11 - 5
= 6 for a total of 11. On the other hand starting from the formula

f = abC + BC + ac = 1(0) + 3(4) + 0(2)

we have |Try| = 3 and a deficit of 4 since the only non-subsumed
faces are 0(3), 0(1), 2(1), 1(2). Hence there will be no more than

7 steps.

Some remarks about the Hasse Diagram of the pPoset of faces of f is
in order. The function f involves 3 letters so can be represented
by a set of 5 points in the 3-cube which consists of g = 23 points,
The DAG of the 3-cube is isomorphic to the Hasse Diagram of the
lattice of all 8 subsets of Some 3 element set. The faces in the 3-
Cube are specially shaped subsets of the 8 points of the 3-cube
and hence represent a portion of the lattice of all 2% = 2s¢
subsets of points of the 3-cube.

The Hasse Diagram shown above represents what is called an order
ideal in 1lattice theory and its relative maximal elements are
called a chain . In our context the maximal faces of f are a chain
that generates the order ideal of all faces of £.
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There is an upper bound to the size of Good when creating the
maximal faces of a function. Since we allow no containments between
faces of Good we can claim that |Good| is never larger than the
largest chain in the poset of faces of the function. Unfortunately,
we do not yet know any good way to use this in general. Actually we
might be able to organize the ordering of candidates in such a way
that |Good| would be bounded by the largest chain lying above the

order ideal generated by the original faces.

In the small example f = a + BC, if we started from the faces
abc + BC + ac (1(0), 3(4), 0(2)), then the largest chain that
contains these three faces is the chain of all edges (o(1), 0(2),
2(1), 1(2), 3(4)). By lucky choice we can generate 1(2) along with
3(4), 0(2), giving us only 3 of these edges which is enough to get
the final 2 maximal faces without ever generating the non-canonical

joining pair 0(1) and 2(1).

The problem with using the above observation is that some functions
seem wider at the bottom, others at the top and some in the middle.
For example, the function A in 16 dimensions has 2'° = 32768 points
(all faces of a single given size always constitutes a chain) but
only 1 maximal face. On the other hand § , has 420 points and 1680
maximal faces of dimension 3. The monotonic function Sﬁs has 466
points, 84 maximal faces but still contains a chain larger than
1680 since the maximal faces of gﬁj are faces of qﬁj.

Clearly the largest chain is at least as large as the total point
count and as large as the number of maximal faces. It seems likely
that the overwhelming majority of functions will be widest at the
pottom or point level, the symmetric functions being anomalous. If
we also expect most functions to be presented via a set of faces
high up in the poset of all faces and if the functions tend to
narrow toward the top then we have reason to expect our algorithm

to be quite efficient.
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According to the earlier termination argument the number of steps
is bounded by the original size of Try plus the deficit. The work
required per step is roughly bounded by the size of Good so the
total effort seems bounded by

(|Try| + Deficit) x (|MaxChain|)

For functions that narrow towards the top or at least do not get
wider than the maximal faces it looks like the effort will be
O(NFM?) if the original faces (i.e. Try) are close to the top.

This discussion suggests that we can make the method more efficient
if we find ways to eat up the deficit more quickly (less steps) and
minimize the size of the chain in Good (fewer comparisons per
step) .

5. Approaches to the Minimum Cover of a Boolean Function by its
Maximal Faces without Points

The standard Quine/McCluskey procedure leading to a minimal
cover via maximal faces uses a two-dimensional tableau with a row
for each maximal face and a column for each point. We want to avoid
the combinatorial explosion that this implies while still using the
covering and face discarding techniques used in the older method .

The concept of essential face will be generalized to that of a
necessary set -- a subset of maximal faces at least one of which
must appear in any minimal cover. An essential face represents a
singleton necessary set. Essential faces can be immediately
incorporated as chosen just as is done by Quine/McCluskey.
Backtracking uses a smallest necessary set.

The role of points will be played by the maximal faces in our
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"pointless" scheme. We will have to cover all these maximal faces
using a subset of the maximal faces. For coverage information we
use joins, both those implied by parent references and others that
can be discovered fairly easily from the face intersection/join
.graph. If H=F | G we know that H is entirely covered by the union
of F and G.
We introduce the concepts of dominance and redundancy, the first
being the row dominance of Quine/McCluskey and the second
indicating that a face is entirely covered by faces already chosen.
In terms of joins we have
H is redundant if H=F | G and F and G are each chosen or
redundant
and
H is dominated by G if H=F | G and F is chosen, redundant or
dominated

There is a problem with dominance not encountered in the
Quine/McCluskey method and that is the possibility of cycles in the
redundancy dominance graph. The following graph depicts the
interrelationship of several join based redundancies and
dominances. Nodes are labelled c for chosen, r for redundant, d for
dominated and a for still active.

This graph proves that ri, r2, di, d2, 43 are covered by cil,
c2, c3, al, a2. It does not, however, assure minimality.

We must not allow any directed cycles in this graph but we have
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several tricks for assuring this without enormous effort!

There are indeed general methods apart from joins to determine
that a face is covered by the union of two or more others, but we
“have found considerable success using joins alone.

Returning to the matter of essential faces and necessary sets
we have the following techniques:

(A) A maximal F whose intersections with other faces G,,..., G,

satisfies

k
i§1 |6, N F| < |F|
is essential, since these intersections cover less points
than are in face F .

(B) If face G, = b(d) is such that b is contained in maximal
faces G,,..., G, but no others then (Ggr Gyreeer G) is a
necessary set. This can be repeated with top points (or any
others, for that matter ) to obtain more such sets.

When we are absolutely forced to use a more detailed analysis
we can determine if F is entirely covered by (G,,..., G,) by
calculating the maximal faces of the function whose faces are
{G; n F}ﬂ and if the answer is F itself we have coverage, otherwise
no. This can be used to determine essentiality with certainty,
whereas our other methods provide only sufficient conditions.

We can illustrate most of these ideas by solving the Quine 6-
cycle problem defined by points (1, 2, 4, 3, 5, 6) in the 3-cube.
This has 6 maximal faces and 6 points arranged in a cyclic fashion

as shown below:
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The face intersection graph has the above edges as its nodes
and the points common to two edges are the intersecting faces. We
see that each maximal face has 2 intersecting faces consisting of
one point each so the overlap count is 1 + 1 = 2 just matching the
size of the edge. We therefore have no essential faces.

Condition (B) can be used on the bases and tops to generate 6
necessary sets each of size 2. We show two such sets along with the
relevant points covered:

1(4) or 4(1) to cover 5(0)
4(1) or 4(2) to cover 4(0)

In addition we have the following join information since each
edge on the 6-cycle is the join of its two neighboring edges:

1(4) = 1(2) | 4(1)
4(1) = 1(4) | 4(2)
4(2) = 4(1) | 2(4)
2(4) = 4(2) | 2(1)
2(1) = 2(4) | 1(2)
1(2) = 2(1) | 1(4)

There are no essential faces so the best we can do is to try
each of the faces from some necessary set. We choose face 1(4) from
the first such set covering point 5(0). We must later try solutions
involving 4(1).
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With 1(4) chosen we can mark 4(1) dominated by 4(2) using the
second join above and also can mark 1(2) dominated by 2(1) using
the last join. This can be depicted by the dominance graph below:

There is no more we can do here without creating a cycle in the
graph. The third join, for example, suggests that 4(2) is dominated
by 2(4), but this would produce the cycle 4(1), 4(2), 4(1) in the
dominance graph.

Although we can not discard any more faces at this time we can
take advantage of the newly discovered dominated faces by
recomputing overlap counts some of which will have decreased due to
the disappearance of the discarded faces 4(1) and 1(2). 1In
particular, faces 4(2) and 2(1) both now have a single overlapping
face and an overlap count one less than their size and therefore
are essential. The remaining face 2(4) = 4(2) | 2(1) is covered by
the two new chosen faces and so is redundant giving us the

dominance graph

All three discarded faces could now be marked redundant since there
are no more active ones. We have thus shown that there is only one
minimum cover candidate that contains the face 1(4).
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In exploring the other alternatives we may assume that 1(4) is
not used and 4(1) is . With 1(4) gone both its neighbors are
essential so 4(1) and 1(2) are chosen, 2(1) and 4(2) are dominated
via their joins and 2(4) is essential, having no overlap by chosen
or active faces. We get a similar graph to that above. This shows
that there are exactly two solutions. Note that we must generate
them both and measure their costs before we can conclude they both
are optimal.

Are there situations that would allow us to discard an active face
that is a join of two dominated faces and therefore covered by the

chosen faces and two other active faces?

The answer seems to be yes -- if the residual points of face F not
yet covered by chosen faces are all covered by G u H, the union of
two other active faces, and if the cost of the pair of faces (G, H)
is no more than the cost of F, then we may discard F since any

cover containing F can be modified by the elimination of F and the
addition of both G and H at no increase in cost.

The above idea can be extended to a k-face covering in an obvious
way. The two-face cover condition is already difficult to achieve
since the two covering faces must be very large compared to the one
covered. For example, in N-space we require

cost (G) + cost (H) < cost (F) or

N-dim (G) + N-dim (H) < N-dim (F)
which resolves to

dim (G) + dim (H) 2 dim (F) + N

or equivalently

* (dim (G) + dim (H)) - dim (F) > N
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6. erimental Results and Timings for the To [e)
Maximal Faces Algorithm

The Top Down Maximal Faces Algorithm has bean programmed in
Turbo Pascal and run on an IBM PC driven by a 5 mega Hertz 1Intel
8088 engine. It is reasonable to expect two orders of magnitude
improvement from tuning the program and moving to a heftier 25 mega
Hertz PS/2 or similar PC. As can be seen from the timings below
we have been able to calculate hundreds of maximal faces in a few
minutes. Textbook problems with 20 or so faces have typically taken
only a few seconds.

The following summary of 12 random test cases shows that the
times vary widely, correlating most closely with the number of face
comparisons. We have not given much effort to an analysis of
timing. Suffice it to say that the time seems almost certainly to
depend on the number of steps times the average number of Good
faces near the candidate face. The number of steps is very much a
function of the deficit, that is, the number of non-subsumed faces
at the outset. The other factor is influenced by the final count of

maximal faces.

We should point out that we have not investigated how best to
order the candidates from the Try set, nor have we improved the
searches for containment in ways that would give a factor of four

improvement.
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1)
.
3)
4)
5)
6)
7)
8)
92)
10)
11)

12)

10
20
25
25
30
30
30
50
100
100
100

100

Legend

NMF

23
90
173
80
206
172
290
63
139
149
419

487

NOrig is the original number of faces.

Random Test Cases

tggegs

23
100
220
101
244
200
409
65
161
168
679

757

tComQares

230
5300
19000
3700
23400
11000
83000
1500
6700
7300
58000

65000

Time®(secs)

35
42

20
164

11
160

186

Face Size &

100
100
100
100
100
100
100
50
50
50
75

75

NMF is the number of final maximal faces.
Face Size % is the upper bound of the dimension of

each random face as a percentage of 16.

* 5 MHz Intel 8088 in old (circa '83) IBM PC

In addition to these randomly generated functions we have also

tested the method against one of the so-called symmetric functions
qﬁi. which is all points of the 6-cube with bitcounts between 2 and
4 inclusive. This function has 50 points in 3 layers of size (15,

20,

15) .

Each of the 15 points of layer 2 is the base for 6

different squares and these are the 90 maximal faces. This function
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was submitted to the algorithm in three different forms:
a) all 50 points
b) 15 faces of dimension 2
c) 15 2-d faces and the middle layer of 20 points

The 90 2-d faces were calculated from raw points in 62 seconds
while the other two cases took 18 seconds. This should not be taken
as evidence that the top down method will work nearly as well on
points as on larger faces. The small size of faces in this problem
is misleading in this regard.

We also did two versions of a test we call McCluskey Cyclic
taken from his 1986 text on Digital Design principles. It consists
of 22 points and 17 maximal faces in the 6-cube. The result emerged
after 4 seconds from the 22 points, after only 1 second from the 17

maximal faces.

Another artificially constructed function of 40 faces and 8
maximal faces in 16 dimensions took only 4 seconds to solve.

It should be pointed out that our methods depend on the number
of dimensions in a very modest way, and even that dependence is
influenced by the hardware register width. On old PCs it will take
twice as long to perform 32-bit vector operations as to perform 16-
bit operations. In any case the dependency is strictly linear in
the worst case. The only possible trouble spot is the bitcount
calculation which depends at most linearly on dimension. Bitcount
is intrinsically log,N, less than linear.
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7. Early Results from a Meager Covering Algorithm

We have implemented and tested a simple covering algorithm
using ideas from section 5. A rough sketch of the method is as

follows:

repeat
Find new essential faces using overlap counts

Find newly redundant or dominated faces using the
parental join information
until No faces were discarded in the last step

This algorithm is meager in the sense that overlap counts are
a sufficient condition for essentiality but by no means necessary
so we miss recognizing some essential faces. Furthermore, this
algorithm does not generate any other necessary sets and does no
backtracking; it just gives up. Finally, it uses only the join
information left over from the parent references in the maximal
faces algorithm, whereas maximal faces may be joins in several
different ways providing more chances for dominance and redundancy.

In spite of its meagerness this method has been rather

successful on a number of random functions containing some
essential faces. The following table summarizes several test cases:
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Minimum Cover Results

NMF Chosen Discards Active
23 10 13 0
63 50 13 0
80 21 56 3
90 20 70 0
139 97 37 5
149 100 49 0
173 25 138 10
206 30 172 4
290 10 80 200
419 66 247 106
487 94 388 5

In 11 random cases only 2 failed to be solved nearly
completely, and in one of these two we resolved 75% of the faces.
These results give us every reason to hope that the full method
will be successful without enormous backtracking. The strategy will
be to get as much mileage out of the meager methods as is possible
and only when necessary turn to more detailed analysis and
exhaustive backtracking.
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8. Top Down Solution of the McCluskey Cyclic Problem

The McCluskey Cyclic function consists of 22 points that form 17
maximal faces as listed below with letter designations for
convenience of reference (base and delta are given in octal):

Face b(a) Face b(a) Face b(a)
X 1(14) Q 23(4) I 11(24)
Y 4(21) E 5(22) K 24(11)
z 10(21) D 5(12) R 30(3)
W 22(11) F 5(30) M 30(5)
o} 16 (1) G 11(s6) N 30(6)
P 16(20) H 11(22)

The face intersections are depicted by the following matrix in
which each non-blank entry indicates a face intersection of the
dimension given. 1In this problem, all faces are squares (dimension
2) except for the edges O, P and Q. Therefore all face
intersections are points or edges.
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Z X2 WMRH XYM U MONYWO E N K ¥

Face Intersection Overlap for McCluskey Cyclic

X Y 2 W O P Q E D F G HI KRMN

0
0
0
0
0 1 0
1l 0
1 1 1
1 0] 0 0
0 1 0 1l
1 0 1 1
1l 0 0
1 1 1 0
1 0 o 1 1
o 0 0 0 1
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There are 6 maximal faces that are not joins -- X, ¥, Z, W, E and
N. The remaining 11 faces are joins in one or more ways as shown
in the table below:

D=E | G

H=G | R

P=0]| N

Q=W | E

G=D | H

K=Y | M
o=G|P , D|P
1=6|M , 2|F , X|M
R=2z|wW , M| W , H|N
M=kK|2z , K|R , N|I
F=X1K,I|Y,E|I,K|D

Necessary sets generated from bases and tops are:

Base Covering Faces Top Covering Faces

X 15 XIFDG
Y 17 ODG

10 Z 27 Q E

22 W 33 WHR

16 OP 35 FIKM

23 QW 36 PN

5 EDFXY 25 Y EKF

11 GHIXZ 31 ZMIRH

24 KY

30 RMNZ
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Simple overlap counts do not reveal any essential faces but there
are 4 necessary sets of size one so we start off quickly with
chosen faces X, Y, Z and W. Face R, being a join with chosen
parents, is discarded as redundant.

We can then discard several faces via dominance:

with R redundant;
with W chosen;

is dominated by G via
is dominated by E via
is dominated by K via with X chosen;
is dominated by M via with Y chosen;

is dominated by F via

H X = 0
H X T 0O I
[}

N < X £ @
e < S I

with 2 chosen.

The dominance graph of these discards is:

in which we have studiously avoided cycles. Indeed, there are more
joins tempting one to discard more faces, but they all get
disqualified because they introduce cycles into the dominance
graph. M alone has three joins that would normally be candidates
for dominance since 2 is chosen, R is redundant, and I is dominated
but all three introduce a cycle.
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The remaining 7 active faces with their face intersection overlaps

‘are now:

N

Face Si

o

P(0)
0(0)
X (0)
X(1)
X(1)
Z(1)
Z(0)

Z X 6 U m™Y
NNV

e Overlaps

» D(0)
» N(0)
» Y (1)
» Y (0)
» 2(0)
» N(1)
» W(0)

’

G(0)
D(1)
0(0)

0(0)

P(0)

Unfortunately, this reveals no

are exactly equal.

Point Faces Covering

16 o,
17 o,
27 E
35 M
36 P

r

)4
D, G

N

Count
3
2
5
, E(1) , G(1) 8
» D(1) 6
4
, M(1) 5

new essential face although P and M

The remaining necessary sets are:

We have eliminated each necessary set containing a chosen face and

dropped all discarded faces.

The result is to give us two more essential faces, E and N, which

are now chosen.

Now D is dominated by G via newly chosen E, which

does not introduce a cycle into the dominance graph.
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with D discarded, we have necessary sets
[ PO 1y [ GO )y [ PN ]y -

At this point, we have the following partitioning of our 17 maximal

faces:

Chosen: X, ¥, Z, W, M, E
Redundant: R

Dominated: F, K, Q, H, D, I
Active: N, O, P, G

The complete graph of dominances employed is:

At this point we are down to 4 active faces and 3 necessary
sets of 2 faces each. The final stage requires two-way backtracking
and some detailed overlap analysis to arrive at the final solution

Chosen: X, ¥, 2, W, M, E, P, G
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9. Analysis of Unate Functions

A monotonic boolean function is one whose points form a dual

order ideal in the lattice of the N-cube. This means that any point

in the function drags along all points above it on all paths to the
i1 point. Alternatively, a monotonic function is one whose maximal
faces all contain the 1 point. This means simply that each face is
of the form b(b). As a result all maximal faces are essential via
their base points so recognizing monotonicity helps to bypass the

minimum cover problem.

It is not difficult to see that in a monotonic function there
cannot be two different maximal faces whth the same base - this
proves each such base is uniquely covered and hence the unique face

is essential.

By the symmetry of the N-cube there must be other functions
sharing the geometric constrainsts of monotonicity without actually
being monotonic. Indeed, the so-called unate functions capture

this idea. A unate function is one all of whose maximal faces have
a common point, p. A transformation of the N-cube coordinates that
maps p to the i point makes the transformed function monotonic.
Since this coordinate transformation does not change any relevant
geometric properties (e.g. faces, maximal faces etc.) we may
conclude that unate functions also are minimum covered by all

their maximal faces.
It is clear from the definition of unate that such a function

has an FIG of maximal faces that forms a complete graph. It may be
that this is also a sufficient condition. We are not sure.
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In any case, we can iteratively calculate the intersection of
all maximal faces of a function by performing one face comparison
per maximal face until we get an empty intersection or find the
.maximal faces have one or more common points.

We need not perform this test if the FIG is not complete.
It may be a lot to expect functions to be unate but after a

function is separated into independently simplifiable parts (see
the next section ) some of the smaller parts may be unate.
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10. Function Separability Criteria

We know of two ways to break a function into parts whose
minimal coverage can be handled independently. The first
decomposition is into the connected components of the face
intersection graph, each of whose pieces can be solved
independently. This can come in handy if a function is not unate
but one or more of its connected components is unate and therefore
has a trivial to calculate mininmum cover (all the maximal faces of

the component).

In a bottom up algorithm the connectivity of the DAG formed by
edges of the function can be used to partition the problem early in
the determination of maximal faces.

The second decomposition was recognized by Quine in 1952 and
was partly attributed to Goodman. The idea is that sets of product
terms that share letters amongst themselves but not with any other
terms can be simplified independently. In our face calculus we can
define perpendicular faces by

F .G iff 3, AB, =o.
If we now form a face graph according to the non-. relation

(the complement of the . graph), then its connected components can

be solved independently.

An example of this latter separability is the function f = a +
BC whose two faces are perpendicular. Indeed the edge BC is
geometrically perpendicular to the face a so our terminology is

appropriate. The calculation is
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am=0(3) ; BC = 3(4)
SO

8, A3

AL, =3AT=4A3=0

making a 1 BC.

Hence a and BC are in different components.

R A A "R TR A A A -
=2 — s
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Rio: A Missed Opportunity

by Dietrich Fischer

The United Nations Conference on Environment
and Development in Rio de Janeiro in June 1992 (the
Earth Summit), which I attended as representative of the
organization “Economists Against the Arms Race,” was
the largest UN conference ever held. It was reportedly
attended by 114 heads of state, about 10,000 government
delegates from 178 countries, 8,000 representatives of
6,000 Non-Governmental Organizations and 7,000
journalists from all over the world.

One of the most controversial issues at the
official conference was the question of how to finance
sustainable development. The Group of 77, which now
has over 100 developing countries as members, pressed
hard for firm commitments from the developed countries
to meet the agreed target of 0.7% of their GNP for
development assistance %y the year 2000. They were
supported by France, the ~Netherlands and the
Scandinavian countries, which have already exceeded that
target, but were opposed by several of the developed
countries, including the United States, which lags far
behind. I participated with a group of NGO delegates
from both developing and develo countries who
discussed possible amendments to the draft text of the
finance committee in the hope to achieve consensus. We
proposed that the countries that have already achieved or
exceeded the 0.7 % target be commended and called upon
to continue to rovise leadership by increasing their
efforts further. We also proposed that the countries that
have not yet achieved that target commit themselves to
reducing the gap by 20% by 1995, as a first step toward
closing it entirely. Finally, we proposed that reductions
in military spending be used to finance sustainable
development. Standing outside the meeting of the finance
committee, which met behind closed doors, we handed
leaflets with these proposed amendments to all delegates
as they entered and discussed them with as many as were
willing to talk with us. The first of the three proposals
was included in the final text agreed on by governments,
but the others were not.

I found some of the personal conversations 1 held
even more valuable than large meetings. One of the

le I met was Airat Gumarov, a young Russian
geologist who is training with an  international,
interdisciplinary team of scientists for a trip from 1993 to
1999 through 89 countries on every continent to study the
conditions of the environment and to publicize their
findings. Their project, which has the support of the
Russian military, also envisages the creation oazchnology
centers in about 20 countries, where new environmentally
sound technologies are to be developed and made
available for free to everyone. They hope that the world
media will help widely to disseminate technologies that
can help solve problems of sustainable development.

The Earth Summit could hardly have taken place
during the Cold War. Now that most people and

overnments begin to realize that the greatest threat they
ace is not mulitary aggression from an enemy, but
underdevelopment and the destruction of the environment,
the whole earth could jointly focus on these common
problems. Although the concrete agreements reached fell
short of expectations, the earth charter approved at the
conference sets new standards, to which future
generations must hold their governments accountable, in
the same way as the Universal Declaration of Human
Rights of 1948 set a new standard, even though the
struggle to implement it still continues.

The new political climate has offered a great
opportunity to reach fundamental new agreements that can
shape the course of the world for decades to come, as the
founding of the UN in San Francisco and the establish-
ment of a world financial order at Bretton Woods did
after World War II. But as the Soviet Union, by refusing

to participate in the Bretton Woods agreements, prevented
the creation of a truly Flohal economy, the Bush
administration played a similarly negative role in Rio. Its
refusal to participate may be even more devastating.
While international trade is possible within a limited area,
the global environment can be saved from destruction
only if all major industrial countries participate. As long
as even one single nation continues to pollute the atmo-
sphere or oceans, people all over the world are in danger.
Since the United States, with 5 percent of the earth's
population, emits about 30 percent of the world's carbon
dioxide and is the major user of nonrenewable resources,
its participation in global agreements on environment and
development is _indispensable. Hopefully, a future
administration will soon join the rest of the world in these
efforts.

Of the two major agreements to be reached, on
climate and biodiversity, lha%.)niled States refused to sign
one and seriously weakened the other. On preventing the
greenhouse effect, the grand bargain foreseen was that the
developed countries would agree to limit their emissions
of carbon dioxide and that the developing countries would
in return protect their forests. en the Bush
administration insisted that all references to any targets or
timetables for limitations on carbon dioxide emissions be
deleted from the climate convention as a condition for
signing it, and the other countries reluctantly caved in, it
became difficult to demand that the deve.lopin% countries
adhere to their side of the bargain. President Bush's last
minute initiative for a treaty on the protection of forests,
in itself a good idea, was perceived as a loy to divert
attention from the United States' refusal to limit its
carbon dioxide emissions. Malaysia argued that telling it
not to cut down its tropical forests was interference with
its national sovereignty. When the Bush administration
announced a week before the Earth Summit that half of
the remaining old growth forests in the United States
would be opened for logging, this was not helpful either.

The other agreement that had the support of
every country except the United States was an innovative
approach to protect species from extinction by making
their preservation economically rewarding. The
biodiversity treaty foresees that if pharmaceutical
companies develop new drugs on_the basis of substances
extracted from rare plants or animals, they compensate
the country of origin with a share of the profits derived
from that drug. e amount of compensation was not
specified, to %)e left for future negotiations, only the
general principle was enunciated. The Bush
administration argued that this would undermine the
incentive for biotechnology firms to do research, because
they would be deprived of a portion of their profits. But
it ignores that developing countries, in which most of the
world's remaining plant and animal species are found,
also need some incentive to protect them from extinction.
About 97 percent of all species have never been tested for
their potential therapeutic value, and tens of thousands of
species are lost every year, a rate far more rapid than

uring great periods of extinction in past geological ages.
The recent is-::ovel(zl that an extract from a rare plant
found only on Madagascar can cure a certain type of
leukemia should make it clear what a tremendous resource
we are carelessly squandering. _

The developing countries were asking that
environmentally sound production technologies be made
available to them at concessional rates. If developing
countries begin to use obsolete, highly polluting
production methods, this also hurts people in the
developed countries, since we are all affected by global
warming, destruction of the ozone layer, acid rain and
other pollutants that cross borders. But some developed
countries, including the United States, seemed more



concerned about intellectual property rights. The question
of technology transfer is currently one of the major issues
dividing developed and developing countries, but need not
be. Knowledge is perhaps the most underutilized resource
for sustainabfe development. Unlike physical resources,
which must be given up by someone to be given to
someone else, knowledge, once discovered, can be copied
an unlimited number of times at very low costs. If the
least polluting, least energy-, resource- and labor-intensive
technology known anywhere on earth was available
everywhere, all of us could live much better, in a
healthier environment.

Clearly, those who discover new knowledge must
be rewarded, otherwise the stream of innovations could
dry uév. But if there is a larger pie, it must logically be
possible to divide it in such a way that everyone is better
off, not only some at the expense of others. The patent
system does reward innovation, but it excludes man
potential users from access to valuable information.
more effective method to disseminate useful invention
may be "compulsory licensing”, as it is currently applied,
for example, in the music industry. A composer ias no
right to prevent anyone else from playing or recording his
or her compositions, but is entitled to a share of the
profits from record sales. This has the effect that
composers have no incentive to keep their melodies
secret, but to spread them as widely as possible, to
maximize their revenue. If the same Sﬂstem were applied
to technological innovations, the whole world might
benefit.

A useful method to finance sustainable
development would be a pollution tax, especially on
carbon dioxide, as the members of the European
Corn.munit{l have advocated. Contrary to a widespread
belief, such taxes would not increase overall tax levels,
but could help reduce them, because they would also help
reduce government expenses for cleaning up the
environment. It is easy to see this if we imagine what
would happen if gasoline were available for free. We
would not pay less for gasoline, but a great deal more,
because many people would start wasting it, and the tax
payers would have to foot the bill anyway at the end of
the year. This is the way we now typically treat clean
air and clean water, and so it should not surprise us that
these resources are being wasted. The current tax sys-
tems, which penalize hard work and creative ideas for
new products that can meet human needs, ought to be
replaced with tax systems that instead penalize harmful
activities, such as pollution, the depletion of nonrenewable
resources, military spending, and wasteful consumption.

The Bush administration's adamant refusal to
agree to a carbon dioxide tax, which could offset other
taxes, is short-sighted. Its insistence that we find out the
precise consequences of global warming before takin
action to prevent it is comparable to driving a car wit
closed eyes, waiting until we hit an obstacle before trying
another direction, instead of anticipating and avoiding
dangers. It is even worse, because global warming is
irreversible. Once coastal areas become inundated, we
cannot suddenly freeze huge quantities of ocean water and
deposit them back on Antarctica. The entire world is
held hostage to a myopic policy by one government, as
if we were sitting on a bus being driven blindly toward
an abyss from which there is no return.

_ Largely at the insistence of President Bush,
reductions in military spending as a source of funding for
sustainable development were left off the conference
agenda. Yet with the end of the cold war, milita
spending is a tremendous untapped resource. A mere 1
Efrcent of world milita sFandm would be sufficient to

lly fund the estimated $125 billion per year needed to
implement Agenda 21, a comprehensive strategy for
sustainable development. The $3.7 billion in new
financing offered by developed countries at the conference
represent about one day's military spending. Another
example may illustrate the enormous waste of military

spending. UNICEF has estimated that it would cost
$1.50 on average to inoculate one child a'gamst six major
diseases from which about 3 million children needlessly
die each year. This death toll corresponds to the number
of victims of about 30 Hiroshima bombs being dropped
each year on the world's children, but is hardly ever
mentioned. To inoculate all 120 million children born
each year in rich and r countries alike would cost
about $180 million, or less than 10 percent of the $2.1
billion price for a single Stealth bomber. .

Making some of these funds available for
sustainable development is not simply a sacrifice by the
developed countries to benefit the developing countries.
It can also provide many new jobs in developed countries
for workers who are displaced by reductions in military
spending after the Cold War. =~ There is no need to
continue to build bombs and missiles just to keep people
employed. Similar technical skills can be applied to the
development of less lluting technologies. The
Brundtland Commission has pointed out that those firms
that have taken the lead in developinF environmentally
sound new technologies have been able to expand their
markets, whereas those that have resisted CFoimlalr demand
for cleaner technologies have tended to decline.

In addition to converting military into civilian
industries, it would also make good sense to broaden the
mission of defense departments to include environmental
security. People whose livelihood has depended on
military spending must be offered a new role, otherwise
they will naturally oppose change. If security is
redefined to offer protection also from the threats of
pollution and resource shortages, satellites can be used to
survey the global environment and rovide advance
warning of dgroughts, plant diseases and other causes of
crop failures, troops can be redeployed to plant trees and
clean up toxic wastes, and helicopters, tents and food
rations can be used to save people in case of natural or
industrial disasters.

It appears that the main reason why President
Bush was so opposed to any meaningful global agreement
was a reluctance to give up some national sovereignty,
the fear that a UN bureaucrat could tell the United States
what to do. But that fear is mistaken. Joining global
agreements for mutual benefit does not reduce a nation's
sovereignty, it extends it into new areas. No country
today, for example, has sovereign control over the ozone
layer. Only by agreeing to emission quotas on ozone-
depleting gases an enforcement measures can we protect
ourselves from carcinogenic ultraviolet radiation. By
creating new global institutions in areas where they are
necessary we lose nothing. On the contrary, we gain
added control over our destiny, which we did not possess
before and could never achieve at the national level alone.

It is interesting to note that the first advanced
civilizations emerged some six thousand years ago when

ople faced problems that they could not solve alone.

he recurrent floods and droughts in the Nile and
Euphrates valleys required the cooperation of thousands
of individuals to build dams for the control of those
rivers. This led to the formation of organized states, the
development of written language, the codification of laws,
and a Hourishing of science and the arts. Today we face
some global problems that even a méperpower cannot
solve alone. Hopefully this will lead to international
cooperation to address these problems before it is too
late. We should heed Benjamin Franklin's admonition,
"We must all hang together, or we shall all hang
separately.”

Dietrich Fischer, a Professor of Computer Science at
Pace University, is a consultant to the United Nations
Institute for Disarmament Research and author of
Nonmilitary Aspects of Security: A Systems Approach.
A shorter version of this report will appear in the
Newsletter of Economists Against the Arms Race.
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