Pace University

DigitalCommons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

12-1-1992

ACM model high school computer science curriculum.

Susan M. Merritt

Follow this and additional works at: https://digitalcommons.pace.edu/csis_tech_reports

Recommended Citation

Merritt, Susan M., "ACM model high school computer science curriculum." (1992). CSIS Technical
Reports. 90.

https://digitalcommons.pace.edu/csis_tech_reports/90

This Thesis is brought to you for free and open access by the lvan G. Seidenberg School of Computer Science and
Information Systems at DigitalCommons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an
authorized administrator of DigitalCommons@Pace. For more information, please contact nmcguire@pace.edu.

https://digitalcommons.pace.edu/
https://digitalcommons.pace.edu/csis_tech_reports
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/csis_tech_reports/90?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmcguire@pace.edu

1] B . FIAYES LignaMy Lurunas i v
GRADUATE CENTER LIBRABEPACE UNIVERSITY
Pace University

SCHOOL OF COMPUTER SCIENCE

AND INFORMATION SYSTEMS

k Ref.
Qa

76

.P3
no.57

TECHNICAL REPORT
Number 57, December 1992

Draft Report

ACM Model High School
Computer Science Curriculum

by the

Curriculum Task Force of the ACM
Pre-College Education Committee

Susan M. Merritt Carol E. Wolf Charles Rice
Committee Chairperson Draft Report Co-Editor Draft Report Co-Editor
School of CS and IS Dept. of Computer Science Computer Science Laboratory
Pace University Pace University The Dalton School

1 Martine Avenue New York, NY 10038 108 East 89th Street

White Plains, NY 10606 New York, NY 10128

UNIVERSITY

G e 1 i e e

Susan M. Merritt is Professor of Computer Science and Dean of the School of
Computer Science and Information Systems at Pace University.

Dr. Merritt holds the Ph.D. in computer science from NYU’s Courant Institute
and has authored many scholarly papers, including "an Inverted Taxonomy of
Sorting Algorithms" which appeared in the Communications of the ACM and,
with Dewar and Sharir, "Some Modified Algorithms for Dijkstra’s Longest
Upsequence Problem" which appeared in Acta Informatics. She continues to do
research in algorithm development as well as in the cultural and educational
impact of information technology.

Carol E. Wolf received a BA from Swarthmore College and an MA and Ph.D.
from Cornell University, all in mathematics. She taught at the State University
College at Brockport and Iowa State University before joining Pace University in
1986 as an Associate Professor of Computer Science.

While at Swarthmore College, she worked as a summer intern on the UNIVAC
I, one of the first commercial digital computers. Her work at Cornell was in
partial recursive functions and recursively enumerable sets. At Iowa State she
became interested in cellular automata and graph grammars. There she
cultivated a general expertise in computer science, a field not yet developed
when she was in graduate school, through several years of intensive study.

At Pace she serves as Chairperson of the New York Computer Science
Department as well as Chairperson of the joint New York and Westchester
Computer Science Curriculum Committee.

U
U
U

Dean Merritt has been Chairperson of the ACM’s Pre-College Education
Committee for the past four years. The present report is a late (but not final)
product of the task force she formed in 1989 to prepare recommendations on the
presentation of computer science in secondary schools. In addition to Dean
Merritt, Dr. Wolf, and Mr. Rice; those who worked on it include Charles J. Bruen
from the Bergenfield High School in New Jersey, J. Philip East from the
University of Northern lowa, Darlene Grantham from the Montogomery County
School System in Maryland, Viera K. Proulx from Northeastern University in
Boston, and Gerry Segal from the Bank Street College of Education in

Manhattan.

NTER LIBRARY

Draft Report

ACM Model High School Computer Science Curriculum

Task Force of the Pre-College Committee of
the Education Board of the ACM

Susan Merritt, Charles J. Bruen, J. Philip East, Darlene Grantham
Charles Rice, Viera K. Proulx, Gerry Segal, Carol Wolf

Introduction

Computer technology has had a profound effect on our
society and world. Every citizen should have some
familiarity with this technology and its consequences in the
home, school, work place and society. Yet since the
details of the technology change from day to day, the study
of the subject has been difficult and so should concentrate
upon those fundamental scientific principles and concepts
which underlie the field.

The Association for Computing Machinery (ACM) made
recommendations for college level computer science
curricula in 1968 [1) and 1978 [2]. The latter was followed
in 1981 [9] and 1985 [8] by recommendations for high
school computer science curricula. A joint task force of
the ACM and the Institute of Electrical and Electronics
Engineers - Computer Society (IEEE-CS) chaired by
Allen Tucker and Bruce Barnes has now published new
proposals for college curricula [11] and [12]. It therefore
seems appropriate to take another look at the high school
curriculum.

In 1989 the Precollege Committee of the Education
Board of the ACM formed a task force to consider the
college proposals and prepare recommendations for a new
high school computer science course. The task force is
composed of high school, college and university faculty
members and computer administrators. This report is the
third draft. The previous two [5, 6] have been extensively
reviewed and many recommendations have been
incorporated.

Background

Scientific studies are an important part of everyones
education. Computer science is unique because it is not
restricted to the experimental limitations of the real
world. Most computing activities must be carried out in

an artificial environment which is designed by people and
not by nature. The ability to use abstraction to build these
models is an essential skill for all to master. These
artificial environments are diverse, ranging from organizing
data in a database which supports the operations of an
institution to defining a virtual world.

Maost people require mental models to feel comfortable in
these new worlds. The difficulties which many experience
when programming their VCRs illustrate this. Background
knowledge of fundamental concepts is as important as
specific operational techniques. Pre-college education is
a natural place to acquire this background.

The original charge to the task force was to develop a
computer science curriculum for secondary schools. It
quickly became apparent that to accomplish this the task
force had to first focus on a clearer definition of computer
science and its value to society. In the course of
developing this definition, the task force realized that there
were many ways to approach and present computer
science.

The task force next identified specific model courses which
seem to introduce high school students to this field
successfully. University curricula and proposals were also
examined to build this definition. The goal of these
investigations was to arrive at an agreed core definition for
computer science which all approaches would use.

The intention is that these courses would be similar in
their scope, depth, breadth and methodology to typical
high school science courses. They should serve all
students in the same way that introductory biology,
chemistry and physics courses do. These courses present
the background of the field, discuss important issues, study
and solve problems in the field, and apply mathematics to
problem solution.

The intended level for a computer science course is
approximately tenth grade. It could serve as a minimal

September 1992 Draft

requirement in itself or as a prerequisite for advanced

computing courses. Student preparation would usually °

include first year algebra and some computing experience.

The focus of the course is on fundamental concepts of
computer science. Several model course curricula show
how these concepts can be presented in different settings
that illustrate their applications. As much as possible,
students should conduct experiments and write programs
that demonstrate the abstract concepts, confirm the theory
and expose the power of computers.

Computer literacy courses which have evolved could be
included in this definition of computer science by adjusting
their contents to contain essential core topics. An example
of such a model will be included in an appendix.

Different options in the method of delivery permit the
course to be adopted in a wide variety of schools, those
with extensive computing facilities as well as those with
minimal computer availability.

The introduction of computers into our society has
brought with it fundamental changes in thinking, and in
the organization and use of information in the workplace
and in daily life. These changes are based both on
theoretical advances in computer science and on
technological advances of computer architectures. Courses
based on these models study both the fundamentals of
theory and technology that made the computer revolution
possible, as well as the impact of this revolution on today’s
society - from both a technical and a social point of view.

Motivation

The current situation in American education makes this an
appropriate time to propose this course.

In 1983, a national commission issued a report
on A Nation at Risk {7], which recommended
a required computer science course and
achievement test.

The ACM and IEEE-<CS [11] and [12] have
again considered the college curricula.

. The emphasis on more rigor and basics in
education dictates a rethinking of the high
school curriculum.

. There appears to be a declining interest in
mathematics and science in high schools at a

2

time of greater national emphasis on
technology issues.

« A declining interest toward computer science
by all students and especially by women and
minorities has also been observed at the
university level.

There has been a lack of clarity as to what
constitutes computer science.

In 1988, an ACM task force chaired by Peter Denning
published a report [3] that offered a clear definition of the
computing disciplines. This task force was followed by a
joint ACM/IEEE-CS task force chaired by Allen Tucker
and Bruce Barnes [11] and [12]. Its report, just published,
details the content both required and elective of the
computer science curriculum.

The 1988 and 1991 reports identify the following subject
areas for the courses in a curriculum in computing and the
recommended course hours.

Algorithms and data structures 47 hours
Architecture 59 hours
Artificial intelligence and robotics 9 hours
Database and information retrieval 9 hours
Human-computer communication 8 hours
Numerical and symbolic computing 7 hours
Operating systems 51 hours
Programming languages 46 hours
Software methodology and engineering 44 hours
Social, ethical, and professional issues 11 hours
Intro. to a Programming Language 12 hours

Course Topics and Models

In designing a high school curriculum to introduce
computer science, it was desired to be consistent with
ACM/IEEE-CS topics which define computer science and
their relative importance. However the curriculum also
must reflect the abilities, interests, and school situation of
high school students. The above topics were used as a
guideline, but were combined in a different grouping to
develop this curriculum.

The task force identified seven areas which provide a
broad introduction to computer science for high school
students. Algorithms, programming languages, operating
systems, computer architecture, and social, ethical and
professional context are included with modified content

September 1992 Draft

from the ACM/IEEE-CS report. Advanced topics include
most of the other topics from the report. A new area,
Computer applications, was added to reflect how some
computer science topics are introduced at the high school
‘avel,

Recommended course hours for these seven areas are not
included since the times allotted depend on the
implementation model

The seven areas are:
Algorithms
Programming Languages
Operating Systems and User Support
Computer Architecture
Social, Ethical, and Professional Context

Computer Applications
Advanced Applications

Essential topics

1. Algorithms
Algorithms in daily life

Techniques used to design and
represent algorithms

Examples of important algorithms

Fundamental problem solving
concepts

2. Programming Languages

Recommended topics

Methods to test algorithms for flaws

Basic data structures

Recognizing the diversity of school systems, teachers and
students, the task force has identified several different
approaches for presenting these computer science areas.
These approaches require the seven areas be introduced
in different ways. The first five areas have been divided
into essential, recommended, and optional topics. Each
approach should cover the essential topics, with students
working on examples, exercises, projects, and reports. The
teacher should introduce as many of the recommended
topics as possible, some possibly only on a survey level.
Other recommended and optional topics should be
covered as appropriate.)

The last two areas include topics which can be introduced
to broaden students’ understanding of computer science by
using computer applications and investigating more
advanced topics. It is recommended that each approach
include at least one topic from these last two areas to
illustrate the current state of the art in some area of
computer science. Additional topics from these areas may
be covered as time permits.

Optional topics

Characteristics of an algorithm
Complexity of algorithms

Limits of computability

Introduction to a specific computer
language

Concept of conditionals and iteration

Levels of language: machine,

assembly, high level, very high level,
natural

Components of a structured
language: assignments, conditionals,
loops, external communication,
subprograms

Compilers, interpreters and
assemblers

Types of languages: procedural,
structured, functional,
object-oriented, parallel

Theoretical machines and formal
languages

September 1992 Draft
3. Operating Systems and User Support

Command language and its use Human-computer communications:
user interfaces, graphics, hypertext,

Files and disk management CD-ROM technology
Communication networks: graphs,
protocols

4. Computer Architecture

Basic computer model: CPU, Boolean algebra and logic: circuits,

memory, I/O gates

Basic data representation: numbers Data representation: bits and bytes,
vs. characters, ascii vs non-ascii binary numbers, real numbers

von Neumann stored program model:

opcodes, registers, clock,
fetch-execute cycle

5. Secial, Ethical and Professional Context

Memory management and virtual
memory

Task scheduling: interrupts, buffered
I/O0

Single and multi-user machines

Accuracy of numerical computation

Physical disk organization
Sequential and parallel processing

Special data representation: graphics,
sound

Data compression

Privacy, reliability and system Electronic crime: stealing and spying Risks and liability in computing
security
Future of computer technology Legal issues
Uses, misuses, and limits of
computer technology Intellectual property, infringements
and penalties
Impact of technology on today’s
society: workplace, daily life
Software: public domain and private
6. Computer Applications
Spreadsheets and data analysis Electronic mail
Data base systems Audio: speech and music synthesis
Word processing and desktop publishing Scientific analysis:lMathematica, Mathlab
Presentation and statistical graphics Simulation: statistics, modeling

September 1992 Draft

7. Advanced Topics

Graphics: image generation, two and three dimensional, artistic

Artificial intelligence: games, expert systems, robotics, knowledge representation

Software engineering and system development: software development cycle, modelling and diagramming

Diverse Models and Course Presentation Methods

Computer Science topics can be presented in a spectrum
of approaches ranging from a concentration on
applications to a concentration on intensive programming.
A breadth first approach can also be used to balance
programming and applications. The task force has
identified a number of models which can be used
successfully to introduce computer science.

These models include:

Applications based
Breadth approach
programming modules
Breadth approach interweaving applications, computer
science topics, and programming

Project development approach using programming
language

Apprenticeship model

Advanced placement (AP) computer science

using applications and

Applications based models illustrate computing concepts
with exercises involving commercial software such as
spreadsheets and data bases. As an example, a discussion
of data representation should accompany the creation of
a spreadsheet or data base. :

In another model, students learn some concepts while
programming and others while using application software.
The applications could be covered first so that students see
what computers can be programmed to do. Then when
they leam to program, they will have some knowledge of
useful software.

Computing topics and applications can be interwoven into
a course that concentrates on programming. The third
model adds breadth to the traditional programming
course. When the teacher feels it appropriate, topics can
be introduced and discussed.

A course concentrating on student developed programming
projects which illustrate computing concepts is another
model.

Another approach suggests an apprenticeship model. In
schools where this is feasible, interested students can learn
much about computing and computers by working with a
master programmer on a real world programming project.

[4]

Finally, many schools offer advanced placement (AP)
courses. These are comprehensive introductions to
traditional university computer science following the CS1
and CS2 programming curricula. AP courses often have
prerequisites but can be offered to some students as a first
level course.

Descriptions of these models including sample syllabi are
contained in the appendices.

These courses are designed to be taught in a full year.
The material that can be covered in one semester does not
give the student full appreciation of the subject and
necessarily omits some of the key concepts of computer
science. However, for practical purposes the task force
felt it necessary to support the option of offering a limited
version of the course in one semester.

Laboratories and Exercises

Laboratories and exercises should give students an
opportunity to carry out experiments that illustrate topics
in a realistic setting and at the same time teach the
specifics of the software used. Students may also be
assigned to work on projects too large to be completed
during a single class period.

Both open-ended, independent, or homework type
assignments and the more directed laboratory exercises
such as in physics and chemistry are recommended.

September 1992 Draft

Students would be given an objective, guidance on how to
achieve it, and supervision. They then report their
findings, not just as programs, but in the form of charts,
illustrations, and written reports- In addition there should
be experimentation with software
algorithms and applications-

Barriers t0 lmplementaﬁon

High schools offer several types
page 11}, often as part of the mathematics, science OF
technology departments. Srudents can tak
study computer applications software in general literacy
courses; learn an introduction 10 programming in a
language such as , BASIC, Pascal, Scheme, Of
Turing; or study AP (advanced placement) computer
science COUrses-

Many college pound students take only 2 general literacy
course because they feel that word processing applications
are important, but pmgramming is not. Computer science
is seen by students and counselors as either 3
p ming course or an advanced honors type course.
They often find programming irrelevant and dull and thus
fail to elect any additional computing COUrses-

In part this may be due to the fact that the current
computer science curriculum (with its emphasis on small
programming projects) leads students 10 perceive
computer science as uninteresting. Students do not leam
what a computer scientist does Of why computer science
is an exciting field- Nor do they see the overall impact of
computing on their lives.

In addition their schedules are usually filled with other

ired for college admission. 'There is no
College Board Achievement Test in computer science.
Thus there is little motivation for them 10 study
computing. (Most also have 3 full program and limited
time outside class t0 experiment with computer projects-)

Many high school computer teachers were educated in
other fields and have minimal formal preparation in
computer science- So i
many teachers effectively teach the use of applications
and/or programming languages; without guidance, most
would need some formal preparation to deal with concepts
from modern computer science.

Moreover, the computing field is changing very rapidly
making it difficult to keep up with developments, and high

computer science. A teacher could be certified in any
subject discipline and then allowed t0 teach computer
science.

Computer teachers arc expected to perform additional
duties outside of the classroom such as monitoring
computer 1abs, servicing computing equipment and

-

providing computer expertise for others in the school.

Guidance counselors, school administrators and the public
at large do not really know what computer science is- In
most schools, computer science courses cannot be used to
fulfill mathematics and science requirements. Thus
guidance counselors often do not recommend that students
take computer science courses. They also have a tendency
1o steer students away from computer science and towards
easier applications SO that the students can maintain the
high averages needed for college admission.

Many high school teachers arc uncertain about college and
university expectations and irements. Itis difficult to
keep abreast of what universities are teaching and what
ton is expected from high schools. College
admissions officers only recognize the significance of the
AP computer science courses in a student’s schedule.

And finally, the poorest schools with the least computer
ioment often serve 1arge minority populations- To
attract minority students into computing, COUrses must be
adaptable t0 technology limited settings-

Task Force Activities

The task force was formed in 1989, had a number of
meetings, and them presented preliminary results at
conferences in 1991 (CSC 91 in San Antonio and NECC
%91 in Phoenix) and in 1992 (CSC '92 in Kansas City and
NECC 92 in Dallas). Also several workshops for teachers

were held in 1992.

In addition, the second draft report (November 1991)
together with 3 short ;onnaire was sent out 10 over
1000 reviewers in fall 1991 and winter 1992. Over 200

tionnaires were returned. In their nses most
high school teachers welcomed a definition of computer

September 1992 Draft

science and a discussion of its important topics. They
indicated that it would be very useful to have specific
curriculum models.

Most university faculty indicated a willingness to support
efforts to improve high school offerings. They recognized
the importance of a proper introduction to computer
science at the high school level.

Summary

The task force is charged with developing a high school
course in computer science. The proposal contains topics
from seven important computing areas including a number
of applications and advanced topics, that are consistent
with the new ACM/IEEE-CS university recommendations.
In addition, six models incorporating these topics have
been listed together with syllabi for some of the models.

The proposal not only describes the list of concepts which
these courses should cover, but also addresses the delivery
of the material in a wide variety of circumstances. The
task force recognizes the barriers that may hinder the
implementation of these courses and is working to provide
solutions to some of these problems.

References

1. ACM Curriculum Committee on Computer Science,
Curriculum '68. Communications of the ACM, 1968.

2. ACM Curriculum Committee on Computer Science,
Curriculum *78. Communications of the ACM. 1979.

3. Denning, P., Comer, D., Gries, D., Mulder, M., Tucker,
A., Tumer, A., and Young, P., Report of the ACM Task

Force on the Core of Computer Science. ACM Press, NY
1983.

4. Harvey, B, Symbolic Programming vs. the A.P.
Curriculum, The Computing Teacher, pages 27-29,

February 1991.

5. Merritt, S., Bruen, C., East, P., Grantham, D., Rice, C.,
Proulx, V., Segal, G., Wolf, C., ACM Model High School

Computer Science Curriculum, Task Force of the
P, olle; mmittee_of the Education Board of the

ACM., June Draft Report, June 1991.

6. Memitt, S., Bruen, C,, East, P., Grantham, D, Ricc,C

Proulx, V., Segal, G., Wolf, C, ACM Model High Schoo
Computer Science Curriculum, Task Force of thc

1l mmittee of the Education of th
ACM, November Draft Report, November 1991,

7. National Commission on Excellence in Education, A

Nation at Risk: The Imperative for Educational Reform,
Washington, D.C: US Government Printing Office, 1983.

8. Rogers, J., Achberger, F, Aiken, R., Arch,], Haney,
M., I.awson, J., Lemke, C., Swanson, T., Tumolo, S.,

mpuyter in Second ools: ntent.
Communications of the ACM, March 1985, pages 270-274.

9. Rogers, J. and Austing, D., Computer Science in
Secondary Schools: Recommendations for a one-year
course. In Topics: Computer Education for Elementary
and Secondary Schools. Joint Issue Education Board
ACM/SIGCES and ACM/SIGCUE, January 1981, pages
48-54.

10. Taylor, H. and Aiken, R., Informatics in Secondary
Schools, Draft report, July 1991.

11. Tucker, A., Bames, B., Aiken, R., Barker, K., Bruce,

K., Cain, J.T., Conry, S., Engel, G., Epstein, R., Lidtke, D

Mulder, M., Rogers, J., Spafford, E., and Turner, AJ,
omputin icula 1991, Report of the A TEEE-CS

Joint Curriculum Task Force, ACM Press, NY 1991.

12. Tucker, A., Bames, B., Aiken, R., Barker, K., Bruce,
K., Cain, J.T,, Conry, S., Engel, G., Epstein, R., Lidtke, D
Mulder, M., Rogers, J., Spafford, E., and Tumer, AJ, A
f the A IEEE oint iculum Task
Force Report omputin Curricula 1991,
Communications of the ACM, June 1991, pages 63-34.

13. Tucker, A. and Gamick, D., A Breadth-First

Approach to the Introductory Curriculum in Computing,
preprint.

September 1992 Draft
Appendix A: The ACM/IEEE-CS Report

According to the ACM/IEEE-CS report [11, page 9],
’computing is simultaneously a mathematical, scientific,
and engineering discipline,’ so 'different practitioners in
each of the nine subject areas employ different working
methodologies, or processes, during the course of their
research, development, and applications work’ The three
processes are theory, abstraction and design. Theory is
mathematical, abstraction involves constructing hypotheses
from data and design is 'rooted in engineering’.

The task force described in some detail the topics in each
area which computer science students should know. These
were called ’knowledge units’ (KU’s). They also listed
elective topics. These topics were arranged in a number of
sample curricula. The report also divided laboratory work
into that done in open and closed labs. The former
consist of the usual homework assignments which students
do on their own time. The latter are performed during
scheduled times with an instructor present. A specific task
is to be accomplished during the time allotted. For high
schools this translates into projects that can be done in
one or two class periods (closed labs) versus ones that
require time outside of class for preparation (open labs).

One recommendation that grew out of the 1988 report [3]
was that computer science be taught on the physics and
chemistry models. These curricula begin with broad but
non-trivial surveys of the fields. Subsequently those
majoring in these disciplines study specialized areas in
depth. This broad-based approach is described in more
detail by Allen Tucker and David Gamick in [13]. Tucker
and Gamick also added social context to the three
processes of theory, abstraction and design.

Appendix B: The Second Draft Report and Its Evaluation.
Viera K. Proulx, Northeastern University, MA

In November 1991 the first Draft Report was sent to over
1000 individuals from high schools and colleges for
comments and critique. The evaluators were asked to
reply to nine specific questions, and to add any other
comments they thought would be helpful. The task force
received 183 responses, 30 of them from college
instructors, 152 from high school teachers or
administrators, and 6 which fit into other categories. The
overall reception of this new curriculum was positive, but

8

there were several areas of concern that the task force has
addressed in this draft.

Questions 1 and 2.

The first two questions focused on the place of computer
science as a subject in a high school curriculum. The
questions were:

1. Do you feel that it is a good idea to develop a high
school computer science curriculum as described in the
Draft Report? If no, why not? What alternatives would

Yyou suggest?

2. Is the proposed course in the Draft Report a good
way to make computer science a more valuable subject to
extend a student’s computing knowledge?

The answers to the first question were overwhelmingly
positive, but a higher percentage of the college
respondents had doubts. While 82% of high school
reviewers responded positively to the second question, only
50% of the college respondents did - a full 40% were not
sure that this was a good way to make computer science
a more valuable subject.

The majority of comments on these two questions were
concermed with clarification of some of the goals of the
course. The first comment was "where does the course fit
into the curriculum" - compared to literacy courses at the
low end and the Advanced Placement Pascal course at the
high end. Others asked for a statement about the benefits
of teaching and/or taking this course, the expected
outcomes, and what new knowledge will the students gain
from the course.

The task force expects that this course will serve the same
purpose as a typical science course - similar to leaming
about cells, and classifying living things which one does in
biology, or similar to learning the periodic table, the
composition of molecules, and the basic laws of chemistry,
etc. It is not intended to be a computer literacy course,
nor is it a programming course. Some programming is
needed to explain the tools a computer scientist works
with, but emphasis should be on concepts and algorithmic
thinking. At the end, students should understand how a
computer works and what computer scientists need to do
to make the computers as powerful and useful as they are
today; what are the limits of what a computer can do, and
what are the effects of computer technology on today’s

September 1992 Draft

society. In order to understand this, students will have to

learn a new way of reasoning and problem solving - -

namely working out the solution in the form of an
algorithm (expressed in natural language, as well as in
program form).

Some respondents commented that what makes this course
valuable is that it shows computer science is not just
programming, that it differs from ’hacking’ often present
in programming courses, and it teaches new valuable ideas,
skills, new types of reasoning, and problem solving; goes
beyond the syntax of the language.

Others voiced concern about the course being too
ambitious, or asked the task force to clarify the depth and
approach to various topics. The list of topics by itself
could certainly fill two years of a college level curriculum.
To illustrate the intended depth of coverage and possible
methodologies for introducing the material the task force
has included in this draft several sample course syllabi to
show typical implementations of this curriculum.

Questions 3 and 4.

The next two questions, concerning the selection of topics,
skills, and priorities suggested for the course, were:

3. Does the Draft Report identify all of the key areas
of computer science as you would define it? If no, which
topics should be included/deleted?

4. Does the Draft Report place the proper priorities on
suggested topics and skills desired for a high school
computer science curriculum? If no, suggest changes.

About 71% of all respondents felt all key areas have been
listed. While 66% of the high school respondents felt that
the draft curriculum contained the proper priorities on
topics and skills, only 37% of the college respondents
agreed - another 37% were not sure, and 27% thought the
priorities were wrong. To find out what were the main
concemns we made several wish lists from comments
received.

Wish Lists
College respondents would like to add testing, correctness,
and reliability, ethics and privacy (already there), the role

of mathematical and logical reasoning, problem solving,
algorithmic thinking (there already, but needs to be

9

emphasized), and computer support for group work.
Among the items suggested for deletion were Turing
machines, computational complexity, existence of
non-computable functions, shortest path and graph
algorithms, normal distributions, interrupts and buffered
1/0, and advanced graphics. The task force feels that all
of these topics can be explained to high school students on
a conceptual level, together with a few basic exercises to
illustrate the point.

Others commented that the breadth first approach is good,
students will learn what computer science is about, and if
they wish to continue, they will have the material again
anyway (in a manner similar to the first physics course - in
high school and in college).

The wish list of the high school teachers can be
characterized as "take away the topics that we, the
teachers, have never learned - they are too hard® and "add
all the exciting stuff that is just happening - we want to
know, and our students want to know”. So the "Add" wish
list consists of hardware, transistors, chip building,
conversion of data formats, files, databases, graphics,
fractals, animation, sound, virtual reality, hypermedia,
supercomputing, telecommunications, communications
links, project management, problem solving, processes of
learning, structured design, number theory (Fibonacci
numbers), sorting - searching - arrays, more simple math.
The "Delete” list contains computer architecture, circuitry,
electronics, assembly language, networking, statistics,
theoretical computer science, expert systems, and all topics
in the AP course (one respondent).

Question 5.

The fifth question focused on justification for such a
course:

5. Does the Draft Report identify a clear justification
for a high school computer science curriculum? What
suggestions can you offer to make the need for computer
science studies stronger?

Over 75% percent of respondents thought the justification
was clear, others suggested improvements. College
respondents asked to emphasize the preparation for a
computerized society, and that students are at a
disadvantage without it. They asked to emphasize the new
kind of reasoning, and also broad applications, and
integration with other subjects. The high school

September 1992 Draft

respondents agreed: emphasize that job qualifications are
changing and so the preparation needs to change too.
Mention the Education 2000 goals, mention that it fits in
with the new "applied education” wave, emphasize the
place of this course between applications and
programming, talk about the computer as a problem
solving tool.

Question 6.

The sixth question looked at the role of this course in a
student’s preparation for university studies:

6. If a student completes a computer science course
such as the proposed course in the Draft Report, will this
improve the student’s preparation for general or scientific
studies at the university level? If no, what improvements
should be made to computer studies?

Sixty seven per cent of college respondents thought this
would be a good preparation, some commenting that
students will benefit from better problem solving skills.
Most of the others were unsure (27%) - they had doubts
that the course would be done right, whether it is too
engineering oriented, or whether a math course, general
broad education, or a course on relevant applications,
would not be better.

The high school respondents were more enthusiastic - 8%
agreed. They felt that colleges need to require such
courses for admission. It needs to count for credit
towards high school graduation. The depth and the level
of presentation needs to be good for the course to be
beneficial. It will help if colleges require the use of
computers. Some wondered whether the course is t0o
technical, whether other subjects are not more valuable,
whether it is suitable for pre-med and pre-law students.

Questions 7 and 9.

Questions seven and nine asked for comments on the
clarity of the report, suggestions for changes, and for the
problems that need to be addressed:

7. Are any parts of the Draft Report unclear or difficult
to understand? Please make suggestions to improve any
part(s) of the Draft Report which are unclear to you.

9. If the Draft Report curriculum receives wide
acceptance, what suggestions would you make to

10

implement it in your school, school district, state education
department, or throughout the country?

Most felt the report was clear, some asked the task force
to comment on its impact on women and minorities,
others pointed out that a report to ACM should be
different from a report to administrators.

Question 8

8& Would you like to be a reviewer of the next Draft
Report?

Many respondents wished to see the next report.
Altogether, 78% of the high school evaluators and 87% of
the college marked yes.

Appendix C: Breadth Approach Interweaving
Applications, Computer Science Topics, and
Programming.

Charles W. Rice, Dalton School, NY, NY.
Description

This course outline is a summary of the introductory
computer science course which is taught at the Dalton
School. The course is designed for students with no
computer background. It is assumed that students have
studied some algebra. In most cases students have used
a computer in some context. Students range from 9th to
12th graders.

There are several aims for the course. First a student will
learn how to solve a variety of problems using a computer
by programming methods and other application
techniques. Second the course will give a student an
understanding of what computer science is, how it differs
from other fields and how it can contribute to other fields
of study.

The course primarily uses classroom discussions and
student lab work techniques to introduce and master
material. Some topics are covered by class lecture, but it
is always better to keep the students actively participating
in some topic. @~ The course is broken up into
approximately 3 week long assignment periods. Minimal
tests are given because the students constantly
demonstrate what they know and how well they are

September 1992 Draft

learning. The course is designed so that the students will
perform most of the work during scheduled class periods.
Computers are available for all class periods but not
always used.

Pascal, Turing and Fortran programming languages have
been used at different times to conduct this course, but the
course does not depend on any specific language. The
language is used only to give a student a method to solve
different types of problems using a computer when
problem solutions must be designed, implemented and

analyzed.

A list of computer science discussion and lecture topics
are referred to in the course outline. These topics are an
important part of the course. The topics are presented to
students at various times throughout the course. It is
important to note that not all of the topics are presented
every year or to every student. Selection of specific topics
is made depending on the type of student and amount of
time available.

These topics are usually presented by discussion and
demonstration. The order that the topics are presented is
suggested in this outline but is not rigid. A topic is
sometimes omitted or moved to a different assignment
period.

Problem and lab work topics included in the course
outline are designed for students to work on during lab
class periods. The purpose of these assignments is to give
a student a chance to learn by investigation. Students will
learn how to solve problems using the computer with
applications and by writing programs. In addition some
assignments are designed to explore important underiying
computer science principles. A detailed assignment sheet
with required and optional exercises is provided for each
of these assignments.

By the end of the semester or year the students have
learned to solve problems using programming and other

methods but have also been introduced to the wider
spectrum of the computer science field.

Course Outline: First Semester

Assignment 1: Introduction to Computers, Computer
Science and Computer Applications

1

Assignment 2:

Assignment 3:

Assignment 4:

Assignment 5:

Discussion and Lecture Topics: 1, 2, 3, 4,
20 and 21.
Problem and Lab Topics:

Program Familiarity: enter it, operate it,
analyze it

Computer Applications: spreadsheets -
solve simple problem or project using
this technique

Algorithms and Computer Science
Background

Discussion and Lecture Topics: §, 6, 7, 8,

9, 10, 11, 12 13, 14, 16, 17, 26, 29, 30, 31,
32, 34, 39 and 41.

Problem and Lab Topics:

Algorithm Solutions(2): prepare and
analyze an algorithm, informally analyze
other students work '

How Computers Work and Computer
Science Background

Discussion and Lecture Topics: 15, 19,
22, 23, 24, 25, 35, 36, 37, 40 and 42.

Problem and Lab Topics:

Electronic Circuits: conduct experiments,
prepare lab report

Mid Semester Test
Introduction to Programming

Discussion and Lecture Topics: 38, 43,
49, 50, 51 and 52.

Problem and Lab Topics:

Programming Assignment 1:
assignment, 1/O, documentation, testing

Using Feedback and Decisions to Solve
Problems

September 1992 Draft
Discussion and Lecture Topics: 45
Problem and Lab Topics:

Programming Assignment 2: decisions,
loops, procedures, testing

Assignment 6: Using Alphabetic Data
Discussion and Lecture Topics: 44
Problem and Lab Topics:

Programming Assignment 3: array and
strings

Course Outline: Second Semester

Assignment 7: Simplifying Complex Problems and More
on how Computer Hardware
Components Work

Discussion and Lecture Topics: 25, 27, 28
and 30

Problem and Lab Top_ics:

Programming Assignment 4: abstraction
and decomposition using subroutines and
functions

Computer Combinatoric Circuits: flip
flop, binary counter, adders, 7-segment
display; conduct experiments and write
lab report

Assignment 8: Data Storage, Data Design and
Knowledge Structures

Discussion and Lecture Topics: 17, 18, 46
and 53

Problem and Lab Topics:

Programming Assignment 5: data storage,
records, files

Artificial Intelligence: Knowledge
Systems Expert system experiment and
lab report

Mid Semester Test

Assignment 9: Computer Graphics and Sound

Generation
Discussion and Lecture Topics: 47
Problem and Lab Topics:

Programming Assignment 6: using
simple graphics and sound

Assignments 10 and 11: Solving Real World Problems

and Projects
Discussion and Lecture Topics: 48
Problem and Lab Topics:

Guided Independent Project Assignment:
proposal, feasibility study, task
definitions, peer design review and
walkthrough, PERT chart, progress
report, final documentation, peer final
testing review walkthrough

Note For the course offered in 1991-92 the following
topics were covered at some time during the year:
2,3,4,5,6,7,8 910,11, 12, 13, 14, 15, 16, 17,
19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 34, 36,
37, 38, 41, 42, 47, 48, 49 and 53.

The following topics were omitted: 1, 18, 27, 28,
33, 35, 39, 40, 43, 44, 45, 46, 50, 51 and 52.

Also Assignment 9 was omitted.

List of Discussion and Lecture Topics

General Topics

1.

Evolution of Computer Science: math,
physics, electrical engineering, management,
science, linguistics, psychology

Four interest areas of Computer Science &
applications: algorithms, programming
languages, operating systems, architecture
Computer Science topics: general
applications, professional and ethical issues

September 1992 Draft

14.

10.

16.

Types of computers: microprocessor, micro,
mini, mainframe, supercomputers

Contrasting types of computers: analog and
digital

General uses of computers: control,
simulation, design, communication, education,
Al

4]. Social and societal issues with computing,
examples and cases: crime, privacy, risks,
reliability, viruses, legal issues, misuses

General Application Topics

3. Computer tools introduction and use:text
editor, word processors, spreadsheets, data
base, presentation software, hypercard,
multimedia

20. Computer tools: spread sheets and problem
assignment

21. Computer tools: electronic mail and problem

assignment

Computer Science Application Topics

17.

18

45.

47.

Artificial Intelligence: computer uses and
examples expert systems, games, theorem
proving, robotics, image recognition, natural
language

Neural Networks: what look like, how they
work, differences (use handout sheet)

Computer simulations: examples,
nondeterministic, random numbers

Computer database systems: purposes, simple
and complex types, examples

Computational problem examples: fractals,
etc.

Software Engineering Methodology: systems

analysis, project management, PERT, life
cycle

13

Data Representation Topics

4.

7.

44,

Hierarchy of data inside and outside a
computer: bit, nibble, byte, word; element,
field, record, file, library

Why 8 bits in a byte?

Information representation in binary, how
data is stored and why: numbers, characters
and symbols, operations, pictures, sound
Codes: ASCII and variable length codes

Data compression: huffman coding, other
techniques

Computer Language Topics

13.

49.

52

Computer Ianguages and levels from machine:
machine, macro, assembly, high level, very
high level, 4GL, natural

How procedural computer languages are
organized and designed: data and data
structures, statements, assignment, control,
I/0, subprogram, declarations, special

Types programming languages and examples:
structured, procedural, functional, logic,
object oriented

Linguistic design techniques for computer
languages: BNF

Computer Architecture and Design Topics

11.

Computer processing: sequential and parallel
examples

12. Types of parallel processing problem solution

15.

possibilities: none, minor improv, binary
improv, one step, pipelining

Computer architecture: chips define the
computer and its functions (8080, 80286, 6500,
63000 etc.), types of chips: CPU, memory,
communication

September 1992 Draft

8

9.

37.

19.

24,

42.

53.

Computer memory: characteristics K (size),

Herz (speed), flipflops

Computer memory: types (RAM, ROM,
PROM, EPROM, DRAM, etc.)

Conceptual and functional organization of
computers

Computer architecture: simple hand computer
example; terms: register, clock, address,
machine instructions, etc.; simple problem
flow through

Parallel processing architectures: ring, grid,
network, specific machine examples

Semiconductors: switch, composition and how
it works, different types

Boolean logic, gates and truth tables:
AND/OR/NOT, schematics, symbols, other
gates possibilities

Binary numbers: how represented, how
arithmetic and logic work, base 10 differences

Combinatoric circuits and boolean problem
solutions: purposes, construct with gates, truth
tables, data flow through; 3 types in computer:
arithmetic and logic, storage, communication
and bus

Electronic lab assignment
Micro computer system schematic diagram

Switching device hardware-generations: relay,
vacuum tube, transistor, IC, optical?

Computer Disk Storage: conceptual -
directory, tree structure, special sectors;
physical - byte, block, sector, track, cylinder,
R/W mechanism

Algorithms and Problem Solving Topics

26.

Algorithm characteristics: finite, definite,
generalized, produce results, effectiveness

14

31

32.

Types of algorithm: enumeration, iteration,
trial and error, divide and conquer

Computer algorithms: require logic and data
structures

Algorithm problem complexity classifications
and examples: trivial, tractable (simple and
complex), intractable, impossible (paradox)

Algorithm constructs and regular structures
needed: requirements - sequence, branch,
repetition, subroutines; structures - counting,
totaling, swapping, comparing, save a value

Algorithm representation techniques: list,
flowchart diagram, structured narrative,
program

Flowcharts including assignment: symbols,
structure, examples, advantage and
disadvantage

Warnier-Orr diagrams including assignment

Structured narrative including assignment: top
down, outline form, symbols, decomposition,
advantages and disadvantages

Steps to take an idea through a computer
system: idea, result?, solve by hand,
algorithm, program, enter, compile, test and
debug, accept?

Operating Systems and User Services

43.

39.

51.

Operating systems: purposes, how they work,
DOS, GUI and examples

Types of computer system processing
techniques: batch, timesharing,
multiprocessing, distributed processing
networks

Compilers and Interpreters: difference; how
they work - lexical analysis, syntactic analysis,
code, optimization, source code, object code,
machine operational code transformations

September 1992 Draft

Appendix D: High School Computer Science Using
Programming Projects

J. Philip East, University of Northern Iowa, IA.

The basis for this work is a contention that project-based
computer programming and associated study is a better
way to introduce students to computer science and
programming than a language oriented course. Included
in the discussion below are the major guidelines or beliefs
that influenced the design of the course, some general
management information, and an example showing one
possible instantiation of such a course.

Course Foundation

A course in programming seldom has as its primary goal
the development of student knowledge of the language.
Rather, we typically want the students to develop general
skill in program design and implementation. Additionally,
we would prefer to have students leam something of
"computer science” while they are learning programming.
Project-based programming can be used to meet both
these goals, so long as one is careful about the teaching of
"programming” and in the selection of projects. The
programming instruction needs to focus on concepts rather
than language syntax and semantics. The projects need to
be selected or designed to illustrate various areas of
computing and to provide motivation for discussion about
them-to go beyond just the programming necessitated by
the project. These notions are the basis for the discussion
below.

A major conclusion about this course is that learning
programming requires leaming both programming
concepts and a programming language. It is not, however,
necessary to learn both at the same time. Indeed, it would
seem difficult for students to focus on the concepts while
simultaneously being required to produce products
(programs) that absolutely require kmowledge of the
language and which will determine their grade in the
course. Thus, it is proposed that the concepts of
programming--the knowledge, skills, and processes often
called problem solving--be taught prior to the introduction
of a programming language.

In a procedural programming environment, the concepts
of programming are, primarily, threefold. First, there are

15

a few limited fundamental actions that computers are
capable of (principally input, output, and assignment).
Second, there are a few limited ways to organize these
actions, Le., sequence, selection, iteration, and modularity
and recursion. Third, data is necessary and consists of
various types of low level data elements (numbers and
characters primarily), various organizations of such data
elements (arrays, etc.), and using the elements and
organizations to represent more complex information such
as sound, graphics, a business enterprise, etc. All of these
concepts are, in themselves, relatively easy to communicate
and comprehend. When they get mixed in with

programming problems requiring actual working, coded
programs they become quite complex.

Arguably, developing expertise with a particular language
is relatively simple provided one already understands the
concepts of programming. Thus, for this course the
standard programming concepts noted above will be
introduced and learned prior to any use of a language.

Programming can be thought of as skill in organizing
instructions for the computer. As with any skill, some
knowledge is required before one can develop the skill
We will not be able to begin directly with programming
projects. The first "project” will be devoted primarily to
basic programming knowledge acquisition. Later projects
can be selected to expose students to a cross-section of
computing and to appeal to expected student interests.

Most of the modules will share a number of management
and methodological characteristics. While student interest
will be considered in the selection of specific projects, a
(the) major motivational factor will be intellectual
challenge. Generally, class discussion and other activity
including algorithm and program development will likely
be group-based. Each module will end with reflection on
what has been learned and on the social and professional
context of computing that relates to the module’s topic. It
is likely that grading in the course will be based primarily
on performance on the programming projects and other
assigned activity rather than examinations.

Course Synopsis

Background including how computers work, logic,
pseudocode, simple programming statements, and data
representation is presented first. Later work will use
and/or build on this groundwork. The approach taken

September 1992 Draft

here is that the computer is nearly magic in what it does
but yet quite simple and easily understood. Next students
get a chance to examine the area of artificial intelligence.
The programming language will be formally introduced
and students will see the importance of data organization
in computing. The third module/project is less
programming intense. It provides an opportunity for
students to examine human-computer communication and
to write modules based on their experience, teacher
lecture, and research into the area. Next, students will
tackle a database and information retrieval project.
Beginning with a broad problem statement, students (in
groups and with the guidance of the teacher) will explicate
requirements and specifications, design the algorithm and
data organization, and implement and test the program.
The fifth project involves simulation of a component of a
standard architecture or operating system. By simulating
the system, students will better understand how it works as
well as have encountered the important idea of system
simulation. The final preplanned module will be the
programming of a component of a language translator.
Students will incorporate program components written in
earlier projects. For the duration of the year, students will
be able to design and implement a system of their choice.
The only restriction will be that the project must introduce
the student to something new.

Course Topics and Process
1. Groundwork

The purpose of this module is to provide students with the
knowledge and skills basic to an understanding of
programming. The content includes 1) the basic (machine
level) capabilities of computers and the context for those
actions—the instruction cycle; 2) the representation of data
and ways of collecting or organizing data (both physical
and abstract); 3) ways for organizing actions on data—in a
procedural language: sequence, selection, iteration, and
modularity (with recursion)-and the representation of
algorithms using pseudo code (and/or flowcharts); 4) the
logic necessary to facilely interpret and produce the
conditionals used in selection and iteration; and 5)
problems associated with finite representation of infinite
values.

Weeks 1-2: The Magic of Computers. Through lecture,

discussion, class activity, and video students will be
introduced to the computer as a very limited device which

16

through speed and human ingenuity in representation of
problems and data can be used to accomplish myriad
complex tasks. (The model of activity presented here—-the
instruction cycle-—-should be used to explain later concepts.)
An introduction to pseudocode and data
representation/structures (e.g., pictures, sound, etc. as well
as arrays, sets, files, trees, etc.) will provide students with
insight into how such a simple device can be used so
extensively. Student activity is primarily to listen and
think. At the end of the unit, students will write a paper
describing the capabilities of computers.

Weeks 34 Logic/Thinking. Primarily through examples,
practice, and recitation and criticism students will gain
facility with conditional expressions and pseudocode
algorithms for the solution to problems expressed in
English. Student activity has three major components,
each of which will involve teacher provided examples and
feedback on student performance. The activities are 1)
exercises for developing an understanding of logic and
interpreting conditional expressions and pseudocode
algorithms, 2) exercises for transforming English
expressions of problems into pseudocode involving
conditionals, and 3) practice developing pseudocode
algorithms for multiple-step problems expressed in

English.

Weeks 56: Machine Representation of Numbers.
Through an introductory lecture and a series of closed
laboratory experiences students will be exposed to
problems associated with the computer representation of
numbers. Individual reasoning and class discussion will be
used to identify potential problems related to numeric
computation on computers. Students will have homework
exercises that relate to interpreting and understanding the
outcomes of laboratory exercises. These activities will be
followed by a group discussion of conclusions and
principles with respect to this area and by a programming
activity that tests students understanding and utilization of
the principles. The programming project will be coded
with significant help from the instructor. Students will
gain experience in the mechanics of programming--editing,
compiling, debugging, and eventually running a program.

Week 7: Reflection. Class discussion and individual
student reflection will address machine-level and general
capabilities and limits in computers, reliability and numeric
accuracy of computer programs, and review of pervasive
use of computers in modem society.

September 1992 Draft
2. Twenty Questions

This project introduces students to the exciting or
intriguing area of artificial intelligence. The twenty
questions game provides a basis for discussion of the area
and various themes within Al such as knowledge
representation and search of or access to knowledge.
Students will also receive more programming background
in the form of syntax diagrams for better understanding of
the syntax and semantics of a particular language. The
program itself will require the use of sophisticated data
structures and can be used to introduce the importance of
data structures in computing.

Week 8 Al and Twenty Questions. This overview of
artificial intelligence and the introduction to the game of
twenty questions will be provided primarily through
lectures and student readings. Various elements of Al will
be discussed and illustrated, when possible, with the twenty
questions game. Students will respond to homework
questions from the overview of Al.

Week 9: Twenty Questions Algorithm. Class activity will
be devoted to discussing the problem and developing an
algorithm and data structure for the problem.

Week 10: Our Programming Language. The teacher will
provide general instruction in interpreting the syntax and
semantics of elements of a programming language.
Students will work exercises to enhance their
understanding of the language syntax. They will also get
additional practice in converting pseudocode to code.

Weeks 11-12: The Program. Students work to implement
the program. Class time is spent discussing problems and
otherwise working on implementing and testing the
program. Difficulties will be noted and recorded for later
discussion.

Week 13: Reflection. Class discussion and individual
student reflection will address software development
process, determining program correctness, and applications
and limits of Al in our society.

3. Human-Computer Communication
This module will introduce students to the area and

methodology relating to designing good program

17

interfaces. The associated need for validity-checking of
data will also be included.

Week 14: Issues and Problems. Through lecture,
discussion, class and individual activity, and video students
will be introduced to 1) the various media/modes of
communication, 2) the need for valid data, and 3) ways to
enhance efficient and effective communication. Students
will hear and read about these concepts and experience
them through the use of various programs. Initial student
activity will be to listen to, read about, and discuss various
issues. Next students will begin to formalize the issues by
noting good and bad characteristics of program interfaces
they experience and by responding to teacher questioning
and probing after those experiences. Ultimately, groups or
individuals will develop explicit guidelines for developing
user interfaces.

Weeks 1516 Components of Human-Computer
Communication. Students will discuss alternatives for
various types of human computer interaction including
data entry (e.g., simple input such as number of trials,
record input such as sales data, extended or varied input
such auto service requirements) and continuous interaction
(e.g- tutorials, application programs such as word
processing). After arriving at general conclusions, students
will design and implement at least one of the interaction
components discussed. Additionally, they will design a
different interaction component for the previous project.
(The next project will also included extensive attention to
the human-computer interface.)

Week 17: Reflection. Class discussion and individual
student reflection will address both general
(command-driven, menu-driven and graphical) user
interfaces and generalizations about program-specific user
interfaces.

4. Database and Information Retrieval

This module will introduce students to the area and
methodology relating to database or the storage, retrieval,
and analysis of extensive amounts of information.
Students will also extend their previous exposure to
human-computer interaction to this area of computing.

Weeks 18-19: Introduction. Through lecture, readings,
and reflection students will be exposed to the needs of
information storage, retrieval, and processing. General

September 1992 Draft

conclusions about or requirements of large systems
(databases) will be formed. Students will be introduced to
the need for disciplined development when tackling large
or involved projects. The various stages of and methods
relating to the software life cycle will be presented.
Students will analyze their experience with database
systems to develop preliminary ideas as to the aspects of
database that require significant attention (e.g., ease of
access, redundancy problems, storage limitations). They
will also provide written responses to questions after
lectures and readings on both topics (database and
software engineering). Explicit, written student statements
and discussion of the principal aspects of database systems
and the major software engineering methods/steps will be
the final outcome of this segment of the module.

Weeks 20-21: Project Selection and Definition. Through
small group and class discussion students will gain
experience in the requirements analysis and project
specification phases of development. They will also gain
further insight into data and file organizations through
readings, lecture, and discussion. In order to reinforce
recently gained knowledge about user interaction, those
aspects of the project will receive particular attention.
(The actual project topic will be subject to student
selection and perhaps multiple group projects will be
allowed.) Students will produce requirements
documentation and a rough set of specifications for
whatever project is selected.

Weeks 22-24: Algorithm Development and
Implementation. Individual and group work and
discussion with the teacher will be the mode of activity
during this time. Occasional class discussion will be used
to make salient points from other groups’ experiences and
to help students generalize from the experiences.
Issues/questions about correctness will be raised toward
the end of the experience to set the stage for more explicit
treatment later—this large project should be very useful in
pointing out the need for earlier and more formal
attention to correctness concerns. Students will develop
appropriate algorithms and implement them.

Week 25: Reflection. Class discussion and individual
student reflection will focus on security, privacy, and other

issues revolving around the collection and manipulation of
large databases.

S. System Simulation

18

This module returns to the topic of how computer systems
work. Students will continue to enhance their
programming through the development of a simulation of
some component of a computer system (eg., opcode
interpretation, adders, memory management, process
scheduling). The component could relate to either
hardware or to operating systems (including networking or
parallelism). Recent project experience should have set
the stage for a solid treatment of correctness which will
also be included with this module.

Week 26: Computer System Review/Overview. Students
will read and hear about the organization and operation of
computer "systems”. Reference will be made to experience
in earlier projects. The goal will be to have students form
a general model of the operation of a computer system.
There will also be lectures and readings regarding
program testing and developing correct programs. The
primary student related outcome of this week will be
student discussion and oral question answering.

Week 27: Project Selection and Background. One or
more aspects of a computer system will be focussed upon.
Students will again read and hear about (and perhaps see
video'’s or simulations of) the system component(s) that
will be the basis for the programming project. Class
discussion of critical points in the component will occur.
Students will perform requirements analysis and develop
specifications for the component to be simulated.

Weeks 28-29: Algorithm Development and
Implementation. Individual and group work and
discussion with the teacher will be the mode of activity
during this time. Students will develop appropriate
algorithms and implement them.

Week 30: Reflection. Class discussion and individual
student reflection will work to help students generalize
their experiences about systems operation and program
correctness.

6. Programming Languages

This module will provide an opportunity to expose
students to concepts related to programming
languages--what they accomplish (and how) and how they
are developed. Students will continue to enhance their
programming through the development of an appropriate

September 1992 Draft

program (e.g., expression input and evaluation, simulation

of control and/or data structure implementation).

Weeks 31-32: Introduction. Through lecture and reading
students will be introduced to the utility of various types
of higher level programming languages. If time and
resources allow, students will also be exposed to some

_special purpose or fourth generation languages. The
particular topic for the programming project will also be
introduced. Students may be asked to respond to various
general questions regarding programming languages. A
requirements analysis for the programming project will be
the object of class discussion.

Weeks -~ 33-34: Algorithm Development and
Implementation. Individual and group work and
discussion with the teacher will be the mode of activity
during this time. Students will develop appropriate
algorithms and implement them.

Week 35: Reflection. Class discussion and individual
student reflection will address levels and types of
programming languages and the translation necessity and
process.

7. Individual Projects

A whole course reflection will occur during the last week.
Students will consider societal issues relating to computing,
computing in vocations, professional responsibilities, and
trends in computing hardware, software, and applications.
If additional time is available, students will have the
opportunity to work on writing or programming projects
of their own design.

Coverage of Topics in ACM Recommendation

The ACM Precollege Committee recommendations for
topics to be included in a high school course covered the
areas of algorithms; programming languages; operating
systems and user support; computer architecture; and
social, ethical, and professional context. In these areas,
the course described above:

Includes all the "essential topics™ except that no

explicit attention is given to "command language and
its use”.

19

Includes all the "recommended topics” except (from
"Operating Systems and User Support™) the topics of
graphics, hypertext, and CD-ROM technology from
"human-computer communication” and
"communication networks".

Includes only a few of the optional topics explicitly,
"types of languages’ (under “Programming
Languages" can easily be addressed and most of the
optional "Social, Ethical, and Professional Context’
topics are addressed either during
programming-related discussion or in the discussion
at the end of the course.

Very few of the topics under the areas of "Computer
Applications” are taught directly. Databases will be
addressed from the computer science or programming
perspective but not from the point of view of using a
database system. Some aspects of simulation might be
included in some of the projects. Under advanced topics,
-artificial intelligence” and "software engineering’ concepts
are encountered and the provision of a solid introduction
to software engineering principles is attempted.

September 1992 Draft

Appendix E: Breadth Approach Using Applications and
Programming Modules.

Viera K. Proulx, Northeastern University, MA
Carol E. Wolf, Pace University, NY

The topics recommended in the report can be organized
into courses in a number of different ways. One method
is to divide the information into modules, each covering
related material. The purpose of each module is to
introduce concepts in a concrete setting, so that from the
given examples and exercises students can formulate
abstractions and gain understanding of the theory.
Collectively the modules expose students to a number of
different uses of computers, with all their excitement, as
well as their possible misuse. They enable students to gain
an appreciation of computer science as a whole.

One possible division into modules follows. Schools
unable to offer the entire semester course may choose to
cover only modules 1 to 5 and module 7.

1. Overview of Computer Science

a) Problem solving and algorithms
Algorithms in daily life: recipes, directions,
appliance instructions
Simple programs

b) Computer architecture
Components of a computer: CPU, memory,
disk drives, monitor, printer
Internal and external storage
Basic computer operation

¢) Operating systems
Command language

Files and storage

d) Societal impact of computer technology
History from the abacus to EDVAC
Changes in daily life since 1960
Everyday computer usage today

Exercises
a) With a computer

Use the operating system in the lab.
Create, save, copy and delete files.

Edit and compile a simple program.
Use a word processor.

b) Without a computer
Write an essay on the changes brought about by
computers in our lives and in society.
Devise algorithms to solve everyday problems.

2. Data Representation, Storage, and Analysis

a) Data representation
Number systems: binary, octal and decimal
Binary and octal arithmetic
Codes: negative numbers, characters (ascii)
Real numbers and the problems with accuracy

b) Arithmetic expressions
Order of evaluation, precedence rules
Definition of a function as a rule
Writing expressions for computers to read

¢) Analysis using a computer spreadsheet
The grid, cells, rows, columns and ranges
Data types: labels or values, formatting,
significant digits stored and displayed
Commands and menus
Formulas: built-in and user created
Potential for errors when using formulas

Exercises

a) With a computer
Write a program using arithmetic expressions.
Find the value of the largest and smallest
integers which the system can represent.
Create a spreadsheet for balancing checkbooks,
managing inventory, budget preparation or loan
analysis.
Use a spreadsheet to graph some data.

b) Without a computer
Experiment with an octal odometer.
Check the accuracy of a calculator when
computing (1/9)*9 or performing multiple
additions.
Play the binary card number guessing game.
Explore simple codes such as Morse code or
those found in mystery stories.

September 1992 Draft

3. Managing Data

a)

b)

Exercises

a)

b)

Database management systems
Fields, records, data types, index files, updating

Searching using a logical condition
Examples found in the school such as library
catalogs and course information systems
Privacy and integrity of databases

Boolean algebra and logic
Truth tables

Logical data types
Boolean expressions and conditional statements

Files, input and output

External files: paths, directories, deletion and
recovery

File security and encryption of sensitive data

With a computer

Create a data base using a commercial
package.

Search through the data base using logical
conditions.

Sort the data using different keys.

Write programs which contain conditional
statements.

Without a computer

Use index cards to design a data base. Make
additions and deletions, search using a logical
condition, sort on different keys, and create an
index file.

Research the problems of privacy and the laws

regulating databases.

4. Computer Architecture

a)

b)

The computer at the chip level

Transistors, circuits, gates

Combining gates to form adders, I/O tables
Components of the CPU

Machine language level
von Neumann stored program model

21

Machine and assembly language

Opcodes, registers, memory
Fetch-execute cycle

History of computers from EDVAC to the
present

Computer generations

Sizes of computers from desk-top to
supercomputers

Networks and distributed computer systems
Problems of open systems and standards

Exercises

a)

b)

With a computer
Use a simulator for a simple machine.

Write a program in a real assembly language.
Use electronic mail on a real network.

Without a computer

Simulate a simple machine on paper.

Design a simple circuit such as an LCD digit
display.

Write a paper on computer viruses or the
problem of misuse of computer networks.

5. Algorithms, Problem Solving, and Programming
Languages

a)

b)

Programming languages

The development of programming languages
Components of a structured language:
assignment statements, conditionals, loops,
input/output, subprograms

Examples of non-procedural languages
Compilers, interpreters and assemblers

Algorithms

Definition and properties: clear starting point,
finite number of steps, next step always
determined

Analysis of code complexity, time and storage
requirements

Examples from computer applications and daily
life

Problem solving techniques
Top-down design and stepwise refinement
Subprograms: procedures and functions

September 1992 Draft

Divide and conquer

Flow diagrams and charts

Importance of structured design in creating
and maintaining correct software

Exercises

a)

b)

With a computer

Write a computer program using loops and
subprograms.

Investigate several different programming
languages.

Experiment with animated sorting algorithms.

Without a computer
Carefully write out some algorithm used in
daily life.
Play a game of strategy and describe the
algorithms used.
Provide three kinds of directions from one
place to another

i) the simplest to explain: shortest

program

ii) the fastest to travel: least time

iii) the shortest route: least space.
Use index cards to simulate different sorting
methods.
Draw flow charts to explain problem solutions.

6. Computer Graphics

a)

b)

Method used to store and display pictures
Difference between way text and graphics are
stored

Grid, coordinates, scaling, pixels, colors
Display of slanted lines on a rectangular grid

Applications of computer graphics

User interfaces for computer programs

TV and films

Transmittal of pictures electronically: FAX,
newspapers, from satellites and space probes
Scientific visualization of data: molecules,
architectural and engineering structures,
geological data

Arrays

Giving a single name to a number of storage
locations

2

Storing tables of data using rows and columns

Exercises

a)

b)

With a computer

Use Logo or a graphics package to draw
pictures.

Write a program using some of the graphics
features of a language.

Write a program using arrays.

Use a program to create animations.

Without a computer

Use graph paper to simulate a computer screen.
Experiment with drawing lines and figures and
see what should be stored in memory.

Make a simple animated cartoon.

Write a paper on the use of computer graphics
in medicine and science.

7. Operating Systems and User Support

a)

d)

Tasks performed by the operating system
Managing files and external devices
Interrupts and buffered I/O

Human-computer communications
User interfaces: menus and graphics

Management of memory

Virtual memory and paging
Multi-user machines and networks
Scheduling and process coordination
Sequential and parallel processing

Hypertext

How hypertext organizes information
Uses of hypertext in encyclopedias, expert
systems

Stacks and queues

Exercises

a)

With a computer

Use diagnostics to check out a computer.
Use several graphical user interfaces on PC'’s.
Use an operating system on a larger machine.
Write a program using a stack or a queue.

September 1992 Draft

b)

Use a hypertext application. Create an
application using a hypertext product.

Without a computer

Play a scheduling and resource allocation
game.

Use index cards to simulate an interrupt stack.
Find out how computer viruses work.

Write a paper on ways to protect systems and
files.

Study the problems with large systems and
their vulnerability to errors.

8 Simulation, Statistics, and Probability

a)

b)

Exercises

a)

b)

Using computers to make predictions
Modeling processes in the real world: weather,
the stock market, election results, airflow
around planes, pollution, population, traffic
Priority and wait queues

Probability of system failure and methods to
safeguard against it

Probability

Set theory and Venn diagrams

Outcomes when tossing coins or throwing dice
Counting arguments, combinations and
permutations

Random number generators

Statistics

Binomial and normal distributions
Distribution functions, the mean and standard
deviation

With a computer

Write and test a random number generator.
Use a random number generator to simulate
tossing coins or rolling dice.

Play computer simulation games such as
SimEarth.

Use a commercial simulation package to create
simulations.

Change settings and parameters, then compare
outcomes.

Without a computer

Play a traffic hght simulation game.

Use real dice, coins, roulette wheels, etc. and
compare the results with those obtained
theoretically.

Design a "house’ strategy or "best’ strategy for
blackjack.

Wirite a paper on the economic and
environmental need for predictions and forecasts
and the problems caused by incorrect or
incomplete models.

9. Artificial Intelligence

a)

b)

Computers that play games
Games of strategy

Games with known strategy

Games programed to learn to win
Game trees as an example of binary trees

Expert systems and knowledge based reasoning
Examples of expert systems: physician’s assistant,
legal assistant, travel agent, 'mock psychoanalyst’

Deductive logic
Rules of propositional logic
Simple predicate logic

Robotics and prosthetic devices
Robots used in industry and the military
Computer controlled devices to aid the disabled

Exercises

a)

b)

With a computer

Write a program to play Nim or tic-tac-toe.
Implement a binary tree in an array.

Play Nim against the computer.

Devise several leamning strategies. Try to play
the game in a way that will compromise these
strategies.

Use a commercial expert system and create an
application.

Without a computer

Play Master Mind and try to write down the
strategy used.

Then try to play following these rules blindly.
Do the same with some other games.

Build a simple robot from a kit.

September 1992 Draft

Write a paper on an expert system in actual
use.

Write a paper on the use of computer
technology for the disabled.

10. Theoretical Foundations of Computer Science

a)

b)

Exercises

a)

b)

Theoretical machines and formal languages
Finite state automata and Turing machines
Grammars and parsing

Compilers and interpreters

Complexity of algorithms

Rates of growth

Best, average and worst case analysis
Counting lines of code or comparisons
Simple sequences and series

Limits to computability
Logical paradoxes and puzzles
Existence of non-computable functions

With a computer

Run a simulator of a finite automaton or a
Turing machine.

Time different sorting algorithms to investigate
their complexity.

Without a computer

Evaluate the complexity of a game such as

"Instant Insanity’,

Check whether a given word is accepted by a

finite automaton.

Write a simple program for a Turing machine.
Check whether a given string can be
derived from a given grammar.

Use logical deduction to solve puzzles and

mysteries.

Write a paper on the problems caused by the

complexity of large computerized systems.

11. Graphs and Networks

a)

Computer networks
Topology, routing, redundancy

24

b)

a)

b)

12.

a)

b)

Network protocols, acknowledgments,
handshakes

Problems of privacy, security, and breakdowns
Networked and distributed systems

Use in telephones, airline reservation systems,
ATM petworks

Graphs

Edges and vertices, adjacency, paths, weights,
loops

Basic graph algorithms: traversals, mazes,
backtracking, shortest path)
Traveling salesman problem

Expression trees and their evaluation

Matrices
Adjacency matrices for graphs
Matrix operations

Exercises

With a computer

Use electronic mail where available.

Use a LAN (local area network) if available.
Run and if possible modify graph algorithm
programs.

Without a computer

Work with graphs and mazes.

Multiply matrices and compute inverses.

Find the shortest path from one city to another.
Create an expression tree and evaluate it.
Write a paper on the breakdown problems of the
telephone networks.

Write a paper on computer network crime.

Advanced Computer Graphics

Recursive drawings

Concept of recursion

Snowflakes, trees drawn from L-systems
Towers of Hanoi

Game of life and cellular automata
Modelling life with fractal drawings
Number of moves in Towers of Hanoi and
length of fractal curves

Two and three dimensional pictures
Animation

September 1992 Draft

Rotation of three dimensional pictures
CAD/CAM, computer aided manufacture and
design

CAT scanners and ultrasound monitors

Exercises

a) With a computer
Examine programs that create recursive
drawings, modify them, and investigate the
effects of random variations.
Write programs to draw snowflakes or trees.
Run programs that create fractal drawings.
Run programs that draw three dimensional
pictures.

b) Without a computer
Write a simplified CAT scan program using an
article in Scientific American, September 1990.

Hand draw some recursive drawings.
Investigate some recursive traversals of graphs
and trees.

Location of Ten Areas of Computer Science
The ten areas listed in the 1988 (3) and 1991 (11) and (12)

reports are all covered in these modules. A table of areas
and modules follows:

Areas Modules
1. Algorithms and Data Structures

Algorithms 1,59,10,11

Data Structures 2.3,6,7,89,11
2. Architecture 1,4
3. Artificial Intelligence & Robotics 9
4. Database & Information Retrieval 3
5. Human-Computer Communication 6,7
6. Numerical & Symbolic Computation 2
7. Operating Systems 1,7
8. Programming Languages 4,5,10
9. Software Methodology & Engineering 5
10. Social, Ethical and Professional Issues All

Location of Discrete Mathematies Topics

These modules also cover all but one of the discrete
mathematics topics recommended in the 1991 report [11,
page 27). The one not included, proof techniques, was feit
to be inappropriate for high school students. The mapping
of areas to modules follows:

Areas Modules
1. Sets) 8
2. Functions - 2
3. Elementary propositional and predicate logic 39
4. Boolean algebra 3
5. Elementary graph theory 1
6. Matrices 1
7. Proof techniques Not included
8. Combinatorics 8
9. Probability 8
10.Random numbers 8

Appendix F: A One Semester Introductory Computer
Science Course

Carol E. Wolf, Pace University, NY

The following is an outline of a one semester computer
science course for students in Arts and Science. It
assumes little or no prior computer experience, but
students should have familiarity with algebra.

If the course is offered to first year college students, it
should consist of two one hour lectures a week followed by
a two hour lab. In a high school setting, lectures and labs
would probably be combined. However, even here, it
might be wise to devote some days exclusively to class
discussions and others to working on computers.

My own experience is that students become very involved
with their computer work and do not wish to stop to listen
to explanations. Separating class lectures and discussion
from machine exploration seems to work best. In my
classes, I require two students to work together on each
machine. This works very well, since they teach each
other.

For a first semester course with inexperienced students, it
is necessary to have a laboratory work-book which explains
what is to be done and lays out in detail how to do it

September 1992 Draft

Part way through the semester, term projects can be
assigned which are open-ended. By this time, most
students should be able to figure out how to do something
without step by step instructions.

Logo and Pascal are the programming languages used
here. However, these are only suggestions. Several
schools have had great success with Scheme, and BASIC
has a long useful history. Since the languages are only
introduced in an elementary way, the particular choice is
not too significant.

Week 1

Lectures Introduction to computers and the course:
Describe what computers can do and what the
course requirements are.

Lab School computer system, files, Logo:
Give students enough information so that they
can get started using the computer system
available in the school. This includes
formatting disks and loading programs. The
rest of the time is taken up with discovering
features of Logo, drawing pictures and saving
them on disks.

Week 2

Lectures Computer componeants, algorithms:
Explain the basic parts of a computer including
its CPU (central processing unit), memory, and
1/0 (input/output) devices. Introduce the
concept of an algorithm as a recipe.

Lab Word processing:
Teach students enough about word processing
to create a document, alter it, check its
spelling, and print it out.

Week 3

Lectures Algorithms, Logo procedures:
Explain what an algorithm is both with
everyday examples and with an introduction to
Logo procedures.

Lab Logo:
Have students type in and run some Logo

procedures, and then require them to compose
some on their own.

Week 4

26

Lectures History, societal impact:
Discuss some of the history of how computers
were developed and have entered everyone’s
lives.

Lab Introduction to spreadsheets:
Have students use a work-book to set up a
spreadsheet, calculate some formulas, make
changes, save it on a disk, and print it out.

Week §

Lectures Number systems, ASCII code:
Introduce binary numbers, two’s complement
integers, scientific notation, and the ascii code
for characters.

Lab Formulas in spreadsheets:
Have students create a more complicated
spreadsheet, such as an interest table. Have
them copy and move formulas.

Week 6

Lectures Expressions in a spreadsheet and in Logo:
Discuss arithmetic operators and built in
functions in both a spreadsheet and Logo.
Explain operator precedence.

Lab Graphing with spreadsheets:
Create graphs of some of the data stored in an
earlier spreadsheet. If available, also introduce
a presentation graphics package.

Week 7

Lectures Problem solving, Logo variables and the
conditional statement:
Explain what a variable is and how it is used to
store information. Use variables to create
conditions in Logo procedures.

Lab Logo:
Give students examples of Logo procedures
with parameters and global variables, and then
have them write and run some of their own.

Week 8
Lectures Boolean variables and truth tables, database
concepts:

September 1992 Draft

Introduce truth tables for and, or, and not, and
then explain logical data types. Describe files,
records, fields and data types in a database.

Lab Database creation and use:
Have students set up a database and then use
it. They should search using different
conditions and also make reports of selected
portions of the data.

Week 9

Lectures Database queries, searching and sorting,
indexing, privacy:
Introduce several searching and sorting
algorithms, and explain how indexing works.
Discuss the widespread use of databases and
their uses and abuses.

Lab Database queries:
Create another database, sort it and index it.
Then use more complicated conditions to
search and create reports.

Week 10

Lectures Chips, gates, circuits, and adders:
Describe the AND, OR, NOT, NAND, and
NOR gates. Show how to combine them to
produce different outputs including a simple
adder.

Lab Database queries:
Practice with more complicated databases
having date and logical fields.

Week 11

Lectures Problem solving and algorithms:
Discuss the algorithms used in searching and
sorting, and introduce the concept of recursion.

Lab Recursion in Logo:
Have students type in and run a few simple
recursive Logo procedures, and then let them
write a few of their own. Show them more
complicated recursive procedures such as the
fractal snowflake curve.

Week 12
Lectures Computer architecture, simple machine
example:

Describe a simple example of a von Neumann
machine having a few opcodes and registers.
Trace through the execution of a short

program.

Lab Machine simulation:
Have students run a program which simulates
the simple machine described in lectures. Give
them a few programs to test out and then have
them write several themselves.

Week 13

Lectures Programming languages, introduction to

Pascal:

Describe the different types of programming
languages, their uses and special features.
Explain the structure of a Pascal program as
contrasted with a Logo procedure.

Lab Pascal programming:
Give students a few simple programs to type in
and run, and then have them modify these and
create their own programs.

Week 14

Lectures More on Pascal:
Show how some of the features of Logo have
their counterparts in Pascal. Explain the
differences between a compiler, an interpreter
and an assembler.

Lab Pascal programming:
Give examples of more complicated Pascal
programs and then have students write similar
ones themselves.

Week 15
Lectures Societal impact of computers:
Discuss the ways that computers have made
our lives easier on the one hand, but have
created their own problems for society on the
" other.

Lab Demonstration of term projects:
Have the student teams give oral reports and
demonstrate their projects.

We Weren’t Exactly Laughing...

People have started reporting their best reads -- books that were memorably
pleasant. What’s emerging is that lightness and playfulness in itself isn’t what
makes for special appeal; rather it is the presentation’s power to enrich.

Based upon this tiny and non-random collection of volunteered titles, it
seems that there are five not necessarily mutually exclusive realms of
"pleasurable enrichment": i) extensions upon professional knowledge of a many
concepts—-per-page parade of new ideas or a put-it-all-together synthesis;

ii) supplements of professional knowledge consisting of a novel look at things
well known or offering insights into things we just never thought to inquire
about before; iii) nonfiction "stories" -- books about the way in which the
industry does business and biographies of leading figures; iv) fiction and
novelties; and v) books that are fun because we don’t have to read them but which
were probably not construed by the author as being for pleasure (and which we
would probably consider a chore if they were required.)

Area one includes A.K. Dewdney’s anthologies of "computer recreations from
Scientific American": The Armchair Universe and The Magic Machine. Speaking
personally, my first real understanding of the Mandelbrot set, Julia sets, chaos,
and strange attractors came from these articles. The new book by Steven Levy on
Artificial Life is in this category as is a wonderful though largely unnoticed
treatment of this same area by William Poundstone, The Recursive Universe.
Douglas Hofstadter’s Metamagical Themas, another collection of pieces from
Scientific Bmerican, is here as is his Godel, Escher, Bach. The Cuckoo’s Egg, by
Cliff Stoll, belongs here too because of its information bearing on security.

Area two includes A.K. Dewdney‘s The Turing Omnibus: 61 Excursions into
Computer Science with its extraordinary treatments of otherwise ordinary fare
such as random numbers, text compression, NP-completeness, the fast Fourier
transform, and public key cryptography (all of which are in Sedgewick’s
Algorithms text). Also, Martin Gardner’s anthologies tend to fall into this
area. Mathematical Puzzles & Diversions has a chapter with lots of interesting
sidelights on the Towers of Hanoi, including an algorithm for its non-recursive
solution. His Sixth Book of Mathematical Games has a nice chapter on parity
checks with puzzles and magic tricks never found in serious textbooks (but which
can add plenty of zest to lectures!). Mathematical Circus has a chapter on
Boolean algebra giving biographical information about George and his very
remarkable "six ladies.” [These happen to be his wife and five daughters, each a
woman of tremendous intellectual accomplishment.]

I've had an idea for book which would be fun to write and valuable: a
comprehensive index to all of Gardner's math books (Donald Knuth, incidently, is
the person to whom Mathematical Circus is dedicated). The index would enable us
to put our hands right on general topics, algorithms, games, puzzles, tricks,
riddles, and ridiculous gquestions that relate to lectures we want to spice-up.

Other area two books are Jon Bentley’s two books of programming pearls and
William Poundstone'’'s Labyrinths of Reason. Area two and area one overlap because
many predominately area two books survey recent developments.

Samples of books in area three are The Soul of a New Machine by
Tracy Kidder, Hackers ("the story of the whiz kinds whose irreverence, idealism,
and sheer genius changed the world") by Steven Levy, and Accidental Empires by

Robert X. Cringely.

Area four samples are the short stories "The Last Question™ by Isaac Asimov
and "The Riddle of the Universe and Its Solution" by Christopher Cherniak. The
latter is in The Mind’s I by Douglas Hofstadter and Daniel Dennett along with
" other such items. Books include Donald Knuth‘s 3:16 Bible texts Illuminated,
Alexander Tzonis’s Hermes and the Golden Thinking Machine, Dennis Shasha’s The
Puzzling Adventures of Dr. Ecco, and Michael Wiesenberg’s Puzzled Programmers.

Area five examples are Consciousness Explained by Daniel Dennett, The
Emperor‘s New Mind by Roger Penrose, the Little Black Book of Computer Viruses by
Mark Ludwig and, really, any could-be textbook you pick-up and read out of
interest but not necessity.

Space is definitely posing a problem to me! Send in the names of computer
pertinent books that you‘ve especially enjoyed. We’ll build and share a
recommended reading list. Anyone interested in handling the compilation,
possibly supplementing titles with annotations?

RO

-

September 1992 Draft

Week 9
Lectures

Week 10
Lectures

Lab

Week 11
Lectures

Lab

Week 12

Introduce truth tables for and, or, and not, and
then explain logical data types. Describe files,
records, fields and data types in a database.

Database creation and use:

Have students set up a database and then use
it. They should search using different
conditions and also make reports of selected
portions of the data.

Database queries, searching and sorting,
indexing, privacy:

Introduce several searching and sorting
algorithms, and explain how indexing works.
Discuss the widespread use of databases and
their uses and abuses.

Database queries:

Create another database, sort it and index it.
Then use more complicated conditions to
search and create reports.

Chips, gates, circuits, and adders:

Describe the AND, OR, NOT, NAND, and
NOR gates. Show how to combine them to
produce different outputs including a simple
adder.

Database queries:
Practice with more complicated databases
having date and logical fields.

Problem solving and algorithms:
Discuss the algorithms used in searching and
sorting, and introduce the concept of recursion.

Recursion in Logo:

Have students type in and run a few simple
recursive Logo procedures, and then let them
write a few of their own. Show them more
complicated recursive procedures such as the
fractal snowflake curve.

Lectures Computer architecture, simple machine

example:

Lab

Week 13

Describe a simple example of a von Neumann
machine having a few opcodes and registers.
Trace through the execution of a short

program.

Machine simulation:

Have students run a program which simulates
the simple machine described in lectures. Give
them a few programs to test out and then have
them write several themselves.

Lectures Programming languages, introduction to

Week 14

Pascal:

Describe the different types of programming
languages, their uses and special features.
Explain the structure of a Pascal program as
contrasted with a Logo procedure.

Pascal programming:

Give students a few simple programs to type in
and run, and then have them modify these and
create their own programs.

Lectures More on Pascal:

Lab

Week 15

Show how some of the features of Logo have
their counterparts in Pascal. Explain the
differences between a compiler, an interpreter
and an assembler.

Pascal programming:

Give examples of more complicated Pascal
programs and then have students write similar
ones themselves.

Lectures Societal impact of computers:

Lab

Discuss the ways that computers have made
our lives easier on the one hand, but have
created their own problems for society on the

" other.

Demonstration of term projects:
Have the student teams give oral reports and
demonstrate their projects.

	ACM model high school computer science curriculum.
	Recommended Citation

	tmp.1705525204.pdf.tmaLt

