Pace University

DigitalCommons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

4-1-1993

Dynamic semantic specification by two-level grammars for a
block structured language with subroutine parameters.

Mehdi Badii

Follow this and additional works at: https://digitalcommons.pace.edu/csis_tech_reports

Recommended Citation

Badii, Mehdi, "Dynamic semantic specification by two-level grammars for a block structured language
with subroutine parameters." (1993). CSIS Technical Reports. 93.
https://digitalcommons.pace.edu/csis_tech_reports/93

This Thesis is brought to you for free and open access by the lvan G. Seidenberg School of Computer Science and
Information Systems at DigitalCommons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an
authorized administrator of DigitalCommons@Pace. For more information, please contact nmcguire@pace.edu.

https://digitalcommons.pace.edu/
https://digitalcommons.pace.edu/csis_tech_reports
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/csis_tech_reports/93?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmcguire@pace.edu

HAYES LIBRARY COLLEGE OF WHITE PLAINS
CE UnIVERSITY

- 8 TEY e _Q_‘:-_'i-'"‘lu
GRADUATE CENTER LIBRARY

SCHOOL OF COMPUTER SCIENCE

AND INFORMATION SYSTEMS

TECHNICAL REPORT
Number 60, April 1993

o

Dynamic Semantic Specification
by Two-Level Grammars
for a Block Structured Language
with Subroutine Parameters

Mehdi Badii

Departrhent of Computer Science
Pace University
Pleasantville, NY- 10570

Fatemeh Abdollahzadeh

Department of Computer Science

Ref. - Central Connecticut State University
;«’;ﬁj New Britain, CT 06056

.P3

no.60

UNIVERSITY

This manuscript is to appear in
a forthcoming issue of
ACM SIG PLAN NOTICES

Mehdi Badii is an Associate Professor of Computer Science at
Pace University. He earned his doctorate in computer science
in England at the Loughborough University of Technology.

He is an active researcher in the areas of the detection of
parallelism, the formal description of programming languages,
and compiler design. Several papers have resulted from his
work in these areas.

Fatemeh Abdollahzadeh is an Associate Professor of Computer
Science at the Central Connecticut State University. Holding

a doctorate in computer science from the Loughborough

University of Technology, she investigates and contributes

papers in the area of grammatical means for detecting parallelism
as well as in the area of compiler design.

G ADUATE CENTER LIBRARY
Pace University

Dynamic Semantic Specification by Two-Level Grammars
for a Block Structured Language with Subroutine Parameters

M. Badii F. Abdollahzadeh i
Department Computer Science Department Computer Science
Pace University Central Connecticut State University

Abstract: This paper presents the agplication of a formal description
language =--Van Wijngaarden Two-Level grammar == to define the d{namlc
semantics of a block structured language consisting of several types of
parameter passing mechanisms. We will show, in a fairly
understandable, concise and clear fashion, that the metalinguistic,
formalism of Two-Level grammar is a fine descriptive device for this
purpose.

1. INTRODUCTION

Although in functional programming languages the use of higher
order functions are customary, passing subroutines as parameters in
imperative languages has not been received in the East several years.
In this paper we shall introduce a precise and Eng ish-like language
formalism to define the dynamic semantics of a blocked structure
language including parametrized-subroutine. It 1s our objective to use
this feature and make a bridge between imperative and functional
programming languages.

We introduce a new formalism for the control stack. This work is
different from Velazques [1] in that all the operations and the details
of the run time stack are precisely and formally defined. Our approach
for formalizing the dynamic semantics of subroutine parameter is
similar to the idea used by Birtwistle and Loose [2], where a formal
subroutine parameter points to its corresgonding actual parameter. The
formalism is a more understandable English-like language.

In this system the stack is a number of substrings, each one
representing an activation record. An activation record is also
partitioned to a number of substrings to represent a variable location
, a parameter location, a location for a subroutine name, a location
for the returned value in case of a function, a record number to make
the activation record unigue among the others, or a number to represent
the static link of the record. In this formalism there is no need for a
dynamic link or a return address -- the recursive nature of Two-Level
Grammar is powerful enough to resolve these two phenomena. We believe a
simple underlying formalism makes a language more precise and
understandable. The formalism is also essential for program correctness
and verification.

This paper is divided into five sections. Section 2 describes and
defines the Two-Level grammar. Section 3 presents the abstract program,
and section 4 covers our approach in handling the control stack an
subroutine call. Section 5 contains the conclusion.

2. Two-Level Grammar (TLG)

The concept of Two-Level grammar (van Wijngaarden grammar,
W-grammar) became widely known as a powerful formalism in the revised
report on Algol 68 [3], where a single Two-Level grammar was used to
define all aspects of the syntax, including the context dependent .
conditions (static semantics) of the language. It is shown that TLG 1s
equivalent to computable function [6] and therefore it is as powerful
as Turing machines, Markov algorithms and recursive functions. This
makes the application of TLG for program verifications and correctness
possible. The class of TLGs have efficiently been parsed by an
LL(1)-based algorithm [4] using the concurrent programming language |
Occam, which makes this class more practical. The formal system TLG 1s
used as practical means to define axiomatic semantics [5], and as a

programming language [7,8,9].

This Eager presents a TLG to define the complete d namic semantics
of a Pascal-like language, incorporating integer variables, procedures,
functions, and several parameter-passing mechanisms known as
call-by-value, call-by-reference, call-by-procedure, and call
by-function. The statements of the language are a531gnment statements,
subroutine calls and conditional statements. The static semantics and
other features such as structured type definitions and other statements
are formally defined in [10] by TLG.

A TLG consists of two finite sets of rules, the metaproductions
(the production rules of a first context free grammar), and the
hyperrules (the model productions). By replacing the strings derived
from metaproductions in Hyper rules, a set of production rules of a
second context free grammar is obtailned. This set is capable of
describing the syntax and the semantics of a language. Formally,
similar to [11, 12], a TLG is defined as a 4-tuple:

w= (X, T, (M, Q), (H, R, S)), where

X is a finite alphabet called the orthovocabulary,

T is a finite alphabet of terminals,

Q is a finite set of context-free productions called metaproductions,
and M is the set of their nonterminals called metanotions. The pair

(M, Q) is called meta-level, +

H 1s a set of hypernotions and is a subset of é(M * I) U X)7, where I
is a set of nonnegatiye integers, R is a set of hyperrules which is a
subset of H * (M U X)"* The triple (H, R, S) is called the hyper-level,

S € H, is the start hypernotion.

. Alternatives in a metaproduction are separated by a semicolon.
Different nonterminals in the same alternative are separated by spaces.
A double colon is used to separate the left and right sides of a
metaproduction. A semicolon separates two alternatives in the same

2

hyperrule and different hygernotions in the same alternative are
separated bg a comma. A colon is used to separate the left and right
sides of a hyperrule.

Tables I and II show the metaproductions and hyperrules defined
for this language. In these Tables:

X is the set of lower case letters, +, -, *, /, +, <>, <, <=, >, >=,
and 1. These characters contribute phrases such as "and", "has block
1", or "exit" in Table II.

T is a singleton set consisted of empty string e.

M is the set of nonterminals of productions of Table I

Q is the set of all productions in Table I.

H is the set of all phrases in Table II, separated by a colon, a comma,
and a semicolon.

R is the set of model productions in Table II.

S is the phrase "BLOCKS and STMTSETY has block 1 STMTSETY1l exit execute
main block " on the left side of HO1, in Table II. .

The symbol €n, where n is an integer, means that the corresponding
hypernotion appears on the left side of the hyperrule numbered Hn.

In making the second context free productions, all occurrences of
the same metanotion in a hyperrule must be replaced by the same
sentence derived from the metanotion. A valid program is defined to
have a parse tree derived from the second context free grammar, The
parse tree of this grammar consists of the semantic subtrees with the
leaves as empty string € to impose the dynamic semantics of the
program.

Table I Metaproductions for the TLG Definition of the Language

MO1 ALPHA A; B; C;...;2; a; b; c;...2.
MO2 AMOUNT undefined; NUMERAL.

MO3 ARG EXPRESSION.

M0O4 ARGS ARG ARGSETY.

MO5 ARGSETY
M06 ARITOPERATOR

ARGS; EMPTY.
+o - ke /.
the ONES th PARSETY VARSETY SUBROUTINSETY nested

OPERAND EXPTAILETY

ARITOPERATOR OPERAND; EMPTY.

funcloc NAME with AMOUNT endfuncloc.
FUNCLOC; EMPTY.

function; procedure.

M16 EXPRESSION
M17 EXPTAILETY
M18 FUNCLOC
M19 FUNCLOCETY
M20 FUNPROC

MO7 BLOCK
in ONSETY block.
M08 BLOCKS :: BLOCK BLOCKSETY.
M09 BLOCKSETY :: BLOCKS; EMPTY.
M10 BOOL :: false; true.
M1l CALL :+: call NAME with ARGSETY endcall
M12 CHAR :: ALPHA; ARITOPERATOR ; RELOPERATOR.
M13 CHARS :: CHAR CHARSETY.
M14 CHARSETY :: CHARS; EMPTY.
M15 EMPTY 28

LL AN T

M21
M22
M23
M24
M25
M26
M27
M28
M29
M30
M31
M32
M33
M34
M35
M36
M37
M38
M39
M40
M41
M42

M43
M44
M45
M46
M47
M48
M49
M50
M51
M52
M53
M54
M55

LoC

LOCS
LOCSETY
NAME
NUMERAL
NUMERALETY
NAMETY
ONES
ONESETY
OPERAND
PAR
PARLOC
PARS
PARSETY
RECORD
RECORDS
RECORDSETY
REFPAR
REFPARLOC

RELOPERATOR

STACK
STMT

STMTS
STMTSETY
SUBLOC
SUBPAR
SUBPARLOC
SUBROUTINE
SUBROUTINS

SUBROUTINSETY

VALUEPAR
VAR
VARLOC
VARS
VARSETY

WO B0 B0 90 40 B8 B0 B0 08 0F B9 00 S8 S S0 B8 80 49 BW B

#8 48 B0 58 ©F B0 B0 99 00 86 00 08 B8 S0 B0 U8 PO 90 B8 S6 S0 80

ae a8

B8 BE B B0 S8 86 46 B4 68 S8 B8 88 B8

B8 B8 B B0 S0 S8 40 00 S8 48 88 86 8

Table I (Continued)

FUNCLOC; PARLOC; VARLOC; SUBLOC .
LOC LOCSETY.

LOCS; EMPTY.

letter ALPHA.

0; ONES.

NUMERAL; EMPTY.

NAME; EMPTY.

1 ONESETY.

ONES; EMPTY.

NUMERAL; NAME; CALL.
VALUEPAR; REFPAR; SUBPAR.
REFPARLOC; SUBPARLOC.
PAR PARSETY.

PARS; EMPTY.

record ONES th LOCSETY link to ONSETY recordend.

RECORD RECORDSETY.

RECORDS; EMPTY.

refpar NAME endrefpar.

ref NAME points to NAME in ONES record endref.
=; <>; <; <=; >; >=.

RECORDSETY.

NAMETY has ONES block; exit; CALL;

assign NAME by EXPRESSION endassign ;

if OPERAND RELOPERATOR OPERAND then STMT else
STMT endif;

begin STMTSETY end;

function NAME return EXPRESSION endfunction.
STMT STMTSETY.

STMTS; EMPTY.

FUNPROC NAME has block ONES endsubroutine.
subpar NAME PARSETY endsub.

sub NAME points to NAME in ONES record endsub.
FUNPROC NAME has block ONES endsubroutine.
SUBROUTIN SUBROUTINSETY.

SUBROUTINS; EMPTY.

valuepar NAME endvaluepar.

var NAME endvar.

var NAME with AMOUNT endvar.

VAR VARSETY.

VARS; EMPTY.

HOl

HO2

HO3

HO4

HO5

Table II Hyperrules for the TLG Definition of the Language

BLOCKS and STMTSETY has block 1 STMTSETY, exit execute main block:
where STACK is record 1 th link to recordend,
gLOCKS agd STMTSETY allocate from 1 th block STACK becomes
TACK 2
BLOCK%’and STMTSETY execute statements STMTSETY, STACK, becomes

STACK,. @16

BLOCKSETY the ONES th PARSETY VARSETY SUBROUTINSETY nested in
ONESETY block BLOCKSETY, and STMTSETY allocate from ONES th block
ARGSETY STACK becomes STACK, @
BLOCKSETY the ONES th PARéETY VARSETY SUBROUTINSETY in ONESETY
block BLOCKSETY, and STMTSETY allocate PARSETY and ARGSETY make
parameter locatlons STACK becomes STACK,, e3
VARSETY make variable locations STACK, %ecomes RECORDSETY record
ONES4 th LOCSETY 1link to ONESETY recofdend , €26
wheré STACK, is RECORDSETY record ONES, th LOCSETY SUBROUTINSETY
link to ONEéETY recordend.

BLOCKS and STMTSETY allocate PARSETY and ARGSETY make parameter
locations STACK becomes STACK; :
BLOCKS and STMTSETY allocaté PARSETY and ARGSETY make single par
location STACK becomes STACK,; @4
where PARSETY ARGSETY is EMP}Y,
where STACK; is STACK.

BLOCKS and STMTSETY allocate PAR PARSETY and ARG ARGSETY make
single par location STACK becomes STACK, :
BLLOCKS and STMTSETY allocate PAR and kRG location for formal
parameter STACK becomes STACK,, @5
BLOCKS allocate PARSETY and GSETY make parameter locations
STACK,
becomés STACK;. @3

BLOCKS and STMTSETY allocate PAR and ARG location for formal
parameter STACK becomes STACK, :
where PAR is valuepar NAME %ndvaluepar,
BLOCKS and STMTSETY evaluate ARG to NUMERAL STACK becomes
RECORDSETY record ONES th LOCSETY link to ONESETY recordend, €6
where STACK, is RECORDSETY record ONES th LOCSETY var NAME with
NUMERAL endvVar link to ONESETY recordend;
where PAR is refpar NAME endrefpar,
obtain ARG in ONES record of STACK, €25
where STACK is RECORDSETY record ONES th LOCSETY ref NAME points
to ARG in ONES record endref link to ONESETY recordend;
where PAR is subpar NAME PARSETY endsub,
obtain ARG in ONES record of STACK, @25
where STACK is RECORDSETY record ONES th LOCSETY sub NAME points
to NAME in ONES record endsub link to ONESETY recordend.

Table II (Continued)

HO6 BLOCKS and STMTSETY evaluate OPERAND EXPTAILETY to NUMERAL STACK
becomes STACK, :
BLOCKS and éTMTSETY evaluate binary expression OPERAND EXPTAILETY
to NUMERAL STACK becomes STACK;; @7
where EXPTAILETY is EMPTY,
BLOCKS and STMTSETY evaluate operand OPERAND to NUMERAL STACK
becomes STACK;. @8

HO7 BLOCKS and STMTSETY evaluate binary expression OPERAND1
ARITOPERATOR OPERAND., to NUMERAL STACK becomes STACK, @
BLOCKS and STMTSET% evaluate operand OPERAND, to NﬁMERALl STACK
becomes STACK,, @8
BLOCKS and STﬁTSETY evaluate operand OPERAND, to NUMERAL,; STACKj
becomes STACK
NUMERAL, ARIT&PERATOR NUMERAL, equal to NUMERAL. @28, 29, 30, 33

HO8 BLOCKS and STMTSETY evaluate operand OPERAND to NUMERAL
STACK becomes STACK
where OPERAND is ﬁUMERAL'
find value of name OPERAND from STACK to be NUMERAL, @9
where STACK., is STACK;
BLOCKS and %TMTSETY call the subroutine OPERAND to NUMERAL STACK
becomes STACK;. @12

HO9 find value of name NAME from STACK to be NUMERAL :
from NAME find NAME, in ONES record of STACK, @10
where STACK is RECOﬁDSETY record ONES th LOCSETY var NAME, with
NUMERAL endvar LOCSETY, link to ONESTY recordend RECORDSE%Y

H10 from NAME find NAME, in ONES record of RECORDSETY record ONES, th
LOCSETY 1link to ONEéETY recordend :
where LOCSETY contains var NAME with AMOUNT endvar,
where ONES 1s ONES
where NAME, is NAM
whgre LOCSETY contalns ref NAME points to NAME, in ONES, record
endref,
cut the RECORDSETY record ONES, th LOCSETY link to ONESETY
recordend at ONES, record to S%ACK @11
from NAME, find NAME, in ONES record of STACK; €10
cut the RﬁCORDSETY record ONES, th LOCSETY llnk to ONESETY
recordend at ONES, record to S%ACK, @11
from NAME find NAME,; in ONES record of STACK. @10

H1l cut the RECORDSETY record ONES th LOCSETY link to ONESETY recordend
RECORDSETY at ONES record to RECORDSETY record ONES th LOCSETY
link to ONﬁSETY recordend : EMPTY.

Table II (Continued)

H12 BLOCKS and STMTSETY call subroutine call NAME with ARGSETY endcall

to

NUMERALETY STACK becomes STACK, @

search STACK for NAME to be FUNﬁROC NAME1 has block ONES
endsubroutine in ONES, record, €13

according to FUNPROC ﬁAMEl make FUNCLOCETY, @14
where STACK is RECORDSETY record ONES, th LOCSETY link to ONESETY
recordend,)
where STMTSETY is STMTSETY,; NAMEl has ONES block STMTSETY, exit
STMTSETY,,

BLOCKS aiRd STMTSETY allocate from ONES th block RECORDSETY record
ONES-, th LOCSETY link to ONESETY recordend record 1 ONES, th
FUNCEOCETY link to ONES,; recordend becomes STACK,, @2

BLOCKS and STMTSETY execute statements STMTSETY, STACK, becones
RECORDSETYl RECORD, @16

NAME could be function to return NUMERALETY in RECORD, @15
where STACK is RECORDSETY.

H13 search RECORDSETY record ONES th LOCSETY link to ONESETY recordend
for NAME to be FUNPROC NAME1l has block ONES; endsubroutine in ONES;

record :

H14 ac

whgrebLOCSETY contains sub NAME points to NAME2 in ONES3 record
endsub, .

cut the RECORDSETY record ONES th LOCSETY link to ONESETY
recordend at ONES3 record to STACK, €11

search STACK for NAME2 to be FUNPROC NAMEl has block ONES,
endsubroutine in ONES, record; €13

where LOCSETY contain§ FUNPROC NAME has block ONES;
endsubroutine,

where NAME1l is NAME,

where ONES, is ONES;
cut the REEORDSETY record ONES th LOCSETY link to ONESETY

recordend at ONESETY record to STACK, @11
search STACK for NAME to be FUNPROC NAME1l has block ONES;

endsubroutine in ONES, record. @13

cording to FUNPROC NAME make FUNCLOCETY :

where FUNPROC is function,)
where FUNCLOCETY is funcloc NAME with undefined endfuncloc;

where FUNCLOCETY is EMPTY.

H15 NAME could be function to return NUMERALETY in RECORD :

where RECORD contains funcloc NAME with NUMERALETY;
where NUMERALETY is EMPTY.

H16 BLOCKS and STMTSETY execute statements STMTSETY1 STACK becomes

STACK,

BLOCKS and STMTSETY execute all statement STMTSETY1l STACK becomes
STACK, ; Q17)

where STMTSETY, 1s EMPTY,

where STACK, is STACK.

H17

H18

H19

H20

Table II (Continued)

BLOCKS and STMTSETY execute all statements STMT STMTSETY; STACK
becomes STACK, :
BLOCKS and éTMTSETY execute single statement STMT STACK becomes
STACK,, @18, 19, 21, 23, 24
BLOCK% and STMTSETY execute statements STMTSETY, STACK, becomes
1 2
STACK,; €16

BLOCKS and STMTSETY execute single statement function NAME return
EXPRESSION endfunction STACK becomes STACK, @
BLOCKS and STMTSETY evaluate EXPRESSION %o NUMERAL STACK becomes
RECORDSETY record ONES, th funcloc NAME with AMOUNT endfunction
LOCSETY link to 0NESET§ recordend , @6
where STACK. is RECORDSETY record ONES, th funcloc NAME with
NUMERAL end%unction LOCSETY link to ONﬁSETY recordend.

BLOCKS and STMTSETY execute single statement assign NAME by
EXPRESSION endassign STACK becomes STACK, :
BLOCKS agd STMTSETY evaluate EXPRESSIO& to NUMERAL STACK becomes
STACK,, @6
acquife NAME to be NAME, in ONES record of STACK,, €20
where STACK, is RECORDS%TY record ONES, th LOCSE%Y var NAME, with
AMOUNT endvar LOCSETY, link to ONESETY recordend RECORDSETY,
where STACK, is RECOR&SETY record ONES, th LOCSETY var NAME, with
NUMERAL endVar LOCSETY, link to ONESET% recordend RECORDSET%.

acquire NAME to be NAME, in ONES record of RECORDSETY record ONES;
th LOCSETY link to ONESﬁTY recordend :
whgrefLOCSETY contains ref NAME points to NAME, in ONES, record
endref,
cut the RECORDSETY record ONES1 th LOCSETY link to ONESETY
recordend at ONES, record to STACK, €11
acquire NAME, to be NAME1l in ONES record of STACK; @20
where LOCSET% contains var NAME,
where NAME, is NAME,
where ONES is ONES,;
cut the RECORDSETY record ONESl th LOCSETY link to ONESETY

recordend at ONESETY record to STACK, €11
acquire NAME to be NAME; in ONES record of STACK; @20

H21 BLOCKS and STMTSETY execute single statement if OPERAND

RELOPERATOR OPERAND, then STMTl else STMTZ endif STACK %ecomes

STACK4
BLO&KS and STMTSETY evaluate operand OPERAND, to NUMERAL, STACK
becomes STACK,, @8
BLOCKS and STﬁTSETY evaluate operand OPERAND, to NUMERAL, STACK,
becomes STACK,, €8
NUMERAL4 RELO%ERATOR NUMERAL, equal to BOOL, @35-40
BLOCKS and STMTSETY based on“BOOL execute STMT, else STMT, STACK,
becomes STACK. @22

H22

H23

H24

H25

H26

H27

H28

H29

Table II (Continued)

BLOCKS and STMTSETY based on BOOL execute STMT; else STMT, STACK
becomes STACK, :
where BOOL 1Is true,
BLOCKS and STMTSETY execute single statement STMT, STACK becomes
STACK,; €18, 19, 21, 23, 24
BLOCK% and STMTSETY execute single statement STMT, STACK becomes
STACK,. €18, 19, 21, 23, 24

BLOCKS and STMTSETY execute single statement begin STMTSETY end
STACK becomes STACK, :
BLOCKS and STMTSE%Y execute statements STMTSETY, STACK becomes
STACK,. @16

BLOCKS and STMTSETY execute single statement call NAME with ARGSETY
endcall STACK becomes STACK; :
BLOCKS and STMTSETY call Subroutine call NAME with ARGSETY
endcall to NUMERALETY STACK becomes STACK,. Q12

obtain NAME in ONES record of RECORDSETY record ONES; th LOCSETY
link to ONESETY recordend :
where LOCSETY contains NAME,
where ONES is ONES,;
cut the RECORDSETY record ONES, th LOCSETY link to ONESETY
recordend at ONESETY record to STACK, €11
obtain NAME in ONES record of STACK. @25

VARSETY make variable locations STACK becomes STACK, :
VARSETY single variable location STACK becomes SﬂACKl; @27
where VARSETY is EMPTY,
where STACK; is STACK.

var NAME endvar VARSETY single variable location RECORDSETY record
ONESl th LOCSETY 1link to ONESETY recordend becomes RECORDSETY
record ONES; th LOCSETY var NAME with undefined endvar link to
ONESETY recordend :
VARSETY make variable locations RECORDSETY record ONES, th
LOCSETY var NAME with undefined endvar link to ONESETY recordend
becomes STACK. @26

NUMERAL, + NUMERAL equal to NUMERAL :
where NUMERAL, is o0,
where NUMERAL is NUMERAL,;
where NUMERAL, is O,
where NUMERAL"is NUMERAL, ;
where NUMERAL is NUMERAL; NUMERAL, .

NUMERAL, - NUMERAL, equal to NUMERAL :
NUMERAL + NUMERAf, equal to NUMERAL,. €28

Table II (Continued)

H30 NUMERAL; * NUMERAL, equal to NUMERAL :
where NUMERAL, i§ O,
where NUMERAL is 0;
where NUMERAL, is O,
where NUMERAL“is O0;
multiply NUMERAL, by NUMERAL, to be NUMERAL. @31

H31 multiply 1 ONESETY by ONES to be ONES ONESETY, :
multiply ONESETY by ONES to be ONESETYl; Q3
where ONESETY ONESETY1 is EMPTY,
where ONESETY, is ONESETY.

H32 NUMERAL, / NUMERAL, equal to NUMERAL :
NUMERAL, < NUMERKLZ equal to true, @35
where NﬁMERAL is 07
NUMERAL4 div NUMERAL, to be NUMERAL. @33

H33 ONES, div ONES, to be ONESETY :
ONES, < ONES, equal true,
wheré ONESETY is EMPTY;
where ONES, is ONES,,
where ONESETY is 1;
divide ONES, by ONES, to have ONESETY. @34

H34 divide ONES, by ONES, to have 1 ONESETY :
ONES,; = ONES equai to ONES,, @29
ONES; div ON%SZ to be ONESE%Y. @33

H35 NUMERAL, < NUMERAL, equal to BOOL :
NUMERAL, - NUMERALq equal to ONES, @29
where BaoL is true;
where BOOL is false.

H36 NUMERAL, <= NUMERAL, equal to BOOL :
NUMERAL, - NUMERAL; equal to 0, €29
where BaoL is truej
NUMERAL, < NUMERAL; equal to BOOL. @35

H37 NUMERAL, = NUMERAL, equal to BOOL :
where NUMERAL, 1S NUMERAL,,
where BOOL is true;
where BOOL is false.

Table II (Continued)
H38 NUMERAL; <> NUMERAL, equal to BOOL :
where NUMERAL, is“NUMERAL,,
where BOOL is false;
where BOOL is true.

10

Table II (Continued)

H39 NUMERAL, > NUMERAL, equal to BOOL :
NUMERAL, < NUMERAL, equal to BOOL. €35

H40 NUMERAL, >= NUMERAL, equal to BOOL :
NUMERAL, <= NUMERiLl equal to BOOL. @36

H41 where CHARSETY 1is CHARSETY : EMPTY.
H42 where CHARSETY; CHARS CHARSETY, contains CHARS : EMPTY.

Let us look at the semantic subtree of a program that contains an
operation "5 ~5". Note that for simplicity we use non-negative integers
in the language and represent them as unary numbers in our grammar. In
order to show that "5 - 5 = 0" is a valid statement, followlng
substitutions in the corresponding hyperrules are made to obtailn the

second context free productions.
Productions Substitutions

1) 11111 - 11111 equal to O drive 11111, 11111, and 0 from
0 + 11111 equal 11111. M25 and substitute them for
NUMERAL, , NUMERAL,, and NUMERAL
in H29 respectiveiy.

drive 0, 11111, and 11111 from

2) 0 + 11111 equal to 11111

where 0 1s O, M25 and substitute them for
where 11111 1s 11111; NUMERAL,, NUMERAL,, and NUMERAL
where 11111 is O, in H28 respectlveiy.

where 11111 is 0;
where 11111 is 0 11111.

3) where 0 is O:. drive 0 from M14 and substitute
in H41.

4) where 11111 is 11111. drive 11111 from M14 and substitute
in H41.

3. The Abstract Program
The following sample program serves as a source example to

illustrate the Stack and Procedure invocation in the formalism
described in Table I and II.

11

program T;
var
R: integer;

function F(n: integer):integer;
begin

i1f n = 1 then F :=

else F :=n * F(n - 1)
end;

gungtion S(function f (a:integer):integer; n:integer) : integer;
egin
gf n =0 then S = 0
else S := f(n) + S(f, n - 1)
end;

begin
R := S(F, 3)
end.

This program evaluates 1! + 2! + 3!.

_ The abstract program consists of two substrings derived from MO8
(which represents the scope of the identifiers) and M42 (which
represents the abstract statements). These two strings are generated
when the static semantics of the program are inspected [10]. For the
program, the first substring generated from BLOCKS is:

the 1 block
var letter R endvar
function letter F has block 11 endsubroutine
function letter S has block 111 endsubroutine
nested in block
the 11 block
valuepar letter n endvaluepar
nested i1n 1 block
the 111 block
subpar letter f valuepar letter a endvaluepar endsub
valuepar letter n endvaluepar
nested 1n 1 block

and the second substring generated from STMTS is:

letter F has block 11
if letter n = 1 then
lfunction letter F return 1 endfunction
else
function letter F return letter n *
call letter F with letter n - 1 endcall
endfunction
endif
exit
letter S has 111 block
if letter n = 0 then

12

1function letter S return 0 endfunction
else
function letter S return call letter f with letter n endcall +
call letter S with letter n - 1 endcall
endfunction
endif
exit
has block 1
assign letter R by call letter S with letter F with 111 endcall
en@2551gn
exi

The compound statement forming the body of each subroutine,
corresponds to the following abstract statement:

NAMETY has ONES block STMT; STMT,...STMT, exit

Since this string is a part of the abstract statements, the unique
string "NAMETY has ONES block" and immediate "exit" determine the
beginning and the end of the corresponding compound statement. NAMETY
represents the name of the subroutine and is the an empty string for
the main program. The metanotion ONES show the block number.

4. Formalizing the Stack and Procedure Invocation.

. In order to define the dynamic semantics of a program, it is
required to have a broad understanding of the "stack" STACK in M41. The
Metanotion STACK can drive a sequence of records RECORD in M35 as:

RECORD; RECORD,...RECORD,

A RECORD holds local information required for either a subroutine call
or the program. It is in the form of :

record ONES th LOCSETY link to ONESTY recordend.

where ONES and ONESETY define the "record number" and the "static link"
respectively. Each "record location" LOC of LOCSETY introduces a
location for a variable, a parameter, or a nested subroutine name 1n

the program.
In the case of a function there is a LOC for its returned value.

Starting from HO1l, the state of the stack before the execution of
the first statement of the program is the following string that must be
replaced for STACK, in this rule :

record 1 th
function letter F has block 11 endsubroutine
function letter S has block 111 endsubroutine
var letter R with undefined endvar

link to recordend

The above string shows that the first activation record has the name of
the function F and its nested block number 2 (i.e. 11), the name of

13

function S and its nested block number 3 (i.e. 111), and a variable R
with its initial value as undefined.

When in the main program the function S(F, 3) is activated, in
order to obtain the correct semantic tree, the metanotion STACK, 1in H12
must be replaced by the string:

record 1 th
function letter F has block 11 endsubroutine
function letter S has block 111 endsubroutine
var letter R with undefined endvar

link to recordend.

record 11 th
funcloc letter S with undefined endfuncloc
sub letter f points to letter F in 1 record endsub
var letter n with 111 endvar

link to 1 recordend

Here the second activation record is added to the stack. In this
record, there is a substring representing a location for function S to
return its value; a substring for formal function parameter f that must
be replaced by actual parameter F (when f is activated); and a |
substring for the value parameter n which receives the value 3 (1i.e.
111) . The substring "link to 1 recordend" describes that the second
record is linked to the first one. Notice that there is no difference

between value parameters and local variables of a subroutine.

When the function f(n) is activated in the body of procedure S,
the metanotion STACK, in H12 must be replaced by the string:

record 1 th
function letter F has block 11 endsubroutine
function letter S has block 111 endsubroutine
var letter R with undefined endvar

link to recordend.

record 11 th
funcloc letter S with undefined endfuncloc
sub letter f points to letter F in 1 record endsub
var letter n with 111 endvar

link to 1 recordend

record 111 th
funcloc letter F with undefined endfuncloc
var letter n with 111 endvar

link to 1 recordend

The first hypernotion on the right side of H12 in Table II refers to
H13. This hyperrule describes how to find the actual parameter F, its
record number (i.e. 1 for ONES), and its block number (i.e. 11 for
ONES,). The second hypernotion on the right side of H12 uses H14 and
make% a substring, representing a location for function F to return its
value. The fifth hypernotion on the right side of H12 which appears on
the left side of HO2 makes a substring for the value parameter n which
receives the value 3 (i.e. 111). The substring "link to 1 recordend"
describes that the third record is also linked to the first one.

14

According to H21 and H18, when the conditional statement in
function F is executed, the string "funcloc letter F with undefined
endfuncloc" in this record is changed to "funcloc letter F with 111111
endfuncloc" to describe that the returned value F is 6 (i.e. 111111).

_ If this process is continued and the complete semantic tree is
derived then STACK, in HOl1 has been replaced by the string:

record 1 th
function letter F has block 11 endsubroutine
function letter S has block 111 endsubroutine
var letter R with 111111111 endvar

link to recordend.

This shows that the value of the variable R is 9.

5. CONCLUSION

The Two-Level Grammar system is based on the familiar notion of
context free grammar. Therefore, the mechanism of the system can be
easily and quickly understood. Since a hypernotion is written as a
pseudo-English sentence, a semantic action can be understood from the
content of its corresponding Hypernotion.

In this paper a Two-Level Grammar is defined to describe the
dynamic semantics of a blocked structure programming language
containing call by value, reference, procedure, and func ion parameter,
with assignment, conditional, and subroutine call statements. The
semantics are defined through the process of driving a semantic parse
tree for a given program. The precise formal definition of each
statement in the program corresponds to a subtree of this tree. The
formal stack in this system is a string of characters derived from rule
M41l. Different strings derived from this rule reflect the changes 1n
the stack and appear in the interior nodes of the semantic tree. Upon

the formal description of the last statement in the program, we have a

complete semantic tree with leaves as empty strings. The formalism
does not give explicit indication of the errors in a program. Any
error stops the process of constructing the semantic tree, leaving no
error message. However, it is possible to add error indications as the

last alternative of most of the Hyper rules.

References

[1] Velazques Ituribide, Formalization of control Stack, Sigplan
Notices, 24, March 1989.

[2] Birtwistle G. and Loose K., A Model for Procedure Passed as
Parameters, Sigplan Notices, 23, Feburary 1988.

[3] Wijngaarden Van A. et al., Revised report on the algorithmic
language ALGOL 68, Acta Inform. 5 (1975) 1-236.

15

(4]

(5]

[6]

(7]

(el

(9]

(10]

[11]

[12]

Fisher A. J., Practical LL(1)-Based Parsing of Van Wijngaarden
Grammars, Acta Informatica 21 (1985) 559-584.

Barrett R. et al., Two-Level grammar as an impletable Metalanguage
for Axiomatic Semantics, Comput. Lang. Vol. 11, No. 3/4, pp.
173-191, 1986.

Kupka I, van Wiingaarden grammars as a special information
processing model, Mathematical Foundations of Computer Science,
edited P. Dembinski, pp 387-401, LNCS 88, Springer-Verlag 1980.

Wijngaarden Van A., Languageless programming. The Relationship
Between Numerical Computation and Programming Languages, edited J.
K. Reid, pp 361-371, North-Holand Publishing Co., 1982.

Edupuganty B. and Bryant B., Two-Level Grammar as a Functional
Programming Language, The Computer Journal, Vol. 32, No 1, pp.
36-44, 1989.

Bryant B. et al., Two-Level Grammar as a Programming Language for
Data Flow and Piplined Algorithms, Proceedings IEEE Computer =
Society 1986 International Conference on Computer Languages, Miami,
Florida, 27-30 October 1986, pp 136-143.

BADII M. "A Study of Two Formal Description Languages
and their Applications to PASCAL" Ph. D. Thesis, Loughborough

University of Technology, U. K. (1981).

Graaf De J. and Ollongarn A., On Two-Level Grammars, International
Journal of Computer Mathematics, 15(1984), pp. 269-288.

Maluszynski, J., Twoards a Programming Language Based on the

Notion of Two-Level Grammar, Theoretical Computer Science,
28(1984), pp. 13-43.

16

7

Hey snake ... A appreciafe 4he oHer.)

bt T [ike F_é_{\[apf&s beHer epTr .
Let's puake MeN +he Geeks

EDWARD AND DORIS MORTOLA LIBRARY

E

UNIVERSITY

PLEASANTVILLE, NEW YORK

	Dynamic semantic specification by two-level grammars for a block structured language with subroutine parameters.
	Recommended Citation

	tmp.1705525204.pdf.FNg0d

