Pace University
DigitalCommons@Pace

Ivan G. Seidenberg School of Computer Science

CSIS Technical Reports and Information Systems

5-1-1990

What does modula-2 need to fully support object oriented
programming?

Joseph Bergin

Follow this and additional works at: https://digitalcommons.pace.edu/csis_tech_reports

Recommended Citation

Bergin, Joseph, "What does modula-2 need to fully support object oriented programming?" (1990). CSIS
Technical Reports. 70.

https://digitalcommons.pace.edu/csis_tech_reports/70

This Thesis is brought to you for free and open access by the lvan G. Seidenberg School of Computer Science and
Information Systems at DigitalCommons@Pace. It has been accepted for inclusion in CSIS Technical Reports by an
authorized administrator of DigitalCommons@Pace. For more information, please contact nmcguire@pace.edu.

https://digitalcommons.pace.edu/
https://digitalcommons.pace.edu/csis_tech_reports
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis
https://digitalcommons.pace.edu/csis_tech_reports?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pace.edu/csis_tech_reports/70?utm_source=digitalcommons.pace.edu%2Fcsis_tech_reports%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmcguire@pace.edu

§ aaves (IRSARYL éﬁf.t;EGE F:’F'#awﬁ-?“:_ﬁ‘-;‘ H e
aLﬁ G WIERE T

SCHOOL OF COMPUTER SCIENCE

AND INFORMATION SYSTEMS

TECHNICAL REPORT
Number 30, May 1990

What Does Modula — 2 Need to Fully Support
" Object Oriented Programming?

JOSEPH BERGIN
Computer Science
Pace University, New York, NY

STUART GREENFIELD
Division of Computer Science and Mathematics
Marist College, Poughkeepsie, NY

REEERENCE

- Ref. PACE
o _tflll UNIVERSITY

76
.P3
no.30

Joseph Bergin is Professor of Computer Science at Pace University
with his office on the New York campus. Before coming to Face he
had been Frofessor of Computer Science at Marist College. He holds
a doctorate in Mathematics from Michigan State University. His
research interests lie in the area of programming languages,
especially abject oriented languages. He is currently working on a
textbook titled Data Abstraction and Object Pascal, portions of

which he plans to classroom test this Fall in CS8131.

Stuart Greenfield is Assistant Fraofessor of Computer Science at
Marist College. He holds a degree in electrical engineering and is
working on a dactorate in computer science. With one book already
to his credit, Invitation to Modula-Z, and ancther on compiler
construction underway; his research interests are also in
programming languages. At this point he, too, is especially
interested in aobject oriented languages.

"What Does Modula-2 Need to Fully Support Object Oriented
monthly publication of the ACM Specigf—fﬁgérggg_a;aup on
Programming Langauges): Volume 232, Number 3; March, 1988;
pages 73-82. A year later it was re-printed by the editors
of the Journal of Object Oriented Programming: Veolume 1},

Number &; March/April, 1989; pages 31-38.

Copying here is by permission of Professor Bergin from a
copy of the manuscript he provided.

What Does Modula—2 Need to Fully Support
Object Oriented Programming?

Joseph Bergin
Computer Science
Pace University, New York, NY

Stuart Greenfield
Division of Computer Science and Mathematics
Marist College, Poughkeepsie, NY

One of the present authors has been developing an object oriented extension to
Modula—-2 since the first of this year, and the other has a strong attachment to

standard Modula-2 This paper arose from answering the question: "How close
is Modula-2 to being object oriented?" As it turns out the answer is: "Quite close
indeed "

Object oriented programming is a discipline of software development which
embraces strong encapsulation of the data and procedural elements, the notion of
inheritance from classes (types) and/or objects (instances of types), and the idea

of overloading of method (procedure) names Additionally, a paradigm of
message passing may be adopted Some languages provide more support, and
some less support, for these ideas We will consider each of these in turn

1 Strong Encapsulation

Strong encapsulation within o¢bjects provides a method by which the program
text and the run-time systemm may enforce the strong linkages between semantic
entities and the operations which manipulate them To be truly object oriented,
a language must also provide syntactic support for the notion of classes of
objects Classes are similar to types, primarily defining some notion of
structure The objects within a single class have a structure and a behavior
determined by that class In Smalltalk [1] this encapsulation is provided by a
mechanism whereby the implementation of an entity such as a queue and the
operations which operate on the queue are defined within the same language
construct (Ada [2] provides a similar facility with the package construct, and
Modula-2 [3] with modules)

In an object oriented programming language (OOPL) the notion of an Abstract
Data Type, represented as a collection of well-defined actions on a (perhaps
hidden) collection of data structures, must be supported by language constructs
which clearly "enclose" these elements and separate them from other elements
Pascal [4] had no such facility (although Object Pascal [5], an extension of UCSD
Pascal, does support encapsulation) A queue is defined in Pascal by giving
several distinct declarations, each of which defines some aspect of the queue
The data structure declaration is separate from the declaration of insert, which
is also separate from the declaration of each other procedure

Two additional attributes which have come to be closely tied to object oriented
programming are inheritance, (subtyping), and overloading of the method
(procedure) names

11 Inheritance

Inheritance may be defined in various ways The two main notions are
"inheritance from classes” and “inheritance from objects" In inheritance from

classes, objects are created within a class and derive their properties (structural

and procedural) from the class They do not however derive specific values
(states) from the class While classes may themselves be objects, not all objects
are classes Classes may derive some of their properties from other classes

forming a hierarchy (e g Smalltalk) or directed network (e g Trellis/Owl
[6]) of related classes

The other major definition of inheritance, ‘"inheritance from objects®, does not
distinguish between objects and classes, and any object may inherit properties
(structural, procedural, as well as state values) from any other This notion is
called delegation and one object is said to delegate responsibility for- a property to
another object An object may decide to always be the same "color" as another
object, but to have other distinct properties such as "position® or “spin® The
first object is then an exemplar for the second This notion is supported in
several languages (e g ThinglLad [7]) but will not be further discussed here
This is not a judgement about the usefulness of the idea (quite the contrary) but
a desire to focus on the notion of "inheritance from classes” as is done in
Smalltalk-like languages

I11 Overloading of Names

The idea of overloading method (procedure) names comes from the strong desire
in OOPL to make the syntax of a specific program match the semantics to the
greatest degree possible If we have a program that must use several different
structures of the same general form (e g Queue), but each structure has
different particulars, (e g array representation, list representation, queue of
integer, queue of instantiation record), it is semantically useful to be able to
refer to the operations on them by the same names (e g insert, remove) and
not have to rely on cleverly constructed variations on these names Such
naming 1is typically redundant in its use

For example, when we say in Pascal, PushReal(myStack,someltem), redundancy
results from the fact that the system knows that "PushReal" works for "stack of
reals" only, that "myStack"” is indeed a "stack of reals" and that "someltem" is
indeed a ‘real” This redundancy is useful in strongly typed languages In fact
it is the main reason for using strong compile time typing, so that the compiler
may check that we "got it right" However some of the inherent redundancy
may also be used to reduce the syntactic overload required In Pascal, if we
must also have "stack of integer", "stack of i we will then be saying
“Pushinteger” or whatever, although the notion of Push is independent of most of
that sort of detail Overloading of procedure names, using one name, "Push", for
a whole collection of procedures, is a means of factoring out common properties
(a semantic notion) and making the syntax match the meaning The system
itself may be made to remember that Push(myStack,someltem) must refer to
the procedure which operates on stacks of reals because myStack and someltem
are consistent only with that procedure

IV Message Passing (and Information Hiding)

A complete notion of object oriented programming then must include these three
properties: Strong methods of encapsulation, inheritance (here using inheritance
from classes) and overloading or factoring of names To this we shall add the
message passing paradigm In most object oriented programming systems the
objects conceptually must be considered to be autonomous entities which have
"knowledge”™ of their own representations and their own allowable actions
(strong encapsulation) A program generates changes of state by sending
messages (method names plus parameters) to objects The names are of course

overloaded, so that the object itself will “figure out" which actual procedure
should be executed to respond to the message It is not clear that this is
essential to the notion of object oriented programming, but this style of writing
(and thinking) will be adopted here and incorporated as a fourth property of
OOPL A push message can be sent to the stack myStack as:

myStack push(someltem) myStack receives the message, decides that it knows
how to “push® and then it “does the right thing” with someltem, modifying its
own internal state In some systems all messages generate a reply In others
they do not The reply is similar to a function result returned to the caller

A corollary of the message passing paradigm is that information hiding must be

enforced on the state variables of the objects If an object.is autonomous, and
behaves by responding to messages then it is inconsistent to allow other parts of
a program to manipulate the state variables directly This may be enforced by
programmer discipline, but a better way is to get help from the language itself
by means of appropriate scoping rules for names Block structured languages of
the Pascal family are all deficient in this regard and artificial means must
generally be used to achieve it Thus, in Modula-2 the stacks discussed above

could be opaque types, preventing clients from manipulating the state wvariables,
but then we would be restricted to the use of implementations that represented
the stack as a pointer (though, admittedly, it could be a pointer to an array)

V How Close is Modula-2 to Being an OOPL?

This question will be approached in two ways First, we will present an
example in standard Modula-2 which demonstrates what may be done simply by
adopting an OOPL style When one adds ideas of record type extension as
discussed by N Wirth in March 1987 at the ACM SIGCSE conference and his
subsequent article [8] we will see that we are almost there To show this we
will present a second example in a hypothetical language which adopts Wirth's
record type extensions We then analyze the resulting language in terms of the
adequacy of its support for OOPL concepts

We would first like to answer the question: "Why objects in Modula-27" This
question has two sides: Modula-2 is very good in its design domain, and
several excellent OOPL's exist A number of reasons for wanting to extend
Modula—2 could be given, based on wvarious criteria One important reason is
that the basic structure of the language is very sound and not so extensive that
it may not be mastered readily The strong compile time typing of Modula—2
(also present in some but not all OOPLs) is another reason The general

usefulness of Modula-2's overall support for software engineering (including
separation of specification and implementation, separate compilation) is

important in our view Another reason is that the wvast number of
programmers who grew up loving Pascal would be able to easily adapt to such a
language A final reason is because we like the language conceptually for its

beauty, orthogonality and relative lack of shortcomings
Vi Programming in the OOPL Style Using Modula-2

Using DEFINITION MODULEs and record and procedure types we may achieve
strong encapsulation and name overloading, and simulate a message passing style
in a primitive way Inheritance and information hiding are the difficult items
The examples below are not an attempt to define an object oriented style within
Modula-2, but to show what the language lacks to support the concepts fully

As we can see in Listing 1, there is some awkwardness in trying to provide a
subclass mechanism The standard syntax requires extra redundancy in trying

to refer to that part of the definition of a QUEUEwithLength which was

inherited from QUEUE We must refer to the original insert operation by

qwl® inheritedqueue” insert() to get "inside” the inherited part Some things
could be done differently, using variant records, but to this we cry “foul” as it is
not proper in true software engineering (where an important issue is reusability
of functionality) to go back and fix the old stuff so that it is consistent with the

new We would rather add the new stuff, keeping unchanged whatever we can
of the old

We also see a bit of extra redundancy in the "message passing” method The
message refers to the recipient twice, once as the first symbol in ‘the expression
and again as the first actual parameter in the call In fact the first symbol is
actually an explicit procedure choosing mechanism, not a message recipient We
declare that we wish to execute the procedure q" insert, not that the object q is
being sent the message “insert”

DEFINITION MODULE OOPQues;
(* EXPORT QUALIFIED QUEUE,INIT, nodeptr,itemtype; *)
TYPE itemtype=INTEGER;
nodeptr= POINTER TO node;
node = RECORD
info:itemtype;
next:nodeptr;

END,
QUEUE=POINTER TO queue;
inserttype = PROCEDURE (VAR QUEUE,itemtype);
removetype = PROCEDURE(VAR QUEUE, VAR itemtype);
emptytype = PROCEDURE(QUEUE):BOOLEAN;

queue = RECORD
front,rear:nodeptr;
insert:inserttype;
remove:removetype;
empty:emptytype;
END;
PROCEDURE INIT(VAR gq: QUEUE (*in out*));
END OOPQues

IMPLEMENTATION MODULE OOPQues;

FROM Storage

FROM InOut

PROCEDURE Empty(q:QUEUE(*in*)) : BOOLEAN,

BEGIN
IF q” front = NIL THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END;

END Empty;

PROCEDURE Insert (VAR q:QUEUE (*in out*); item:itemtype(*in*));
(* the queue is defined to have a FIFO discipline *)
VAR p:nodeptr;

BEGIN
NEW (p);
p~ info:=item;
p” next := NIL;
IF Empty(q) THEN
q"~ front:=p,

ELSE
q" rear” next:=p;
END;
q" rear:=p,;
END Insert;
PROCEDURE Remove (VAR q:QUEUE(*in out®); VAR item:itemtype(®out*));
(* remove the item at the front if any such exists *)

END Remove;
PROCEDURE INIT(VAR q:QUEUE(*in out®));
BEGIN
q" front:=NIL; q" rear:=NIL;
q" insert := Insert; (* Note that different procedures could *)
q” remove:=Remove; (* be inserted here, effectively providing *)
q" empty:=Empty; (* name overloading of the names *)
END INIT; (* insert,remove, and empty *)

END OOPQues

DEFINITION MODULE Inherit;
FROM OOPQues IMPORT QUEUE;
(* EXPORT QUALIFIED QUEUEwithLength, INITmodifiedqueue; *)
TYPE lengthtype=PROCEDURE (QUEUE) : CARDINAL;
QUEUEwithLength=POINTER TO queuewithlength;
queuewithlength=RECORD
inheritedqueue: QUEUE; (* attempt at inheritance *)

length:lengthtype; (* extend with a new method ¥*)
END;

PROCEDURE INITmodifiedqueue(VAR q:QUEUEwithLength(*in out*));
END Inherit

IMPLEMENTATION MODULE Inherit:
FROM OOPQues IMPORT QUEUE, INIT,
FROM Storage
PROCEDURE Length(q:QUEUE(*in*)):CARDINAL;
VAR p:nodeptr;
c:CARDINAL;

nodeptr,itemtype;

BEGIN

p:=q" front,

c:=0;

WHILE p#*NIL DO
P:=p" next;
INC(c);

END;

RETURN ¢

END Length;

PROCEDURE Insert(VAR q:QUEUE(*in
(* redefines the discipline to LIFO *)
VAR p:nodeptr;

BEGIN

NEW (p);

p” info:=n;

IF q° empty(q) THEN
P" next:=NIL;
q° rear :=p;

ELSE

out*);n:itemtype (*in*));

P" next:=q" front;
END;

q" front:=p;

END Insert;
PROCEDURE INITmodifiedqueue(VAR q:QUEUEwithLength(®*in out®));
BEGIN
INIT(q" inheritedqueue);
q" inheritedqueue” insert:=Insert; (* install the changed method *)
q" length:=Length; (* install the new method *)
END INITmodifiedqueue;
END Inherit

MODULE OOPQueueTest;
FROM OOPQues IMPORT QUEUE,INIT;
FROM Inherit IMPORT QUEUEwithLength, INITmodlerdqueue,
FROM Storage
FROM InOut
VAR q:QUEUE;
qwl: QUEUEwithLength;
n:INTEGER;
i,len:CARDINAL;
BEGIN
NEW(q); INIT(q);
NEW (qwl); INITmeodifiedqueue(qwl);
FOR i:=1 TO 5 DO (* insert items into each queue*)

Readint(n);
q" insert(q,n); (* send q and qwl the insert "messages" *)
gwl” inheritedqueue” insert(qwl" inheritedqueue,n);
WritelLn;
END;
len := qwl" length(gqwl" inheritedqueue); (* the length message to qwl *)

WriteCard(len, 0); WriteLn;
WHILE NOT q" empty(q) DO (* delete items *)
q" remove(q,n);
Writelnt(n,10);
END; .
WHILE NOT gqwl® inheritedqueue” empty(qwl” inheritedqueue) DO
qwl® inheritedqueue” remove(qwl” inheritedqueue,n);
Writelnt(n,10);
END; (* note the more complex syntax in this while to get the “remove"*)
END OOPQueueTest

Listing 1

Two other difficulties are, first, the need for separate initialization routines
(INIT and INITwithLength), with separate names, and second, the lack of any
protection mechanism for the state variables of the queues defined More will be
said about these problems below The reader should note however that (1)
encapsulation is very strong, (2) information hiding is non-existent, (3)
overloading is fine except for the name INIT, and (4) message passing and
inheritance are here, but in a weak form

Vi1l Incorporating Wirth's Record Type Extensions

Wirth, in proposing extensible types, however, opens the door a great bit

further As an example of his record type extension, we may have a record
type ALPHA with components alpha and tau Another type BETA might want to
adopt all of the structure of ALPHA but supplement it with an element beta The
syntax for doing this would be '

TYPE
ALPHA = RECORD
alpha : :
tau :
END;

BETA = RECORD (ALPHA)
beta: ;
END;

Records of type BETA will then have three components alpha, beta ‘and tau

Also, BETA will inherit structure from ALPHA BETA is called a subtype of
ALPHA Furthermore any object of type BETA is considered to be an item of type
ALPHA Thus the notion of type here is different from the strict notions in
Modula-2 or Pascal This is the notion of type extension, or specialization

Items of type BETA are assignment compatible with names associated with type
ALPHA because they are in fact of that type

To have a type extension, in the strict semantic sense, however, the user of this
construct must be careful In its strongest form subtyping or type inheritance
has the following meaning: "BETA is a SUBTYPE of ALPHA provided that
wherever a value of type ALPHA is required, a value of type BETA may be
utilized " Thus we may (almost) say that LION is a subtype of ANIMAL because
it is (almost) true that sentences that use the word ANIMAL (in its generic
sense) are meaningful if the word is replaced with LION (Animals are motive,
Animals reproduce but not, of course statements that refer to some but not all
animals)

The import of this is that the extension construct described by Wirth must be
used by the programmer in such a way that defining a subtype declares a
"specialization" of a type and not a fundamental change in the meaning of the
type Thus a subtype of QUEUE that declared fields and other elements in such a
way that the behavior was that of something other than a queue would not be
proper Note that this is exactly what has been done in Listing 1, as insert was
changed to a LIFO discipline If we were interpreting "Queue” narrowly (i e
FIFO) then we would have broken the subtype discipline Not all languages that
permit inheritance of types enforce subtype discipline, except perhaps
syntactically, and programmers usually have ways around the intentions of the
language designer in any case (We note that it is sometimes useful to break the
subtype discipline, when it is functionality that we wish to. extend and not
meaning)

However, if this record type extension were to be added to Modula-2, (perhaps
replacing the variant record structure, which is a weaker notion) then the first
example becomes much simpler and much closer to the object oriented style
Listing 2 describes the first example in a hypothetical language E_Modula-2,
which has E_MODULES, and, except for including record type extensions, is
identical to Modula-2

As we see from Listing 2 we now have a much cleaner message passing syntax
The extra field reference is no longer needed, as the fields of a queuewithlength
are all at the same level, but we still need to refer to the recipient twice
Encapsulation is still very good The inheritance structure is sound Name
overloading is almost right

DEFINITION E_MODULE OOPQues;
(* EXPORT QUALIFIED QUEUE, queue, INIT, nodeptr, itemtype; *)

(* Same as the DEFINITION MODULE OOPQues of Listing 1 *)
END OOPQues

IMPLEMENTATION E_MODULE OOPQues;
FROM Storage
FROM InOut
(Same as the IMPLEMENTATION MODULE OOPQues of Listing 1 *);
END INIT;
END OOPQues

DEFINITION E_MODULE Inherit;
FROM OOPQues IMPORT queue;
(* EXPORT QUALIFIED QUEUEwithLength, INITmeodifiedqueue; *)
TYPE QUEUEwithLength=POINTER TO queuewithlength;
lengthtype=PROCEDURE (QUEUEwithLength):CARDINAL;
queuewithlength=RECORD (queue) (* a subtype record, much nicer
inheritance*)
length:lengthtype;
END;
PROCEDURE INITmodifiedqueue(VAR q:QUEUEwithLength(*in out*));
END Inherit

IMPLEMENTATION E_MODULE Inherit;
FROM OOPQues IMPORT INIT, nodeptr,itemtype;
FROM Storage

PROCEDURE Length(q:QUEUEwithLength(*in*)):CARDINAL;
VAR p:nodeptr;
c:CARDINAL;
BEGIN
P:=q" front;
c:.=0;
WHILE p#*NIL DO
pP:=p" next;
INC(c);
END,;
RETURN ¢ ;
END Length;

PROCEDURE Insert(VAR q:QUEUEwithLength(*in out*);n:itemtype(*in*));
(* redefines the discipline to LIFO *)
VAR p:nodeptr;
BEGIN
NEW (p);
p”~ info:=n;
IF q° empty(q) THEN

p" next:=NIL;
q° rear :=p;
ELSE
P® next:=q" front;
END;
q" front:=p;
END Insert;

PROCEDURE INITmeodifiedqueue(VAR q:QUEUEwithLength(*in out*));
BEGIN
INIT(q);

~

q" insert:=Insert; (* Simpler syntax here *)
q" length:=Length;
END INITmodifiedqueue;
END Inherit

E_MODULE OOPQueueTest;

FROM OOPQues IMPORT QUEUE,INIT;

FROM Inherit IMPORT QUEUEwithlength,INITmodifiedqueue;
FROM Storage

FROM InOut

VAR q:QUEUE;
qwl: QUEUEwithLength;
n:INTEGER;
i,len:CARDINAL,;
BEGIN
NEW(q); INIT(q);
NEW (gwl); INITmodifiedqueue(qwl); (* It is no simpler here, though *)
FOR i:=1 TO 5 DO (* insert items into each queue*)

ReadInt(n);
q" insert(q,n); (* send q and qwl the insert "messages" *)
gwl” insert(qwl, n); (* much better here *)
WritelLn;
END;
len := gqwl!l" length{(qwl); (* improved length message to qwl *)

WriteCard (len, 0); Writeln;
WHILE NOT q~ empty(q) DO (* delete items *)

q° remove(q,n);
Writelnt(n,10);

END;

WHILE NOT qwl” empty(qwl) DO (* nicer here *)
qwl” remove(gqwl,n); (* much improved here *)
Writelnt(n, 10);

END;

END OOPQueueTest
Listing 2
VIII What is still lacking in Modula-2?

What is still lacking for us to have a minimally useful OOPL? The last item
mentioned in the section above is one clue Procedure name overloading is
relatively straightforward for every method except for the INIT method which is
separately needed for every class The fact is that Modula—2 suffers from one
important deficiency as a language for software engineering in environments of
many programmers in which implementers of functionality want to provide safe
ways for clients to use that functionality The flaw 1is in separating the physical
allocation mechanism for constructs (pointed to constructs especially) and the
initialization mechanism, which makes them safe [9] We should not have to
separately say

NEW (or ALLOCATE)

INIT
to create a new item For if a client forgets the protocol and does not initialize,
we will have problems There ought to be a single mechanism, logical or
semantic in nature, by which both of these functions may be achieved The
implementer of the functionality will then be able to guarantee the safe use of
the data types provided Thus, to avoid this problem in Modula—2 and to permit

10

full name overloading, a way must be found to initialize objects "automatically”
so that the client need not be concerned The implementer must necessarily be
able to specify the nature of the initialization and to guarantee that it will be
done for each object created (Note that we could have overloaded the name
INIT But to do so would require using another procedure whose name could not
be overloaded The problem can be moved, but it stays around) Solving this
problem would be very easy and straightforward

A harder problem is the double redundancy of the message recipient We have
still used an explicit procedure selection mechanism, which appears statically
within the program text It would be preferable to make this implicit, as the
name of the recipient must appear somewhere, and it only knows one procedure
by the given name So that either a syntax like insert(q,item) or q insert(item)
would be preferable to q insert(q item)

Another problem arises if we are to consider this subtype mechanism as a means
of defining classes of objects The scoping rules for wvisibility of names in
Modula—2 is not consistent with the needs of strong encapsulation with
information hiding It was, of course, designed for procedural abstraction and
not explicitly for data abstraction In object oriented programming we are more
interested in entity abstraction If the objects such as QUEUEs are to truly be
encapsulated then they ought to be able to completely control all access to their
internal state variables (of course the implementation should be irrelevant if the
data type is truly “abstract") Thus the data components (not the procedural
components) should be entirely invisible outside of the inheritance hierarchy
We should not be able to refer to the “front" field of the QUEUEwithlLength,
except from within those procedures which implement the QUEUEwithLength

To not insist on this is to build only half of a dike Careful programmers will
avoid using implementation details as they do now in older languages, but clever
programmers will find "tricky" ways to be "more efficient” and the

encapsulation mechanism will fail Thus, an object oriented extension to
Modula—2 must provide a way to hide the implementation details while revealing
the "procedural specification” or interface One could change the scope rules to

achieve this or one could find a way to hide some of the details in the
IMPLEMENTATION MODULEs However, a solution which breaks the specification
of a class of objects into two parts, with some in the DEFINITION MODULE and
the rest in the IMPLEMENTATION MODULE is objectionable on conceptual grounds
A language providing encapsulation should provide a way for the syntax to
"surround” the specification of an item The lack of such syntax in many
languages (e g Pascal) causes major difficulties in correctly and carefully
implementing abstract data types as it requires several distinct specification
statermments to completely specify a single abstract data type

1X Conclusion

What would you have with a language which added such features to Modula-27?
The list of benefits for maximally reusing old software, and for building big stuff
in multi-person environments is quite long: Strong compile time checking,
separation of specification from implementation, improved information hiding,
sound inheritance aiding software reuse, separate compilation, and easily
modularized design Modula-2 supports most of these things now Adding
objects and classes in the correct way would improve on the language

Work is underway to develop a language along these lines which also exhibits
more advanced features including generic classes, maultiple inheritance, private
classes, opaque classes, and, perhaps, moving of some of the type checking
burden to the run time environment in certain controlled circumstances

11

Acknowledgment

The authors thank the Marist College Software Engineering Research Fund for
providing support for this work

References

[1] Adele Goldberg, David Robson, Smalltalk-80: The language and its

implementation, Addison—-Wesley, 1983
[2] American National Standards Institute (1983) Military Standard Ada
Programming Language ANSI/MIS-STD-1815A-1983

(3] Niklaus Wirth, Programming in Modula-2, Third, Corrected Edition, Springer-—
Verlag, 1985

[4] Kathleen Jensen and Niklaus Wirth, "Pascal User Manual and Report®, Second
Edition, Springer—Verlag, 1974

[5] Larry Tesler, "Object Pascal Report", Apple Computer, 1985

[6] Craig Schaffert, Topher Cooper et al , "An Introduction to Trellis/Owl"

OOPSLA/86 Proceedings ACM September, 1986
(7] Alan Borning, “Classes Versus Prototypes in Object-Oriented Languages"
ACM/IEEE Fall Joint Computer Conference, Nov 1986 (ThinglLab)

[8] Niklaus Wirth, "Extensions of Record Types", SIGCSE Bulletin V19,N2, June
1987

[9] Stuart Greenfield and Roger Norton, “Detecting Uninitialized Modula—2
Abstract Objects"” SIGPLAN Notices, 22(6) June 1987

This paper previously appeared in SIGPLAN Notices and in the Journal of Object
Oriented Programming

PACE UNIVERSITY
NEW YORK ¢ WESTCHESTER

OFrICE OF THE DEAN THE EVELYN AND JoszrH 1. Lusmn
ScrHool oF COMPUTER SCIENCE GRADUATE CanTEn
1 MARTINE AVENUE

I TION SYSTEMS
AND INFORMA WiTe Prams, N.Y. 10606-1909

TELEPHONE: (914) 422-4375
April 25, 1990 Fax: (914) 422-4019

Dr. Allen Stix

Computer Science Dept.
Pace University

School of Computer Science
and Information Systems

1 Martine Avenue

White Plains, NY

To the Editor:

This is a congratulatory note on the rebirth of the Technical
Reports. You have done a fine job!

Without reference to the content of the first paper (in which
I have an interest), I note that the volume is very well done;
there is a high quality about it including editorial
information, previous publication information, attention to
copying rights, page numbers and so forth. Your editor's note
assists us in categorizing the kinds of scholarly activity
that we can initiate or continue.

Thank you very much for your outstanding leadership. I look
forward to a long and successful life for the series.

Sincerely,

e W ey

Suéan M. Merritt
Dean

/3m

Editor’s Note

May, 1990

- ———— ——— —_— ————

The manuscript you hold in your hands has a distinguished history.
It was yritten as a report on technical research and, consistent with
its scholarly identity, was sent to and printed by SIGPLAN Notices

(March 1988; Volume 23, Number 3; pages 73-82). There it was seen by
the editors of the Journal of Object Oriented Programming, a slick-

Reports because the teaching of object oriented ideas and research into
ob jected oriented programming and systems design directly involves both
computer science and information systems. Not only is the potential
present for collaborations across disciplinary lines, but the frontiers
of the cbject oriented territories are still close by and wide open.
Seeing that there is developed expertise "already in the family" in the
form of Joe means that, in case you did not know, you have an
accessible sounding board for new thinking and a source of help. (This
is not to neglect a great deal of expertise in the form of other family
members as well. There was even an earlier Technical Report, from

March 1988, entitled "Getting Started with Smalltalk in Smalltalk/V: A
TJutorial” by your’'s truly.)

My hope is that this reaches you in time for the suggestion of
writing a paper over the summer to alight on the fertile soil of late
spring. Don't forget, Technical Reports welcomes working research
reports, the sharing of assignments and/or instructional pedagogy that
worked particularly well, syntheses of the literature, reviews of
realms of software, and discussions of the new adoption of technology
from one realm in another. Of course trail-blazing discussions of
truly revolutionary significance, or of merely paradigm-shaking
significance, are alsoc warmly greeted and likely tc be found
acceptable. I'11 be expectantly watching my mail....

Allen Stix
Department of Computer Science
301 Alumni House
The College of White Plains of Pace University
78 North Broadway
White Plains, NY 10603

Telephone: 914 422-4191

	What does modula-2 need to fully support object oriented programming?
	Recommended Citation

	tmp.1705524842.pdf.e4N58

