Pace University

DigitalCommons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

11-1-1991

Programming experience with early parameter passing
mechanisms using modula-2 and pascal.

Joseph Bergin

Follow this and additional works at: https://digitalcommons.pace.edu/csis_tech_reports

Recommended Citation

Bergin, Joseph, "Programming experience with early parameter passing mechanisms using modula-2 and
pascal." (1991). CSIS Technical Reports. 76.

https://digitalcommons.pace.edu/csis_tech_reports/76

This Thesis is brought to you for free and open access by the lvan G. Seidenberg School of Computer Science and
Information Systems at DigitalCommons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an
authorized administrator of DigitalCommons@Pace. For more information, please contact nmcguire@pace.edu.

https://digitalcommons.pace.edu/
https://digitalcommons.pace.edu/csis_tech_reports
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/csis_tech_reports/76?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmcguire@pace.edu

Ref.
QA

76
.P3
no.46

EABRARY

* Pace UrkOCESNVERSTY

PLAINS

SCHOOL OF COMPUTER SCIENCE

AND INFORMATION SYSTEMS

TECHNICAL REPORT
Number 46, November 1991

| Programming Experience
with Early Parameter Passing Mechanisms
Using Modula-2 and Rascal

Joseph Bergin

Department of Computer Science

Pace University
New York, NY 10038

Stuart Greenfield

Division .of Computer Science and Mathematics

"Marist College
Poughkeepsie, NY 12601

UNIVE

R

SITY

o*

Joseph Bergin is Professor of Computer Science at Pace
University. His office is on the New York Campus.
Professor Bergin holds a doctorate in mathematics from
Michigan State University, and his research interests are
in programming languages. This is the fourth issue of
Technical Reports in under two years devoted to
presenting shorter pieces of his work.

Professor Bergin’s central project during the past couple
of years has been writing a textbook introducing data
structures and algorithms by way of the object oriented
paradigm. We are delighted to report that the manuscript
is complete and has been accepted by a publisher. Even
better, his publisher has already requested a second
version of the text in C++ to be titled something like A
Course in Data Abstraction: The Object-Oriented Approach
Using C++. (Due to marketing considerations, the
publisher wants to hold the first version until the
publication of the second version.)

* Stuart Greenfield is Associate Professor of Computer
Science at Marist College. He is the author of
Invitation to Modula-2, published by Petrocelli Books in
Princeton, New Jersey.

"Programming Experience with Early Parameter Passing
Mechanisms Using Modula-2 and Pascal" was presented at
the Seventh Annual Eastern Small College Computing
Conference held at Marymount College on October 11-12,
1991. It is published as pages 124-132 within the
Proceedings which comprises the November 1991 issue of
The Journal of Computing in Small Colleges (Volume 7,
Number 2).

This paper is copyright by the Eastern Small College
Computing Conference and is reprinted by permission.

GERADUATE CENTER LIBRARY

Pace Univergity

PROGRAMMING EXPERIENCE WITH EARLY PARAMETER PASSING
MECHANISMS USING MODULA-2 AND PASCAL

Joseph Bergin
Pace University
New York, NY 10038
BERGINF @ PACEVM.BITNET

Stuart Greenfield
Marist College
Poughkeepsie, NY 12601

INTRODUCTION

Most programming language survey textbooks [1][2][3][4][5][6][7] discuss parameter
passing at length. Historically this has been an important topic of research and a number of
different parameter passing mechanisms have been employed by various languages. This
paper discusses a method by which programmers may simulate various mechanisms using
currently popular languages which do not support those mechanisms directly. Programming
exercises can thus be used to further the understanding of the issues involved in parameter
passing. For example, Modula-2, and some enhanced versions of Pascal (e.g., Turbo Pascal
and Think Pascal) and standard C provide the capability to simulate the "pass-by-value-
result" and "pass-by-name” mechanisms.

It is assumed that the reader is already familiar with the pass-by-value and pass-by-
reference mechanisms. In order to simulate the other mechanisms, we employ features
found in Modula-2, namely, procedure types and procedure parameters. Although both
Pascal and standard C do not support procedure (function) types, they do support passing
procedures(pointers to functions) as parameters and thus those languages may be used
similarly to simulate the desired unsupported passing mechanisms.

A study of these mechanisms will generate insight into several subtelties of language
design. This is especially true of the effects of the interactions of language features such as
the relationship between block structrue and the problem of non-local names, and parameter
semantics and the problems of variable access and variable aliasing.

In Modula-2, aliasing of a variable may occur through using the same variable for two
different formal parameters. Aliasing may also occur if a global variable is passed as an
argument in a situation in which the routine called also references that same global as a non-
local name. Aliasing may occur even in the case of value parameters when the types
represent pointer variables.

Variable access is an important issue because the time at which a variable is accessed
may affect the address and/or the value of the variable to which the access refers. For
example, if we make an array subscript reference, as in A[n], the expression may refer to any
one of a collection of variables: the cells of the array. In Modula-2, when such an expression
is passed as an actual parameter to a value or a reference formal parameter, the expression is
evaluated once, at subroutine invocation time and either the value of that cell or the address
of the cell is used throughout the body of the subroutine as the value of the formal parameter.
This is the case even though that subroutine may have access to n, and may change the value
of n. This fixed access to a variable is not necessarily true for the pass-by-value-result or
pass-by-name mechanisms.

THE PASS-BY-VALUE-RESULT MECHANISM

Parameter passing using the pass-by-value-result mechanism (also known by the
name copy-in-copy-out) is a means by which the "in-out" passing mode may be implemented.
However, unlike pass-by-reference, which also implements the "in-out” mode, the called
procedure does not have direct access to the actual parameters. Stating merely that a set of
parameters are to be passed by value-result leaves us with a few ambiguities. Although the
order in which actual parameters are "copied-in" to the called procedure does not have an
affect on the returned results, the "copy-out” order of those parameters, in general, does. Thus

Page 1

the copy back order should be specified -- left-to-right or right-to-left. Furthermore, the
address of the actual parameters may be calculated at copy-in time only or may be calculated
twice, at copy-in time and copy-out time. Therefore, we cite four different versions of the
pass- by-value-result mechanism, namely,

e address calculated once, copy back order left-to-right
¢ address calculated once, copy back order right-to-left
e address calculated twice, copy back order left-to-right
¢ address calculated twice, copy back order right-to-left

The above versions will be referred to as vrlLR, vr1RL, vr2LR, and vr2RL, respectively,
throughout the remainder of this paper.

If addresses are calculated once, coples of the actuals are made and assigned to locally
allocated variables (the formal pass-by-value-result parameters) of the called procedure at
the time of invocation. The procedure then executes using those local variables. At the time
of return, the values of the locals are "copied back" in the appropriate order to the actual
parameters whose addresses had been determined at subprogram entry time. If addresses are
calculated twice, a recalculation of the actual addresses occurs at return time. In this latter
case, changing some variable within the subprogram may affect where the final values are
copied back to.

Particular forms of this mechanism have been used in some implementations of
Fortran[1][2] and it is employed automatically by some versions of Ada[1][3] to implement
the "in-out" passing mode in at least some cases, depending on the structure of the actuals
being passed. One advantage of this scheme is that it is possible to implement it in such a way
that actual parameters need not be limited to variables but may be expressions. In this later
case the "copy-back” to the actual would be omitted by the compiler. Fortran
implementations employing the pass-by-value-result mechanism are able to simulate both
"in-out" mode and strictly "in" mode passing with but one mechanism in this manner{1].
This leads to a bit more flexibility for the programmer in those cases in which a particular
parameter need not be returned to the calling environment.

SIMULATING PASS-BY-VALUE-RESULT

Our simulation of the pass-by-value-result mechanism is a direct translation of its
description found in the previous section. We use pass-by-reference formal (physical)
parameters, creating new names which do not clash with other names in the context of the
called procedure for passing by vr1LR and vr1RL. Thus we use value-result "pseudo-
parameters” (logical parameters) which are locals of the called procedure. The physical
parameters are copied to the logical parameters on procedure entry and copied back in the
appropriate order upon exit.

The formal parameter names need not be changed for vr2LR and vr2RL and are passed
by value. These parameters are used directly in the called procedure. Just prior to return, the
address of each simulated value-result actual parameter is recalculated in the appropriate
copy-back order.

A set of four simulations (In Modula-2/Pascal) for the four submechanisms of pass-
by-value-result are offered below.

For pass-by-vrlLR and pass-by-vr1RL:

step 1. Pass all value-result parameters by reference employing fresh names not otherwise
used in the scope of the called subprogram declaration.

step 2. Declare a local for each such passed parameter.

step 3. Prior to the subprogram code, "copy” the parameter values "in"to, the corresponding
locally declared variables.

step 4. Let the subprogram code operate on these local variables.

step 5. After completion of the subprogram code, "copy" the locals "back” to the value-result
parameters, left-to-right or right-to-left, appropriately.

Page 2

For pass-by-vr2LR and pass-by-vr2RL:

step 1. Design a procedure type for the recalculation procedure for each parameter type
passed. It needs a value parameter of the same type as the value-result parameter we
are simulating,

step 2. Pass all value-result parameters by value. For each such parameter also pass a copy
back procedure of the appropriate type.

step 3. Let the subprogram code operate on these formal parameters.

step 4. After completion of the subprogram code, simulate the recalculation of the addresses
of the value-result parameters by "copying-back" (assigning) the final values of the
value-result parameters to their corresponding actual parameters, left-to- right or
right-to-left, appropriately. This is accomplished by calling the copy back
procedures in the appropriate order.

step 5. At the point of call, create an actual copy back procedure which copies its parameter to
the expression representing the formal procedure of the procedure to be called with
value result semantics.

As an example, suppose we wish to simulate (using Modula-2) the following
subprogram where the pair of parameters are passed by value-result:

PROCEDURE p(VALRES x,y:.INTEGER);
BEGIN

...whatever

END p;

The simulation for vr1LR (or vr1RL) is:

(*stepl¥ PROCEDURE p(VAR xV,yV:INTEGER)};
(*step2 ¥ VAR x,y:INTEGER;

BEGIN
(*step3 ¥ x:=xV; y:=yV;
(*step4 ¥ ...the same whatever
(*step5¥ xV:=x; yV:=y; (or yV:=y; xV:=x;)
END p;

And the simulation for vr2LR (or vr2RL) is:
(*step1¥ TYPE
copyBack = PROCEDURE(INTEGER);
(*step2 ¥ PROCEDURE pfx,y : INTEGER; CX,CY : copyBack);
BEGIN
(*step3¥ ...the same whatever
(*step4 ¥ CX(x);CY(y); (* or CY(y); CXx); *)
END p;

To simulate the call p(a,b) we create Ca and Cb as:
{*step5 ¥
PROCEDURE Ca(x:INTEGER);
BEGIN
a=x
END Ca;

PROCEDURE Cb(x:INTEGER);
BEGIN

b:=x;

END Cb;

The actual call is the p(a.,b,Ca,Cb);

Page 3

AN EXAMPLE USING THE PASS-BY-VALUE-RESULT SIMULATION

Although, for the bulk of applications, the use of any of the four versions of the pass-
by-value-result mechanism, as well as the pass-by-reference mechanism leaves the
computing machine in identical states, we can easily find those that do not. As one such
application we offer the program shown in Listing 1, written in Modula-2, which performs its
indicated task five times, each employing a different "in-out" passing mode implemented
using our four pass-by-value-result simulations and the Modula-2 supported pass- by-
reference.

The state in which the memory is left at the return from each call is given in Table 1.
Note that only vr1LR leaves the memory in the same state as the pass-by-reference
mechanism and the results of employing the four different versions of pass-by-value-result
are distinct.

MODULE pass;
VAR n:INTEGER;
a:ARRAY [1..3] OF INTEGER,;

PROCEDURE ref(VAR i,j,k:INTEGER);
BEGIN

j2=2;

k:i=i+j;

END ref;

PROCEDURE vriLR(VAR x,y,z:INTEGER);
VAR i,j,k:INTEGER;

BEGIN

i=x; ji=y;, ki=z;
ji=2;
k:=i+j,

x:=i; y:=j; z:=k;
END vriLR;

PROCEDURE vriRL{VAR x,y,z:INTEGER);
VAR i,jk:INTEGER;

BEGIN

ii=x; ji=y; ki=z;
ji=2;
k:=i+j;

z:=k; y:=j; x:=i;
END vriRL;
TYPE

copyBackint = PROCEDURE(INTEGER);

PROCEDURE CAsubN(x:INTEGER);
BEGIN

a[n]:=x

END CAsubN;

PROCEDURE CN(x:INTEGER);
BEGIN

n = x;

END CN;

Page 4

PROCEDURE vr2LR(i,j,k:INTEGER; Ci,Cj,Ck:copyBackint);

BEGN
ji=2;
k:=i+j;
Ci(i); Cj(j): Ck(k);
END vr2LR;
PROCEDURE vr2RL{i,j,k:INTEGER; Ci,Cj,Ck:copyBackint);
BEGN
ji=2;
kZ=i+j;
Ck(k); Cj(j); Ci(i);
END vr2RL;

BEGIN

n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
ref(a[n],n,a[n]);

n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
vriLR(a[n],n,a[n]);

n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
vriRL(a[n],n,a[n});

n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
vr2LR(a[n],n,a[n],CAsubN,Cn,CAsubN);
n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
vr2RL(a[n],n,a[n],CAsubN,Cn,CAsubN);
END pass.

MacroExp
Namel
Name2

B YD OYOY

THE PASS-BY-NAME MECHANISM

If a formal parameter has been passed using the pass-by-name mechanism, then each
time it is referenced, the address of its corresponding actual parameter is recalculated and is
used as the target for the reference. The simplest way to implement pass-by-name is by
employing the idea of macro expansion to replace the names representing the formal
parameters by the names representing the corresponding actual parameters everywhere in
the body of the called procedure. Then execute the resulting code. Certainly such a
methodology may require recompilation of the body of the procedure for each call, so that the
addresses of non-local names may be recalculated. To simulate this we may simply insert
the names of the actuals into the body of the subprogram manually.

An alternative approach involves passing an actual parameter access procedure to the
called routine in place of the actual parameter. This access procedure provides a method for
repeated access to either the value of an actual parameter or to its address. Such an access
procedure has been termed a "thunk" (by Peter Z. Ingerman, an early implementer of
Algol)[8]. A thunk is a parameterless procedure that returns the address of the particular

Page 5

actual parameter for which it is written. In Algol, a language employing pass-by-name,
thunks are produced automatically by the compiler. For simulation purposes we may create
these procedures and pass them.

SIMULATING PASS-BY-NAME

We offer three ways to simulate the pass-by-name mechanism. The first uses macro
expansion as described in the previous section. Although the simplest, such a method may be
quite unappealing to the programmer since it is not true to the approach to the pass-by-name
mechanism as it has been implemented in Algol. Nonetheless we will demonstrate this
method in a subsequent example.

Our second and third approaches make use of the notion of thunks. If we are working
in a programming language such as Modula-2, then we can declare the template for a thunk
through the use of a procedure type declaration, such as

TYPE THUNK = PROCEDURE():ADDRESS;

where type ADDRESS holds the address of a memory cell and is assignment compatible with
all pointer types.

Now, in order to simulate the pass-by-name mechanism, within the scope of the
actual parameter, we create a thunk corresponding to the actual parameter that is to be
passed by name and pass the thunk instead. Within the body of the called procedure each
access of a parameter passed by name is replaced by an application of the corresponding
thunk followed by a dereference of the resulting pointer. The effect of this is the recalculation
of the address of the actual parameter each time it is accessed, rather than once at the
beginning of the procedure, as is done using pass-by-reference.

Thus to simulate the pass-by-name mechanism in a language which supports
procedure type declarations (or at least procedure parameters) we offer the following steps:

step 1. Declare a pointer type corresponding to each of the data types of the actual
parameters.

step 2. Declare a procedure type for each unique actual parameter that returns an address. In
Modula-2 the ADR standard function may be imported from System. In Pascal
there is no such operator, although many implementations provide one. A common
method is to redefine the unary operator @ so that it provides the address of its
argument. @X represents the address of X, which may be treated (with care) as a
pointer.

step 3. Construct the called procedure heading such that the formal name parameters are the
corresponding thunks (use procedure parameters if the language of implementation
offers doesn't support procedure type declarations).

step 4. Within the called procedure declare a local variable for each actual parameter.

step 5. In the body of the called procedure any reference to a name parameter is replaced by an
assignment of the returned address from the corresponding thunk to the
corresponding locally declared variable followed by that variable's dereference.

step 6. Code a thunk for each actual name parameter such that it returms the address of that
actual parameter. This thunk is created within the name scope of the actual
parameter.

As an example, suppose we wish to simulate (using Modula-2) the following
subprogram and subprogram call where the pair of parameters are passed by name:

PROCEDURE p(NAME x,y:INTEGER);
BEGIN

...whatever

END p;

pn.m); (* the call %)

Page 6

The simulation is:
(*step1¥ TYPE intptr = POINTER TO INTEGER;
(*step2 ¥ TYPE THUNK = PROCEDURE():ADDRESS;

(*step3 ¥ PROCEDURE p(xThunk,yThunk:THUNK);
(* or, in Pascal:
PROCEDURE p(FUNCTION xThunk:intptr;
FUNCTION yThunk:intptr); *)

(*step4 ¥ VAR x,y:intptr;

BEGIN
(*step5 ¥ .

x:=xThunk();

...XA...whatever

END p;

(*step6 ¥ PROCEDURE nThunk():ADDRESS;
BEGIN
RETURN ADR(n);
(* ADR is the "address of " operator *)
END nThunk;

PROCEDURE mThunk():ADDRESS;
BEGIN

RETURN ADR(m);

END mThunk;

The call is then p(mThunk, mThunk);

If the language of implementation does not support procedure type declarations then
the called procedures will have no parameters to simulate pass-by-name and the
corresponding coded thunks will have to be employed as globals in the called procedure. The
next section will illustrate this approach.

AN EXAMPLE USING THE PASS-BY-NAME SIMULATION

As an example we will use the same program that was used in Listing 1. The three
ways of simulating the pass-by-name mechanism are demonstrated in Listing 2 along with
the needed additions to the Listing 1 main body.

The state in which the memory is left at the return from each call is given in Table 1.
Note that all three approaches yield the same results, as would be expected.

PROCEDURE MacroExpansion();
BEGIN

n:=2;

a[nl:=a[n]+n;

END MacroExpansion;

PROCEDURE aSubnThunk():ADDRESS;
BEGIN

RETURN ADR(a[n));

END aSubnThunk;

Page 7

PROCEDURE nThunk():ADDRESS;
BEGIN

RETURN ADR(n);

END nThunk;

TYPE intptr=POINTER TO INTEGER,;
THUNK=PROCEDURE():ADDRESS,

PROCEDURE Name1(x,y,z:THUNK);
VAR i,jk:intptr;

BEGIN

f=y0: =2
ii=x()iji=y()iki=z(); KAhi=iteh;
END Namel;

PROCEDURE Name2(); (* using only globals *)
VAR i jk:intptr;

BEGIN

j==nThunk(); j*:=2;

iz=aSubnThunk();

j:=nThunk(};

k:=aSubnThunk(); kh:=ir+j%;

END Name2;

(* main body additions *)

BEGIN

n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
MacroExpansion();

n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
Name1(aSubnThunk,nThunk,aSubnThunk);
n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
Name2();

Pass by name has more than historical interest. While it is complicated and
difficult to use without error, it is a very powerful device. Using it, it is possible to write
very general code to manipulate data structures, including recursively defined structures.
Jensen's device applies a process to an array, permitting great flexibility, including
specification of the operation to be performed and even of the structure of the array. In
particular the same process may be made to operate on an array of scalars as an array of
arrays.

REFERENCES

[1] MacLennan, B., "Principles of Programming Languages”, 2nd Ed., Holt, Rinehart and
Winston, 1987

[2] Sebesta, R., "Concepts of Programming Languages", Benjamin/Cummmings, 1989

[3] Sethi, R, "Programming Languages: Concepts and Constructs”, Addison- Wesley, 1989

[4] Ghezzi, C. & M. Jazayeri, "Programming Language Concepts", 2nd Ed., Wiley, 1987

[5] Horowitz, E., "Fundamentals of Programming Languages”, 2nd Ed., Computer Science
Press, 1984

[6] Ledgard, H. & M. Marcotty, "The Programming Language Landscape”, 2nd Ed.(?), SRA, 198?
[7] Pratt, T., "Programming Languages: Design and Implementation”, 2nd Ed., Prentice-Hall,

1984
[8] Ingerman, P., "Thunks", Communications of the ACM, Vol.4 No.1, 1961
[9] Wexelblat, R. (editor), "History of Programming Languages”, Academic Press, 1981

Page 8

PROCEDURE nThunk():ADDRESS;
BEGIN

RETURN ADR(n);

END nThunk;

TYPE intptr=POINTER TO INTEGER,;
THUNK=PROCEDURE():ADDRESS;

PROCEDURE Name1(x,y,z: THUNK);
VAR ijk:intptr;

BEGIN

i=y(); jM=2;
ir=x();ji=y()ki=2(); KA=ir+)h
END Name1;

PROCEDURE Name2(); (* using only globals *)
VAR i,jk:intptr;

BEGIN

j:=nThunk(); j*:=2;

iz=aSubnThunk(};

j:=nThunk();

k:=aSubnThunk(); k*:=ir+j*;

END Name2;

(* main body additions *)

BEGIN .

n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
MacroExpansion();

n:=3; a[1]:=2; a[2]:=3; a[3]:=4;
Name1(aSubnThunk,nThunk,aSubnThunk);
n:=3; a[l1]:=2; a[2]:=3; a[3]:=4;
Name2();

END pass.

Pass by name has more than historical interest. While it is complicated and
difficult to use without error, it is a very powerful device. Using it, it is possible to write
very general code to manipulate data structures, including recursively defined structures.
Jensen’s device applies a process to an array, permitting great flexibility, including
specification of the operation to be performed and even of the structure of the array. In
particular the same process may be made to operate on an array of scalars as an array of
arrays.

REFERENCES

[1] MacLennan, B., "Principles of Programming Languages”, 2nd Ed., Holt, Rinehart and
Winston, 1987

[2] Sebesta, R., "Concepts of Programming Languages”, Benjamin/Cummings, 1989

[3] Sethi, R., "Programming Languages: Concepts and Constructs”, Addison- Wesley, 1989

[4] Ghezzi, C. & M. Jazayeri, "Programming Language Concepts", 2nd Ed., Wiley, 1987

{5] Horowitz, E., "Fundamentals of Programming Languages", 2nd Ed., Computer Science
Press, 1984

[6] Ledgard, H. & M. Marcotty, "The Programming Language Landscape”, 2nd Ed.(?), SRA, 198?
[7] Pratt, T., "Programming Languages: Design and Implementation”, 2nd Ed., Prentice-Hall,

1984
[8] Ingerman, P., "Thunks", Communications of the ACM, Vol.4 No.1, 1961
9] Wexelblat, R. (editor), "History of Programming Languages”, Academic Press, 1981

Page 8

= -
— y—)
ER
o SITE OF NEW
i COM}ZX‘QNG
&a
"%? :r.u.c,a;'q?é

K Oc' CcCovrsé, ouvur C'Pu _€H_s o 'H’LL l’\.ead O-C—
a P;n, \ou+ we -Fl‘aufed/ i GO FoR IT! "

	Programming experience with early parameter passing mechanisms using modula-2 and pascal.
	Recommended Citation

	tmp.1705524842.pdf.k8Xi3

