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Part I

Holographic Complexity
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1 Setting the stage

There is a remarkable interplay of ideas in modern theoretical physics. Tools
and techniques developed in one field can be useful in a completely distinct field.
Nowhere is this interplay of ideas more apparent than in our quest to understand
the quantum nature of gravity. Quantum mechanics and general relativity are the
foundational pillars upon which much of our comprehension of the universe rests.
These theories explain diverse phenomenon over a vast range of scales.

Quantum mechanics is essential to grasp the fundamental nature of matter. This
encompasses phenomena at the microscopic level, such as elementary particles
governed by the standard model which is a quantum field theory. Moreover, it
also extends to applications in diverse areas, from superconductors to quantum
computers, and many more.

General relativity on the other hand is Einstein’s theory describing gravity as a
manifestation of the geometry of space and time. It is required to describe the
universe at the largest scales. Its most spectacular predictions are gravitational
waves and black holes, both of which have been experimentally verified. Despite
being an extremely successful theory, there is ample evidence that it is insufficient
to describe all natural phenomenon. For instance, to fully describe the dramatic
physics of black holes, we need a theory of quantum gravity that unifies both of
these pillars into a single framework.

Black holes present us with the best hints and also at the same time the biggest
puzzles in developing a theory of quantum gravity. One of the most significant hints
is the holographic principle, which states that gravity emerges from a quantum
theory in a lower dimension. This has in turn uncovered the fact that quantum
mechanics and gravity are deeply intertwined. In particular, tools from quantum
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1. Setting the stage

information and computation have been invaluable to understand quantum gravity.
After a general introduction, this and the next couple of chapters explore the
notion of quantum complexity in holography and how it could essential to solve
some puzzles of quantum gravity.

1.1 Holography

The idea of holography begins1 with the Bekenstein-Hawking formula for the black
hole entropy

SBH = A

4GN
(1.1)

where A is the surface area of the event horizon of the black hole, and GN is
Newton’s constant. The remarkable feature of this black hole entropy is that it
scales with the area rather than the volume. In ordinary physical systems described
by local quantum field theory, we are familiar with entropies that scale extensively
with volume since there are degrees of freedom present at every point in space. The
Bekenstein-Hawking entropy instead is suggesting that the microscopic degrees of
freedom of the black hole, unlike the ones in local quantum field theory, live in
one less dimension.

This feature of black holes has interesting implications not just for black holes
but even for the rest of the universe. The Bekenstein-Hawking entropy sets a
upper bound on the entropy contained inside any spherical region of spacetime
with a given surface area A. If the given region contained stuff with more entropy,
then by collapsing that stuff into a black hole one would violate the second law of
thermodynamics

S ≤ Smax = A

4GN
(1.2)

Taking inspiration from such entropic bounds, it was postulated by ’t Hooft and
Susskind that any theory of quantum gravity must be holographic, repackaging
its degrees of freedom into one lower dimension. This is often known as the holo-
graphic principle. The most precise realisation of the holographic principle occurs
in what is called the “AdS/CFT” correspondence discovered by Maldacena [8] in
1998. This entails several dualities where the quantum gravitational theory in
certain (d+ 1) dimensional spacetimes is equivalent to a non-gravitational theory
in d dimensions.

1There were also other hints of the holographic nature of gravity, e.g., [6, 7]
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1.1. Holography

AdSd+1

CFTd

t
t = 0

Figure 1.1: The AdSd+1 spacetime in global coordinates. Time runs vertically and
spatial infinity is approached as we reach the boundary of the cylinder, where the CFTd

lives. A particular bulk time slice at t = 0 is represented in grey.

1.1.1 The AdS/CFT correspondence
The Anti-de Sitter (AdS)/ Conformal Field Theory (CFT) correspondence is a
duality between two theories: quantum gravity in asymptotically AdS spacetimes
in (d+1) dimensions and conformal field theories in d dimensions. It has its origins
in string theory, where several examples of such dual pairs of equivalent theories
were observed. The most famous among these is the duality between type IIB
string theory on AdS5× S5 and the four dimensional N = 4 supersymmetric Yang-
Mills CFT with gauge group SU(N). We can use this example to illustrate some
immediate features of this duality. The AdS5 gravity description is referred to as
the bulk theory and the CFT description is referred to as the boundary theory. We
should really view the boundary theory as giving us a non-perturbative definition
of the bulk quantum gravity. When the boundary CFT is strongly coupled and
we take the N → ∞ limit, the bulk gravitational theory is weakly coupled and
reduces to classical Einstein gravity.

Over the last twenty five years there have been enormous efforts to understand how
this duality exactly works. A major theme is understand how interesting quantities
on one side of the duality translate into the other. This translation is sometimes
called as the AdS/CFT dictionary. The Hilbert space of the bulk theory is by
definition given by the Hilbert space of the boundary CFT, and similarly both the
bulk and boundary Hamiltonians are equal

HCFT = Hgravity (1.3)

The conformal symmetry SO(d, 2) of the Lorentzian CFTd are matched with the
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1. Setting the stage

bulk isometries of the AdSd+1 spacetime. The CFT states encode all the infor-
mation about the state of the bulk gravity. The vacuum state is invariant under
all of the conformal symmetries on the CFT and corresponds to the empty AdS
spacetime. Low lying states in the boundary theory would correspond to small
perturbations around empty AdS. High energy thermal states in the CFT are iden-
tified with massive AdS black holes in the bulk. Operators in the CFT are related
to local fields in the bulk that are close to the boundary of the spacetime, using
the so-called extrapolate dictionary [9,10]. For example, a bulk scalar field ϕ(r, x)
is related to a CFT primary operators O(x) as

lim
r→∞

r∆Oϕ(r, x) = O(x) (1.4)

where ∆O is the operator’s scaling dimension. Quantities that just depend on the
Hamiltonian and the space of states, such as thermal partition functions can be
immediately matched on both sides

ZCFT(β) = ZAdS(β)

≈
∑

saddles ḡ
e−SE(ḡ) (1.5)

The partition function on the bulk side can usually only be evaluated by using
a semi-classical path integral, in which case it would be given in terms of the
Euclidean action of the classical gravitational solutions with the specified boundary
conditions. The above statement can be generalised in the presence of sources that
are dual to CFT operators

ZCFT(ϕ0) = ZAdS(ϕ → ϕ0) (1.6)

On the left hand side we have the generating function of the CFT correlation func-
tions, with ϕ0 corresponding to the sources of the operators O in the CFT. On the
right hand side is the gravitational path integral with bulk fields whose boundary
conditions at the asymptotic boundary are specified by ϕ0. Using this we can
derive local correlation functions of the boundary theory from bulk computations.

Some typically quantum field theoretic questions in the bulk gravity such as the
scattering of particles on a given AdS spacetime are easily captured by the local
correlation functions of the boundary CFT. But there are several other important
and perhaps more interesting questions such as how does a smooth bulk geometry,
and an (approximate) bulk locality emerge from an underlying boundary theory?
Ideas and tools from quantum information theory have been vital to understand
and answer some of these questions.

6



1.2. Gravity from Quantum Information?

1.2 Gravity from Quantum Information?
The fact that black holes are dual to thermal high-energy states in a quantum
theory already illustrates the link between gravity, quantum mechanics and infor-
mation: the entropy of the quantum state is geometrised as the horizon area in
the Bekenstein-Hawking formula. This only scratches the surface, there’s far more
to be said about this link between quantum information and gravity.

The most striking feature of quantum states is their entanglement. For any two
quantum systems HA and HB we can consider states in the combined system
HA ⊗ HB . It is this feature that sets quantum information apart from classical
information. We can illustrate how entanglement plays a role in the emergence of
bulk spacetime by studying two-sided black holes.

In general relativity, we often work with the maximal extensions of black hole
spacetimes such as the Kruskal extension. Just like in flat space, such a maximal
extension in AdS gives an eternal black hole, having two asymptotic boundaries.
The constant time slices (the spatial geometries) of such eternal black holes are
non-traversable wormholes that join the two boundaries.

L R

L R L R×β → ∞

Figure 1.2: A Penrose diagram of an AdS eternal black hole. It has two exterior L and
R regions. The dashed lines are the singularities, and the diagonal lines are correspond
to the horizon. This geometry is dual to the TFD state in the CFT.

The eternal black hole geometry was shown [11] to be dual to an entangled state,
called the thermofield double which lives in the Hilbert space of two copies of the
CFT

|TFD⟩ = 1√
Z(β)

∑

n

e−βEn/2 |En⟩L ⊗ |E∗
n⟩R (1.7)

where En are the energy eigenstates of the CFT, and β the inverse temperature.
This is a pure state in the product Hilbert space of two copies (usually denoted

7



1. Setting the stage

as L and R) of the original CFT living on two disconnected boundaries of the
eternal black hole. This is a state with maximal entanglement between the two
subsystems. Upon tracing out either of the system, we get back a thermal density
matrix

ρL = trR (|TFD⟩ ⟨TFD|) = e−βH

Z(β) (1.8)

Since the two L and R systems are completely disconnected, we would have ex-
pected the bulk state to also consist of disconnected spacetimes. But the particular
pattern of quantum entanglement in the |TFD⟩ state generates a single connected
smooth bulk spacetime. At zero temperature, the TFD state reduces to the prod-
uct state |0⟩L⊗|0⟩R without any entanglement. In the bulk this would correspond
to two disconnected pure AdS spacetimes [12]. But for any non-zero temperature,
the state consists of an infinite superposition of the L and R energy eigenstates.
Thus, entanglement is a necessary condition for the bulk spacetime to be connected
and acts as a glue that builds spacetime!

L R

L R L R×β → ∞

Figure 1.3: Entanglement builds spacetime: As the inverse temperature β approaches
infinity, |T F D⟩ becomes unentangled product state |0⟩L ⊗ |0⟩R, in turn resulting in two
disconnected copies of vacuum AdS spacetime.

An important measure of entanglement between two systems is given by the von
Neumann entropy, sometimes also called entanglement entropy in this context.
Given any state |ψ⟩ ∈ HA ⊗ HB , this is defined as

S = −tr(ρA logρA), ρA = trHB
(|ψ⟩ ⟨ψ|) (1.9)

We can easily calculate the entanglement entropy in the TFD state. The entropy of
the total state is of course zero, since its a pure state. If we have access to only one
system, then the reduced state is a thermal state. Computing the entanglement
entropy for a thermal density matrix gives us back the thermal entropy of that
state. But we know that the entropy for the single system is just the black hole

8



1.2. Gravity from Quantum Information?

entropy given by the area of its horizon. Thus, we see that the entanglement
entropy is geometrised as the area of the black hole horizon.

It was observed by Ryu and Takayanagi [13] that the entanglement entropy of any
spatial subregion of the boundary CFT has a natural geometric interpretation in
the bulk geometry. To state it precisely, consider a subregion A of the boundary
CFT and consider its entanglement entropy with respect to its complement Ac.
This is given by the holographic entanglement entropy as

S(ρA) = Area(χA)
4GN

(1.10)

where χA is a special codimension-2 bulk surface (sometimes called the RT surface)
which is homologous to A and having minimal area. When we have a black hole
in the bulk spacetime, and we take A to be the entire timeslice of the boundary,
this surface is just the event horizon of the black hole reproducing the black hole
entropy from the von Neumann entropy of the boundary thermal density matrix.
This formula as stated above is valid only for static spacetimes, and ignores higher
order corrections. There have been several updates of this including a covariant
(HRT) formula applying to non-static spacetimes [14], and also a quantum cor-
rected (QES) formula which takes into account the effects of the bulk quantum
fields [15]. There are also derivations of these statements using the semi-classical
gravitational path integral techniques [16,17].

t

χA A

Figure 1.4: The entanglement entropy of a spatial subregion A (thick black curve)
with respect to its complement Ac (dashed black curve). In the bulk, this entanglement
entropy can be computed geometrically as the area of its corresponding RT surface χA

(red curve).
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1. Setting the stage

Ever since the discovery of this precise connection between entanglement entropy
and geometry, there has been a remarkable progress in understanding AdS/CFT
through a quantum information-theoretic perspective. There have been numerous
non-trivial consequences that directly follow from the RT formula (1.10) and in
general the geometrisation of entanglement. Since the RT surfaces directly probe
the bulk geometry, by varying the entanglement entropy we can in certain cases
rederive the linearised Einstein’s equations [18]. Furthermore, we have gained
insight into how the bulk information is encoded in the boundary, a phenomenon
called as entanglement wedge reconstruction [19]. This has also highlighted the fact
that the map from boundary to bulk acts like a quantum error correcting code [20].
Moreover, there are several toy models involving tensor networks which reproduce
many of these features [21]. Tensor networks are used to efficiently prepare states
in many-body systems, especially those with a particular entanglement structure
[22, 23]. It was realised that the bulk can be interpreted as a (discrete) tensor
network that is preparing the boundary state. Building on much of the above
progress, recent developments have also demonstrated the unitarity of black hole
evaporation in the bulk, making way to resolving the long-standing black hole
information paradox.

1.2.1 Entanglement entropy is not enough

In spite of these findings, there is compelling evidence indicating that measures like
entanglement entropy alone may not constitute the definitive solution to address
all the challenges posed by quantum gravity. For instance, there are bulk regions
where the RT surfaces cannot ever penetrate, no matter what boundary subregion
we choose. These regions were called as entanglement shadows and are expected
to occur generically [24,25]. One reason is that the RT surfaces go through phase
transitions and due to this they fail to probe the entire bulk geometry, giving rise
to these shadows.

Another illustration that entropy-based quantities are not alone sufficient comes
from studying black hole interiors. It is known that the interior region of black
holes grow indefinitely in classical general relativity. For example, consider again
the eternal AdS black hole. The entanglement entropy of boundary subsystems
grows linearly for a short time before it quickly saturates [26]. While the length
of the wormhole connecting the two sides still keeps growing for an exponential
amount of time. Thus, we are in need of a new concept to explain this bulk
phenomenon. It turns out that another notion from quantum information called
quantum complexity has exactly the right properties to explain these issues.

10



1.3. Quantum Complexity

1.3 Quantum Complexity
Intuitively the notion of complexity deals with quantifying the difficulty of a given
task, with a certain set of resources at hand. In the context of quantum com-
putation this difficulty is measuring the optimal number of simple steps that are
required to form an initial reference state to a given final state. We can think of
such a computation using the model of quantum circuits. The simple steps that
build quantum circuits are a set of elementary quantum gates using which we can
implement any given operator to a given precision. Given this input, we can define
the circuit complexity (or gate complexity) of an operator as

Cϵ(U) = min{n : ∥U −
n∏

i=1
gi∥ ≤ ϵ} (1.11)

The definition above depends on a tolerance parameter ϵ, and a set of gates gi ∈ G.
This is a well defined quantity for finite qubit systems. For a system of N qubits,
the maximum complexity of a unitary acting on them is exponential in N , and
one can show that most unitary operators are near-maximally complex. Similar to
complexity of operators there is also a notion of state complexity. The complexity
of a target state is defined using a reference state as

Cϵ(|ψT ⟩) = min{Cϵ(U) : U |ψR⟩ = |ψT ⟩} (1.12)

The reference state is usually chosen to be simple state such as a product state.
Note that these definitions of complexity are highly discontinuous as ϵ is taken
to zero [27]. There is also no known practical method of solving the above mini-
mization problems, or in other words, finding the optimal circuit that generates a
given unitary. To address these issues, Nielsen came up with a geometric method
of estimating complexity [28]. In this method, we write the unitary as a path order
exponential over a time-dependent Hamiltonian

U = P exp
(∫ 1

0
H(s)ds

)
(1.13)

The Hamiltonian is then expanded over a chosen basis of operators, analogous to
an elementary gate set as

H(s) =
∑

I

Y I(s)OI (1.14)

The functions YI control the presence of the gates at each step of the circuit.
To define the complexity of the unitary, we minimize over a suitably chosen cost
functional of these YI ’s as

CF (U) = min
{YI }

∫
dsF [YI(s)] (1.15)

11



1. Setting the stage

The cost functional F [YI(s)] can be thought of as defining a metric on the space
of unitaries, which is a smooth manifold. This metric can be chosen such that
it penalises some directions corresponding to gates which are difficult to realise.
Calculating the complexity of a given unitary is then translated into a problem
of finding geodesics on this manifold. This continuous notion of complexity was
used to calculate circuit complexity in quantum field theory [29, 30]. Though in
most cases the computations are not general enough and are performed in certain
subspaces like those generated by Gaussian states [31] or involving primary states
of the conformal group [32–34].

A method that is inspired from tensor networks and directly suited for confor-
mal field theories was introduced in [35] called path-integral complexity. As the
names suggests, this method involves states that are prepared using the Euclidean
path integral. Say we are preparing the vacuum state of some Hamiltonian via
a tensor network computation. This computation can be optimised by remov-
ing unnecessary tensors such that we do not lose much accuracy in the prepared
state. This reduces the lattice sites of the tensor network making the computation
more efficient. In the continuum limit, this change in the network structure would
correspond to changing the metric over which a path integral is being performed.

This is best understood in the context of 2d CFTs. For example consider the
preparation of the vacuum state of a 2d CFT. In this case we know exactly how
the path integral changes under a change in the underlying geometry. Let us
compare the wavefunctional on a flat geometry ds2 = (dτ2 + dx2) to the one on
a general curved two-dimensional geometry ds2 = e2ϕ(τ,x)(dτ2 + dx2). We know
that both wavefunctionals are proportional to each other

Ψgij=e2ϕδij
= eSL[ϕ]−SL[0]Ψgij=δij

(1.16)

with the proportionality factor given by the Liouville action

SL [ϕ] = c

24π

∫
dτdx

(
(∂τϕ)2 + (∂xϕ)2 + µe2ϕ) (1.17)

By varying the conformal factor ϕ(τ, x) we change the geometry on which the path
integral is performed, and the Liouville action naturally associates a cost for each
geometry. It was proposed that minimisation of Liouville action gives the most
efficient computation. This means that the complexity is just given by

C(Ψ) = min
ϕ
SL [ϕ(τ, x)] (1.18)

The minimization is done such the the metric at τ = 0 is held fixed. This procedure
also seems to shed light on the emergence of bulk AdS3 spacetime. For example,
the conformal factor ϕ that minimises the Liouville action for the vacuum state
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1.3. Quantum Complexity

gives rise to a hyperbolic metric which can be interpreted as a time slice of the
dual AdS3 vacuum. It was shown that the Liouville action can be derived as a
gate counting cost function, relating this procedure to circuit complexity.

As is evident from the various definitions of complexity above, all notions of com-
plexity involve some sort of optimization procedure, thus making it an inherently
challenging quantity to calculate exactly for generic states and operator in quan-
tum field theory. However, in most physical scenarios, we are interested in the
dynamics of complexity. A central question in this regard is of how complexity
evolves in time. We can either study the complexity of a state as it time evolves,
or the operator complexity of the time evolution operator U(t) = eiHt itself. The
maximal complexity for an N qubit system was exponential in N , more gener-
ally it is exponential in the degrees of freedom of a system. For chaotic quantum
systems the complexity is expected to grow linearly until it reaches the maximal
value. Random quantum circuits serve as a proxy to model the quantum chaotic
dynamics of black holes, and for unitary operators built out of random circuits
this linear growth conjecture was proven in [36], see also [37].

C (eiHt)

Cmax

t
t ∼ eS t ∼ eeS

Figure 1.5: Time evolution of complexity in quantum chaotic systems. The growth
is linear until a time of order eS , after which it fluctuates around Cmax. There will be
recurrences at times doubly exponential in the entropy.

Another universal feature of complexity dynamics is its behaviour under small
perturbations. Say we perturb a quantum state at some time in the past by an
operator W . We can imagine W to be a simple operator acting only a single qubit
within the circuit that is preparing the state. How does the complexity of this
perturbation grow over time, i.e., what is the complexity of the operator W (t) =
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1. Setting the stage

U†(t)WU(t)? If W were absent then the U and U† cancel, giving the identity
operator, whose complexity doesn’t grow. With W present, such a cancellation
happens initially for a small time, but the presence of the perturbation makes the
operator W (t) more complex over time, leading again to a linear growth in time.
This delay in the onset of linear growth is called the switchback effect, and is the
demonstration of the butterfly effect on the dynamics of complexity.

Both the linear growth in time and the switchback effect are essential and universal
features of complexity in quantum chaotic systems. Remarkably, these features
are reproduced by various geometric quantities in gravity, suggesting the need to
study complexity in the context of holography.

1.4 Holographic Complexity

The role of quantum complexity in holography was motivated by studying the
physics of black hole interiors. There were early hints [38] that that complexity-
theoretic arguments are essential to understand black hole thought experiments.
More concrete evidence was soon found in AdS/CFT. We already know that
AdS black holes are thermal quantum systems with a given temperature and en-
tropy. Moreover, the dynamics governing the evolution of black holes is maximally
chaotic. Once a black hole is formed from a collapse, it quickly reaches thermal
equilibrium. There are various observables in the boundary CFT that we can use to
probe the bulk black hole during its thermalisation. For example, local observables
like correlation functions, or non-local observables like Wilson loops expectation
values or even entanglement entropies [26]. All such observables rapidly thermalise
and reach their stable thermal values.

In spite of this one can see that there the black hole is still undergoing non-trivial
dynamics after thermalisation. Most strikingly, the interior “size” of a black hole
keeps growing for a very long time past thermalisation. In classical general rela-
tivity this growth persists forever, though this (semi)-classical description would
breakdown before the black hole completely evaporates. There were also hints
from tensor network models [26] in which this growth of the black hole interior is
reflected in the growth of the size (or the number of nodes) of the tensor network.
In a series of conjectures [39–42], various bulk quantities that capture this growth
were related to the complexity of the state in the boundary CFT.

The first of these is the Complexity = Volume (CV) proposal. This proposal relates
the complexity of the CFT state |ψ(t)⟩ to the volume of the maximal volume slice
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Σt that is anchored to the boundary time t as

C (|ψ(t)⟩) = Vol(Σt)
GN l

(1.19)

Here l is some length scale. To gain some intuition for how this works, let us
again consider the two-sided eternal AdS black hole. In this case the boundary
state |ψ(t)⟩ = e−i(HL+HR)t |TFD⟩, and we need to find maximal volume slices in
the bulk. These surfaces can be computed given the metric of the corresponding
AdS-Schwarzschild geometry, which is

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1

f(r) = 1 + r2

l2AdS
− µ

rd−2

(1.20)

t2
t1

t = 0

∼ γ t2

∼ γ t1

t = 0

Figure 1.6: Left: Two maximal volume surfaces Σ(t1) and Σ(t2) anchored at boundary
times t2 > t1. Right: A depiction of the spatial geometries at various times t = 0, t1, t2

showing a linear growth in time of the tube-like region inside the horizon.

The mass of the black hole is given as M = (d−1)vol(Sd−1)µ/16πGN . We can see
from the figure 1.6 that unlike RT surfaces, the maximal volume slices naturally
probe the interior. Moreover, the (regularized) volume of these slices linearly
increases with respect to the boundary time t, and at late time

Vol(Σt) ∼ γ|t|, t → ∞ (1.21)

where γ is a constant that is proportional to the black hole’s mass. Thus we
see that these surfaces indeed probe the linear growth of the interior, with the
complexity growth rate determined by the mass of the black hole.
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1. Setting the stage

Instead of relating complexity to a single maximal surface, [42] put forward a new
proposal called Complexity = Action (CA), with potential improvements. The
relevant bulk quantity here is the action of a certain spacetime region called the
Wheeler-deWitt (WdW) patch. Let us denote the WdW patch anchored at time t
as Wt. Then, the complexity of the boundary state at time t is given by the action
of the region Wt as

C(|ψ(t)⟩) = S [Wt] (1.22)

The Wheeler-deWitt patch is defined as the domain of dependence of a bulk
Cauchy slice that is anchored at the boundary state, see the figure 1.7 below.
By definition this region doesn’t pick one preferred bulk slice, rather it is the en-
tire bulk region that can be associated to a given boundary time slice. In black
hole spacetimes extends from the asymptotic boundaries and into the black hole
horizon till the singularity.

tL

tR

Figure 1.7: The Wheeler-deWitt patch in global AdS. It is the domain of dependence
of a given bulk Cauchy slice anchored to the boundary.

We need to evaluate the gravitational action functional in this region

S [M ] = 1
16πG

∫

M

dd+1x
√
g(R− 2Λ) + 1

8πG

∫

∂M

ddx
√
hK + · · · (1.23)

The first term is the familiar Einstein Hilbert action. Since the WdW patch is a
region that consists codimension-1 boundaries we also need the second term involv-
ing the Gibbons-Hawking-York action. As the region also contains codimension-2
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tL

tR

Figure 1.8: A WdW patch W (tL, tR) in the eternal black hole. This region extends from
the asymptotic boundaries to inside the horizons, and intersects the future singularity.

corners which could in general be null, timelike or spacelike surfaces. To account
for these, the above action needs to be supplemented with additional terms (as
denoted by the ellipsis · · · ) to be well-defined. These corner terms have been
studied in [43–45]. Due to the boost symmetry outside the horizon, the action is
time-independent there. The entire time dependence in the action for late time
comes from the region inside the future horizon. The rate of change of the action
is surprisingly simple and is given by the mass of the black hole as

dC

dt
= dS [Wt]

dt
= 2M (1.24)

Both the CV and CA proposals of holographic complexity are supported by various
arguments justifying them to be bulk duals of complexity. They are probes of the
deep black hole interior and grow linearly for very long times, an essential feature
of complexity. What is even more remarkable is that they possess exactly the right
behaviour under perturbations that is required for a good definition of complexity.
We know that complexity exhibits a universal time delay under a perturbation,
known as the switchback effect. Such a perturbation in the bulk can be modelled
by sending in shockwaves into the black hole. Computing either the volume or the
action in the shockwave geometry exhibits the exact universal time delay, showing
that these proposals satisfy the switchback effect. This is a strong check of these
conjectures, placing them on a firmer footing.

Nevertheless, there are many things about holographic complexity that need to
understood more clearly. There are ambiguities in the definitions of holographic
complexity. In the CV proposal there is a need of an undetermined length scale l
such that the ratio of volume and GN l is dimensionless. The CA proposal at first
looks cleaner without the requirements of undetermined parameters, but there are
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ambiguities depending on how we choose the boundary terms in the action. It has
also been shown that there exists a huge class of geometric bulk quantities that
share the same qualitative behaviour as of the CV or CA proposals.

In the next two chapters, using the combination of the ideas of path integral opti-
mization and holographic T T̄ we will study costs of bulk spacetime regions. These
regions of spacetime can be interpreted as a quantum circuit that map between
boundary states at different times and cutoffs. We will perform a thorough analy-
sis of various geometric cost proposals and relate existing holographic complexity
proposals to the optimization of such costs.
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Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Path integrals between geometric states . . . . . . . . 20

2.2.1 Holography at a finite cutoff and T T̄ . . . . . . . . . . 20
2.2.2 Bulk path integrals . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Path integral cost and holographic state complexity . 28

2.3 Holographic path integral cost proposals . . . . . . . 30
2.3.1 Path integral cost . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Physical properties of path integral cost . . . . . . . . 33
2.3.3 The space of all proposals: from boundary path inte-

grals to functions on bulk subregions . . . . . . . . . . 35
2.3.4 Reducing the space of cost proposals . . . . . . . . . . 37

2.1 Introduction
How complex are states in semiclassical gravity? What is the least complex way of
evolving from one state to another via a path integral? To address these questions
we will first discuss how a given semiclassical bulk state in AdS gravity can be the
solution to not one but a continuous family of mixed boundary conditions at the
asymptotic boundary, and so have representations in many deformed holographic
CFTs. Next, since this is a fine-grained description and the costs and complexities
of these states are UV divergent, we will describe how precisely to coarse-grain the
holographic theories to get UV-finite results. Lastly we explain in what sense we
can ‘optimise’ the path integral between bulk states.

We will momentarily give a more precise description for the case of pure AdS3
gravity, but first give a more heuristic picture of the general situation. Given
a semiclassical bulk configuration which is asymptotically AdS, it is a priori not
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2. Cost Proposals for Holographic Path Integrals

yet clear in what theory this configuration describes a state, as we have not yet
specified the boundary conditions. In other words, we have not yet defined which
degrees of freedom fluctuate and which ones are kept fixed (i.e. what are the sources
and what are the expectation values of operators), or equivalently, we have only
provided one bulk configuration rather than the full phase space of solutions.

The standard choice would be to impose standard asymptotic AdS boundary con-
ditions where the bulk configuration would correspond to a state in the dual CFT.
We can however also make other interesting choices. Here, we will be interested
in imposing Dirichlet boundary conditions on a timelike hypersurface in the bulk
(for Lorentzian spacetimes). Linearized on-shell fluctuations around this back-
ground which preserve the Dirichlet boundary conditions will have a mix of non-
normalizable and normalizable modes turned on near the AdS boundary, which
should therefore be interpreted as belonging to a deformed CFT with sources for
multi-trace operators turned on. At the linearized level, one only finds double-
trace deformations, and if the backreaction of the matter fields on the geometry
can be neglected one only finds a double-trace deformation for the stress-tensor
which looks like a T T̄ deformation with a space-time dependent source. Including
the backreaction of matter will generate other double-trace deformations which
involve other operators in the CFT. Going beyond the linearized approximation,
one will generically encounter higher-trace deformations as well. A more precise
analysis would consider the full non-linear phase space of solutions with the rele-
vant Dirichlet boundary conditions, but we do not expect this phase space to have
simple asymptotics at infinity, as at the non-linear level the irrelevant higher-trace
deformations will generally lead to solutions which are not asymptotically AdS.
This full non-linear analysis is in general intractable, but luckily the situation in
pure AdS3 is more favorable and we can make some of these statements more pre-
cise as we will do next. The reader should keep in mind though that ultimately
we are interested in the more general situation sketched here.

2.2 Path integrals between geometric states

2.2.1 Holography at a finite cutoff and T T̄

We consider path integrals bulk theories which are holographically dual to T T̄

deformed CFTs. We start with a review of holographic T T̄ in order to understand
the precise holographic map between bulk and boundary path integrals. First
we follow the perspective and presentation of [46], that T T̄ -deformed holographic
CFTs are UV-complete but non-local field theories, and that they are dual to grav-
ity in asymptotically AdS spacetime, i.e. whose bulk slices have infinite volume,
with mixed boundary conditions at infinity. In the next subsection we discuss the
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2.2. Path integrals between geometric states

coarse-grained descriptions of both sides: gravity with Dirichlet boundary condi-
tions inside a finite cutoff surface, and the T T̄ low energy effective theory.

Fine-grained description
For concreteness and simplicity we consider pure three dimensional semiclassical
Einstein gravity in AdS with all bulk matter background fields in their vacuum
configurations. In this case the holographic T T̄ deformation, i.e. the deformation
which brings in the bulk Dirichlet boundary conditions to finite cutoff, is the origi-
nal T T̄ deformation as studied by Zamolodchikov [47,48]. As alluded to above, our
discussion generalises to other dimensions and with non-trivial bulk background
fields turned on with only a modification to the boundary field theory deformation
[49–52]. The most general asymptotically AdS3 metric solving Einstein’s equations
can be written in Fefferman-Graham gauge as

ds2 = Gµνdx
µdxν = L2

4ρ2 dρ
2 +Gij(ρ, x)dxidxj

Gij(ρ, x) =
G

(0)
ij (x)
ρ

+G
(2)
ij (x) + ρG

(4)
ij (x)

(2.1)

Here, ρ is a radial coordinate with the asymptotic boundary at ρ = 01. For
AdS3, the Fefferman-Graham expansion ends at G(4), and on-shell G(4) is fully
determined by G(2) and G(0):

G
(4)
ij = 1

4G
(2)
ik G

(0)klG
(2)
lj . (2.2)

In the standard AdS/CFT dictionary, Dirichlet boundary conditions are imposed
by holding G(0) fixed on a UV cutoff surface such as ρ = ϵ. The subleading metric
falloff G(2) maps to the stress tensor one-point function in the dual field theory and,
up to conservation and tracelessness, is unconstrained. Now consider a particular
fixed asymptotically AdS3 spacetime, with metric denoted by G. This fixed metric
G is the solution to Einstein’s equations for a set of not one but many different
boundary conditions at the asymptotic boundary. A special set of such boundary
conditions parametrised by a variable λ holds fixed at ρ = ϵ the combination

G
(0)
ij − λ

4πGNL
G

(2)
ij +

(
λ

4πGNL

)2
G

(4)
ij . (2.3)

The boundary conditions (2.3) are mixed; they hold a combination of the metric
and its derivatives fixed. As an example of how a given metric can be the solution
to many different boundary conditions take G equal to be pure AdS3, for which
G(2) = G(4) = 0 and G

(0)
ij = ηij . This metric G satisfies the mixed boundary

conditions (2.3) for all λ, if the combination is fixed to ηij .
1The coordinate ρ is related to the Poincaré coordinate z by ρ = z2.
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2. Cost Proposals for Holographic Path Integrals

The mixed boundary conditions (2.3) for the bulk metric at the asymptotic bound-
ary are special [46]. In the bulk this is because they are equivalent to Dirichlet
boundary conditions at finite radial cutoff, i.e. holding fixed the induced metric
Gij(ρc, x) on a finite radial cutoff surface

ρc = − λ

4πGNL
. (2.4)

This can be easily checked from the Fefferman-Graham expansion (2.1). Dirichlet
boundary conditions at finite cutoff are interesting because then the physics in
the interior of the cutoff surface is an effective description of semiclassical gravity
in a spatial volume that is finite, unlike AdS [48]. The bulk gravitational action
evaluated in the whole bulk does not depend on λ, but the set of on-shell metric
configurations does. Since the mixed metric boundary conditions at the asymptotic
boundary are equivalent to Dirichlet boundary conditions with metric equal to that
which G induces on a finite radial cutoff surface, the gravitational theories with
these different boundary conditions all by construction include G amongst their
on-shell metric configurations, but in general have little other overlap in on-shell
metric configurations.

In the dual holographic field theory, it is an old story that replacing Dirichlet with
mixed boundary conditions for the bulk metric at infinity maps to deforming the
original undeformed field theory with a double trace deformation [53]. The par-
ticular double-trace deformation that the mixed boundary conditions (2.3) corre-
sponds to is the T T̄ deformation. Specifying a bulk metric G and mixed boundary
condition parameter λ is sufficient to fix the dual T T̄ -deformed holographic CFT
living on a manifold M . The field theory background metric on M is most simply
expressed in terms of the metric induced by G on the ρ = ρc surface denoted M̃ :

γij(x) = ρcGij(ρc, x) = ρcG|M̃ . (2.5)

The metric on M is γ, and the metric on M̃ is g. Note that, from this map between
metrics, a subregion of M is empty if and only if the corresponding subregion of
M̃ is also empty. In general γ has a non-trivial λ dependence. The action of the
deformed theory is the solution to the flow equation

d

dλ
S(λ) =

∫
d2x

√
γO(λ)

T T̄
with O(λ)

T T̄
:= −1

2(γikγjl − γijγkl)T ijT kl. (2.6)

The seed action is that of the undeformed CFT, S(0) = SCFT , which is dual
to the gravitational theory with asymptotic Dirichlet boundary conditions. The
deforming operator O(λ)

T T̄
has a λ dependence because the stress tensor changes as

the action flows. From the bulk gravitational perspective, what is special about
the T T̄ deformation in the dual holographic CFT is that the corresponding mixed
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boundary conditions are equivalent to Dirichlet boundary conditions on a finite
radial surface.

Coarse-grained description
Here we introduce the coarse-grained version of holographic T T̄ : the effective
description of gravity within a finite box, and the EFT of a T T̄ deformed CFT.
Consider a gravitational partition function with Dirichlet boundary conditions
Zgrav[g], which depends on the value of the induced metric g on its boundary. As
a consequence of diffeomorphism invariance, this dependence is constrained by (a
radial version of) the Wheeler-DeWitt (WDW) equation [54]

HWDWZgrav[g] = 0, (2.7)

where HWDW is the WDW Hamiltonian2

HWDW = gij
δ

δgij
+ 1√

g
(gikgjl − 1

2gijgkl)
δ

δgij

δ

δgkl
+ √

gR. (2.8)

Formally this equation can be solved to relate gravitational partition functions
with different metric boundary conditions:

Zgrav[g] =
∫
Dg̃K[g, g̃]Zgrav[g̃]. (2.9)

The kernel can be calculated for any bulk field content, including with mat-
ter [56, 57], but we won’t need the precise form for our discussion. The initial
data we want to use when solving (2.9) is the gravitational partition function with
AdS Dirichlet boundary conditions, i.e. the undeformed CFT generating func-
tional. Suppose we take an asymptotically AdS metric G and set g equal to
the metric induced on a radial cutoff surface M̃(λ)|G parametrised by λ. With
(2.9) we have an effective description Zgrav[g = G|M̃(λ)] of gravity with Dirichlet
boundary conditions that fix the induced metric equal to the metric induced on
M̃(λ) by G. The effective description ‘throws away’ everything outside the cutoff
surface. Zgrav[g = G|M̃(λ)] has the geometry of Int(M̃) ∩ G as one allowed on-
shell metric configuration among many. Other on-shell metric configurations differ
at the boundary in their normal derivatives, corresponding to different one-point
functions in the dual cut-off theory.

Gravity with a Dirichlet metric boundary condition g = G|M̃(λ) has a dual non-
gravitational description as the effective theory of a T T̄ -deformed CFT on a man-
ifold M with degrees of freedom above the scale set by λ integrated out [48, 50].

2The quantised WDW Hamiltonian has contact terms that can be removed by normal ordering
but which leave operator ordering ambiguities in its definition [55]. These are similar to the
operator ordering ambiguities arising from the point-splitting regularisation of the T T̄ operator.
Since our primary focus is on cost proposals rather than T T̄ we will not address these subtleties
here.

23



2. Cost Proposals for Holographic Path Integrals

The map between EFT generating functional and gravitational partition function
is

Z
(λ)
EFT (γ) = Zgrav[g = G|M̃(λ)]. (2.10)

This is a continuous family of EFT’s parameterised by λ with non-dynamical
background metrics γ.

What is the map from the bulk metric boundary condition g to quantities in the
dual non-gravitational EFT? The metric g fixes the conformal class of the field
theory background metric:

γij(x) = λ2/d(x)gij(x). (2.11)

with the deformation parameter related to the radial coordinate in Fefferman-
Graham gauge by λ(x) ∝ −ρc(x)d/2 [56]. In general we can have a non-constant
deformation, corresponding to a non-constant radial cutoff. The holographic T T̄
deformation in dimensions other than two and with sources turned on is defined by
the property that it is dual to a bulk gravitational theory with Dirichlet conditions
at finite cutoff. The T T̄ deformed non-gravitational effective action is formally the
solution to the flow equation

δ

δλ(x, t) logZ(λ)
EFT (γ) =

∫

M

ddx⟨X(λ,γ)⟩. (2.12)

This flow equation, including the precise form for X, is derived by mapping the
gravitational WDW equation (2.7) to an exact RG equation in the field theory [48,
50,56]. Schematically, first we take the semiclassical limit where the gravitational
partitional function is given by the on-shell gravitational action. Then, functional
variations δgZgrav[g] with respect to g become functions of the Brown-York stress
tensor of the on-shell action, and in the boundary effective action this maps to
deformations by the field theory stress tensor. In the special case of 2d, with a
constant deformation parameter λ, and with no sources except a flat background
metric turned on, the deformation is the standard T T̄ operator, X = OT T̄ defined
in (2.6).

2.2.2 Bulk path integrals
We have a one-to-many map from a Cauchy slice of fixed bulk spacetime G to a
geometric state in the Hilbert spaces of not one but a continuous family of T T̄ -
deformed holographic CFTs. Each mixed boundary condition for which G is an
on-shell solution maps to a different T T̄ deformed theory. The whole of G maps
to the causal development of these geometric states. We thus have many field
theoretic descriptions for the causal evolution of a spatial slice of G. This leads to
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the key question we want to focus on: which of the deformed CFTs describes the
evolution of the bulk state in the least ‘complex’ way?

To be concrete, let us focus on transition amplitudes between geometric states
with metric and conjugate momentum induced by a given fixed G on two arbi-
trary Cauchy slices Π1 and Π2, see figure 2.1. By construction G is the dominant
spacetime saddlepoint contribution in the semiclassical approximation to the tran-
sition amplitude between those two geometric states. This transition amplitude
has a formal path integral representation

⟨ψ2|ψ1⟩ =
∫
DG̃eiSgrav[G̃]δ(G̃|Π1 −G|Π1)δ(G̃|Π2 −G|Π2). (2.13)

The δ-functions are the wavefunctions of the initial and final states in the basis of
geometric states, and they in effect impose spacelike boundary conditions on the
path integral. We also implicitly impose the timelike boundary condition (2.3).
Finding the classical gravitational solution for these boundary conditions is not
an inconsistent overdetermined problem because G is by construction a solution.
Sgrav is the Einstein-Hilbert action including, if necessary, boundary, corner, and
holographic counterterms [58,59].

We would like to interpret the bulk path integral (2.13) and its dominant saddle
point G as originating from the continuum limit of a tensor network representation
of the transition amplitude, and associate a cost, i.e. a properly understood reg-
ularised number of gates, to that tensor network. Keeping G fixed and changing
the asymptotic boundary conditions does not affect the gravitational transition
amplitude (2.13) in the saddle-point limit3, but are the costs of the associated
path integrals the same? We propose that the ‘fundamental gates’ the gravita-
tional theories use are in fact different, and so the cost of their path integrals –
even those that prepare the same final state from a given initial state – may be
different. This is backed up by the fact that each mixed boundary condition maps
to a field theory with different T T̄ -deformation parameter, which at least naively
have different operators and gates available to them [46, 60, 61]. This introduces
a λ dependence to the ‘cost’ of G, which we can minimise over in our pursuit of
finding the least complex way of evolving between two geometries.

Both T T̄ -deformed CFTs and gravitational duals are thought to be UV complete
[46, 48, 60, 62], so we expect UV divergences in state complexity and the cost of
preparing or evolving between states. This is associated to the infinite volume of all
spatial slices of all asymptotically AdS spacetimes. To regulate we need to coarse-
grain and consider effective theories with a cutoff. In principle we could choose

3There are subleading in 1/N corrections to this statement from the metric and matter field
fluctuations which we neglect. Our proposals for path integral cost are only accurate to leading
order in 1/N .
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Figure 2.1: Coarse-grained vs fine-grained bulk path integrals. Left: A path integral
representation of the transition amplitude between two compact manifolds Σ1 and Σ2

with specified metrics. The gravitational path integral has Dirichlet boundary conditions
g. Right: Embedding in a larger UV complete theory of gravity in AdS. Fix a bulk
metric G, which is a solution to a family of mixed boundary conditions at the asymptotic
boundary parameterised by λ. The mixed boundary conditions are on-shell equivalent
to Dirichlet boundary conditions on surface M̃(λ). The light blue surfaces are Cauchy
slices Π1 and Π2, which Σ1 and Σ2 are compact subregions of.

any UV cutoff as our regulator, but T T̄ -deformed theories and their generalizations
come with a natural effective UV scale, which is the scale above which the theory
becomes approximately non-local. It is therefore very natural to integrate out all
degrees of freedom above this scale, but keep the degrees of freedom below this
scale, as the same scale is also expected to set the effective size of the smallest
possible tensor in a tensor network description. In the T T̄ example discussed above
the relevant scale is set by the deformation parameter λ. In the bulk, there is a
natural dual description of this UV cutoff, namely the existence of the Dirichlet
surface M̃(λ). In effect M̃(λ) splits the bulk spacetime G into an exterior UV
region, and an interior IR region, and we ‘integrate out’ the exterior. This is an
important point so let us emphasize this once more: The bulk Dirichlet surface
defines both the boundary conditions for the dual field theory, as well as the UV
cutoff in that theory.

We will make this more precise: The path integral depicted by figure 2.1 is the
transition amplitude between two spatial geometries on Σ1 and Σ2 in an effective
gravitational theory Zgrav[g] which holds the boundary metric fixed to g. This can
be embedded in a UV complete theory of gravity in AdS if there exists a G and a set
of asymptotic boundary conditions parametrised by λ such that g = G|M̃(λ), and
Σ1 and Σ2 can be embedded in Cauchy slices of G, i.e. the metrics on Σ1 and Σ2
equal the metrics G induces on Σ1 ⊂ Π1 and Σ2 ⊂ Π2. Then by construction the
dominant saddlepoint geometry in the effective theory coincides with G restricted
to the interior of M̃(λ). To ‘optimise’ the path integral we keep G and the compact
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submanifolds Σ1 and Σ2 fixed, and vary λ. Pictorially, this amounts to varying the
shape of the red surface in the left half of figure 2.1 while keeping on-shell interior
geometry equal to the geometry inside M̃(λ) in the right half of the figure. This
gives us a continuous family of gravitational path integrals that prepare the same
final bulk state |Σ2⟩ from a given reference state |Σ1⟩4. Note that to keep Σ1 and
Σ2 fixed and λ-independent we need the intersection of M̃(λ) with Π1 and Π2 to
be λ-independent, which in general requires M̃(λ) to have non-constant radius,
which in turn requires a non-constant λ parameter [56].

We have given the explicit map between the bulk metric g on M̃ and the back-
ground field theory metric γ on M in (2.11). If we wish we can use the same co-
ordinates xi on both manifolds. By extension, given a bulk path integral between
Cauchy slices as depicted in figure 2.1 we know how to map between intersections
of those bulk Cauchy slices with M̃ and boundary Cauchy slices of M . From this
we have a complete and precise holographic duality between a given path integral
in an effective gravitational theory and a path integral in a T T̄ -deformed CFT. In
a slight abuse of notation, when discussing path integrals on the subregions of M
and M̃ between Cauchy slices, we will also call these subregions M and M̃ . While
in the remaining part of the chapter we will not make an explicit use of the above
discussion about holographic T T̄ , we believe it can be taken as a starting point in
building a bridge between gravitational notions of cost functions and operatorial
expressions for circuits living on M̃(λ).

We consider bulk path integrals in both Lorentzian or Euclidean signature. In some
ways they are similar: for both signatures the path integrals on manifolds with one
boundary prepare states, and when there are two boundaries the path integrals
calculate transition amplitudes. Lorentzian and Euclidean bulks differ however in
the possible metric signatures of their embedded surfaces. For Euclidean bulks all
surfaces M̃ are spacelike. Path integrals on M̃ with two boundaries correspond to
unnormalised density matrices,

ρ = Pe−
∫
dτH(τ) (2.14)

with infinite Euclidean time evolution preparing the projection operator onto the
vacuum state ρ = |0⟩ ⟨0|. For Lorentzian bulks the embedded surface M̃ can be
spacelike, timelike, or even non-constant signature. Since the signature of M̃ is the
same as M , as follows from (2.11), in the T T̄ deformed boundary theory a timelike
M̃ corresponds to a Lorentzian path integral while spacelike gives Euclidean ones.
States on time-reflection symmetric slices in Lorentzian AdS spacetimes can be
prepared by a Euclidean path integral, while other states cannot and need some
Lorentzian time evolution.

4Herein, we assume both of these states to live effectively in the IR-sector of the Hilbert space
of the UV-complete theory that is created by coarse graining.
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We consider path integral cost proposals for both Euclidean and Lorentzian bulks.
A cost proposal that is physically reasonable, e.g. non-negative, in one signature
need not be in the other, so part of specifying a cost proposal is saying whether it
is applicable to Lorentzian or Euclidean bulks, or both. When we come to giving
specific cost proposals we will always specify which metric signature it is applicable
to. The question as far as path integral optimisation of state preparation goes is
which set of M̃ one is minimising cost over. For Lorentzian bulks if one wishes to
find the shortest path in a space of unitary operators, then one should restrict to
only timelike M̃ . Spacelike components of M̃ in Lorentzian bulks that are achronal
with respect to each other and Σ1 and Σ2 can be thought of as extensions of the
partial Cauchy slices on which the initial and final states are defined. Whether
they are part of the past or future slice depends on the time-orientation of their
normals. The states on Σ1 and Σ2 are then reduced state with respect to the
larger slices. We will only consider timelike M̃ in Lorentzian bulks.

One last closing comment is in order. In the present work we start with an asymp-
totically AdS geometry and identify in it the cut-off surface M̃(λ) and its interior,
as in figure 2.1 (right). Starting with the situation depicted in figure 2.1 (left), it
is a priori not clear if it can be embedded in an asymptotically (perhaps locally)
AdS geometry. There are several reasons for it. One is a possible issue of singu-
larities arising as one tries to extend the geometry towards infinity and another
are matter fields that may enforce non-AdS asymptotics. A special case is pure
gravity with negative cosmological constant in three bulk dimensions, in which
case the geometry is guaranteed to be a portion of the AdS3 manifold.

2.2.3 Path integral cost and holographic state complexity
Suppose we have a prescription for associating a cost to the gravitational path inte-
gral depicted in the left half of figure 2.1. Heuristically, this cost denoted C (M̃(λ))
‘counts’ the number of gates in different spacetime tensor networks parametrised
by λ(x, t). Each λ(x, t) defines a different path integral that maps the same fixed
initial state |Σ1⟩ to final state |Σ2⟩, and a given one of these bulk path integrals
will not correspond to the least complex circuit between those states, which is why
we are discussing cost rather than complexity.

There is however a sense in which the bulk path integrals can be optimised, by
minimising path integral cost C (M̃(λ)) over λ. Recall that we keep G, Σ1 and Σ2
fixed, so the set of λ to minimise over are those for which

∂M̃(λ) = ∂Σ1 ∪ ∂Σ2. (2.15)

In some cases the minimal path integral cost can be interpreted as state complexity,
and this allows us to connect holographic path integral cost to holographic state
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complexity. The subtlety is in which set of path integrals it is meaningful to
compare.

Stepping back for a moment, when does it make sense to optimise path integrals?
Path integrals in a fixed seed field theory but allowing for different background
geometries, field theory sources and field theory deformations define different op-
erators, and it is not meaningful to compare the costs of the path integrals. Min-
imising cost over all such path integrals cannot meaningfully be interpreted as
‘optimisation’ of state preparation, if indeed they even act on the same Hilbert
spaces. The key idea is that there are a set of bulk path integrals it is meaningful
to optimise: those that take a given initial state to the same final state.

To connect path integral cost to state complexity, we also need to choose a suitable
initial state, such that the final state is prepared from ‘nothing’. In the complexity
literature this is often taken to be a spatially unentangled product state, but this
does not have an approximate semiclassical description, so we cannot use it. Our
initial state takes Σ1 to be a bulk point. It is helpful to think of this as limit of
a small spatial region placed deep in the IR of the asymptotically AdS spacetime,
which we shrink to zero volume, see figure 2.2. As M̃(λ) moves outwards from
the deep IR towards ∂Σ2, the Hilbert space of the effective gravitational theory
grows to non-trivial size. In the dual boundary theory this initial state lives in a
theory where we have taken the T T̄ deformation parameter λ → ∞. This sets the
effective RG scale to zero, and the effective theory integrates out everything above
that scale which leaves a trivial theory.

The bridge from path integral cost to state complexity is still not complete. Even
the optimum path integral may not correspond to the shortest path in the space of
states, because not all unitary operators are generated by the set of path integrals
we have considered. This means that we only expect the cost of the optimum path
integral to still only upper bound the complexity of state |Σ2⟩:

min
λ

C (M̃(λ)) ≥ C(|Σ2⟩). (2.16)

It is not clear when if ever this inequality is saturated, i.e. when if ever the least
complex unitary operator taking |Σ1⟩ to |Σ2⟩ has a path integral representation.

The semiclassical bulk path integrals and their associated costs are defined on a
specified and fixed bulk geometry, but the set of path integrals we want to optimise
over do not necessarily have the same background geometry. We can choose to
keep the bulk fixed and optimise over the set of path integrals on subregions of
that single fixed bulk defined by their boundary Σ1 ∪ M̃(λ) ∪ Σ2. A larger and
more natural superset allows for different bulk geometries G, as well as different
M̃(λ), that also keep the initial and final states |Σ1⟩ and |Σ2⟩ fixed. When we
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Σ2

Σ1

M̃(λ)
∂AdS

Figure 2.2: A fine-grained description of the preparation of a bulk state from ‘nothing’.
The initial state lives on a surface Σ1 embedded deep in the IR of an asymptotically
AdS spacetime. This corresponds to a state in a T T̄ -deformed CFT with very large
deformation parameter. We take this to be the reference state when defining the state
complexity of the final state on Σ2.

come to connecting to holographic state complexity proposals we will choose, for
the sake of simplicity, path integral cost proposals for which we can show that the
minimal cost is the same for either set.

This concludes our discussion of transition amplitudes between bulk states. We
have discussed what Hilbert spaces the bulk states live in, what the exact map is
from bulk theory and state to T T̄ -deformed CFT and state, constructed a set of
path integrals we can ‘optimise’ over that prepare the same state from an initial
state, how to coarse-grain the description on both sides, and how to prepare a
state from nothing. Next we will consider proposals for the cost C (M̃(λ)) of the
coarse-grained bulk path integrals, which gives us a quantity to minimise and so
optimise.

2.3 Holographic path integral cost proposals

In AdS/CFT the boundary path integral defines a (Lorentzian/Euclidean) time-
evolution operator. The goal of this section is to consider holographic proposals
for the cost of the path integral, i.e. the length of the path through the space of
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operators.

2.3.1 Path integral cost
Let us start by defining what we mean by path integral cost. This subsection
is mostly field theoretic and logically separate from gravity and holography. We
may associate an operator UM to the path integral on any manifold M with two
boundaries and unspecified boundary conditions, see figure 2.3. Matrix elements of
the operator are defined by the path integral with specified boundary conditions for
the fields of interest ϕ = ϕ1,2 on the two boundaries, which computes a transition
amplitude:

⟨ϕ2|UM |ϕ1⟩ :=
∫ ϕ=ϕ2

ϕ=ϕ1

Dϕe−S[ϕ] . (2.17)

We are interested in both Euclidean and Lorentzian path integrals. For the lat-
ter there is an insertion of i in the path integral representation of the transition
amplitude. We denote the operator defined in (2.17) by UM whether or not the
operator is unitary, i.e. even if the path integral is Euclidean. UM depends not
only on the geometry of M , but on the field theory itself. We take the field theory
to be holographic and consider not only changes to the background geometry but
also allow the addition of sources and deformations to the theory. When we come
to embedding M in a bulk spacetime, these sources and deformations will corre-
spond to adding bulk excitations and bringing in the boundary to finite cutoff with
T T̄ deformations. From the context we hope it is clear whether M refers only to
the manifold, or to all the data required to define the path integral including the
manifold, seed theory, sources, and theory deformations.

We define path integral cost C as the length of the path generated by time evolu-
tion from the identity operator to UM in a metric space of operators. For the path
integral cost to be well-defined the metric space must be specified: both which
set of operators to include and which metric to impose on it. Expressed in the
terminology of Nielsen’s geometric formulation [28], cost functions determine the
metric on the set of operators, and control functions specify paths in that metric
space. The path integral generates a path from 1 to UM which is not generally
geodesic, and so the path integral cost upper bounds the operator complexity of
UM , because that is defined as the length of the shortest path between 1 and UM .
An example illustrating the difference between path integral cost and operator
complexity is given in figure 2.4. The operator complexity of UM itself upper
bounds the state complexity of the state |f⟩ = UM |i⟩, because state complexity
can be defined as operator complexity minimised over those unitary operators that
map a fixed reference state |i⟩ to the target state |f⟩. The path integral opera-
tor UM does not in general correspond to the shortest path between |i⟩ and |f⟩,
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Figure 2.3: Left: M is a Euclidean or Lorentzian manifold with two boundaries from
which operators can be defined. Right: The space of all such operators, which are unitary
when M is Lorentzian. UM is the operator whose matrix elements are calculated by the
path integral on M .

which is why its complexity is only an upper bound to the state complexity. These
statements can be summarised as

C (M) ≥ C(UM ) ≥ C(|f⟩), (2.18)

where C (M) is the path integral cost of M , C(UM ) the operator complexity of
UM and C(|f⟩) the state complexity of |f⟩ = UM |i⟩. Note the calligraphic font
that distinguishes cost C from complexity C.

Note that the same operator UM can be represented in an infinite number of ways
as a circuit in physical time upon picking a time foliation, see figure 2.5. From the
circuit perspective, constant time slices can be thought of as layers of the circuit,
and these different time foliations as different ways of assigning gates amongst the
layers. The circuit as a whole is independent of its time foliation, and this is a
physical reason for why the cost should be foliation independent. This we impose
on the bulk side of the holographic proposal through a covariance requirement.
On the boundary side one implication is that the lengths of the red, blue and
other paths in figure 2.5 from 1 to UM are the same. Hence, while in general
two randomly selected paths connecting 1 and UM will have different lengths
(due to describing physically different circuits), each such path will come with an
equivalence class of paths of the same length that can be generated by changes in

32



2.3. Holographic path integral cost proposals

U(t)

Figure 2.4: An example illustrating the difference between path integral cost and oper-
ator complexity. Suppose we have a manifold M such that Hamiltonian evolution from
the initial to final boundary traces out a closed path through the space of unitary oper-
ators, i.e. a Poincaré recurrence with eiHtf ≈ 1. The path integral cost is the length of
the closed path, which is non-zero, while the complexity of the time evolution operator
is trivially zero. This is an example where C (M) ̸= C(UM ).

time-foliation. This is a symmetry of the metric space that is a consequence of the
physical equivalence of different time foliations.

2.3.2 Physical properties of path integral cost

Necessary conditions that holographic proposals must satisfy in order to be rea-
sonably interpreted as path integral cost, i.e. the length of a path in a metric space
of operators, are the following:

1. The trivial path integral has zero cost.

When M = ∅ the path integral is trivial with no time evolution, the operator
associated to it is the identity, and holographic proposals should evaluate to
zero cost: C = 0. We can, and will, even strengthen this requirement by
demanding that the trivial path integral is the only one that has zero cost.

2. Additivity.

Concatenating path integrals joins paths in the space of operators, and cost
is the total length of the path, so cost is additive. This means that if we have
M and M ′ which share a boundary, then C (M ∪ M ′) = C (M) + C (M ′).
This distinguishes cost from complexity which is subadditive: C(UM ·UM ′) ≤
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UM

M

Figure 2.5: Left: M is taken to be a Lorentzian cylinder, and the blue and red ellipses
represent constant time slices of two different time foliations of the cylinder. Right: UM

is the unitary operator whose matrix elements are calculated by the path integral on M .
Different time foliations define different paths to UM .

C(UM ) + C(UM ′).

3. Symmetry.

The length of a path traced through a metric space of operators from A to
B is the same as from B to A. This means that holographic proposals for
path integral cost cannot depend on which way around the two connected
components of ∂M are labeled the ‘initial’ and ‘final’ boundaries.

4. Covariance.

The cost of a path integral on a manifold should be independent of the
coordinates used to describe the manifold.

5. Non-negativity.

A discretised path integral is a circuit, and path integral cost is a measure
of the number of gates in that circuit. This number cannot be negative so
path integral cost must be non-negative.

The above are essential points in order to sensibly associate path integral cost to
spacetime regions in holography. In relation with the properties of the existing
holographic complexity proposals, one may also want to impose that for TFD
states and their gravitational representation in terms of eternal black holes, op-
timal paths in our proposals give rise to late-time linear growth and switchback
effect [63]. These effects are only conditions in Lorentzian setups and on TFD
states, not on every state like the other requirements, so for us they are not as
fundamental as items 1-5 above.
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2.3.3 The space of all proposals: from boundary path inte-
grals to functions on bulk subregions

We are looking for proposals for the gravitational dual of the cost of a holographic
field theory path integral. Naturally it is equally valid to think of the path inte-
gral in the gravitational or non-gravitational description, and we have given the
explicit map between the two, but quantities such as cost need not manifest the
same way on the two sides. The set of cost proposals we consider take inspira-
tion from existing holographic state complexity proposals and have two aspects in
common: (1) a geometric map from the subregion of M or M̃ on which the path
integral is defined to bulk subregion XM , and (2) a function f(XM ) on that bulk
subregion. These two shared aspects take inspiration from existing holographic
state complexity proposals, which are also functions on bulk subregions.

We want to consider all such pairs of maps which together define a tentative
holographic cost proposal:

C (M) = f(XM ). (2.19)

The set of cost proposals we start from contains an infinite number of ways of
specifying XM given M , and an infinite number of functions f . Cost, the length
of path in a metric space, obeys certain mathematical and physical properties, and
we will see the extent to which the space of possible gravitational duals can be
reduced by imposing these properties.

Specifying the bulk subregion: M → XM

We want to work within a single fixed bulk spacetime. As discussed in section
2.1, fixing which mixed boundary conditions to use in the bulk theory fixes the
deformation parameter λ in the boundary theory, and fixing the bulk geometry
G fixes the actual deformation, the background field theory sources including the
metric, and the boundary state including its causal evolution. Functions on bulk
subregions of a fixed G can only be dual to the cost of the boundary path integral
that corresponds to Hamiltonian evolution of the boundary state dual to that bulk
geometric state, rather than an arbitrary path integral in the boundary theory.

The two boundaries of M̃ have to be attached to the hypersurfaces Σ1 and Σ2
as in figure 2.1, which should be parts of bulk Cauchy slices and hence achronal.
In section 2.1 these hypersurfaces were specified and fixed, but in this section
where we start from the boundary theory with a specified fixed M they are not
unambiguously defined. For the bulk path integral the choice of Σ1 and Σ2 is
as fundamental as the choice of M̃ , but we may still wonder whether in a given
prescription these can be defined according to some unambiguous and covariant
rule. Some examples of ways to define hypersurfaces Σ1 and Σ2 that we attach to
the boundaries of M̃ are, in increasing degree of generality,
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1. Future/past directed null surfaces, as in the CA and CV2.0 proposals.

2. The extrema of some functional defined on the hypersurface, as in the CV
proposal.

3. The solution to ξ = 0, where ξ is some function of the local intrinsic and
extrinsic geometry. This need not be the extremum of any given functional.

4. The same as 3., except now allowing for non-local and global data in the
definition. An example would be to define the hypersurfaces as the solution
to KΣ = Vol(M̃).

This list includes the codimension-one surfaces appearing in holographic com-
plexity proposals, and a large family of generalisations, though the list is not
exhaustive.

Consider the bulk spacetime subregions XM that can be covariantly defined with
respect to a codimension-1 surface M̃ . There are of course an infinite number
of such prescriptions; let us first consider those that are similar in nature to the
holographic complexity proposals. One natural candidate is the interior of Σ1 ∪
M̃∪Σ2 which is codimension-0 and which we label N , see figure 2.6. Codimension-
0 bulk regions are used in the CA and CV2.0 state complexity proposals. We can
also take XM to be codimension-1 with respect to the bulk. Natural candidates
include M̃ , Σ1 or Σ2, or any union of these. We will show later how taking
XM = M̃ and evaluating its volume gives a cost proposal that when ‘optimised’
reduces to the CV state complexity proposal.

These candidates for XM only scratch the surface of possibilities. At this stage
there is nothing to favour one candidate over another; it is only when we impose
the physical properties of cost that we can rule out possibilities.

Functions on bulk subregions
With a specified bulk region XM , we may propose the cost C (M) of the path
integral on M to be a function evaluated on that region: f(XM ). To complete
the cost proposal the function f needs to be specified. Some examples in order of
decreasing simplicity include the region’s:

1. Volume,

2. Gravitational action, including the Einstein-Hilbert term on codimension-
zero regions, the Gibbons-Hawking-York (GHY) boundary term on non-null
codimension-one regions, Hayward-type corner terms on codimension-two
regions, or appropriate terms on null-boundaries, see e.g. [45],

3. Local functionals of curvature invariants: f =
∫ √

|g|ξ(Rµνρσ,Kmn),
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∂AdS

Σ2

Σ1

NM̃

Figure 2.6: We are looking for holographic proposals for the cost of the path integral on
M . M̃ , Σ1, Σ2 and N are representive of bulk subregions of various codimension that can
be covariantly defined and on which functions can be evaluated as part of a holographic
proposal.

4. More general local functionals: f =
∫ √

|g|ξ(R,R2, RµνR
µν , ...,K,K2, ..., ϕ, ...)

where, for example, ϕ(x) could be some non-physical auxiliary scalar field
that appears in the complexity proposal but not in the bulk Lagrangian,

5. Non-local functionals, e.g. f =
∫
ddxddyR(x)R(y),

Again, these candidates for functions on bulk subregions only scratch the surface
of possibilities, and except for appeals to simplicity there is nothing to favour one
candidate over another until we impose the physical requirements of computational
cost.

2.3.4 Reducing the space of cost proposals

We are considering the set of holographic proposals for the cost of a boundary
path integral, which consists of a map from the surface on which the path in-
tegral is defined to a bulk subregion, and a function on that subregion. Let us
apply the physical requirements of section 2.3.2 to identify which functions on bulk
subregions can be interpreted as cost.
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1. Only the trivial path integral has zero cost.

This requires f(XM ) = 0 when M = M̃ = ∅. This rules out for example
Vol(M̃) for Lorentzian bulks, because we can have an M̃ that is non-empty
but has zero volume because it is a null surface. The same cost proposal
applied to Euclidean bulks is allowed.

This requirement fixes additive constants. It does not rule out any proposal
of the form (2.20) if XM = N as long as the integrand is non-singular and
N → 0 in that limit. This rules out some XM , such as Σ1 being past-directed
null and Σ2 future-directed null.

2. Additivity.

Additivity does not rule out any proposal that is the integral of a local
density, such as volume or gravitational action, as long as the contribution
from XM1 ∩ XM2 vanishes. A non-trivial example of how this can occur
is when f includes GHY boundary terms, because if XM1 and XM2 share
a boundary then the outward normal on one is the inward normal on the
other, so the GHY terms cancel.

The gravitational action including GHY and corner terms is additive, if the
joints are spacelike though generally not generally for timelike joints [43]. A
codimension-2 joint is spacelike if its metric is Euclidean, and timelike if it is
Lorentzian; it is not determined by the metric signatures of the codimension-
1 segments, i.e. M̃ and the Σ’s, whose shared boundary is the joint. Since
additivity is only an issue for timelike joints, we only have to worry about
Lorentzian bulks. There are joints between M̃ and the partial Cauchy slices
Σ1 and Σ2, but since the boundaries of partial Cauchy slices are spacelike
the gravitational action is additive.

The requirement does rule out all choices of XM bulk subregions for which
XM1∪M2 ̸= XM1 ∪XM2 , such as XM = Σ1, if f is extensive. It also rules out
some functions f , such as non-local ones like

∫
dxdyR(x)R(y), which will

not generally give additive cost proposals.

3. Symmetry.

f(XM ) should be invariant under relabelling Σ1 and Σ2. An example which
satisfies this requirement would be if both Σ’s are defined the same way,
such as minimum volume surfaces in a Euclidean bulk. An example which
does not satisfy symmetry would be if Σ1 satisfies K = a while Σ2 satisfies
K = b with a and b different constant trace extrinsic curvatures, as then the
embedding of the partial Cauchy slices will change under relabelling. It is
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sufficient that XM is invariant under the relabelling, though not necessary
as in the trivial example f(XM ) = 0.

4. Covariance.

Requiring the proposal to be covariantly defined leaves a large space of pro-
posals. All the bulk subregions XM defined in section 2.3.3 as well as the
proposals f(XM ) for assigning numbers to those regions given in 2.3.3 are
defined in a coordinate-independent way.

5. Non-negativity.

We need f(XM ) ≥ 0 for all bulks and subregions thereof to which the pro-
posal is applicable. On the one hand it is trivial to define manifestly non-
negative functions f . With a non-negative scalar density F , the following is
manifestly non-negative:

f(XM ) =
∫

XM

F (2.20)

Volume-type cost proposals use a constant F . Taking the absolute value
or an even power of any real-valued function makes it non-negative, so the
space of non-negative f is not small.

On the other hand it can be difficult to know whether a given proposal is
non-negative for its whole domain. Suppose one has a proposal for which
XM is a codimension-zero region of the bulk, and f is the Einstein-Hilbert
action of that region, with or without boundary and corner terms. The
problem is that there are on-shell asymptotically AdS spacetimes with arbi-
trarily negative Einstein-Hilbert action, which gives an unphysical negative
cost. The action is unbounded from below and not merely negative, so non-
negativity cannot be restored simply by adding a constant. Examples that
demonstrate this unboundedness of the Einstein-Hilbert term can be con-
structed in two ways: either by making the action arbitrarily negative over
a finite spacetime volume, or by making it negative (but finite) over an ar-
bitrarily large spacetime volume. For the first kind of example, we consider
a Weyl transformation of the bulk metric Gµν → e2ωGµν with ω supported
strictly inside XM , so that the spacetime is still asymptotically AdS and so
boundary and corner terms of the gravitational action are unaffected. For
Lorentzian or Euclidean gravity the contribution to the gravitational action
from the Einstein-Hilbert term does change under the Weyl transformation:

√
GR → e(d−2)ω√

G
(
R − 2(d− 1)∇2ω − (d− 2)(d− 1)(∂ω)2) . (2.21)

The Einstein-Hilbert action can thus be made arbitrarily negative with a
rapidly oscillating Weyl factor. To be an on-shell solution to Einstein’s
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equation requires5 −
(
d
2 − 1

)
R ≈ Tµµ . This means that the matter-fields

involved would have to arbitrarily strongly violate the trace energy condition
(TEC) Tµµ ≤ 0. While the TEC is satisfied for simple matter models such
as pressure-less dust it does not hold in all physical situations [64, 65]. An
example are neutron stars which are believed to be accurately described as
perfect fluids with equation of state p = ρ, which violates the TEC [66].
However, our construction would require Tµµ to become unbounded, and it
is unclear to us whether this can be accomplished by any form of reasonable
matter. See also [67] for a discussion of stability issues of spacetimes in
which the TEC is violated. The second kind of example, where a finite
negative term is integrated over an arbitrarily large volume, was essentially
already constructed in [68], where it was shown that the complexity of an
AdS3 black hole with generic topology behind the horizon can be made
arbitrarily negative by adding handles to the Einstein-Rosen bridge. This
led the authors of [68] to propose a bound on the genus of bulk spacetimes.

From our point of view, these are arguments that seem to rule out holo-
graphic proposals for cost (or complexity) that include only the Einstein-
Hilbert action. This is on the grounds that within the space of all asymp-
totically AdS spacetimes there are those on which the proposal evaluates to
a negative value, and so cannot be interpreted as cost or complexity. As a
corollary of this argument, the domain of validity of the CA proposal cannot
be all asymptotically AdS spacetimes; there are those on which the action of
the WDW patch will be negative. This is not to say that the CA proposal
does not give reasonable results for spacetimes such as the eternal black hole
to which it was originally applied, nor that simple modifications of the pro-
posal say by adding the matter action cannot remedy the unboundedness of
the total action.

Since path integral cost upper bounds holographic state complexity, there will
be additional checks coming from late-time linear growth and the switchback ef-
fect. These are specific to TFD states and hence are only secondary to the above
primary requirements. In the case of observables defined using codimension-one
surfaces, [69] showed that there are infinite classes of proposals which satisfy both
linear growth and the switchback effect. This could mean that these conditions
on complexity are not too restrictive. However, there are valid covariant pro-
posals which violate linear growth and/or the switchback effect. In the case of
linear growth, consider when XM is a codimension-one constant curvature slice
(with R = −2) in a BTZ black hole background. The volume of these slices satu-

5We neglect the cosmological constant in this discussion because when considering unbound-
edness of the action we are interested in the limit |R| ≫ |Λ|.
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rates quickly, and hence this f(XM ) can be ruled out. Similar restrictions apply
when XM is codimension-zero. In the next section, we give an example of a new
codimension-zero complexity proposal that exhibits late time linear growth. Fur-
thermore, since the complexity of a perturbed TFD state is expected to exhibit
switchback effect, this will constrain how we choose XM and f(XM ) in shockwave
geometries.

This concludes our preliminary discussion of the space of holographic cost propos-
als. We found that non-negativity in particular is a subtle and difficult to verify
requirement, and that new proposals, unless manifestly non-negative, need to be
carefully checked with a skeptical eye. A natural direction to take from here is
to consider proposals of increasing intricacy, and check their non-negativity case
by case. Proposals where f is the volume of XM are in some sense the simplest,
and their non-negativity is manifest at least in Euclidean setups. In section 3.1 we
give an argument for why the area of M̃ is a physically well-motivated proposal
for the complexity of UM , from the perspective of T T̄ deformations. In the next
chapter we will look in more detail at various costs, including gravitational action-
type proposals, and in particular if and when they run afoul of the non-negativity
requirement.
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In the previous chapter we discussed path integral costs and their connection
to state complexity. The path-integral cost C (M) in general only provides an
upper bound for the operator complexity C(UM ), which in turn bounds the state
complexity of the final state |f⟩ = UM |i⟩,

C (M) ≥ C(UM ) ≥ C(|f⟩). (3.1)

In certain special cases we might expect that an optimal path integral cost gives
a reasonable state complexity.

In this chapter we will give some illustrative examples of path integral cost pro-
posals that reduce to existing holographic state complexity proposals. In each case
we fix a proposal for cost of the bulk path integral on a bulk subregion, minimise
this cost over an appropriate set of M̃ , and show that the resulting minimal cost
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matches a state complexity proposal. When optimising over path integral state
preparation what we hold fixed is the final state, and we should allow for different
bulk geometries as well as different subregions of each geometry. We will minimise
cost with respect to M̃ within a fixed bulk geometry, and then argue that the
cost cannot be lowered by varying the geometry, but this should be considered a
simplifying feature of the particular cost proposals we are dealing with rather than
a general feature. Note also that more than one path integral cost proposal can
reduce to a given state complexity proposal; we give two that reduce to the CV
conjecture.

3.1 CV from optimising boundary volume
We now give a path integral cost proposal that when optimised reduces to the CV
state complexity proposal. Consider any asymptotically Euclidean AdS spacetime
of any dimension. We are looking to connect to state complexity, so as per the
discussion from section 2.2.3 the appropriate set of codimension-1 surfaces M̃ over
which we will minimise path integral cost all have fixed boundaries in common,
see figure 2.2. We take Σ1 to be a bulk point, so the path integrals really are
preparing the state from nothing. Each M̃ in the set we are ‘optimising’ over then
has one boundary, which is fixed. The cost proposal we will use is

C = Vol[M̃ ]. (3.2)

We just wish to show that the M̃ that minimises or ‘optimises’ this cost is the
maximal volume slice in the Lorentzian continuation of the space, so we suppress
constants of proportionality. The M̃ that minimises the path integral cost (3.2) is
the minimal volume surface in the set with fixed boundary. We label the minimal
volume surface M̃∗.

Naively we could leave Σ2 unspecified because it does not play a role in the cost
proposal. Can we lower the volume of M̃∗ and so the path integral cost by allowing
the background geometry to vary? The answer is generally yes, but suppose Σ2 is
a subregion of a minimal volume slice of a given Euclidean geometry. Since Σ2 lies
on a minimal volume slice, and by definition ∂M̃ = Σ2, we have that M̃∗ = Σ2.
This means that we cannot lower the volume of M̃∗ without changing the geometry
on Σ2, which is forbidden by the requirement of keeping the final state fixed in
this optimisation procedure.

Gaussian normal coordinates adapted to M̃∗ are

ds2 = dτ2 + gij(τ, x)dxidxj (3.3)

with M̃∗ : τ(xi) = 0. Suppose this minimal volume surface lies on a time reflection
symmetric slice Σ of the Euclidean space, which implies that the extrinsic curvature
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3.1. CV from optimising boundary volume

K
(τ)
ij vanishes. This won’t generally be the case since being a minimal volume

surface only guarantees that the trace K(τ) = 0 vanishes but let us assume it. We
may then analytically continue to Lorentzian signature τ → it, and second order
shape variations in the direction normal to M̃ flip sign:

δ2

δτ(y)δτ(y′)Vol[M̃ ] = − δ2

δt(y)δt(y′)Vol[M̃ ] (3.4)

and so M̃∗, which is the global minimal volume in the Euclidean space, is a local
maximum in the analytic continuation to Lorentzian spacetime.

We have shown how to reduce to the CV state complexity proposal after finding the
M̃ which minimises or ‘optimises’ the path integral cost (3.2). Our assumptions
are that M̃∗ lies on a time reflection slice, and that the surface is the global, not
just a local, maximum in volume in the Lorentzian spacetime. Note that we have
only shown how to match CV conjecture at the point of time reflection symmetry.

It would have been preferable to find a cost proposal that applies to the same
Lorentzian bulk as the CV conjecture, rather than the Euclidean continuation.
The basic obstacle is that our optimisation procedure involves minimising a cost,
while the CV conjecture maximises a volume. We do not rule out the possibility
of a Lorentzian cost proposal that reduces to the CV conjecture, but we were not
able to find one that satisfies all the physical requirements.

Heuristic justification for cost proposal from T T̄

We are taking a phenomenological approach to cost proposals, rather than try to
justify them from a bottom-up gate-counting physical picture. We do however have
a heuristic justification for this subsection’s cost equals boundary volume proposal
which we find appealing and will describe. Similar arguments have previously been
made in [61,70].

Consider a Euclidean path integral of a T T̄ -deformed theory defined on some two-
dimensional manifold M . The deformation parameter λ in a T T̄ -deformed theory
is related to the scale of non-locality Lnl by

L2
nl ∼ λ. (3.5)

One way of arguing for this relation is from the fact that the T T̄ deformation of the
free boson action is the Nambu-Goto string action, with string length l2s ∼ λ [62].

We may discretize the path integral with a tensor network if we assume that each
region of proper area L2

nl represents one tensor. Then the total number of tensors
is

C (M) ∼
∫

M

dxdτ

√
γ

L2
nl

∼
∫

M

dxdτ

√
γ

λ(x, τ) . (3.6)
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The state that the path integral prepares depends on the manifold, boundary
conditions, and field theory action, especially through the deformation parameter
λ(x, τ). Following section 2.2.1, we can now take the CFT to be holographic, with
metric inherited from the induced metric on a finite cutoff surface z = ρ(τ) in
Poincaré AdS3:

1
ρ2 γij = gij , (3.7)

with
√
g = 1

ρ2

√
1 + ρ̇(τ)2, (3.8)

and the T T̄ relation between cutoff and deformation parameter

λ ∼ GNρ
2. (3.9)

Substituting in (3.6) we get an heuristic estimate for the effective number of gates
in the path integral on M :

C (M) ∼ 1
GN

∫

M̃

dxdτ

√
1 + ρ̇2

ρ2 = Vol(M̃)
GN

. (3.10)

This completes a heuristic derivation of the cost equals boundary volume proposal.
Just like in the complexity=volume proposal [40], the proportionality factor in this
equation will have to depend on the choice of an additional length scale, as C (M)
has to be dimensionless. Also, notice that although the state preparation we are
considering is similar to the one in [1], the holographic path integral cost derived
from a T T̄ gate counting procedure (3.10) is quite different from the one based on
the on-shell gravitational action that was provided there,

I[ρ] ∼ 1
GN

∫
dxdτ

1 + ρ̇ arctan ρ̇
ρ2 . (3.11)

3.2 Towards CV2.0 from optimising bulk volume
The CV2.0 proposal asserts that the spacetime volume of the boundary-anchored
WdW patch represents a holographic notion of complexity in dual quantum field
theories. It seems obvious to try to obtain this from the optimization of a cost
functional which is simply given by the volume of XM . There are however some
subtleties when trying to make this precise and as we will see the CV2.0 proposal
does not quite follow. Instead, we obtain something which is more like the volume
of half the WdW patch.
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The first issue we need to address is the choice of the initial and final slices Σ1 and
Σ2. It is tempting to choose these to be the future and past null cones emanating
from the boundaries of M̃ , but this would lead to a problem with the additivitiy
criterion for the cost function: if we combine M̃1 and M̃2, the future null cone
attached to the future boundary of M̃1 obviously does not agree with the past null
cone attached to the past boundary of M̃2 (which equals the future boundary of
M̃1). Hence XM1 ∩XM2 ̸= ∅ and because of this additivity will generically fail. One
can also choose both Σ1 and Σ2 to be simultaneously future or past directed null
cones, but this would manifestly lead to violations of the time-reversal criterion.
Moreover, it would lead to situations where XM could become the empty set in
the limit where M̃ becomes null. In what remains we will choose Σ1 and Σ2 by the
property that they have vanishing scalar extrinsic curvature, but the conclusions
will not be substantially different for other choices of Σ1 and Σ2. Given this choice
for Σ1 and Σ2, consider the candidate cost functional

C (M) ∼
∫

N=Int(M̃∪Σ1∪Σ2)

√
|G| + α

∫

M̃

√
|g|, (3.12)

where α is a non-negative dimensionful constant. Such simple cost functions satisfy
all the properties listed in section 2.3.2 that we require from a good notion of a
gravitational cost. A precise expression for this cost functional also requires an
overall dimensionful prefactor which we did not include in (3.12) and which can
be chosen arbitrarily.

Let us consider this cost function in the context of the situation depicted in figure
3.1 in the Lorentzian context, where we want the path integral to remain defined
on a timelike surface. We restrict M̃ to be timelike in the set to be optimised over,
in order to find the unitary time evolution operator with the lowest cost. If one
then performs optimization of (3.12) for timelike separated initial and final state,
the second term gets arbitrarily small for an almost null boundary and the latter
also leads to the minimal enclosed bulk spacetime volume. If one optimizes also
over time duration at fixed initial and final state, then one gets a portion of the
WdW patch. Shrinking one state to a bulk point gives rise to a ‘past half’ of the
WdW patch bounded by Σ2. The volume of this half of the WdW patch equals
to the optimum of the cost (3.12), which is as close as we can get to the CV2.0
proposal. We cannot change the geometry in the past domain of dependence of
Σ2 without changing the geometry on Σ2, so having minimised the cost while
working with a fixed bulk geometry to the volume of this ‘half’ WdW patch we
cannot lower it further by varying the interior geometry without changing the final
state. Rather than creating the state from a single bulk point, we could also have
asked the question what the minimum cost is of the reverse process where we use
a circuit to map an initial state to a single bulk point. One could perhaps think of
this as a circuit which maps the state to a completely unentangled and therefore
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Figure 3.1: Optimisation of the Lorentzian cost functional given by a sum of bulk and
boundary volume. The minimal cost is obtained as M̃ approaches an almost null surface.
As Σ1 is shrunk to a point, one obtains the past half of the WdW patch anchored to Σ2.

non-geometric state represented by a single bulk point. The optimal cost for this
state demolition process is then given by the volume of the future half of the WdW
patch where the WdW patch is cut in two pieces by Σ1. Overall, the conclusion
of this analysis could be that the CV2.0 proposal is not just computing the cost
of creating the state but rather the sum of the creation and demolition cost. It
would be interesting to explore this interpretation further.

3.3 CV from optimising Euclidean gravitational
action

In section 2.3.4 we argued that the gravitational action of codimension-0 bulk
subregions is not a reasonable cost proposal because there are asymptotically AdS
spacetimes, both Lorentzian and Euclidean, for which the action is negative. These
actions are negative due to the conformal mode of the Ricci scalar, and are on-shell
for matter configurations that violate the trace energy condition. In this section
we will nonetheless use gravitational action as a cost proposal. What we have
in mind is a corrected proposal that is non-negative: either one which excludes
problematic negative action fringe cases in an ad hoc fashion, or a modification
such as adding the matter action which makes the total action positive even for
trace energy condition violating configurations, though we have not proven that
this works. In any case we will only apply our proposal here to subregions of
pure global AdS, with the matter in its vacuum configuration, so we are far from
the problematic fringe cases where we would have to specify precisely how we
correct our proposal to ensure positivity. We only stipulate that the presumptive
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3.3. CV from optimising Euclidean gravitational action

correction is negligible when evaluated on pure AdS.

Cost proposals which use the gravitational action can also in some cases reduce
to existing complexity proposals when optimised. In previous work we considered
Euclidean Poincaré AdS3 and gave a gravitational action cost proposal that reduces
to the volume of the constant time slice when optimised [1]. Our cost proposal was
the on-shell gravitational action of the codimension-0 bulk region bounded by two
constant Euclidean Poincaré time slices and a finite cutoff radial boundary. This
we claimed is dual to the cost of the Euclidean path integral in the T T̄ -deformed
boundary CFT on that radial cutoff boundary. The basic idea is that we have
a set of path integrals on different radial cutoff surfaces that prepare the same
state, and when the gravitational action cost proposal is minimised over this set
we found that it matches the CV state complexity proposal. Minimising path
integral cost with respect to background geometry is inspired by the work of [71],
and for Poincaré AdS3 our proposal reduces to the Liouville action in agreement
with their work, in the limit of a slowly varying cutoff surface. The optimum
path integral maps between ground states of theories with different UV cutoffs by
building up or coarse-graining away the UV structure with as little Euclidean time
evolution as possible.

In this subsection we will show that when our gravitational action proposal is
applied to global AdS we again match with the CV state complexity proposal.
The purpose is two-fold: (1) to show that there is more than one cost proposal, in
this case cost equals boundary volume and cost equals gravitational action, that
can reduce to a given complexity proposal when minimised over a suitable set of
path integrals, and (2) to give further evidence that the cost proposal based on
gravitational action that we gave in [1] is a reasonable one. For our gravitational
action proposal we do not know whether (or necessarily expect that) it reduces
to the CV conjecture in other asymptotically AdS spacetimes than the Euclidean
Poincaré and global AdS examples that we have explicitly checked.

Gravitational action in Poincare AdS
For simplicity and concreteness, we are going to consider the preparation of the
ground state of a 2d CFT on a line using the Euclidean path integral. To this end,
we take the standard Euclidean AdS solution, with the curvature scale lAdS = 1,

ds2 = dz2 + dt2 + dx2

z2 , (3.13)

and the partition function of the CFT equals the exponent of minus the on-shell
bulk action

I = 1
κ

∫

M

d3x
√
G (R+ 2) + 2

κ

∫

∂M

d2x
√
gK + Ic. (3.14)
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M is the bulk region bounded by ρ(t) ≤ z ≤ ∞ and ti ≤ t ≤ tf , as shown in
figure 3.2. The a priori finite function ρ(z) interpolates between the values z = zi
at t = ti and z = zf at t = tf , with ti ≤ tf and zf < zi. For simplicity we also take
the setup to be independent of the transverse direction x. Furthermore, we write
κ = 16πGN , G for the 3d metric on M , g for the induced 2d metric on ∂M , and
K is the trace of the extrinsic curvature. ∂M is only piecewise smooth and has a
kink or joint at t = tf and t = ti as shown in figure 3.2. Each joint contributes a
term

Ic = 2
κ

∫
dx
√
j α (3.15)

to the gravitational action. Herein,
√
j is the length element along the joint and

α is simply the angle between the two normal vectors of the two surfaces coming
together at the joint (which may have either sign). Joint-terms of this type were
studied by Hayward in [43, 44], but in the Euclidean setting, which is of interest
here, this was already done earlier in [72], see also the discussion in [45].

Figure 3.2: We consider a subregion M of Euclidean Poincaré AdS3. We introduce two
time-slices t = ti and t = tf corresponding to the field theory ground states |0⟩zi and
|0⟩zf , which are prepared for different values of the radial cutoff. The radial boundary
is at finite cutoff, z = ρ(t). Our proposal is that the complexity of the circuit that
maps between these ground states with different finite Wilsonian cutoffs is given by the
gravitational action on M .

As discussed above, we are going to interpret the on-shell value of the bulk effective
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action of the region M as the complexity of the circuit defined by the surface
z = ρ(t) which maps the vacuum state |0⟩zi

with cutoff zi to the vacuum state
|0⟩zf

with cutoff zf . If we use the relation between a finite radial cutoff and the
coefficient µ of the T T̄ deformation via [48],

µ(t) = κ ρ(t)2, (3.16)

we can reinterpret the states |0⟩ρ(t) as ground states of the T T̄ deformed CFT
with a time-dependent coefficient µ(t).

Concretely, the induced line element on the boundary surface is

ds2 = (1 + ρ̇2)dt2 + dx2

ρ2 , (3.17)

its Ricci scalar reads

R(d−1) = 2(ρρ̈− ρ̇2(1 + ρ̇2))
(1 + ρ̇2)2 , (3.18)

the trace of the extrinsic curvature reads

K = ρρ̈+ 2(1 + ρ̇2)
(1 + ρ̇2)3/2 , (3.19)

and from (3.14) we obtain

I = −4
κ

∫

M

d2x

∫ ∞

z=ρ

dz

z3 + 2
κ

∫

∂M

d2x
ρρ̈+ 2(1 + ρ̇2)
ρ2(1 + ρ̇2) + Ic

= 2Vx
κ

∫ tf

ti

dt
ρρ̈+ (1 + ρ̇2)
ρ2(1 + ρ̇2) + Ic (3.20)

for the on-shell bulk action, where we have introduced Vx =
∫
dx. For the corner

term, we also find

Ic = 2Vx
κ

(
π/2 − arctan ρ̇(tf )

zf
+ π/2 + arctan ρ̇(ti)

zi

)
. (3.21)

Integrating by parts, this action can be written only using first derivatives of ρ,
yielding

I =2Vx
κ

∫ tf

ti

dt

(
1
ρ2 + ρ̇ arctan ρ̇

ρ2

)
+ πVx

κ

(
1
zf

+ 1
zi

)
. (3.22)

The terms which are independent of ρ do not affect the equations of motion, and
can always be removed by a suitable counter term, which we will assume to be
done from now on. We believe this is justified, as it is known [43,45] that the joint
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term can spoil the additivity of the action under combining bulk regions, which
besides the formulation of a well defined variational principle is usually the second
main reason for adding boundary terms to the action (3.14).1

The equations of motion obtained by extremizing (3.22) read

ρρ̈+ (1 + ρ̇2)
ρ3(1 + ρ̇2)2 = 0. (3.23)

The most immediately visible solution to this equation is the one where we formally
take the limit ρ̇ → ∞. This corresponds to the boundary surface turning into
an equal-time slice, which is in fact where, based on the intuition surrounding
holographic complexity and tensor networks, we expect the most optimised circuit
preparing the state |0⟩zf

to live, see e.g. [73]. The generic solution to (3.23) reads

ρ(t) =
√

R2 − (t− t0)2 (3.24)

and describes circular arcs of radius R centered on the boundary point at t = t0.
The formal solution ρ̇ → ∞ corresponds to the limit of infinite radius.

Our proposal is that the Euclidean action (3.22) (excluding the ρ-independent
remnants of the joint terms) is a measure of the complexity of preparing the state
|0⟩zf

from the state |0⟩zi
using the circuit described by ρ(t). The optimal circuit,

with fixed Euclidean time distance ∆t = |tf − ti|, is then of the form (3.24), and
the complexity of this circuit is given by evaluating the Euclidean action on this
solution. With the explicit boundary conditions being ρ(tf ) = zf and ρ(ti) = zi,
the value of the Euclidean action in the first term of (3.22) is

I = 2Vx
κ

(
1
zf

arctan
z2
i − z2

f + ∆t2

2zf∆t − 1
zi

arctan
z2
i − z2

f − ∆t2

2zi∆t

)
. (3.25)

Note that this result comes entirely from the corner terms, as the first term in
(3.20) exactly vanishes on-shell. Interpreting it as a function of the variable ti ≤ tf
while keeping zi ̸= zf fixed, we can verify that the above expression is minimized
by ti = tf . This corresponds to the limit R → ∞ or ρ̇ → ∞ and hence the
equal time slice that is intuitively expected to play a special role in describing the
complexity of the state |0⟩zf

. Using 1/κ = c/24 [6], the minimum value is given
by

Imin = cπVx
24

(
1
zf

− 1
zi

)
, (3.26)

1Note that in our Euclidean setting, where spacelike surfaces have spacelike normal vectors,
the joints under consideration are more similar to the timelike joints discussed in [43, 45] than
spacelike ones in a Lorentzian setting.
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which is proportional to the spatial volume of the strip zf ≤ z ≤ zi on the equal
time slice at t = tf . Of course, if we send zf → ϵ ≪ 1 and zi → ∞, this reproduces
the standard result of the volume proposal for the complexity of the CFT ground
state. Clearly, this result also vanishes if zi = zf , which we take as a non-trivial
consistency check and further justification for excluding the remnants of the joint
terms in (3.22). 2

To close this section, let us compare our results to the ones that can be obtained
from the Liouville action. For ρ̇ ≪ 1, equation (3.22) can be approximated as

I = 2Vx
κ

∫
dt

(
1
ρ2 + ρ̇2

ρ2

)
, (3.27)

which, assuming no x-dependence, is equivalent to the Liouville Lagrangian

SL = c

24π

∫
dt

∫
dx
(
η e2ω + (∂tω)2 + (∂xω)2

)
. (3.28)

after a change of variables ρ(t) → (1/√η) e−ω(t). Note that the physically interest-
ing solution ρ̇ → ∞ falls outside of the range of applicability of the approximation
necessary to obtain the Liouville action from (3.22). The equations of motion
derived from (3.27) take the form

ρρ̈+ (1 − ρ̇2)
ρ3 = 0. (3.29)

As we will see below, these field equations also arise if we introduce a new time
coordinate in order to bring the induced metric on the boundary into conformal
gauge.

Conformal time and extremizing the action
There is a subtle but crucial difference between our setup discussed in the previous
subsection and the calculations of [73], which we will discuss in this subsection in
order to avoid confusion.

In order to do so, we note that [73] investigates a setup similar to the one depicted
in figure 3.2, and up to notation (3.20) also appears in the appendix of that paper.
Following [73], we can now introduce a conformal time u, with

du =
√

1 + ρ̇(t)2dt, (3.30)
2As an illustrative example, imagine a Euclidean axisymmetric spacetime, with a spacetime

region in the shape of a regular prism that breaks rotational symmetry around the axis to a
discrete subgroup. In the limit where the radius of the prism goes to zero, the action on that
region may not go to zero, as while bulk and surface terms vanish in this limit due to the vanishing
of bulk volume and surface area, the joint terms will lead to a contribution proportional to an
integral along the axis of symmetry. This remnant term is the analogue of the last bracket in
(3.22).
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such that the line element (3.17) is transformed into the conformal gauge form

ds2 = du2 + dx2

ϱ(u)2 . (3.31)

Here, we have introduced a new variable such that ϱ(u(t)) = ρ(t). Under (3.30),
the action (3.22) changes to [73]

I = 2Vx
κ

∫ uf [ϱ]

ui[ϱ]
du

(√
1 − ϱ′2 + ϱ′ arcsin ϱ′

ϱ2

)
. (3.32)

If we were to just identify the integrand in (3.32) as a Lagrangian and compute
naively the Euler equations, we arrive at

ϱϱ′′ + 2(1 − ϱ′2)
ϱ3(1 − ϱ′2)2 = 0, (3.33)

which, up to notation and the addition of a nonzero tension term, are the equations
which where studied in [73].

The subtlety announced at the beginning of the subsection is that (3.30) is a
reparametrization of time which is dependent on the variable with respect to which
we want to vary the action, hence formally in going from (3.22) to (3.32) the
integration bounds ui and uf become themselves functionals of ϱ, and will lead to
a nontrivial contribution according to Leibniz’s rule when varying the action. In
fact it can be checked that introducing (3.30) and ϱ(u) in the equation of motion
(3.23) gives a result

ϱϱ′′ + (1 − ϱ′2)
ϱ3 = 0 (3.34)

that is inequivalent to (3.33). Interestingly, (3.34) has the form of the Liouville
equation (3.29), just for ϱ(u) instead of ρ(t).

The most commonly known example where a field-dependent reparametrization
can be useful is the Lagrangian for geodesic motion, which becomes a constant
when introducing affine parametrisation. Of course, this does not mean that the
equations of motion degenerate, as the full information about the value of the
action – i.e. the length of the curve – is now entirely encoded in the integration
domain. Unfortunately, the expression (3.32) rather inelegantly falls into a middle
ground between the two possible extremes, as both the integrand and the inte-
gration bounds are functionals of the variable ϱ, and for this reason we found it
intractable to work with.

This does not mean that either our work or [73] are wrong, just that we are studying
a different variational problem. We work with the action (3.22) where explicitly
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we assume Dirichlet boundary conditions for ρ(t) at the fixed values t = tf and
t = ti, while [73] works with the action (3.32) with the implicit assumption of
Dirichlet boundary conditions for the field ϱ at fixed values of ui, uf , which is an
inequivalent mathematical exercise.

Comparison to AdS/BCFT models
We can investigate this issue a bit further. So far, we have essentially considered
what amounts to minisuperspace models, by plugging in an ansatz into the ac-
tion and deriving equations of motion for the function parametrizing that ansatz,
instead of first deriving general equations of motion and then simplifying them
with a given ansatz. How can we write our equations of motion in a form that is
more suggestive for their general meaning and potential origin? We will do this
in the next section, but as an aside, we will now demonstrate that the semicircle
solutions that we found can also be obtained if we interpret the boundary of the
bulk domain as an “end of the world brane” with an energy-momentum tensor
describing matter with a very specific equation of state. The covariant equations
of motion of this end of the world brane will imply the general equation that we
will derive in the next section. The derivation in the next section does not rely on
an end of the world brane interpretation, and it remains to be seen whether this
agreement is more than a technical coincidence.

We should also point out that the work of [73] was strongly influenced by the type
of AdS/boundary CFT (BCFT) models introduced in [74,75]. In such models the
boundary of the space on which the BCFT lives is also extended into the bulk
spacetime in the form of an end of the world brane, on which Neumann boundary
conditions are imposed. Besides the bulk Einstein equations, this leads to an
equation of motion of the form

Kµν −Kgµν = κ

2Tµν (3.35)

which determines the embedding of the end of the world brane into the ambient
space. These models allow for considerable bottom-up toy-model building freedom,
and Tµν is the energy-momentum tensor of any matter that lives in the brane
worldvolume. In practice, it is often set to be a constant tension term

Tµν = λ gµν (3.36)

with tension λ. As reported in [73], their equation of motion is consistent with
(3.35). As we ignore tension terms, we would set the right hand side of (3.35) to
zero, and apart from the equal time slice obtained by ρ̇ → ∞, our semicircular
embeddings do not satisfy this equation.

Interestingly, in a Lorentzian AdS/BCFT context, semicircular embeddings into
Poincaré AdS were derived in [76] for a simple model of Tµν given by a perfect
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fluid with equation of state p = aσ (p =pressure, σ=energy density) in the limit
a → ∞. So we see that semicircular embeddings into a Poincaré AdS do satisfy an
equation of the form (3.35), just with a specific non-trivial right hand side. Due
to the peculiar limit in the parameter a, Tµν satisfies the condition

det[Tµν ] = 0 (3.37)

or equivalently

TµνT
µν − T 2 = 0, (3.38)

and hence

det [Kµν −Kgµν ] = 0, (3.39)

respectively

(Kµν −Kgµν)(Kµν −Kgµν) − Tr[Kµν −Kgµν ]2 = KµνK
µν −K2 = 0 (3.40)

for our semicircular embeddings (3.24), even though they were not derived from
an AdS/BCFT ansatz. We will give a direct derivation of equation (3.40) as a flow
equation for our complexity proposal in the following section.

Gravitational action in global AdS
Let us calculate the on-shell gravitational action between constant time slices
in global AdS, with a variable finite cutoff boundary, see figure 3.3. Consider
Euclidean AdSd+1 with unit AdS length in global coordinates:

ds2 = (1 + r2)dτ2 + dr2

1 + r2 + r2dΩ2
d−1. (3.41)

We assume the cutoff surface M̃ has spherical symmetry, r = ρ(τ). We define
Σ1 and Σ2 to be K = 0 surfaces, which in this case will be just constant time
τ = τ1,2 slices. We will be minimising the on-shell gravitational action over cutoff
boundary surfaces r = ρ(τ) with fixed initial and final cutoff r1 = ρ(τ1) and r2 =
ρ(τ2). Different boundary surfaces define different path integrals which evaluate
the transition amplitude between the ground states of a holographic CFT with
Euclidean time dependent T T̄ deformation. Fixing r1 and r2 fixes the initial and
final T T̄ deformation.

Let us calculate the on-shell gravitational action of the region depicted by figure
3.3. We assume the cutoff surface has spherical symmetry. Consider Euclidean
AdS3 with unit AdS length in global coordinates:

ds2 = 1
cos θ2

(
dτ2 + dθ2 + sin θ2dϕ2) . (3.42)
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The asymptotic boundary is at θ = π/2. We want the on-shell gravitational action
of the region N , which is bounded by τ1 = 0, τ2 = T , and the radial cutoff surface
θ = θ(τ). The full gravitational action including corner terms is

I = 1
κ

∫

N

d3x
√
G (R + 2) + 2

κ

∫

M̃

d2x
√
gK + Ic. (3.43)

∂AdS

r = ρ(τ)τi

τf

Figure 3.3: The subregion of Euclidean global AdS whose gravitational action we pro-
pose to be the cost of the path integral on the finite cutoff boundary.

The extrinsic curvature of the surface θ = θ(τ) is

K = −θ̈ tan θ + (1 + 2 tan θ2)(1 + θ̇2)
sec θ tan θ(1 + θ̇2) 3

2
. (3.44)

Using this, the action takes the simple form

I = 2
κ

∫
dϕ dτ

(
1

cos θ2 − θ̈ tan θ
(1 + θ̇2)

)
+ Ic. (3.45)

This can further be simplified by partially integrating over τ as

I = 2
κ

∫
dϕ dτ

(
1

cos θ2 + θ̇ arctan θ̇
cos θ2

)
− 2
κ

∫
dϕ tan θ arctan θ̇ + Ic. (3.46)

If the boundary is not smooth at a corner situated at τ = τc, then the action
receives an additional contribution given by the Hayward term

Ic = 2
κ

∫
dϕ tan θ(τc)(arctan θ̇(τc) + π/2). (3.47)

Including this term from a single corner, the total action now is

I = 2
κ

∫
dϕ dτ

(
1 + θ̇ arctan θ̇

cos θ2

)
+ 2π2 tan θ(τc)

κ
. (3.48)
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This result is closely related to our previous result for Euclidean Poincaré AdS3 [1].
Varying this action allows us to find surfaces that extremise the gravitational
action. The equations of motion are

θ̈ − tan θ(1 + θ̇2)
cos θ2(1 + θ̇2)2 = 0. (3.49)

Before solving the above equation, we see that there will always be a solution when
|θ̇| → ∞. In this limit the surface turns in to a equal-time slice. The most general
solution for θ(τ) is given by

θ(τ) = arcsin (α sinh (τ) + β cosh(τ)). (3.50)

As expected from the discussion in [1], these θ(τ) describe surfaces of constant
scalar curvature R = −2. The circuits whose boundary surface is given by the
above θ(τ) or in terms of r(τ) = tan θ(τ) extremise the action (3.48) and hence
the cost of the circuit. More specifically, consider the circuit preparing the ground
state |0⟩θf

at some cut-off θf starting from a trivial initial state. Such a circuit
θ(τ), running from τ = 0 to τ = T > 0 is given by (3.50) with θ(0) = 0 and
θ(T ) = θf . The cost can now be calculated from the value of the on-shell action,
and is given by

I = 4π
κ

(
T + arctan

(
tan θf
tanhT

)
tan θf

)
+ 2π2 tan θf

κ
. (3.51)

Minimum value of this optimised cost for preparing |0⟩θf
is achieved for T = 0,

when the surface is a constant time slice. The minimum value is

Imin = 4π2 tan θf
κ

. (3.52)

The volume of the constant time slice with a radial cut-off at θf , Vol(θf ) is equal
to 2π tan θf tan θf

2 . Using this, and 1
κ = c

24π we can rewrite the above value as

Imin = c

12
Vol(θf )
tan θf

2
. (3.53)

The minimum cost is indeed proportional to the volume of the constant time-slice.
As the radial cut-off is taken to infinity, θf → π/2, we see that the proportionality
constant is exactly c

12 .

We should again ask whether the bulk path integral cost can be lowered by allowing
the background geometry to vary. In a similar resolution to the previous subsection
we simply specify Σ2 to lie on the constant time slice. Then the cost-minimising
M̃ and Σ2 coincide and it is not possible to lower the cost without changing the
final state.
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3.4 Bulk action and T T̄

We have considered the on-shell action of a cutout region of Poincaré AdS3, and
interpreted it as a complexity functional of states in T T̄ -deformed holographic
CFTs. The relation (3.16) between the coefficient of the T T̄ deformation and
the radial location has been derived for constant radial cutoff [48–50], but not
for time-dependent ρ(t). In this section we consider the flow equations which
describe movement of the cutoff surface in a fixed background. By integrating
these flow equations we should be able to derive a more precise relation between
the coefficient of the T T̄ deformation and the location of the bulk surface. In
addition, these flow equations will tell us how complexity changes as we change
the surface locations, and for which surfaces complexity is optimized while keeping
the initial and final state fixed.

Excluding counterterms
The relevant flow equation can most easily be derived using the ADM formalism [7].
We will keep the number of spacetime dimensions free in what follows, and write
the metric as

ds2 = N2dr2 + gµν(x, r)(dxµ +Nµdr)(dxν +Nνdr). (3.54)

This contains the usual lapse and shift functions, for which one can locally choose
a convenient gauge N = 1 and Nµ = 0. Following ADM and choosing units so
that κ = 1, we now write the Lagrangian in terms of canonical variables

L = √
g (πµν∂rgµν −NH −NµHµ) , (3.55)

where the lapse and shift functions appear as Lagrange multipliers enforcing the
Hamiltonian and momentum constraints

H = Hµ = 0. (3.56)

The canonical momenta are given by [77]

πµν = 1√
g

∂S

∂gµν

= −(Kµν −Kgµν)

= −1
2 (∂rgµν − gµνg

ρσ∂rgρσ) ,

(3.57)

where in the second step we used the fact that metric variations are given by the
Brown-York tensor, and in the last step we used the explicit form of the extrinsic
curvature for the metric (3.54) in the gauge N = 1, Nµ = 0. Of course, the same
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result can also be obtained by explicitly rewriting the action as in (3.55). Using
(3.57), we find for the radial derivative

∂rgµν = −2πµν + 2
d− 2gµνπ

ρ
ρ (3.58)

where d is the total number of bulk spacetime dimensions (for now we are pre-
dominantly interested in d = 3). The Hamiltonian constraint can be computed
from (3.55) and, for unit AdS radius, one finds

H = R(d−1) − 2Λ − (K2 −KµνKµν)

= R(d−1) + (d− 1)(d− 2) + πµνπµν − 1
d− 2(πρρ)2.

(3.59)

It is fairly straightforward to include matter fields in the discussion; the Hamilto-
nian constraint will then also contain the Hamiltonian of the matter sector, but
we will for simplicity restrict to the purely gravitational case. To describe the flow
we imagine starting with a surface at constant r and moving the cutoff slightly so
that r → r + ϵ(x). For any surface, we can always locally find coordinates such
that the surface is located at fixed value of r and the metric is in the ADM gauge,
so there is no loss of generality in this assumption. Then

δϵS =
∫
ϵ(x)∂rgµν

∂S

∂gµν

=
∫ √

gϵ(x)∂rgµνπµν

= 2
∫ √

gϵ(x)
(
πµνπµν − 1

d− 2(πρρ)2
)
,

(3.60)

where we used equation (3.58) for the radial dependence of the metric in terms of
momenta. Interestingly, this is precisely of T T̄ form, but with T and T̄ defined
with respect to the metric variations of the finite surface, not the boundary at
infinity. A more coordinate independent way of stating the result is that as we
move a surface in a given AdS background, we turn on a local T T̄ -deformation with
a coefficient given by the orthogonal distance between the original and deformed
surface. If we could relate the local T and T̄ on a given surface to the T and T̄ as
defined at infinity, we could integrate these flow equations and write the final result
in terms of a finite T T̄ deformation of the theory at infinity. We leave a further
exploration of this interesting question to future work but thinking of finite T T̄
deformations in terms of a change in the boundary conditions for the metric we
expect it to involve the linearized Einstein equations around the background [46].

Clearly, using (3.57) for d = 3 the variation of the action vanishes if equation
(3.40) is satisfied. As is clear from the Hamiltonian constraint, this condition can
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also be phrased as R(d−1) + (d − 1)(d − 2) = 0, i.e. the boundary surface has
constant scalar curvature. Therefore, to optimize the complexity of the process we
should use constant scalar curvature surfaces; the metric on a Euclidean AdSd−1
manifold precisely has the required scalar curvature. This is consistent with the
observation that complexity is minimized if we take ti = tf and consider a purely
radial surface at the t = tf constant timeslice in section 3.3.

Including counterterms
So far the discussion has used the standard bulk AdS action without the inclusion
of additional counterterms, which would render the on-shell value of the action
finite as one takes the surface to the asymptotic boundary. As alluded to in the
beginning, in the original appearance of Liouville theory as defining path integral
complexity, the absence of the volume counterterm was important. Here we briefly
discuss what happens if we add a volume term for the boundary surface with an
arbitrary coefficient. In our discussion of the on-shell value of the action, it would
add an extra term

Sc.t = −2λ
∫
d2x

√
g = −2λ

∫
dtdx

√
1 + ρ̇2

ρ2 . (3.61)

Adding the counterterm modifies the field equations to

1
ρ3(1 + ρ̇2)

(
(ρρ̈+ 1 + ρ2) − λ

√
1 + ρ̇2

(
1
2ρρ̈+ 1 + ρ̇2

))
= 0 (3.62)

We can also reconsider the flow equations in the presence of the volume countert-
erm. Denoting the volume counterterm as

Svol = −2λ(d− 2)
∫

∂M

√
g (3.63)

so that λ = 1 is precisely the counterterm which would cancel the volume diver-
gence near the AdS boundary, we now introduce π̃µν = πµν − λ(d− 2)gµν so that
these are precisely the canonical momenta in the presence of the extra boundary
volume term. The Hamiltonian constraint can be rewritten as

H = R(d−1) + (1 − λ2)(d− 1)(d− 2) + π̃µν π̃µν − 1
d− 2(π̃ρρ)2 − 2λπ̃ρρ = 0 (3.64)

We can now consider two types of flows. We can consider the variation of the action
as we change the radial surface in a given background, but we can also consider
the variation of the action as we perform a conformal rescaling of the metric on
the radial surface. In d = 3, the latter does not require an adjustment of the
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bulk geometry, but in higher dimensions this is no longer true. It is therefore not
clear whether conformal rescalings of the induced metric on the boundary surface
are in general compatible with keeping the initial and final states fixed in d > 3.
Regardless, the change of the action under the first type of flow now reads

δϵS =
∫
ϵ(x)∂rgµν

∂S̃

∂gµν

=
∫ √

gϵ(x)∂rgµν π̃µν

= 2
∫ √

gϵ(x)
(
π̃µν π̃µν − 1

d− 2(π̃ρρ)2 − λπ̃ρρ

)
(3.65)

and for the second type of flow with δgµν = ϵ(x)gµν

δϵS̃ =
∫
ϵ(x)gµν ∂S̃

∂gµν

=
∫ √

gϵ(x)π̃ρρ

= 1
2λ

∫ √
gϵ(x)

(
R(d−1) + (1 − λ2)(d− 1)(d− 2) + π̃µν π̃µν − 1

d− 2(π̃ρρ)2
)
.

(3.66)

We see that both flows take the form of T T̄ deformations, with various extra terms
such as the scalar curvature and the trace of the stress tensor. Just as in the case
without counterterm (λ = 0) it would be interesting to integrate these flows to
finite flows starting at the AdS boundary.

The first flow is extremized when the surface obeys

R(d−1) + (d− 1)(d− 2) − λ(d− 2)K = 0 (3.67)

which still holds for an AdSd−1 equal time slice in AdSd. As expected, for our setup
(3.67) is equivalent to (3.62). The second flow, on the other hand, is extremized
whenK = λ(d−1). This does not have an extremum for an AdSd−1 equal time slice
in AdSd unless λ = 0. Moreover, as we indicated above, it is not clear whether
the initial state and final state are kept fixed along the flow, and therefore the
precise interpretation of this flow is somewhat unclear. In any case, it would be
interesting to explore whether surfaces obeying (3.67) or K = λ(d − 1) have the
potential to define a new notion of complexity.

Finally, we notice that it is also possible to add higher order counterterms, but for
those the connection to T T̄ deformations becomes more complicated.
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3.5 Relation to kinematic space
In the above, we have often tacitly assumed that the information about the bulk
surface z = ρ(t) is encoded locally in the boundary theory. However, as our
discussion of flows shows, it is highly questionable whether this is a reasonable
assumption. A better way to encode the information of the surface z = ρ(t) in
the boundary theory is through pairs of points (t1(t), t2(t)) (with x=0) on the
boundary, such that the geodesic that starts at t1(t) and ends at t2(t) is tangent
to the bulk surface at the point (z = ρ(t), t, 0), see figure 3.4.

Figure 3.4: We can parameterize a generic bulk curve ρ(t) by the pairs of boundary
points (t1(t), t2(t)), such that a bulk geodesic connecting these two points is tangent to
the bulk curve at z = ρ(t). This way, the profile ρ(t) is encoded as a path in kinematic
space, the space of bulk geodesics.

This construction has the benefit of being covariant, and viewing Euclidean time
as another spatial coordinate, these geodesics encode precisely the entanglement
wedges which touch the surface but do not cross it. In other words, they precisely
encode the information about those regions of spacetime we try to omit in our
bulk path integral construction. One can ask whether there is a natural geometry
associated to the pairs of points of this type, and the answer is yes. Conformal
invariance produces a natural metric on the space of pairs of points, also known
as kinematic space [78]. For the case at hand it is given up to an undetermined
constant prefactor by the 2d de Sitter metric

ds2
ks = −dt1 dt2

(t1 − t2)2 . (3.68)
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In the spirit of defining complexity by assigning a metric to a group of transfor-
mations [28–30], we can now ask what the length of the path in this geometry
associated with ρ(t) is. To compute it explicitly, we need the explicit form of t1(t)
and t2(t). These are given by

t1,2(t) = t+ ρρ̇± ρ
√
ρ̇2 + 1. (3.69)

Consider now the action
Sks ∼

∫
dx

ρ
dsks(t), (3.70)

where we included the coordinate x in units of the cutoff ρ, and the distance ds
obtained from (3.68) upon inserting (3.69). This results in

Sks ∼
∫
dtdx

∣∣∣∣
ρρ̈+ (1 + ρ̇2)
ρ2(1 + ρ̇2)

∣∣∣∣ , (3.71)

which agrees precisely with the bulk action in the form (3.20) as long as ρ̈ ≥
−ρ−1(1 + ρ̇2). This is related to the fact that the kinematic space is a Lorentzian
manifold and the condition in question is the one that one moves there along a
timelike path.

This strongly suggests that the relevant circuit geometry for these types of finite
bulk surface computations is a version of kinematic space3. Note that on-shell,
(3.71) vanishes exactly for the semi-circular arcs that solve (3.23), as they are also
geodesics in AdS-space. In other words, for these solutions the path traversed in
kinematic space shrinks to a point.

Note that alternatively one may use the standard kinematic space prescription
built around entanglement entropy of intervals on constant t time slices. The
metric (3.68) is the same but now with t1 and t2 replaced simply by x1 and x2
with

x1,2(t) = ±ρ(t). (3.72)

Using again (3.70) gives this time

Sks′ ∼
∫
dtdx

|ρ̇|
ρ2 . (3.73)

This is clearly a different expression than (3.71), which however bears a strik-
ing similarity with the gate counting approach of [28–30] when the latter uses a
Manhattan norm.

3Note that this analysis did not include corner terms contributions to the action. However, in
the case of open bulk curves, in the kinematic space framework there are additional contributions
that we have not included. It would be certainly interesting to see if they reproduce the corner
terms. We would like to thank Bartek Czech for bringing this up.
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Let us mention that generalizing the kinematic space consideration leading to (3.71)
to more complicated geometries is not obvious as minimal geodesics do not nec-
essarily penetrate the whole spacetime. In the case of geodesics computing the
entanglement entropy, these are entanglement shadows [24] and they appear, for
example, in the case of double-sided black holes.

Finally, let us mention that the relation between kinematic space and complexity
was explored earlier in two different instances in [79] and [80], however, these
proposals are distinct from ours and use a standard entanglement-based kinematic
space.

Kinematic space analysis in global AdS
The on-shell gravitational action for global AdS3 with a time-dependent boundary
surface θ(τ), given in (3.45), can be rewritten as

I = 2
κ

∫
dϕ dτ

(
1

cos θ2 − θ̈ tan θ
(1 + θ̇2)

)
+ Ic

= 2
κ

∫
dϕ dτ

(
tan θ

(
tan θ(1 + θ̇2) − θ̈

(1 + θ̇2)

)
+ 1
)

+ Ic.

(3.74)

Ignoring an overall additive factor and the corner term, the remaining action reads

I = 2
κ

∫
dϕ dτ tan θ

(
tan θ(1 + θ̇2) − θ̈

(1 + θ̇2)

)
. (3.75)

This action can in fact be reproduced by considering the kinematic space of bulk
curves. The data of time-dependent bulk surfaces θ(τ) can be encoded in the
boundary. This is done by giving a pair of boundary points (τ1(τ), τ2(τ)) such
that the bulk geodesic starting at τ1(τ) and ending at τ2(τ) is tangent to the bulk
surface at the point (τ, θ(τ), 0). Such pairs of points form the kinematic space,
with a metric fixed by conformal invariance

ds2
ks = − 4dτ1dτ2

sinh2 (τ1 − τ2)
. (3.76)

The explicit dependence of the boundary points τ1,2(τ) on the bulk time τ is

τ1,2(τ) = τ + log
(

1 ± cos θ
√

1 + θ̇2

sin θ + θ̇ cos θ

)
. (3.77)

Now consider an action built using kinematic space, as

Sks = 2
κ

∫
(tan θ dϕ) dsks. (3.78)
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∂AdS

tf

tiz = ρ(t)

t
z

Figure 3.5: A subregion of Lorentzian Poincaré AdS between two constant time slices
with a time dependent boundary. The path integral of the T T̄ -deformed theory on the z =
ρ(t) boundary defines a path through the space of unitaries, and the gravitational action
of the shaded region, including boundary and corner terms, is the natural Lorentzian
extension of our previous proposal [1] for the length or cost of that path.

Using (3.77) and the distance in kinematic space dskin the above action equals

Sks = 2
κ

∫
(tan θ dϕ) dsks = 2

κ

∫
dϕ dτ tan θ

(
tan θ(1 + θ̇2) − θ̈

(1 + θ̇2)

)
. (3.79)

This matches exactly to the on-shell gravitational action obtained above after
ignoring an overall additive factor and the corner term, and is the global AdS
equivalent to the result for Poincaré AdS that we had obtained in section 4.2
of [1].

3.6 Obstacles to obtain the CA proposal from a
cost

Here we will see that the naive extension of our Euclidean cost proposal from [1] to
Lorentzian Poincaré AdS3 gives unphysical results. The proposal is to extremise
the action of the subregion of Lorentzian Poincaré AdS3,

ds2 = −dt2 + dz2 + dx2

z2 , (3.80)

shown in figure 3.5 to see whether these extrema can be sensibly interpreted as
circuit cost or complexity of Lorentzian time evolution between the initial and
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final time slice. In close analogy to the Euclidean result given in equation (2.10)
of [1], the gravitational action of this subregion is (see appendix A for details of
the calculation)

I = 1
8πGN

∫
dx

∫ tf

ti

dt

(
1 − ρ̇ arctanh ρ̇

ρ2

)
. (3.81)

This action is unbounded from below; it can be seen that I → −∞ in the limit
of the cutoff surface becoming null, |ρ̇| → 1. Whether the action is bounded from
above depends on the boundary conditions. The solution to the Euler-Lagrange
equations for general boundary conditions ρ(ti) = ρi, ρ(tf ) = ρf is

ρ(t) =
√
t2 +At+B, (3.82)

where

A = −
t2f − t2i + ρ2

i − ρ2
f

tf − ti
, B =

(tf − ti)titf + tfρ
2
i − tiρ

2
f

tf − ti
. (3.83)

This solution is a local maximum of (3.81). In contrast to what we observed in
the Euclidean case in [1], this timelike cutoff surface bends outwards from ρi/f
towards the asymptotic boundary, as it tries to maximise the ρ−2 factor. The
solution fails to be real when the time interval becomes too large,

tf − ti > ρi + ρf . (3.84)

Roughly speaking this is because when the time interval is large compared to
the spatial initial and final cutoffs, the cutoff surface can get to the asymptotic
boundary and back without ρ̇ becoming large enough to flip the sign of numerator
in (3.81). Once at the asymptotic boundary, the denominator diverges, leading to
an action that is unbounded from above, which is why we find no (real) solution
that extremises the action. In fact, the action can be arbitrarily negative for other
cutoff surfaces as well. For a more generic cutoff surface ρ(t, x) =

√
r(x)2 + t2

(this is derived as a solution to equation (3.96) which we discuss in section 3.8),
the action is given by

I = 2
κ

∫
dtdx

r(x)r′′(x)
(t2 + r(x)2)(1 + r′(x)2) . (3.85)

We see that the above integral can turn out to be negative depending on the
choice of r(x). For example, with r(x) = sin(ωx) the action computed in the
region t, x ∈ [0, 1] is negative and proportional to ω2. Thus, by making the cutoff
surface more wavy the action can be made arbitrarily negative.
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3.7 Linear growth at late times for BTZ black
hole

The notion of holographic complexity was initially used for describing the growth
of black hole interiors for long times. Any measure of complexity must exhibit a
late time linear growth in black hole backgrounds. We saw that the cost function
given by Euclidean gravitational action in the region bounded by two K = 0 slices
Σ1,2 and M̃ was well-defined and gave sensible results in global AdS. Moreover,
choosing a trivial Σ1 and optimising over M̃ lead to the action between a constant
scalar curvature slice and Σ2. In this subsection, we will assume we can evaluate
the Lorentzian action between these surfaces in the BTZ black hole and verify
that this exhibits linear growth at late times. Therefore, it is a candidate new
holographic complexity proposal.

Consider a BTZ black hole with horizon radius rh = 1 and AdS radius L = 1.
Then using Kruskal coordinates, the metric takes the simple form [81]

ds2 = − 4 dU dV
(1 + UV )2 + (1 − UV )2

(1 + UV )2 dϕ
2. (3.86)

The mass of the black hole is M = r2
h

8GL2 = 1
8G . We have the asymptotic AdS

boundaries located at UV = −1 and the horizons at UV = 0. Maximal volume
slices have vanishing trace of extrinsic curvature

K = (U2V 2 − 1)U ′′ + 2(UV − 3)U ′(U − U ′V )
4(UV − 1)|U ′|3/2 = 0. (3.87)

Here, ′ denotes a V derivative. In fact, the maximal surfaces are best described in
Eddington-Finkelstein coordinates

ds2 = −f(r)dv2 + 2dv dr + r2dϕ2 (3.88)

with f(r) = r2−1. Then, the shape v(r) of the maximal surfaces is given as [82,83]

dv

dr
=
√
f(r)r2 + c2 − c

f(r)
√
f(r)r2 + c2

. (3.89)

The constant c determines the boundary time at which the maximal surface is
anchored. It goes from c = 0 for the surface anchored at tL = tR = 0 to c = 1

2 for
the final slice. The final maximal slice for the BTZ black hole is at r = 1√

2 and
at late times maximal surfaces pile up very close to this surface. Constant scalar
curvature slices satisfying R+ 2 = 0 are much easier to find, and are given by

UV + λU + µV − 1 = 0. (3.90)

68



3.7. Linear growth at late times for BTZ black hole

tL
tL + δt

tR
tR + δt

r = 0

A B

C D
E F
G H

Figure 3.6: Growth of action in the BTZ black hole between constant curvature surfaces
(blue) and maximal volume surfaces (green).

Here λ and µ again determine where these surfaces are anchored at the boundary.

Now consider the gravitational action within the region bounded by the maximal
surface and a constant curvature surface both fixed at the same boundary time
tL = tR = t. To compute the growth rate, consider two such regions separated by
a small boundary time δt. Let us compute the difference in the actions of these
nearby regions. The total action outside the horizon is time-independent and can
be ignored. This leaves us with two regions inside the horizon: action in the blue
region between constant curvature surfaces minus action in the red region between
maximal surfaces in figure 3.6. For the blue region inside the horizon, the bulk
action is given by

δIbulk = − 1
2GN

(
tanh t+ t

cosh t2

)
δt. (3.91)

To this, we also need to add boundary and corner contributions. For the boundary
terms, we have the usual GHY surface terms along AB and CD (see figure 3.6),
and also null boundaries along the horizon segments AC and BD. We choose the
normals to the null surface to be affinely parameterised, hence the latter terms can
be set to zero. As the expansion parameter along these (Killing) horizon segments
vanishes, we can likewise ignore the counter terms proposed for null surfaces [45].
The boundary terms δIbdy from the segments AB and CD exactly cancel the above
bulk term, leaving us with four corner terms. Since these corners arise from the
intersection of a spacelike surface and the null horizon, the appropriate action [84]
is

Icorner = 1
8πGN

∫

∂Σ
dϕ

√
σa, (3.92)
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where σ is the metric on the corner ∂Σ and a = ± log(k · n), with k and n being
the normals to both the surfaces at the corner. Calculating this for corners on
both sides gives

δIcorner = 1
2GN

tanh tδt. (3.93)

For the red region, we only have the bulk and corner terms, since K = 0 along
the boundaries. We shall argue that both these terms can be safely ignored in
the late time limit. The bulk action can be computed numerically from the shape
of surface in (3.89). At late boundary time, since these surfaces pile up close to
the final surface, this action is negligible. Computing the corner term from (3.92)
gives

δIcorner = 1
2GNc(t)

dc(t)
dt

δt, (3.94)

where c(t) is implicitly given by (3.89). Again, at late boundary times t ≫ 1, we
have c ≈ 1

2 , hence this term doesn’t contribute as well. Now, adding up all the
contributions we have

dItotal
dtbdy

= tanh t
4GN

= 2M tanh tbdy2 , (3.95)

where tbdy = tL + tR = 2t is the total boundary time. Since at late boundary
times tanh tbdy

2 ≈ 1, the action grows linearly.

3.8 General methods for gravitational action pro-
posals

Let us quickly summarize some of the achievements of the preceding section. We
showed in section 3.3 how a cost-proposal based on the bulk gravitational action
can reproduce the complexity=volume proposal on a Euclidean global AdS back-
ground and we discussed how this result can be connected to the geometry of
kinematic space, i.e. the space of spacelike bulk geodesics, in section 3.5. While
there are problems with the generalisation of this ansatz to Lorentzian cases as
discussed in section 3.6, it is interesting to note the prominent role that surfaces of
a constant intrinsic curvature (such as (3.50) and (3.82)) play in all these attempts
as solutions to the equations of motion derived by extremising the action. This mo-
tivated us in section 3.7 to propose a new complexity proposal based partially on
constant intrinsic curvature surfaces that was shown to pass at least one important
plausibility check, namely late time linear growth in a black hole background.

For this reason, in this section we will now give a more general analysis of the
general equations derived in [1] (of which sections 3.3 and 3.6 only provide special
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examples). As we are about to explain, a quite generic solution method can be
formulated based on foliating surfaces by geodesic curves, which in turn might
suggest a deeper and more general connection to the physics and geometry of the
kinematic space than what we discussed in [1] and section 3.5. However, a more
detailed study of such a possible deeper connection will be left for future research.

3.8.1 Equations of motion

In [1] we essentially analysed a problem where co-dimension one hypersurfaces M̃
were embedded into AdS3 according to the equation4

Kn
mK

m
n −K2 = 0. (3.96)

Herein Kmn is the extrinsic curvature tensor of the surface and K = Kn
n is its trace.

Latin indices are raised and lowered with the induced metric gmn. The potential
physical interpretations of this equation are manifold. Our main interpretation in
[1] was that when deriving a notion of state complexity by extremising the action of
a bulk region bounded by initial and final time slices as well as a variable boundary
surface, (3.96) arises as the equation of motion of that surface. Additionally,
in section 3 of [1] we pointed out how surfaces satisfying (3.96) arise from flow
equations which describe movement of the cutoff surface in a fixed background,
while in section 4 of [1] we pointed out a connection with kinematic space. In
the following, we will continue to explore these possible interpretations in more
generality than what was possible in [1].

To do so, we should first point out that the derivation given in section 3.1 of [1] is
independent of the number of dimensions and equally applicable to the Lorentzian
case, hence from now on we take equation (3.96) to be the equation of interest
even in the general case.5 Also, due to the Hamiltonian constraint6

0 ≡ H = R− 2Λ −
(
Kn
mK

m
n −K2) , (3.97)

equation (3.96) corresponds to demanding that the Ricci curvature R of the in-
duced metric of the surface is constant. Specifically, if we focus on three bulk

4We follow here the notation of section 3 of [85], where latin indices refer to the induced
geometry of the hypersurface M̃ with coordinates ya, greek indices refer to the ambient (bulk)
spacetime N with coordinates xα, and we can define the projector eα

a = ∂xα/∂ya. To avoid
confusion concerning e.g. the Ricci scalar, we use R for curvature tensors of the bulk, and R for
curvature tensors of the induced metric. The bulk metric as throughout this section is Gµν while
the induced metric is gmn.

5Specifically, in equation (3.7) of [1] (where d stands for the dimension of the entire bulk
spacetime), plugging in the relation πmn = −(Kmn −Kgmn) shows that (3.96) arises as the flow
eqation.

6Here and for the rest of the section, we only consider vacuum spacetimes in the bulk.
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dimensions and set the AdS-radius to L = 1 ↔ Λ = −1, then R = −6 and
R = −2. Of course, the problem of constant curvature surfaces embedded into
maximally symmetric ambient spaces is well studied in the mathematical litera-
ture, see e.g. [86–93] and references therein for interesting results. However due
to differences in notation and nomenclature in the mathematical literature, in the
following sections we will spell out the most relevant facts for our case in our own
language and try to give them a physical interpretation from the perspective of
holography.

The first observation we can make about (3.96) is that it can be written solely in
terms of the object Kn

m. This is reminiscent of the paper [94], where the authors
studied (one-dimensional) curves with more complicated equations of motion than
merely geodesic equations. The authors there found that in some cases, it was
possible to phrase these equations in terms of extrinsic curvature as a function of
an affine parameter. Then, a solution can be obtained in a two-step procedure: first
by solving the equation for the extrinsic curvature, and then finding an embedding
for a curve that actually has this extrinsic curvature as a function of the affine
parameter. Similarly, we could try to solve (3.96) by firstly finding any tensor Kn

m

(dependent on generic induced coordinates ya) that satisfies this equation7, and
then solving for the embedding of a hypersurface in the ambient spacetime that,
for the correct choice of induced coordinate system, has the extrinsic curvature
found in the first step of the solution procedure. Unfortunately we have not been
able to carry out this procedure in general, hence in the next subsection we will
study a particular ansatz to solve (3.96).

3.8.2 Solution method, totally geodesic foliations
It is trivial to see that an ansatz of the form

Kmn = mmmnk (3.98)

with some vector m and some function k will automatically satisfy (3.96). We can
demand m to be normalized, or alternatively we could allow m to be unnormalised
and absorb k into its norm up to an overall sign. Which convention is more useful
depends on the problem at hand. Firstly, let us discuss how general this ansatz
is. For two dimensional surfaces, (3.96) is equivalent to detKmn = 0 and hence
to (3.98), i.e. this ansatz is generic in this case. For higher dimensions however,
(3.98) only covers a small subset of the solutions of (3.96).

For a hypersurface embedded into an ambient spacetime, we can utilize the Codazzi
7Because (3.96) does not contain derivatives, this reduces to a pointwise matrix equation.

Any section dependent on parameters ya in the space of matrices that satisfy the constraint
(3.96) would then be a valid solution of the first step of this procedure.
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equations. Besides (3.96), a consistent embedding into an ambient space with given
Kmn needs to satisfy the following equations [85]:

Rαβγδe
α
ae
β
b e
γ
c e
δ
d = Rabcd ± (KadKbc −KacKbd) (3.99)

Rµβγδn
µeβb e

γ
c e
δ
d = Kbc|d −Kbd|c (3.100)

(
Rαβ − 1

2RGαβ
)
nβeαa = Kb

a|b −K,a (3.101)

Note that the bracket in (3.99) automatically vanishes with our ansatz, hence if
the ambient space has a Riemann-tensor of the form of a maximally symmetric
spacetime

Rαβγδ = R
d(d− 1) (GαγGβδ −GαδGβγ) , (3.102)

then due to the projections in (3.99) the Riemann tensor of the induced metric
will have a similar maximally symmetric form in terms of the induced metric
and its Ricci scalar. Hence our ansatz (3.98) necessarily describes a hypersurface
whose induced metric is (locally8) maximally symmetric, and because in an AdSd
background (3.96) implies a negative induced curvature, the induced metric has
to be locally AdSd−1. Furthermore, under the assumption of embedding into a
locally AdS space, the left-hand sides of (3.100) and (3.101) will vanish because
Gαβn

βeαa = 0, giving us an interesting set of differential equations for m and k.
Assuming we can set k = ±1 at least in certain regions of the hypersurface, (3.100)
gives:

0 = mc∇dmb +mb∇dmc −md∇cmb −mb∇cmd. (3.103)

So in general, we would have to find a vector field m in a locally AdS space that
satisfies (3.103), and then see whether there actually is a surface embedded into
AdS that has the corresponding extrinsic curvature and induced metric in the
induced coordinate system of our choice.

Let us now focus on d = 3 dimensional ambient spaces, i.e. two dimensional
hypersurfaces for the moment. Clearly, ma is a vector in the tangent space to the
hypersurface, so there is one perpendicular direction in the tangent space, and we
introduce the tangent vector field la, such that lama = 0, lala = const. What can
we learn about this vector field? Take equation (3.103), and contract it with lclb:

0 = mdl
clb∇cmb ⇒ 0 = lclb∇cmb. (3.104)

8BTZ black holes [81] are examples for spaces which are locally AdS, but have interesting
global properties.
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We hence know

lbmb = 0 ⇒ 0 = lc∇c(lbmb) = (lc∇cl
b)mb + lclb∇cmb︸ ︷︷ ︸

=0

. (3.105)

That means the projection of the vector lc∇cl
b on the mb direction has to vanish.

As we assume the hypersurface worldvolume to be 2-dimensional, the only other
direction is lb. We find:

(lc∇cl
b)lb ∝ lc∇cl

blb = 0. (3.106)

It follows that (3.105) and (3.106) together imply the geodesic equation

lc∇cl
b = 0 (3.107)

in the induced metric of the hypersurface. Thus our ansatz (3.98) implies that
the integral lines of the normalised vector-field perpendicular to the direction ma

have to be geodesics which foliate the hypersurface. So far, we are explicitly
talking about the geodesic equation with respect to the induced metric, but as
(3.98) implies Kabl

alb = 0 these curves also have vanishing extrinsic curvature
in the normal direction to the hypersurface. Hence these curves foliating the
hypersurface will also be geodesics with respect to the ambient metric. We can
show this explicitly. The relation between the covariant derivative in the ambient
space X;β and the covariant derivative in the induced metric X|b gives [85]

lα;βe
β
b = la|be

α
a ± laKabn

α. (3.108)

Contracting (3.108) with lb, we find

lβlα;β︸︷︷︸
ambient space geodesic eq.

= lbla|b︸︷︷︸
induced metric geodesic eq.

eαa ± lblaKabn
α. (3.109)

Herein, lβ is the ambient space form of the vector field lb in the hypersurface.
Thus, if the 2d hypersurface is foliated by curves (with tangent vector l) that are
both geodesics of the ambient space and the induced metric (i.e. totally geodesic),
then necessarily Kabl

alb = 0. On the other hand, if Kabl
alb = 0 is given and as

derived above the geodesic equation with respect to the induced metric is satisfied,
then so will be the geodesic equation with respec to the ambient metric.

To summarise, we have shown that in AdS3, the constant curvature surfaces that
we are trying to find as solutions of (3.96) (which implies (3.98) in three bulk
dimensions) are foliated by curves that are geodesics both with respect to the
ambient space and the induced metric. This is just the AdS equivalent of the well
known statement in R3 that all developable surfaces (i.e. R = 0) are ruled surfaces
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(i.e. foliated by straight lines in R3) [93], however both in this and in our case, the
converse is not true. We can use this realisation to construct hypersurfaces that
will solve (3.96) subject to quite generic boundary conditions, as we demonstrate
in section 3.8.3. Interestingly, the result of this section hence implies a relation
between solutions of (3.96) in three bulk dimensions and the abstract space of
geodesics of the bulk spacetime. This space of geodesics generalises the well known
kinematic space [78] which we use for example in section 3.5 by including geodesics
not restricted to an equal time slice as well as timelike geodesics [34, 95, 96]. In
three bulk dimensions, this space will be four dimensional, and as we have shown
in this section, a surface solving (3.96) will correspond to a curve in this space
of geodesics, each point along this curve corresponding to one geodesic which
constitutes a slice of the codimension-one surface M̃ in the bulk. While there is
a considerable freedom of how such curves in the space of geodesics can look like,
corresponding in part to our freedom of choosing arbitrary boundary conditions
for the surface M̃ in the bulk, not every such curve generates a bulk surface that
solves (3.96). It would hence be interesting to try and rephrase equation (3.96) as
a constraint on curves in the space of bulk geodesics, but we leave this for future
work. Furthermore, it was discussed in [34] that the space of timelike geodesics
in AdS3 can be mapped to the space of coherent states of the CFT. Under this
identification, the Lorentzian solutions which we will later construct in section
3.8.5 would receive the interpretation of corresponding to (closed) paths in this
space of states, however we will also leave it to future research to investigate the
possible significance of this observation.

3.8.3 Examples
In [1], we derived solutions to (3.96) in Euclidean Poincaré AdS3 anchored to two
constant time slices at different times on the boundary. The solution was a trans-
lation invariant hypersurface with semi-circular cross sections, and we remarked
that these semicircular cross-sections are geodesics of the ambient space. In light
of the results discussed in the previous subsection, this observation is now not
surprising anymore. In fact, we can quite easily generalise our solution to the case
where translation invariance is broken, assuming only a mirror symmetry between
initial and final time slice. This is done by the ansatz

z(t, x) =
√
r(t)2 − x2, (3.110)

where r(t) is an arbitrarily varying (half) width along the t-axis, and we have used
the usual coordinate system on (Euclidean) Poincaré AdS3 that gives us the line
element

ds2 = 1
z2
(
dt2 + dx2 + dz2) (3.111)
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where from now on we set the AdS-scale to L = 1 for simplicity. The case in [1]
was simply r(t) = const. This embedding indeed satisfies (3.96). Likewise, in
Lorentzian global AdS3 with line element

ds2 = 1
cos(θ)2

(
−dt2 + dθ2 + sin(θ)2dϕ2) , (3.112)

we can now easily construct the surface

t(ϕ, θ) = tbdy

[
arctan

(√
csc2(θ) sec2(ϕ) − 1

)]
(3.113)

which can be verified to satisfy (3.96), and where tbdy[ϕ] is the boundary condition
at the asymptotic boundary θ = π/2 which we assume to be symmetric under
ϕ → −ϕ. See figure 3.7 for examples.

Figure 3.7: Left: Example of (3.110) for r(t) = 3 + 1
2 sin(t) − cos(t2/5). This satisfies

(3.96). For this solution the sign of K switches in between points on the surface, hence k

in (3.98) can not be globally absorbed into the normalisation of m. Note we are working
in the Euclidean case, so the norm of m has to be positive. Right: Example of (3.113)
for tbdy[ϕ] = 1

8 cos(4ϕ) − cos(ϕ)
4 . The asymptotic boundary of global AdS is depicted as a

grey cylinder.

The ease with which we can now construct solutions to (3.96) allows us to directly
settle certain interesting physical questions, such as those concerning uniqueness of
solutions. Consider again Euclidean Poincaré AdS3, and on the boundary we want
our hypersurface to be anchored on an ellipse in the t− x−plane with semi minor
axis = 1 along the t-axis and semi major axis = 2 along the x-axis. Interestingly,
we can construct hypersurface embeddings similar to (3.110) in two ways: with
a foliation in terms of semi-circular arcs parallel to the t-axis, or with a foliation
in terms of semi-circular arcs parallel to the x-axis, see figure 3.8. Both these
embeddings satisfy (3.96), but one reaches farther into the bulk than the other.
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Hence for given boundary conditions, solutions to (3.96) will generally not be
unique.

Figure 3.8: Two hypersurfaces satisfying (3.96) with the same boundary condition at
z = 0. For the solution on the left, we find K < 0 everywhere, while for the one on the
right we find K > 0 everywhere.

We will make more use of this solution generating method in subsection 3.8.5, but
before that we will comment on the importance of the Gauss-Bonnet theorem in
our context.

3.8.4 Implications of the Gauss-Bonnet theorem
As we are searching for surfaces of constant scalar curvature, in the case of two-
dimensional surfaces M̃ it is quite natural to consider the implications of the
Gauss-Bonnet theorem

∫

M̃

R

2 dV +
∫

∂M̃

kgds+
∑

corners c
αc +

∑

conical sing. s
βs = 2πχ, (3.114)

see e.g. [97]. Herein, the first term is an integral of the Gaussian curvature over the
volume of the surface. The second term is an integral over the geodesic curvature
along the boundary lines of the manifold. The third term takes into account
contributions from corners in these boundaries. Here, αc is the external angle at
every corner by which the boundary changes direction, i.e. π minus the interior
angle at the corner. This angle has to be defined with a positive sign at convex
corners and a negative sign at concave corners. Lastly, the fourth term (see [98])
takes into account contributions from conical singularities in the manifold M̃ ,
where βs is the conical deficit angle. These specific terms are rarely mentioned in
descriptions of the Gauss-Bonnet theorem, but they will be especially important
in our context, and so we will explain them in more detail in appendix B. On the
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right hand side of the equation, χ is the Euler characteristic. Importantly, the
theorem is valid both in the Euclidean and Lorentzian case, however, in the latter
angles have to be replaced by Lorentzian analogues and χ ≡ 0, see [99–102] and
the discussion in appendix B.

As we are concerned with constant curvature surfaces, the first term in (3.114) can
be simplified to the product RV/2 where V is the total volume of the surface. Let
us for the moment assume smooth surfaces, without corners or conical singularities.
We can hence write:

RV

2 = 2πχ−
∫

∂M̃

kgds ⇒ V =
2
∫
∂M̃

kgds− 4πχ
−R . (3.115)

Hence, because we fix the value of R, there is (for fixed topology) a direct relation
between volume V and geodesic curvature of the edge of the surface

∫
∂M̃

kgds.
The later in turn is related to the boundary conditions that we impose on the
surface, i.e. when prescribing a curve at a cutoff-surface near the boundary where
the surface M̃ is supposed to be anchored.

Let us assume χ ≥ 0, which covers the cases of Lorentzian surfaces (χ ≡ 0), disk-
shaped Euclidean ones χ = 1 and spherical Euclidean ones χ = 2. As we also
assume R < 0, that yields a bound

V ≤ 2
∫
∂M̃

kgds

−R . (3.116)

As kg is the curvature of the edge within the surface M̃ , we cannot compute it
before having found the surface. However, if that surface is embedded into a
larger space with non-vanishing extrinsic curvature, we assume the curvature k of
the geodesic within that ambient space to obey |k| ≥ |kg| (a curve in a certain
submanifold may be a geodesic with respect to the induced metric (kg = 0) but not
the ambient metric (k ̸= 0)). Equation (3.116) clearly implies that the average
over kg along the boundary is positive. Assuming now that both kg and k are
positive everywhere, we obtain9

V ≤ 2
∫
∂M̃

kds

−R . (3.117)

This bound can be computed solely from the boundary conditions, i.e. the curve
on a cutoff slice near the asymptotic boundary where we demand the surface M̃ to
be anchored. Thus, even though the surfaces we are looking for are not extremal
area surfaces, their total volume is bounded from above. Hence, we expect them

9This bound can be sharpened again by reinstating the term proportional to χ, assuming
χ > 0. Of course, we also have to keep in mind that such constant curvature surfaces may not
exist for arbitrary choice of R, see e.g. [87].
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not to be too “wild” in the bulk, and especially for χ ≥ 0 there can be no smooth
constant negative curvature submanifolds embedded into AdS that don’t reach out
to the asymptotic boundary. However, in section 3.8.5 we will study surfaces in
AdS that include conical singularities, and they can be contained entirely within
the bulk.

We will now quickly discuss a potential application of these results, whose full
exploitation we however leave to future research. In holography, for example when
dealing with the complexity=volume proposal, we are often tasked with finding
extremal volume slices in a bulk spacetime. For simplicity, let us consider the
case of a Euclidean bulk, where these extremal area slices actually minimise the
area. Then, clearly Vext ≤ V . However, for generic non-translation invariant
boundary conditions, the extremal volume slices are not easy to find, as seen e.g. in
[103] where it was possible to solve the relevant partial differential equation only
perturbatively. Hence, our results may be useful in occasions where only a bound
on the volume is needed10. Not only could one then employ the bound (3.117)
but, as shown in sections 3.8.2 and 3.8.3, the constant curvature surfaces can be
directly constructed given quite generic boundary conditions (only subject to a
symmetry condition) without the need to solve additional differential equations.
Some information might then already be gleaned from these surfaces, or they might
be used as well motivated initial guess in numerical relaxation schemes.

3.8.5 Lemons in Lorentzian AdS3

In this subsection, we will now put the methods explained in section 3.8.2 to
use in order to construct generic timelike hypersurfaces solving (3.96) in global
Lorentzian AdS3. As we had realised in section 3.8.4, timelike surfaces embedded
into AdS with constant negative curvature can only be fully contained inside the
bulk (without boundary) if they have conical singularities, which will of course be
the case here. See also appendix B.0.3 for further details.

It is well known that in Lorentzian global AdS3, there are timelike geodesics that
oscillate, i.e. pass through the center of AdS regularly, turning around at finite
radial coordinate without ever reaching the boundary. We can now construct
co-dimension one hypersurfaces which are foliated by such geodesics, obtaining
structures such as the one shown in the top left of figure 3.9. Specifically, using
the global AdS metric (3.112) (with boundary at θ = π/2), the embedding of (the

10See [104] for a positivity bound on vacuum subtracted volumes with applications to holog-
raphy.
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branch valid for −π/2 < t < π/2 of) a radial timelike geodesic is given by

t(θ) = arctan
(

E sin(θ)√
−1 + E2 cos(θ)2

)
, ϕ = const. (3.118)

where the "energy" E > 1 of the geodesic is related to its turning point θmax
by θmax = arccos 1/E. Following the methods of section 3.8.2, we can construct
surfaces of the form

t(θ, ϕ) = arctan
(

E(ϕ) sin(θ)√
−1 + E(ϕ)2 cos(θ)2

)
(3.119)

where we have promoted E to a ϕ-dependent parameter. The relevant equations
can become a bit cumbersome, but in the special case where E(ϕ) = E = const.,
the induced metric (in θ-ϕ coordinates) reads

gmn =
(

− sec2(θ)
−1+E2 cos2(θ) 0

0 tan2(θ)

)
(3.120)

while the extrinsic curvature takes the form

Kmn =
(

0 0
0 E tan(θ)

)
, K = E cot(θ) (3.121)

Curiously, K diverges at θ = 0 where the surfaces will have a conical singularity.

Due to the presence of these conical singularities at time coordinates t = 0 and
t = π (a consequence of the periodicity of the timelike geodesics), we have adopted
the term "lemons" for these shapes11. See figure 3.9 for a number of examples.
It is easy to verify that surfaces of the form (3.119) will automatically satisfy
(3.96), even if E(ϕ) is an arbitrary function. Note that E > 1, and in the limit
E → ∞ ⇔ θmax = π/2, i.e. the surface touches the AdS boundary with its equator
in this limit. In fact, in this limit t(θ, ϕ) = θ, hence the surface becomes the null
boundary (the past part of it for this branch) of the WdW patch of the t = π/2
time slice on the boundary. This is interesting because the WdW patch, which
plays a central role in the complexity=action proposal [41]12, thus emerges very
naturally from our construction. We would like to contrast this with the situation
in [106] (see also [73, 107, 108] for more recent works in this direction), where the

11Even though similar geometric shapes with a different mathematical definition have been
described by the same name [93].

12Even more, by causality arguments similar to [105] the WdW patch is actually the largest
region in the bulk on which any complexity proposal for one given boundary time slice can
depend. For example, the extremal volume slice defining complexity in the complexity=volume
proposal is always contained inside of the WdW patch by definition.
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Figure 3.9: Gallery of generalised lemons. In each plot, we use the coordinate system of
(3.112), where the AdS-boundary is mapped to the grey cylinder at θ = π/2. The time
axis is shown explicitly. Each yellow surface is an embedding described by (3.119), with
individual timelike geodesics shown as grey lines. In the t = 0 plane, the red line indicates
the shape of the cut through the surface at its equator. What all of these surfaces have
in common is the existence of tips with conical singularities, as demanded by consistency
with the Gauss-Bonnet theorem. Apart from this, these surfaces can have not only many
different shapes (top left and middle), they can also have self intersections (top right),
reach out to touch the boundary (bottom left and middle), or even reach out to intersect
the boundary (bottom right). The latter case may actually seem somewhat confusing
at first: As discussed earlier in section 3.8.2, the induced metric has to be maximally
symmetric, and hence homogeneous. But evidently, the signature of the metric switches
from timelike to spacelike as we travel along the surface, and hence it can not be really
homogeneous. This can happen because along the transition line, the induced metric is
sufficiently continuous, but not analytic. From top-left to bottom-right, these surfaces
are given by E(ϕ) =

√
2, E(ϕ) = 2 sin(2ϕ) + cos(4ϕ) + 5, E(ϕ) = 5 sin2 (ϕ

4

)
+

√
2,

E(ϕ) = tan4 (ϕ
2

)
+

√
2, E → ∞, and E(ϕ) =

(
cos(ϕ)
sin(ϕ)

)2
+ 2 for 0 < ϕ < π, E(ϕ) =

−i

((
cos(ϕ)
sin(ϕ)

)2
+ 2
)

for π < ϕ < 2π, respectively. The bottom middle figure shows how

the WdW patch arises naturally in this construction.
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authors introduce a tension term T to their equations as the simplest possible term
(however, this tension is then given an a posteriori interpretation as an emergent
holographic time). The null-boundaries of the WdW patch for the given boundary
time slice are obtained as solution only in the rather unphysical seeming limit
T → −∞. So the fact that the WdW patch arises naturally in our construction is
rather encouraging, but as discussed in section 3.6 the null limit for the surface M̃
is related to a divergence in the value of the action. Also, as explained in [109,110],
WdW patches in non-translation invariant settings can get quite complicated. So
it would be interesting to see whether our method can be adapted to this and
help analyse the features of such non-trivial WdW patches by first constructing a
foliation of the interiour of the WdW patch in terms of lemon surfaces, and then
taking the appropriate limit. Going further, we can even allow imaginary values
of E(ϕ) in (3.119) which leads to spacelike surfaces that reach out towards the
asymptotic boundary, as also shown in figure 3.9.

In our calculations motivated by complexity so far, we have always assumed the
presence of an initial and final time slices like in figure 3.5, respectively section 3.6.
But as the lemon surfaces start and end on conical singularities, we can as well
calculate the action of their interior, without any additional boundary surfaces.
There are no joints in this case, hence this only requires the bulk term and the
Gibbons-Hawking-York boundary term. We assume the conical singularities to
make no contribution to the action, which can be checked by a limiting argument
similar to appendix B of [111] where it was shown that caustic points do not
contribute to the action.

As (3.119) describes one half of a lemon, from the conical singularity at t = 0 to
the equator at t = π/2 (i.e. from θ = 0 to θ = θmax along one branch), the bulk
and boundary terms read

IEH =
∫ θmax

0
dθ

∫ π/2

t(θ,ϕ)
dt

∫ 2π

0
dϕ

√
−G (R − 2Λ) , (3.122)

IGHY = 2 × 2
∫ θmax

0
dθ

∫ 2π

0
dϕ

√−gK. (3.123)

where we ignore the common prefactor involving the Newton constant. Together,
we find

IEH + IGHY (3.124)

= 8π
∫ θmax

0
dθ

E sec(θ)√
E2 cos2(θ) − 1

− tan(θ)
cos2(θ)

(
π − 2 arctan

(
E sin(θ)√

E2 cos2(θ) − 1

))

(3.125)
= 4π2 (3.126)
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Hence, for all lemons that do not reach the asymptotic boundary, we obtain the
same value for the action. This is not surprising, because in [1] we explicitly
derived equation (3.96) as a flow-equation from the bulk-action. The idea was
that such a flow might be triggered by turning on a T T̄ deformation, moving
the boundary into the bulk [48] (see also [112–114]), and the surfaces that satisfy
(3.96) would receive the physical interpretation of being those surfaces on which
such a flow can come to rest. As an alternative description, these surfaces bound
regions of the bulk whose action does not change under infinitesimal deformations
of their boundary. But as the interior of the WdW patch can be foliated by such
surfaces, and all are valid solutions to the equations of motion, it follows that the
action evaluated inside all of these lemons has to have the same value. To provide
an analogy, suppose you are looking for the extrema of a potential V (x), where
a particle might potentially be at rest, even if unstable. The equation of motion
for this is V ′(x) = 0. If all points x ∈ I inside an interval satisfy this equation,
it follows that the potential is constant in that interval. Concerning the action of
the lemon surfaces, this argument is valid not only in the case of constant E as
assumed above. It can be checked tediously but explicitly that even for functions13

E(ϕ) the above action calculation yields the same result, as we should now expect.

The solutions of (3.96) hence have the physical interpretation of defining a foli-
ation of a part of the bulk spacetime in terms of timelike surfaces such that the
action inside of each such surface has the same constant value. This also implies
that the action evaluated in the region between any two lemons vanishes identi-
cally. As said above, based on [1] we hope to interpret these surfaces as potential
endpoints of a flow of the asymptotic boundary into the bulk triggered by turning
on a T T̄ deformation in the boundary theory. Given the time-periodic nature of
the lemons, this would clearly have to be done in a time-dependent manner, and
it would be interesting to construct such a T T̄ -deformation explicitly and analyse
it from a field theory point of view. Apparently the field theory in question, if
it exists, naturally is described by Dirichlet boundary conditions on a bulk sub-
manifold resembling a cyclic universe, starting from an initial (conical) singularity,
expanding, contracting, and ending in a final (conical) singularity with a period
that has to be exactly ∆t = π before the cycle starts all over again. We leave an
investigation of this for future work.

One additional thing that we want to quickly comment on is the action for lemons
which do reach the asymptotic boundary of AdS. The WdW patch is obtained
in our construction by taking the limit E → ∞ of the lemon surfaces, and as
the action inside every lemon for finite E is constant, we might be tempted to

13We continue to assume, however, that E(ϕ) is real and bounded from above, and free from
self-intersections, i.e. E(ϕ) is a periodic function with period 2π, unlike the third example in
figure 3.9.

83



3. Holographic Complexity from Optimising Costs

assign this value also to the action inside of the entire WdW patch. However, the
WdW patch is bounded by null-surfaces which have to be treated in their own
special way in action calculations as explained for example in [45], and generally
the correct value of the action can not be obtained by a continuous limit from
regions bounded by timelike or spacelike surfaces. Nonetheless, some of the terms
proposed in [45] for null-boundaries, the so-called counter terms, are not unique
(see also [115]) and it has been shown that, for example when translation invariance
is slightly broken, they can cause problematic results in the complexity=action
proposal [110, 116]. Consequently, there is some interest in alternative methods
of treating null-boundaries in the calculation of the bulk action, see e.g. [117]. It
might thus be interesting to explore whether there is a well defined alternative
prescription for calculating the action inside of WdW patches that would yield the
same value that our limiting procedure suggests. Alternatively, one might propose
to use timelike lemon surfaces with θmax = π/2−ϵ, ϵ ≪ 1, as a regularisation of the
WdW patch and the associated UV divergences that does not need null boundary
surfaces, as opposed to using a WdW patch intersected by a cutoff surface at
θcutoff = π/2 − ϵ which is usually done. Such prescriptions for a modified CA
proposal would however yield finite values for complexity, without any ϵ-dependent
divergent terms, defying physical expectations for how complexity should behave
in a quantum field theory. Turning back to the analysis of the action associated to
general lemon surfaces, when E is given an imaginary value, we obtain spacelike
surfaces that intersect the asymptotic boundary. To calculate the action inside
such a "peeled lemon" (like the last example in figure 3.9) by standard methods,
we would have to introduce a cutoff-surface, and the resulting value of the action
would be divergent in the limit of vanishing UV regulator ϵ. However, when
allowing imaginary values for E, we obtain values for the turning radius of the form
θmax = π/2 + iarccsch(Im(E)). Curiously, this could be taken to suggest that at
least on a formal level, the embeddings for the spacelike solutions of (3.96) can be
extended beyond the AdS boundary (θ = π/2) by using a complex θ-coordinate,
and one might speculate whether such embeddings have an interpretation in terms
of "wrong sign" T T̄ -deformations. For example, by careful analytic continuation
the integral (3.125) can thusly be lifted to a contour integral from θ = 0 to θ = θmax
in the complex plane, and be shown to still yield the same result even for imaginary
E. However, it should be pointed out that this complexification approach fails
when directly applied to earlier steps in the calculation such as (3.122) and (3.123),
especially because the volume elements

√
−G,√−g introduce branch-cuts due to

the square-roots.

Given the importance of geodesics in our solution method explained in sections
3.8.2 and 3.8.5, there appears to be an interesting parallel to the recent work on
Lorentzian bit-threads in [118, 119], where likewise geodesic flows were employed.
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Especially, some of the figures in [119] appear familiar from the construction of
lemons in section 3.8.5. We leave an in depth exploration of possible connections
between our work and [118, 119] for future research, however for now we want
to caution the reader that the apparent connection explained above may only be
superficial, for the following reasons: In [119], Lorentzian flows are defined as
timelike, divergenceless, future directed vector fields v with a bound on the norm.
Such flows are not unique, and using congruences of timelike geodesics is just one
convenient way to construct such flows explored in [119], but not the only one.
In contrast, in 2 + 1 bulk dimensions, solutions of (3.96) have to be foliated by
geodesics as we have shown. These geodesics, however, can be both timelike or
spacelike. Because of this, there is a difference between how this work and [119]
construct foliations of the bulk spacetime outside of the WdW patch, even though
the foliations given for the inside of the WdW patch might agree. Furthermore, the
similarities end when going to higher dimensions. While the construction of [119]
using timelike geodesics still works in higher bulk dimensions, we do not think
that such geodesics will have a particular role to play for obtaining solutions of
(3.96) in more than 2 + 1 bulk dimensions. See also appendix C, where we will
study spherically symmetric lemons in higher dimensional global AdS, and quickly
comment on their qualitative differences to their lower dimensional counterparts.
Of course, the explicit equations given in [118,119] would still have practical uses
in our kind of investigations, e.g. when constructing lemons in the BTZ black hole
background.

3.9 Discussion
In this chapter we explored proposals for the cost of path integrals that prepare
and transition between states in gravitational theories. We described these path
integrals in gravitational theories with Dirichlet boundary conditions on a finite
radial surface, which are holographically dual to T T̄ deformed CFTs, and gave the
precise map between path integrals in the bulk and the boundary. We have given
bulk proposals for the cost of such path integrals that satisfy a set of physical
requirements, and shown explicitly how such path integrals can be optimised: by
minimising their cost over a suitable set of bulk subregions to reduce to existing
holographic state complexity proposals. Lastly we developed general methods for
gravitational action-type proposals.

Our work was partly inspired by the idea that holographic complexity proposals
and their possible generalizations originate from coarse-graining circuits repre-
sented by moving the asymptotic boundary inwards [120]. See figure 2.1. Such an
approach to holographic complexity of bringing in the asymptotic AdS boundary
to finite cutoff can be made precise through the language of T T̄ -deformed holo-
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graphic CFTs [1, 48, 61, 70]. The aim of our work was to generalise this approach
to consider general bulk subregions within finite cutoffs, functions on which we
propose to be the cost of the path integral on the subregion.

Our approach is complementary to and generalises existing work on holographic
state complexity. Maximum volume slices and WdW patches from our perspec-
tive are bulk subregions that minimise path integral cost for a suitably chosen
proposal. Holographic complexity arises from the optimisation of path integral
preparation of states. Note that once the function on bulk subregions is fixed,
the ‘optimal’ subregion that minimises the path integral cost is dynamically de-
termined; we do not independently specify the optimal bulk subregion and the
function on it. This is in contrast to the two-functional holographic complexity
proposals pursued in [69], and it would be worthwhile to combine their approach,
complexity=anything, with ours, cost=anything, and see what subset of their pro-
posals arise from the minimisation of carefully chosen path integral cost proposals
over suitable bulk subregions.

We were able to find path integral cost proposals that reduce to some of the existing
holographic state complexity proposals. Cost = boundary volume in a Euclidean
bulk reduces to complexity = volume at the time reflection symmetric slice. We
gave an physical justification for this proposal in terms of a T T̄ -motivated notion
of discretisation of the boundary path integral. Cost = bulk volume in Lorentzian
signature reduced to complexity = volume 2.0. We also showed that, in the special
case of pure global Euclidean AdS, the cost=gravitational action proposal from
our previous paper [1] reduces to complexity=volume, though again only on a
slice that is time reflection symmetric. Lastly, and much in the spirit of [69], we
applied our cost=anything philosophy to conjecture novel complexity proposals.
Our new codimension-0 candidate holographic complexity proposal satisfies at
least persistent linear growth in thermofield double states, though the proposal was
not derived by minimising a cost, but rather through providing new covariantly
defined boundary anchored bulk regions.

We were not able to find a path integral cost proposal that reduces to the com-
plexity=action conjecture, or the complexity=volume conjecture except on time
symmetric slice where we are free to analytically continue between Euclidean and
Lorentzian signature. The key issue is the existence of Lorentzian bulk subregions
for which the gravitational action is unbounded in both directions, which prevents
the use of Lorentzian gravitational action as a cost proposal that reduces to com-
plexity=action. Our analysis does not rule out the complexity=action proposal,
since failure to find a suitable cost proposal does not prove its non-existence. Fur-
thermore, the shortest path in the Hilbert space may involve non-geometric states,
which would be outside the scope of our work.
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There a several avenues for future research. Our discussion of bulk cost functions
has been entirely phenomenological. In the enormous set of cost proposals that
satisfy our physical requirements, we have given no reason to favour one over
another, besides perhaps simplicity. Moreover, except for cost=boundary volume
we have given no physical justification for any of our proposals. That said, cost
and complexity are inherently ambiguously defined, so even if one could find a
gate set and metric on the space of operators that gives one of our cost proposals,
that would not favour that proposal over others as there is no reason to favour
that definition of cost over others. We view the size of our set of cost proposals as
directly related to the inherent ambiguity of definition. As further justification,
note that the set of complexity proposals that satisfy reasonable requirements is
similarly enormous [69].
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Euclidean Wormholes

89





4 Recent Developments

4.1 Introduction
In quantum mechanics, we are accustomed to the idea of summing over all classical
trajectories with specific boundary conditions within the path integral framework.
Similarly, in quantum field theory, we perform path integrals by varying over all
configurations of the fields over a fixed spacetime background. It is then natural
in quantum gravity to consider the gravitational path integral, where we integrate
over all possible spacetime metrics

Zgrav =
∫
DgDϕe−S[g,ϕ] (4.1)

The above gravitational path integral is only formal and has many issues in general,
and can be computed exactly only in very rare cases. We usually approximate it
using a saddle-point analysis. A longstanding question has been if the above
path integral should sum over all the possible spacetimes with given boundary
conditions including those with a non-trivial topology. If we take the gravitational
path integral seriously, we are lead to studying spacetime geometries with a non-
trivial topology which are called as wormholes. A change in the topology of a
bulk spacetime can occur in several ways. We will consider wormholes which are
smooth bulk geometries connecting two or more distinct boundaries. These are
topologically distinct from the manifolds in which the multiple boundaries are
disconnected. Often, these are refereed to as spacetime wormholes or as Euclidean
wormholes1. This distinguishes them from spatial wormholes which only connect
region in space instead of regions of spacetime.

1Though we will be working mostly in Euclidean signature, spacetime wormholes also include
metrics with Lorentzian signature, or even complex metrics.
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In the last few years, a lot of progress has been achieved by understanding the
contributions of spacetime wormholes in several contexts. We will briefly review
these in this chapter.

4.2 Black hole evaporation and replica wormholes
One of the main puzzles a consistent theory of quantum gravity has to resolve
is the black hole information paradox. By doing a computation in semi-classical
gravity, Hawking showed that black holes have a temperature and give rise to
thermal radiation. This famously gives rise to the black hole information paradox.
Consider a black hole that has formed from a collapse of a pure state. After its
evaporation we are left with thermal Hawking radiation. This process takes a
pure quantum state to a mixed state, destroying information and thus violating
unitarity of quantum mechanics.

A quantitative way of measuring this is the Page curve, which plots the von Neu-
mann entropy of a subsystem as a function of time. In all unitary systems this
curve is non-monotonic, initially rising and falling back at later times. The entropy
of Hawking radiation though, in Hawking’s calculation, keeps monotonically in-
creasing till the end of the black hole evaporation process. A natural expectation

S(t )

t
tPage

S(t )

t
tPage

Figure 4.1: The von Neumann entropy of Hawking radiation S(t) as a function of time.
The dotted line depicts Hawking’s semi-classical calculation which violates unitarity. The
solid blue curve arises due to contributions from replica wormholes, and is consistent with
unitarity.

would be that semi-classical gravity alone is insufficient to reproduce a unitary
Page curve and we need a microscopic theory of quantum gravity for this. Re-
cent results instead showed that calculations in semi-classical gravity can indeed
lead to a unitary Page curve for the Hawking radiation. This happens crucially
due to contributions from spacetime wormholes that arise in the calculations of
the entropy of the radiation. The entropy is computed via path integral tech-
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niques using multiple replicas of the original system. In the usual saddle point of
such a path integral, the replicas are disconnected. It was realised [121, 122] that
there are other saddle points in which different replicas are connected through a
smooth geometry, hence these are called as replica wormholes. These wormholes
lead [121, 123, 124] to a new and simple formula for the von Neumann entropy
S(t) of systems that are coupled to gravity. Using this formula does not require
us to explicitly construct the replica wormholes, and it also leads to a Page curve
compatible with unitarity as demonstrated in the figure 4.1.

4.3 Spectral statistics and wormholes
The fact that black holes are quantum systems with a discrete spectrum is quite
mysterious to understand from the smooth gravitational physics in the bulk space-
time. It has long been known that we can estimate the coarse-grained density of
states from the Euclidean path integral of a black hole. Moreover, we also ex-
pect [125] that the physics of black holes is governed by random matrices, a char-
acteristic feature of quantum chaotic systems. In light of this we could wonder if
Euclidean gravity knows not only about the coarse grained density, but also about
the coarse-grained level statistics of the black hole microstates.

An essential diagnostic of a discrete spectrum is the spectral form factor (SFF),
which is defined as

Z(β + iT )Z(β − iT ) =
∑

n,m

e−(β+iT )Ene−(β−iT )Em (4.2)

The large T behaviour of the SFF directly probes the discreteness of the spec-
trum. For large T , the phases in the above expression are wildly oscillatory. By
performing an average over T we can see that this function is essentially bounded
above by Z(2β). On the other hand, if we compute the SFF holographically in
the bulk, we see that it keeps decaying forever2.

The SFF has a very characteristic shape for quantum chaotic systems. See figure
4.2 below for the log-log plot of a (normalised) SFF involving a Gaussian random
matrix ensemble. This initially decays in a downward slope due to the cancella-
tions among the phases. But, after a characteristic time scale, it begins to rise
erratically in a region called the ramp, and finally oscillates erratically around its
late time value in a region called the plateau. We can see from the figure that
the spectral form factor is not a self-averaging quantity in the ramp and plateau
regions. The disorder averaged SFF cleanly displays a linear growth in the ramp
region and saturation at the plateau. The linear rise is due to the long range

2This decay is related to a version of information loss in the bulk [11]
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level repulsion, and the saturation is due to the short range level repulsion in the
spectrum. Overall, the SFF of a quantum chaotic system displays spectral rigidity
of random matrix theory, as the eigenvalue repulsion has to be precisely balanced
to lead to a linear ramp.

Random matrix universality suggests that we should be able to see similar features
for the black hole spectrum in quantum gravity. Then, an important puzzle is
to explain the behaviour of the SFF from a bulk gravitational perspective. We
will see that Euclidean wormholes encode the spectral statistics of the black hole
microstates and also give a gravitational explanation for the ramp.
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Figure 4.2: The normalised spectral form factor for the Gaussian Unitary Ensemble
(GUE) as a log-log plot. We have set β = 5, and the size of the GUE matrices is
500 × 500, with a Gaussian width of 1

500 . The yellow curve is an average over 100
different samples, and the blue curve is that of a single sample.

4.3.1 Wormholes in JT gravity

The puzzle stated above has been understood in great detail for a two-dimensional
model of gravity called Jackiw-Teitelboim (JT) gravity with a negative cosmolog-
ical constant. The chaotic behaviour of the underlying microscopic system is very
apparent here, since this JT gravity is dual to a double-scaled random matrix in-
tegral, as shown in [126]. The bulk theory consists of two fields, the metric g and
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a scalar ϕ called the dilaton. Its action on a two-dimensional surface M is

SJT = −S0χ(M) − 1
2

∫

M

dx2√
gϕ (R+ 2) −

∫

∂M

du
√
hϕ (K − 1) (4.3)

Here χ(M) = 2 − 2g − n is the Euler characteristic of the surface M of genus g
and n boundaries. The equation of motion for the dilaton ensures that the surface
M is hyperbolic. The Euclidean gravitational path integral for this theory can
be computed exactly, even when we have multiple boundaries as in the case of
wormhole geometries. In fact, denoting the partition function with n asymptotic
boundaries, each with a given inverse temperature βi as Zgrav(β1, · · · , βn) is given
as a sum over distinct topologies as

Zgrav(β1, · · · , βn) =
∞∑

g=0
eS0(2−2g−n)Zg,n(β1, · · · , βn) (4.4)

where eS0 is an expansion parameter and Zg,n is a known contribution from sur-
faces of fixed genus g. The simplest case is Z0,1(β) which is the partition function
of JT gravity on the hyperbolic disk geometry. All the other Zg,n can be com-
puted once we have two ingredients. The first is the partition function ZT(β, b) on
a hyperbolic geometry called the trumpet which has a holographic boundary with
inverse temperature β and a geodesic boundary of length b. The second ingredi-
ent consists of the Weil-Petersson volumes of hyperbolic surfaces, which satisfy a
recursion relation. With these in hand, all the Zg,n can be calculated.

The holographic dictionary between JT gravity and the random matrices then says
that the partition function is equivalently given in the matrix ensemble as

Zgrav(β1, · · · , βn) =
〈
Tr(e−β1H) · · · Tr(e−βnH)

〉
ensemble (4.5)

In the above equation on the right hand side, H denotes a random Hamiltonian
acting on the black hole Hilbert space, and the angular brackets perform an average
over the ensemble. Now we can compute the spectral form factor in JT gravity.
From the boundary matrix ensemble, the disorder average of the spectral form
factor is simply given by

⟨Z(β + iT )Z(β − iT )⟩ =
〈

Tr(e−(β+iT )H)Tr(e−(β−iT )H)
〉

=
∫
dE1dE2 ⟨ρ(E1)ρ(E2)⟩ e−β(E1+E2)e−iT (E1−E2)

(4.6)

The spectral density correlator ⟨ρ(E1)ρ(E2)⟩ is a well known function [127,128] in
random matrix theory, and for an ensemble in the unitary symmetry class, it is

⟨ρ(E1)ρ(E2)⟩ ≈ ⟨ρ(E1)⟩ ⟨ρ(E2)⟩ − sin2 (π ⟨ρ(E)⟩ (E1 − E2))
π2 (E1 − E2)2 + ⟨ρ(E)⟩ δ(E1 − E2)

(4.7)
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Here we have used E = (E1 + E2)/2. Each of the three terms in the above
expression have a distinctive behaviour, and roughly correspond to the slope, ramp
and plateau respectively in the SFF. We can now give a gravitational explanation
for the behaviour of SFF in JT gravity as follows. To do this, let us look at the
bulk partition function with two asymptotic boundaries. Schematically, it it looks
like

Zgrav(β1, β2) =

+ + ⋯

4.3. Spectral statistics and wormholes

In the above equation on the right hand side, H denotes a random Hamiltonian
acting on the black hole Hilbert space, and the angular brackets perform an average
over the ensemble.

Now we can compute the spectral form factor in JT gravity. From the boundary
ensemble, the disorder average of the SFF is given by

ÈZ(— + iT )Z(— ≠ iT )Í =
e
Tr(e≠(—+iT )H)Tr(e≠(—≠iT )H)

f

=
⁄

dE1dE2 Èfl(E1)fl(E2)Í e≠—(E1+E2)e≠iT (E1≠E2)
(4.6)

The spectral density correlator Èfl(E1)fl(E2)Í is a well known function in random
matrix theory, and for an ensemble in the unitary universality class it is

Èfl(E1)fl(E2)Í = Èfl(E1)Í Èfl(E2)Í ≠ sin (fi Èfl(E1)Í (E1 ≠ E2))
fi2(E1 ≠ E2)2

+ Èfl(E1)Í ”(E1 ≠ E2)

(4.7)

Each of the three terms in the above expression have a distinctive behaviour, and
roughly correspond to the slope, ramp and dip respectively in the SFF. We can
now give a gravitational explanation for the behaviour of SFF in JT gravity as
follows. To do this, let us look at the bulk partition function with two asymptotic
boundaries

Z (�1, �2) = + +�

Zgrav(—1,—2) = (4.8)
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(4.8)

This is given by genus expansion as we saw above in (4.4). It contains a leading
disconnected term of order O(e2S0), a connected wormhole term of order O(1), and
several terms which are subleading of order O(e−2S0). The first term comes from
two disconnected geometries, each of which is topologically a disk. We can see
that this is similar to the first term in the spectral correlator in (4.7). Analytically
continuing β1, β2 to β ± iT , this product of two disconnected geometries gives
us the factorised product ⟨Z0,1(β + iT )⟩ ⟨Z0,1(β − iT )⟩. This is easily computed,
since we know the partition function of the disk geometry [129, 130], and is given
as

|⟨Z0,1(β + iT )⟩|2 ∼ e2S0

(β2 + T 2) 3
2
e

2π2β

β2+T 2 (4.9)

This decays forever and goes zero for large T , and is the explanation of the slope
in the SFF. Note that each of these disk geometries is a saddle point of the gravi-
tational path integral.

The more interesting term in Zgrav(β1, β2) above is the connected geometry equal
to Z0,2(β1, β2). This geometry is topologically a cylinder, with its two boundaries
having regularized lengths β1 and β2. This is computed using the trumpet partition
function as

Z0,2(β1, β2) =
∫ ∞

0
bdbZT(β1, b)ZT(β2, b)

= 1
2π

√
β1β2

β1 + β2

(4.10)

We can see that this gives rise to a linear in T ramp, once we continue β1, β2 to
β ± iT and T ≫ β

Z0,2(β + iT, β − iT ) =
√
β2 + T 2

4πβ → |T |
4πβ (4.11)
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This linear ramp with the exact coefficient is in fact produced by the average value
of the sine kernel in (4.7)

∫
dE1dE2

(
− 1

2π2
1

(E1 − E2)2

)
e−β(E1+E2)e−iT (E1−E2) = |T |

4πβ (4.12)

Thus we see that Euclidean wormholes contain really important information and
lead to a linearly growing ramp in the SFF. And in general, the two boundary
partition function encodes the spectral statistics of the black hole microstates.
A crucial fact about these wormholes is that they are not a saddle point in the
gravitational path integral. In fact, the computation above in (4.10) is a completely
off-shell calculation.

Finding a spacetime explanation of the plateau in the SFF requires more work. We
can see that from on the matrix integral side, the last term in (4.7) sets the value
Z(2β) at which the SFF saturates. There is evidence [131,132] that a geometrical
explanation for transition from the ramp to the plateau arises from appropriately
resumming subleading terms in the topological expansion.

4.3.2 Wormholes in AdS/CFT
We expect black holes to display chaotic dynamics in all dimensions [125]. Then,
it is very reasonable [133] to expect that black hole microstates exhibit a quantum
chaotic (i.e., random matrix) spectral statistics in gravity above two dimensions,
and not just in toy models such as JT gravity. What would then be the role of
connected two boundary Euclidean wormholes in higher dimensions?

Unlike the case for JT gravity, the standard holographic dictionary for AdS/CFT
in higher dimensions asserts that the boundary dual is a single quantum the-
ory and not an ensemble average. The presence of Euclidean wormholes then
raises an immediate concern: it contributes to the connected correlators such as
⟨Z(β1)Z(β2)⟩ − ⟨Z(β1)⟩ ⟨Z(β2)⟩, but this should automatically vanish, since in
a single well-defined theory objects such as Z are fixed without any statistical
interpretation.

This is known as the factorization puzzle in AdS/CFT, where quantities such as
the gravitational partition functions computed with multiple boundaries fail to
factorize: Zgrav(β1, β2) ̸= ZCFT(β1)ZCFT(β2). A possible resolution of this puzzle
is that theories of gravity in which Euclidean wormholes contribute are dual to an
ensemble of CFTs on the boundary. Unless we discover a principle that forbids all
generic Euclidean wormholes, this viewpoint would likely require a major revision
of the standard AdS/CFT duality in which the boundary is a single well-defined
CFT. A different approach to resolving the factorization puzzle is to realise that
semi-classical Euclidean gravity is a low energy effective field theory which can only
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probe coarse-grained quantities and does not have access to the full microscopic
theory. Stated in a slightly different language, the Hamiltonian in the case of JT
gravity was a true random matrix from an ensemble, while in more realistic systems
the Hamiltonian would rather only be pseudo-random. Then, the situation is very
similar to other complex chaotic systems where we use a coarse-grained description
of the precise microscopic description.

With this in mind, it would be worthwhile to understand the contribution of
Euclidean wormholes in more than two spacetime dimensions and see how they
encode the quantum chaotic level statistics of the black hole microstates. Eu-
clidean wormholes having a non-negative boundary scalar curvature do not occur
as solutions to the vacuum Einstein’s equation [134].

Thus, in the absence of such saddle points, it is a difficult task to compute Eu-
clidean wormholes amplitudes. In a manner similar to JT gravity, a fully off-shell
calculation of the AdS3 gravity path integral with two torus asymptotic bound-
aries was achieved in [135, 136], thanks to the relative simplicity of AdS3 gravity.
The resulting two-boundary torus partition function is one that is consistent with
Virasoro symmetry, modular invariance and also displays random matrix statis-
tics. In fact, this AdS3 partition function ZT2×I in appropriate limits behaves very
similarly to Z0,2 we saw in JT gravity. For Virasoro primary states of fixed spins
s1, s2 on the boundary, and at low temperatures we have

ZT2×I(β1, β2) = e−β1E1−β2E2

(
1

2π

√
β1β2

β1 + β2
δs1,s2 +O

(
1
β

))
(4.13)

where E1, E2 are the threshold energies above which black holes of spins s1, s2
exist. From this expression we can see that the off-shell wormhole encodes random
matrix level statistics. This implies level repulsion between the energy eigenvalues,
and thus a linear ramp in each spin sector. Recently, by developing a trace formula
for chaotic 2d CFTs in [137], this torus wormhole partition function was shown to
be a coarse-grained object from a single microscopic theory without the need for
an ensemble interpretation.

In spacetime dimensions greater than three, computing a fully off-shell wormhole
partition function is out of reach. Since there are no wormhole saddles in pure
gravity, a useful approach is to find geometries that become saddles after adding
a constraint. For example, by either constraining the length between the two
boundaries of the wormhole or by fixing the boundary energies by hand, several
two-boundary classical Euclidean wormhole solutions of vacuum Einstein equa-
tions were found in [138–140].

A slightly different, yet related class of wormholes are the double cone geometries
introduced in [141]. These are constructed as a quotient of any stationary two-
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Figure 4.3: An off-shell Euclidean wormhole in AdS3 with two torus boundaries.

sided black hole, see figure 4.4. Since the Killing time runs in opposite direction
on the two sides of the maximal extension of such a black hole, the quotient pro-
duces a geometry that has Lorentzian periods ±T on the two boundaries. Thus,
it is a candidate bulk saddle that contributes to the SFF at infinite temperature,
Z(iT )Z(−iT ). They are different from the wormholes we have been discussing as
they are constructed in a Lorentzian setting. The quotient is singular at the bifur-
cation surface and is problematic especially when there are propagating fields. It
was suggested [141] that this can be easily resolved by making the metric slightly
complex in a way that avoids the singularity. The resulting complex spacetime is
still satisfies the relevant boundary conditions (i.e., has periods ±T on the oppo-
site sides) and thus is a saddle-point that contributes to the spectral form factor
Z(iT )Z(−iT ). These geometries have a compact zero mode, which physically cor-
responds to the shift in the relative time coordinates of the two boundaries. This
shift also has a period T , corresponding to the volume of the compact zero mode.
This exactly gives rise to the linear ramp in the SFF.

T
identify t

Figure 4.4: The double cone geometry is constructed by periodically identifying the
Killing time t ∼ t + T for a general two-sided black hole. This results in a two-boundary
spacetime wormhole.
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4.4 Operator statistics and wormholes
In the previous section we learned that Euclidean wormholes contain statistical
information about the quantum chaotic aspects of the spectrum. The signatures
of quantum chaos are not only present in the spectrum of a chaotic theory, but
also in the matrix elements of its operators. An often useful statement about this
is the eigenstate thermalization hypothesis (ETH) [142–144], where we can write
the matrix elements of simple operators as

⟨Ei|Oα|Ej⟩ = fα(Ei)δij + e− S
2 gα(Ei, Ej)Rij (4.14)

expressed in terms of smooth functions. The matrix elements ⟨Ei|Oα|Ej⟩ are
determined by the micro-canonical expectation values, up to exponentially sup-
pressed corrections and Rij are approximately Gaussian random variables with
mean zero and unit variance. ETH is a form of coarse-graining, giving a statistical
description of the precise and complicated data of a single theory.

Such a statistical description of operators allows us to compute the averages and
moments of correlation functions and partition functions that depend on these
matrix elements. Assuming such random statistics for theories with a holographic
dual leads to non-factorizing quantities which are captured by classical Euclidean
wormhole solutions in the bulk [145].

In chaotic 2d CFTs a stronger form of ETH holds for the OPE coefficients Cijk
of primary operators. Due to constraints on the theory coming from crossing
symmetry and modular invariance, the average values of OPE coefficients have
universal asymptotic formulae, whenever at least one of the operators in Cijk is
heavy (i.e., in the chaotic regime)

|Cijk|2 ∼ C0(hi, hj , hk)C0(hi, hj , hk) (4.15)

where the C0 is a function of the weights of the primary operators, related to
the DOZZ formula for the structure constants of Liouville theory. Using this,
[146] studied an large-c ensemble of CFT data. The spectrum in this ensemble
determined by the Cardy formula above the black hole threshold up to a few
discrete set of states below the threshold representing massive particles. The OPE
coefficients, in the spirit of ETH (4.14), are given by

Cijk =
√
C0(hi, hj , hk)C0(hi, hj , hk)Rijk (4.16)

where Rijk is an approximately Gaussian random variable with O(1) variance.
Note that this is just an ensemble of CFT data, and not an actual ensemble of
microscopic CFTs.
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Figure 4.5: An example of an on-shell wormhole in 3d gravity with three primary
operator insertions O1, O2, O3 corresponding to massive particles in the bulk. The on-
shell action of this wormhole computes the average of the OPE coefficient |C123|2.

Several classical wormhole solutions with disconnected boundaries exist in three
dimensional gravity once we allow the bulk metric to be given in terms of a hyper-
bolic slicing. This occurs whenever the genus of the boundary Riemann surface
is greater than two, or when the boundary is at least once punctured torus or
at least a thrice punctured sphere. The on-shell gravitational action of these
wormholes exactly reproduces the averages of correlation functions and partition
functions defined using the above ensemble, see figure 4.5 for a depiction. Finally,
let us conclude this section by mentioning that there are some limited examples
of wormholes capturing operator statistics in higher dimensions as well, [147,148].
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5.1 Brief Introduction
The recent developments involving spacetime wormholes connecting disconnected
boundaries in two and three-dimensional quantum gravity have revived an interest
in understanding the role of similar geometries in higher dimensions as well. In
lower dimensions, we have simple models of gravity without bulk propagating
degrees of freedom. This has allowed us to calculate wormhole amplitudes by
exactly performing the gravitational path integral in many instances [126,135]. In
higher dimensions we do not have this convenience, and as usual we need to rely
on saddle-points of the gravitational path integral.

Quite intriguingly, Euclidean AdS spacetimes that are solutions of pure Einstein
gravity are disallowed to have multiple boundaries when the boundary curvature
is positive everywhere, as proved in a theorem in [134]. This was also extended to
the case when the boundary has vanishing scalar curvature in [149]. Thus, these
theorems forbid wormholes to occur as classical saddles in pure Einstein gravity
for the relevant cases of non-negative boundary curvature. The Euclidean bulk
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manifold is permitted to have multiple disconnected boundaries once we allow
for negatively curved boundary manifolds. Though this route leads to interesting
wormholes in 3d gravity [150, 151] which encode the OPE statistics for 2d CFTs
[145,146], it is not the most relevant case as CFTs in d > 2 defined on a negatively
curved space are usually not well-defined [152].

There have been many interesting constructions of Euclidean wormhole solutions
which are supported by certain types matter, see [151,153–157]. A stability analy-
sis of several generic constructions of wormholes was done in [157]. In this chapter,
we will only consider the simplest cases of Euclidean wormholes and attempt to
understand their properties and their implications. To avoid the no-go theorem
stated above, we will study these wormholes in the presence of a scalar field.

5.2 General strategy
In the following, we will be interested in two-sided AdSd+1 Euclidean wormholes
with boundaries that have zero scalar curvature. To be precise, we will assume the
boundary topology to be that of a d-dimensional torus. One-sided Euclidean black
hole solutions with a similar boundary topology also exist, where one of the periods
of the torus shrinks to zero size in the bulk. Since such wormhole solutions are
absent in pure gravity by the above theorem, we will look for two-sided solutions
for Einstein gravity minimally coupled to a scalar field. Let us write the bulk
action including a potential for the scalar field as

S = − 1
16πG

∫
dd+1x

√
g (R− ∂µϕ∂

µϕ+ V (ϕ)) (5.1)

Since we are in AdS, the action also has a negative cosmological term which we
absorb into the definition of the potential V (ϕ). We are interested in metrics for
which the line elements take form

ds2 = dr2 + e2A(r)dx2
d (5.2)

Here dx2
d =

∑d
i=1 dx

2
i represents a flat d-dimensional torus of unit volume. Let

us assume that the function A(r) and the scalar ϕ(r) depend only on the radial
direction. The two boundaries of the spacetime are reached as the radial coordinate
is taken to plus or minus infinity. The equation of motion for the metric and
the scalar field can be summarised as the following coupled system of differential
equations

(d− 1)A′′(r) + ϕ′(r)2 = 0
d(d− 1)A′(r)2 + (d− 1)A′′(r) = V (ϕ)

ϕ′′(r) + dA′(r)ϕ′(r) + 1
2
∂V

∂ϕ
(r) = 0

(5.3)
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The analysis of the above equations can be hugely simplified by rewriting the
potential V (ϕ) in terms of a function W (ϕ), as is familiar in the literature [158–161]

V (ϕ) = d(d− 1)W 2 − (d− 1)2
(
∂W

∂ϕ

)2
(5.4)

The function W (ϕ) is often called as the superpotential, which usually arises in the
truncation of supergravity theories but can be used in much more general settings.
Substituting (5.4) into (5.3), the field equations for both A(r) and ϕ(r) reduce to
first order equations which are as follows

A′ = W

ϕ′ = −(d− 1)∂W
∂ϕ

(5.5)

Another way of realising this is to rewrite the radial part of action in (5.1) using
the scalar curvature for the metric in (5.2) and using (5.4)

S = − 1
16πG

∫
dr edA

(
d(d− 1)(A′ −W )2 −

(
ϕ′ + (d− 1)∂W

∂ϕ

)2
)

− 1
8πG

∫
dr

d

dr

(
dedAA′)+ d− 1

8πG

∫
dr

d

dr

(
edAW

)
(5.6)

From the first line of the action above, we see that (5.5) are indeed extrema of the
action. The terms in the second line are total derivatives, out of which the former
is cancelled by the Gibbons-Hawking-York boundary term.

In the absence of a scalar field, the potential term only contains the cosmological
constant, V = d(d− 1) and hence we can set W = ±1. This gives us A = r, ϕ = 0
as we can see from (5.5), which is the familiar one-sided Euclidean Poincare AdS
spacetime. To get two-sided configurations, we need the behaviour of A(r) such
that A′(r) → ±1 as r → ±∞. This requires A′′ > 0 as we traverse from one
boundary to another, but this is in odds with the first equation in (5.3) for a ϕ′

that is real everywhere. To resolve this, we will allow imaginary sources for the
scalar field.

Let us now understand some properties of the superpotential W (ϕ), and how to
choose one so as to obtain a wormhole solution. For a normalizable deformations
of AdS such as a massive field in the bulk, the superpotential has the form W =
1 + hϕ2 + · · · , where h determines the mass of the field (in d = 2 it is just
the conformal dimension of the dual operator). For sake of simplicity let us find
wormhole solutions which are symmetric under r → −r. The Z2 symmetry implies
that W is an odd function, and the potential V is an even function of ϕ.
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This symmetry guarantees us that A′(r) = −A′(−r), but we have to pay the
price by working with complex solutions. This can be directly seen from the
defining equation for the potential in (5.4). At ϕ = 0, the potential is equal to the
cosmological constant V = d(d − 1), so this requires the coefficient of the linear
term around ϕ = 0 in W to be purely imaginary and equal to ±i

√
d/(d− 1).

How should the scalar field behave at both the boundaries? A little bit of analysis
shows that ϕ should approach a constant at the boundaries. If the field were to go
to zero, like in the case of a normalizable operator, we are lead to a contradiction.
Since A′(r) → ±1 at infinity, W should take two different values at the boundaries.
But if the scalar field goes to zero and W is odd, this cannot occur. The scalar
field cannot also grow near the boundaries, as this would imply that A′(r) itself
would also be growing there.

Therefore, at the boundaries the scalar must approach a constant. And due to the
Z2 symmetry, ϕ → ±ϕ0 as r → ±∞. Let us look at some explicit examples to see
how this works.

5.3 Explicit examples

5.3.1 Free field
Let us start with the simplest case of a free massless minimally coupled scalar
field. In this case, the action is

S = − 1
16πG

∫
dd+1x

√
g (R+ d(d− 1) − ∂µϕ∂

µϕ) (5.7)

Since the potential V = d(d−1) is just the cosmological constant, a superpotential
that satisfies (5.4) and that has the required properties we discussed above is easy
to find. It is given by

W (ϕ) = −i sinh
√

d

d− 1ϕ (5.8)

The general solutions for the metric and the scalar field are

ds2 = dr2 +
(
λ1e

dr + λ2e
−dr

2

) 2
d

dx2
d

ϕ(r) = 2i
√
d− 1
d

arctan
(

tanh d(r + r0)
2

) (5.9)

The scalar field ϕ runs between ±iπ2
√

d−1
d on the two boundaries. Since we solved

two first order equations, we should only have two constants of integration. The
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parameters λ1, λ2 which set the relative sizes of the boundary tori are actually not
independent and are related by λ1 = e2dr0λ2. By expanding the scalar field near
the two boundaries and using the standard AdS/CFT dictionary we see that the
operator dual to the scalar picks up non-zero expectation values on the two sides,
equal to ∓2i

√
d−1
d e−2r0 .

Looking at the boundary values of the scalar field, we can tell that this is an
unusual solution because the sources of the dual operator are set to very specific
values, and not allowed to change. To understand this better, we can try to
construct a wormhole solution with an arbitrary sources.

Instead of finding exact solutions, let us consider solutions to (5.3) when we turn
on a small source for the scalar field. Near a boundary, we know that in general
the field has the behaviour

ϕ ∼ C1ϕ1(r) + C2ϕ2(r) (5.10)

where the ratio C1/C2 is determined by boundary conditions. Say we are in empty
AdS, and we turn on an infinitesimal source ϵ for the scalar field. At leading order
the metric is A = r + O(ϵ2). The scalar field only has a radial dependence, and
the solution of the field of mass m2 = ∆(∆ − d) is simply

ϕ(r) = ϵe−(d−∆)r + αϵe−∆r (5.11)

Using this solution we can now find the O(ϵ2) corrections to the metric:

A(r) = r − ϵ2

4(d− 1)

(
e−2r(d−∆) + α2e−2r∆ − 8αm2

d2 e−dr
)

+ O(ϵ3) (5.12)

Since a wormhole metric has to turn around, we need A′(r∗) = 0. From the above
expression we see that in general no real r∗ exists, which is in line with expectations
for real sources. So as we did above, we shall consider imaginary sources for the
scalar field

ϕ(r) = i(ϵe−(d−∆)r + αϵe−∆r) ϵ, α ∈ R (5.13)

To compare with an exact solution let us first look at the case of a free massless
field with d = 2,∆ = 2 for the moment. In this case we see that

A(r) = r + ϵ2

4
(
α2e−4r)+ O(ϵ3) (5.14)

where we have ignored an additive constant. To this order r∗ = 1/4 ln(α2ϵ2). We
can attempt to take this one-sided solution and glue it to a copy of itself around
r = r∗ such that the resulting solution has the required asymptotics as r → ±∞

Awh(r) =
{
A(r), r∗ ≤ r < ∞
A(2r∗ − r), −∞ < r ≤ r∗

(5.15)

107



5. Wormholes with Matter

Similarly we also have to glue the solutions for the scalar field. Though Awh(r) is
continuous and A′

wh(r) → ±1 at both the boundaries, this function is not smooth
at r = r∗, and hence is not a valid two-sided solution. Let us compute the metric
A(r) to higher orders in ϵ. It can be checked that the non-trivial corrections for
the scalar come only from the odd orders, and even orders for the metric. So we
can write an ansatz as

ϕ(r) = i

∞∑

n=0
ϵ2n+1ϕ2n+1(r) A(r) =

∞∑

n=0
ϵ2nA2n(r) (5.16)

Using the field equations (5.3), we can solve for ϕ2n+1(r), A2n(r) perturbatively.
For now, we will ignore additive constants in ϕ and A as both of them possess a
shift symmetry in this example. We then get the following expressions

ϕ(r) = i

(
ϵ+ αϵe−2r − α3ϵ3

6 e−6r + α5ϵ5

20 e−10r − α7ϵ7

56 e−14r + O(ϵ9)
)

A(r) = r + 1
4

(
α2ϵ2e−4r − 1

4α
4ϵ4e−8r + 1

12α
6ϵ6e−12r + O(ϵ8)

) (5.17)

If we had halted at a specific order of ϵ to create a two-sided solution, one of
two outcomes would have occurred. Either A(r) would have no turning point
whatsoever, or it would fail to constitute a continuous solution. But we can solve
to all orders and the above series can be resummed. Doing this, we obtain

ϕ(r) = i
√

2 arctan
(√

2 − αϵ e−2r
√

2 + αϵ e−2r

)

A(r) = r + 1
2 ln

(
1 + α2ϵ2

2 e−4r
) (5.18)

These solutions are now valid to all orders in ϵ, and A(r) has a turning point at
r∗ = 1

4 ln α2ϵ2

2 . But notice that by expanding the field near infinity, the source
term is ϵ independent, and no longer infinitesimal. In fact, gluing a reflected
solution about the turning point, we get back the exact solution that we obtained
from the superpotential in (5.9), with the identification r∗ = 1

4 ln α2ϵ2

2 = −r0, and
λ1 = e4r0λ2

ds2 = dr2 +
(
λ1e

2r + λ2e
−2r

2

)
dx2

2

ϕ(r) =
√

2i arctan (tanh (r + r0))
(5.19)

This exercise teaches us that these wormholes in (5.9) cannot be analysed with
infinitesimally small sources. Thus, these are completely backreacted geometries
which depend on the specific finitely tuned sources, which are necessary for their
existence. Before proceeding further, let us calculate the on-shell action of these
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wormholes with a free scalar. Let’s first fix Dirichlet boundary conditions at finite
cutoffs as ϕ(r1,2) = iϕ1,2 and A(r1,2) = ρ0, and later send these cutoffs to infinity.
We can easily write ϕ1,2 in terms of r1, r2 and ρ0. A useful relation is

cos
(
ϕ2 − ϕ1√

2

)
=
√
λ1λ2e

−2ρ0 (5.20)

By taking r2 → ∞ and r1 → −∞, we also send ρ0 → ∞ and we recover the
relation we saw before ϕ2 − ϕ1 = π√

2 . The on-shell action of this wormhole at
finite cutoff can be split into the bulk and boundary terms. The bulk action with
cutoff surfaces placed at r = r1, r2 is

Sbulk = −
∫ r2

r1

dr
√
g
(
R+ 2 − (∂ϕ)2) (5.21)

=
(
λ1e

2r2 − λ2e
−2r2

)
−
(
λ1e

2r1 − λ2e
−2r1

)
(5.22)

and the GHY terms at both the boundaries give

SGHY = −2
(∫

r=r2

d2x
√
hK −

∫

r=r1

d2x
√
hK

)

= 2
(
λ1e

2r1 − λ2e
−2r1

)
− 2

(
λ1e

2r2 − λ2e
−2r2

) (5.23)

Thus, the total on-shell action for the finite cutoffs at r = r1, r2 is

S = Sbulk + SGHY

=
(
λ1e

2r1 − λ2e
−2r1

)
−
(
λ1e

2r2 − λ2e
−2r2

)

= −4
√
e4ρ0 − λ1λ2

= −4
∣∣∣∣sin

(
ϕ1 − ϕ2√

2

)∣∣∣∣ e2ρ0

(5.24)

In the last line above, we traded the variables r1,2 for ρ0 since we know that
A(r1,2) = ρ0. The renormalised action, as we take the cutoffs r2 → ∞ and
r1 → −∞, includes counterterms proportional to the volume of the cutoff surfaces

Sct = 2
(∫

r=r1

d2x
√
h+

∫

r=r2

d2x
√
h

)

=
(
λ1e

2r1 + λ2e
−2r1

)
+
(
λ1e

2r2 + λ2e
−2r2

)
= 4e2ρ0

(5.25)

Thus, the total action including counterterms at finite cutoffs is

Sren = 2
(
λ1e

2r1 + λ2e
−2r2

)
= 4e2ρ0

(
1 −

∣∣∣∣sin
(
ϕ1 − ϕ2√

2

)∣∣∣∣
)

(5.26)

which vanishes as we send the cutoffs r2, r1 to ±∞ respectively.
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5.3.2 Interacting field: Cubic superpotential
As described in the general strategy, the field equations are drastically simplified
into two first order equations using the superpotential W (ϕ). This method is
most useful when we have a non-trivial interacting fields. Let us illustrate this by
constructing a wormhole solution that is sourced by an interacting scalar field. We
saw that the scalar in the case of symmetric wormholes should go to ±ϕ0 at the
boundaries. This implies that the shifted field (ϕ∓ ϕ0) decays at the boundaries,
and the superpotential must behave like W = a+ b(ϕ− ϕ0)2 +O(ϕ− ϕ0)4 at one
boundary and W = −a− b(ϕ+ϕ0)2 +O(ϕ−ϕ0)4 at the other. The simplest such
function with two critical points at ±iµ is

W (ϕ) = i

3µ2

√
d

d− 1
(
3µ2ϕ+ ϕ3) (5.27)

The bulk action now includes a potential and is given by

S = − 1
16πG

∫
dd+1x

√
g (R− ∂µϕ∂

µϕ+ V (ϕ))

V (ϕ) = d(d− 1)
(

1 + ϕ2

µ2

)2

− d2
(
ϕ+ ϕ3

3µ2

)2 (5.28)

Using the above superpotential, we can solve the first order equations in (5.5). We
find the solutions to be

ds2 = dr2 + e
d tanh2(α(r+r0))

3α2

(
λ1e

αr + λ2e
−αr

2

) 4d
3α2

dx2
d

ϕ(r) = iµ tanh (α(r + r0))
(5.29)

where α =
√
d(d− 1)/µ, and λ1 = e2αr0λ2. Unlike in the case of the free field, the

boundary values of the field are ±iµ are now allowed to vary as we change µ or α.
This parameter also sets the mass of the field. Choosing an arbitrary α destroys
AdS asymptotics at the boundaries. To retain them, we need to fine tune α to be
exactly 2d/3.

Hence, we observe that the behavior of this wormhole closely resembles that of
the free field example. In order to maintain well-defined AdS asymptotics at
both boundaries, and that we have the same central charge on either sides i.e., the
cosmological constant remains unchanged, it is essential to carefully select precisely
adjusted sources. This implies that these are fully backreacted geometries, and
they cease to exist if we alter the sources at the boundary.
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5.4 More general wormholes
Up to this point, we have been examining spacetime wormholes with the boundary
topology of a d-dimensional torus, where the metric is determined by a single scale
factor e2A(r). However, these are not the most general class of spacetimes where
the metric only depends on the radial coordinate. We will now consider a more
general metric ansatz with the same boundary topology as before which allows
for a wider class of wormhole solutions. Let us consider the metric ansatz in the
following manner

ds2 = dr2 + e2A(r)dτ2 + e2B(r)dx2
d−1

In the above, we separated the Euclidean time S1 factor from the other (d − 1)
spatial dimensions. This is the generic form of the metric for black hole spacetimes
with a time translation symmetry, in Euclidean coordinates and compatible with
a torus boundary topology. In general, searching for wormhole solutions means we
have to solve a complicated system of differential equations with the appropriate
boundary conditions. Instead, we want to see if such metrics can be solutions of
first-order flow equations like we encountered before. To do so, it will be useful to
make a change of coordinates into

ds2 = edA(ρ)dρ2 + eA(ρ)+(d−1)B(ρ) dτ2 + eA(ρ)−B(ρ) dx2
d−1 (5.30)

We are slightly abusing notation by reusing the same notation for the coordinates
on the torus and also for the ansatz functions A(ρ), B(ρ). The reasoning behind
new ansatz is that, in these new coordinates the square root of the metric determi-
nant is just edA(ρ), which cancels a factor of e−dA(ρ) present in the scalar curvature.
Explicitly, the radial configuration of the Einstein-scalar action simplifies in terms
of the A,B, ϕ variables as

S = − 1
16πG

∫
dd+1x

√
g (R− ∂µϕ∂

µϕ+ V (ϕ))

= − 1
16πG

∫
dρ

(
d(d− 1)

4 (A′2 −B′2) − dA′′ − ϕ′2 + edAV (ϕ)
) (5.31)

where we have suppressed the coordinates on the torus, since the variables A,B, ϕ
are functions of ρ alone. All the derivatives are taken with respect to ρ. The
Einstein field equations and the scalar equations of motion can now be rearranged
into the following system of coupled ODEs

B′′ = 0 (5.32)
(d− 1)A′′ − 2edAV (ϕ) = 0 (5.33)

2(d− 1)A′′ − d(d− 1)(A′2 −B′2) + 4ϕ′2 = 0 (5.34)

2ϕ′′ + edA
∂V

∂ϕ
= 0 (5.35)
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We could in principle write them in a similar fashion to (5.5) as first order flow
equations, but to find an analogue of a superpotential in this needs more work.
Nevertheless, let us rearrange them in a more convenient manner as follows

A′ = ±
(
b2 + 4ϕ

′2 + edAV (ϕ)
d(d− 1)

) 1
2

B′ = b

ϕ′ = c− 1
2

∫
dρ edA

∂V

∂ϕ

(5.36)

A new feature of the above system of equations possess non-trivial solutions even
in the absence of the scalar field. If we set ϕ = 0, it is easy to solve (5.36) for
A(ρ), B(ρ) as

edA = 1
4 sinh2 dρ

2
, B = ρ (5.37)

We can change back into the more familiar r coordinate system using
(
dr

dρ

)2
= edA(ρ) (5.38)

we see that the metric now is

ds2 = dr2 + cosh
4
d

(
dr

2

)(
tanh2

(
dr

2

)
dτ2 + dx2

d−1

)
(5.39)

This metric is closely related to the double cone class of wormholes [140,141,162,
163] we discussed in the last chapter. In d = 2, this is just a quotient of the
BTZ metric written with a Euclidean time coordinate. The double cone metric is
usually written in Lorentzian signature, so let us consider t = iτT , rescaled such
that t ∼ t + T . Now, instead of a Euclidean time circle, we have a Lorentzian
circle with periods ±T at both the boundaries. This is depicted in figure 4.4.

This metric has a singularity at r = 0, which we can check by computing the
Kretschmann scalar in these coordinates. Normally, this singularity is avoided in
Euclidean signature by appropriately choosing a real Euclidean period, but we will
not do that. Then we have an actual conical singularity at the bifurcation surface,
which needs to be resolved. To do so, we will consider the complexification of
the spacetime, and choose a particular complex section of this geometry that is
non-singular. For example, we can define a contour for r that instead of running
from −∞ to ∞, is deformed as

r = r̃ − iϵ, ϵ > 0 (5.40)
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with real r̃, [141]. This procedure of choosing a complex contour can be seen
to be topologically equivalent to smoothing out the conical singularity. We now
have a smooth spacetime wormhole that has a (slightly) complex metric. There
are several examples of physically meaningful spacetimes where we need to allow
for complex spacetime metrics, such as rotating black holes. A criterion for the
allowability of complex metrics was proposed in [164,165], and the complex double
cone satisfies it. The on-shell action of this classical solution vanishes.

5.4.1 Backreacted double cone
By utilizing the coupled system of equations presented in Equation (5.36), we can
investigate solutions when the scalar field is active. To begin, let’s look at the case
of a free, massless field. Typically, when dealing with backreacting fields, we are
obliged to tackle the equations perturbatively, considering small amplitudes of a
probe field. However, owing to the straightforward nature of these equations, we
are able to get a fully backreacted metric in the presence of a free field. In the ρ
coordinate system, the configuration is very similar and as follows

edA(ρ) = a2

4 sinh2
(
adρ

2

) , B = bρ , ϕ′ = c (5.41)

The constant c plays an important role and determines the gradient of ϕ. The
equations of motion relate the constants a, b, c as

c =
√
d(d− 1)(a2 − b2)

2 (5.42)

Using (5.38), let us rewrite the above metric in the more familiar r coordinate
system. Denoting ξ = b(d− 1)/a, we obtain

ds2 = dr2 + a
2
d cosh

4
d

(
dr

2

)(
tanh

2(ξ+1)
d

(
dr

2

)
dτ2 + tanh

2(d−1−ξ)
d(d−1)

(
dr

2

)
dx2

d−1

)

(5.43)

Turning off the scalar field, sets a = b = 1, and ξ → ξ0 = (d− 1) in the equations
above. As we can easily verify, this results in the empty double cone spacetime.
The total on-shell action, now also including the free scalar, is zero.

Just like the empty double cone, we can regulate this spacetime by introducing a
deformation as shown in Equation (5.40). In terms of the coordinate r, the scalar
field can be expressed as follows

ϕ(r) = ϕ0 + 2
d

c

a
log
(

tanh dr2

)
(5.44)
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For this to be well-defined and smooth on the entire wormhole, we also need to use
the complex contour we choose for r, as in (5.40). By tuning the free parameters
in the equation above we can impose the boundary conditions for the field as

ϕ(±∞) = ±ϕ0 (5.45)

This requires tuning ξ above ξ0 by a small amount. Choosing ξ2 = (d − 1)2 +
4d(d− 1)ϕ2

0/π
2, we obtain

ϕ = ϕ0

(
1 − 2i

π
log
(

tanh dr2

))
(5.46)

For an infinitesimal source ϕ0, the backreaction in the metric (5.43) can be ignored,
doing so we get the empty double cone. Recently, it was suggested in [163] that
the complex double cone in the Lorentzian time t = iτT can be thought of as
computing a trace of an “evolution” operator as Tr(e−iK̃T ). Here K̃ is the boost
generator in the complexified geometry. This also generates time translations
in the complex spacetime, in opposite directions on both the boundaries. It was
shown that computing this on the empty double cone leads to a linear in |T | ramp.
When we have matter on the double cone, we also need to calculate Tr(e−iK̃T ) for
the matter Hilbert space. The classical value of K̃ is

K̃ =
∫
dd−1x dr

√
|g|(∂rϕ)2 = −2ad2ϕ2

0
π2

∫
dr

sinh dr = −i2adϕ
2
0

π
(5.47)

To evaluate the r integral, we need to use an appropriate contour passing through
the lower half complex plane. Thus, we see that including the linear ramp T factor,
the effect of the scalar with slightly different couplings ±ϕ0 is

Z̃ ∼ Te−2adϕ2
0T/π (5.48)

where we used Z̃ for the wormhole partition function that also includes the matter
contribution.

On the boundary, turning on such sources for a massless operator would correspond
to changing the couplings of the Hamiltonians on the two boundaries as

HL = H − ϕ0O and HR = H + ϕ0O (5.49)

Then, this double cone with a scalar on it, would be dual to a generalised version
of the spectral form factor, where the two Hamiltonians are slightly different as
shown above. The random matrix theory prediction [140, 166–168] for such a
quantity exactly matches with (5.48) above, and is

Z̃ :=
〈
Tr
(
eiHLT

)
Tr
(
e−iHRT

)〉
∼ T

2π e
−Cϕ2

0T (5.50)
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Instead of the usual linearly rising ramp in the spectral form factor, we have an
exponential decay in the parameter T . The constant C > 0 sets the decay rate
and is related to the two-point function of the operator O, see [140].

We saw in the previous chapter in section 4.3, that the linear ramp in the spectral
form factor arises due to the connected pair correlator of the eigenvalue density

⟨ρ(E1)ρ(E2)⟩c = − 1
2π2

1
(E1 − E2)2 (5.51)

This function has a pole in the energy difference, at ∆E = (E1 − E2) = 0. If we
were instead computing the eigenvalue density correlator for two slightly different
Hamiltonians, we would have have a completely different behaviour. In the regime
where ∆E is small, we get

⟨ρL(E1)ρR(E2)⟩c = − 1
2π2

(E1 − E2)2 − λ2

((E1 − E2)2 + λ2)2 (5.52)

This behaviour can be checked by computing this pair correlator in a matrix
integral involving two different Gaussian matrices in the large N limit. There also
exists a calculation using a supersymmetric sigma model in [166, 169]. From the
form of the pair correlator above, we can see that the pole in ∆E is not at zero, but
along the imaginary axis at ∆E = ±iλ. This shift of the poles to the imaginary
axis is responsible for the exponential decay, which can be explicitly checked by
Fourier transforming (5.52) to obtain (5.50).

5.5 Constrained saddles
In the preceding section we analysed the simplest wormhole solutions with the
general metric ansatz as in (5.4). We saw that even in the absence of matter,
there exists a two-sided classical wormhole solution, the double cone. We also
studied the backreacted double cone geometry in the presence of a free massless
scalar. These wormholes as we first encountered them, are singular solutions. This
required us to complexify the geometry in order to resolve this singularity, which
can be seen as a drawback. Another disadvantage of the double cone is that they
can only describe wormholes that have identical tori on both the boundaries. It
would be useful to have examples of wormhole configurations that posses similar
properties of the double cone, but which are real, non-singular and which can have
boundaries possessing distinct conformal structures.

This is overly demanding, especially if we want these wormholes to occur as
saddle-points of the path integral in pure Einstein gravity. But, it was shown
in [135,138,139] that a wide class of wormhole configurations with the above req-
uisite properties do exist, if we instead look for constrained saddles. These are
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classical geometries that are not solutions to the field equations, but they do ex-
tremise the action subject to an additional constraint. The precise form of the
constraint will not be essential for our discussion, this could either be a non-
covariant constraint such as fixing the length between the two boundaries of the
wormhole to be a constant, or a more covariant constraint such as holding the
ADM energies perceived on the two boundaries to be a fixed constant.

For the torus boundary topology that we have been considering in this chapter,
the most generic family of solutions is

ds2 = dr2 + b2
(

2 cosh dr2

) 4
d



(
β1e

dr
2 + β2e

− dr
2

2 cosh dr
2

)2

dτ2 + dx2
d−1


 (5.53)

These wormholes configurations can have independent inverse temperatures β1, β2
at each of the boundaries, and they are all labelled by a single parameter b ≥ 0.
This important parameter determines the bottleneck size of the wormhole, the
length of the wormhole, the ADM energy E(b) at the boundaries and also the
(renormalized) gravitational action of the wormhole. The action S, and the energy
can be written in terms of b as

S = (β1 + β2)E E(b) = (d− 1)bd
4πG (5.54)

These wormholes are not saddles in the usual unconstrained path integral, since
the modulus b is unstable. The path integral receives dominant contributions from
configurations near b = 0, where these wormholes degenerate. We are stabilizing
this by adding a constraint that fixes b, by either fixing the length between bound-
aries or by fixing the energy. As in the case of the spectral form factor, we can
analytically continue β1 and β2 to β ± iT with Re(β1,2) = β ≥ 0. The action
vanishes for β = 0, for which these wormholes are on-shell solutions, identical to
the double cone with periodicities ±iT at the boundaries.

Let us now understand these constrained saddles when we couple them to scalar
field. Consider again the case of a free massless scalar. The general solution for
such a field with boundary conditions as ϕ(±∞) = ±ϕ0 is

ϕ(r) = ϕ0

log
(
β1
β2

) log


 1
β1β2

(
β1e

dr
2 + β2e

− dr
2

2 cosh dr
2

)2

 (5.55)

The total action also including the scalar field is now

S = d− 1
4πG


(β1 + β2) + β1 − β2

log
(
β1
β2

) dϕ2
0

d− 1 +O(ϕ4
0)


 bd (5.56)
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In the above, the first term is the gravitational action from (5.54), and the second
term is from the action of the scalar field. We are in the probe limit with small ϕ0,
and the there will be a backreaction in the metric of order O(ϕ2

0) which contribute
to O(ϕ4

0) terms in the action above.

To get a meaningful prediction out of the above action and relate it to some
putative boundary quantity, we still need to stabilize the wormhole. As we did
for the empty wormhole configuration, we can try choosing analytically continued
β1, β2 to ±iT such that the solution is on-shell. Doing this in the presence of the
scalar leads to corrections as

β1 = −T

π

dϕ2
0

d− 1 + iT +O(ϕ4
0) β2 = −T

π

dϕ2
0

d− 1 − iT +O(ϕ4
0) (5.57)

Unlike in the case of the empty wormhole, the above corrections in ϕ0 to the
inverse temperatures have Re(β1,2) < 0. Such negative real parts of the inverse
temperature give rise to ill-defined quantities when computing partition functions
or thermal correlation functions. This also violates the criterion for allowable
complex metrics in [164,165].

A different route that bypasses choosing complex values for β1, β2 was taken in
[140]. To stabilize the wormhole in the presence of the scalar, they suggested that
we can fix the average of both the boundary energies, which in turn fixes the
modulus b in terms of the free parameters β1, β2 and ϕ0. The ADM energies of
the two boundaries in the empty wormhole were equal and given in (5.54). In the
presence of matter, we have unequal boundary conditions for the scalar on both
sides. Then, the two energies are not necessarily equal to each other. They are
given as

E1 = (d− 1)bd
4πG


1 + dϕ2

0
d− 1


 1

ln
(
β1
β2

) − β1 − β2

β1 ln2
(
β1
β2

)




 (5.58)

E2 = (d− 1)bd
4πG


1 − dϕ2

0
d− 1


 1

ln
(
β1
β2

) − β1 − β2

β2 ln2
(
β1
β2

)




 (5.59)

up to higher-order corrections. Now, we stabilize the modulus b by fixing it in
terms of the average energy

Eavg = E1 + E2
2 = (d− 1)bd

4πG


1 + dϕ2

0
2(d− 1)

(β1 − β2)2

β1β2 ln2
(
β1
β2

)


 (5.60)

Inverting the above equation, we can determine b in terms of a fixed Eavg. The
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stabilized action then is given as

S = (β1 + β2)Eavg −
β2

1 − β2
2 − 2β1β2 ln

(
β1
β2

)

β1β2 ln2
(
β1
β2

) d(β1 − β2)
2(d− 1) Eavgϕ

2
0 (5.61)

The path integral for the two-sided boundary conditions involving a constraint on
the energy can now be estimated using the above action. The path integral for
generic β1 and β2 includes contributions from twist zero modes which relate the
coordinate translations of one boundary to another. For β1,2 = β ± iT such that
0 < β ≪ T , the zero mode volume should come just from the relative shift of
the time coordinates. Since both the boundary times are periodic with periods
±T , the relative shift between these coordinates also shares the same property.
Then the zero mode volume is just T . The action above in (5.61) in the regime
0 < β ≪ T simplifies to

S = 2βEavg + 2dEavgT

π(d− 1)ϕ
2
0 +O

(
β2

T
, ϕ4

0

)
(5.62)

Thus, the partition function for the wormhole geometry, stabilized by constraining
the average energy, in the regime β ≪ T is

Z̃Eavg(β + iT, β − iT ) ∼ Te−2βEavg−Cϕ2
0T (5.63)

where the T factor in front is from the zero mode volume, and the rest is e−S ,
with C = 2dEavg/π(d− 1).

Let us now compare the above action of the constrained saddle in the presence of
a scalar field with the corresponding prediction coming from the boundary. Such
a boundary quantity would be

Z̃Eavg(β1, β2) =
〈
Tr
(
e−β1HR

)
Tr
(
e−β2HL

)〉
Eavg

=
∫
dE1dE2 ⟨ρR(E1)ρL(E2)⟩ e−β1E1e−β2E2δ(E1 + E2 − 2Eavg)

(5.64)

As before, the presence of a bulk massless scalar field with unequal boundary
conditions ±ϕ0 implies that we are turning on two slightly opposite couplings for
the Hamiltonian on both sides: HR,L = H ± ϕ0O. Additionally, as indicated by
the subscript Eavg on the left, we have constrained the average energy. This is
implemented via a delta function on the right. Since we cannot calculate this
directly in any given boundary theory, we need to rely on universal predictions
coming from random matrix theory.
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Before we do that let us consider a simpler exercise where we can perform an
exact computation involving a constraint on the average energy. Consider the
usual spectral form factor in random matrix theory:

Z(β1, β2) =
〈
Tr
(
e−β1H

)
Tr
(
e−β2H

)〉

=
∫
dE1dE2e

−β1E1−β2E2 ⟨ρ(E1)ρ(E2)⟩
(5.65)

For double-scaled random matrix models, we know that [126]

⟨ρ(E1)ρ(E2)⟩ = − 1
2π2

E1 + E2√
E1

√
E2(E1 − E2)2 (5.66)

Using the above spectral two-point function, and changing variables to β± =
β1 ± β2 and E± = E1 ± E2 we get

Z(β1, β2) = − 1
2π2

∫ ∞

0
dE+

∫ ∞

−∞
dE−e−(β+E

++β−E
−)/2 2E+

√
(E+)2 − (E−)2(E−)2

= − 1
π2

∫ ∞

0

dt

t
e−st

∫ 1

−1
dx

e−tx
√

1 − x2
1
x2

(5.67)

where we have made a few more change of variables, x = E−/E+, t = β−E+/2
and s = β+/β−. Though the x integral in the above is formally undefined, we
can proceed by computing its principle value which turns out to be given by a
hypergeometric function

Z(β1, β2) = − 1
π2

∫ ∞

0

dt

t
e−st

(
2 + πt2

2 1F2

(
1
2 ; 3

2 , 2; t
2

4

))

= − 1
2π

(
1 −

√
1 − 1

s2

)
− 2
π2

∫ ∞

0

dt

t
e−st

(5.68)

Notice that the integral in the second term is actually independent of s. Sub-
stituting s = β+/β− back into the integral, we see that up to a β1, β2 additive
constant

Z(β1, β2) = 1
2π

√
β1β2

β1 + β2
(5.69)

Now let us insert a delta function in E+ thereby constraining the average energy.
We can then write

ZEavg(β1, β2) = − 1
π2

∫ ∞

0
dE+e−β+E

+/2f(β−, E
+)δ(E+ − 2Eavg)

= −e−β+Eavg

π2 f(β−, 2Eavg)
(5.70)
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where we have used the result in (5.68) to denote

f(β−, E
+) = 2

E+ +
πβ2

−E
+

8 1F2

(
1
2 ; 3

2 , 2; (β−E+)2

16

)
(5.71)

Now continuing β1,2 = β ± iT , for T ≫ 1 we can write

ZEavg(β + iT, β − iT ) = 1
π
Te−2βEavg +O(T 0) (5.72)

To summarise this exercise, we see that the spectral form factor with an average
energy constraint also displays a linear ramp in T for large enough T , although
with a different coefficient.

Let us briefly return to the main case that we were interested in, involving the mod-
ified spectral form factor. We are not aware of a universal result for ⟨ρR(E1)ρL(E2)⟩
that is valid for all ranges of energies, similar to (5.66). But we know the that
behaviour for small energy differences should be

⟨ρL(E1)ρR(E2)⟩c = − 1
2π2

(E1 − E2)2 − λ2

((E1 − E2)2 + λ2)2 (5.73)

This is not sufficient to predict the modified spectral form factor for general β1,2,
but it is exactly what we need to estimate it in the regime β1,2 = β±iT for T ≫ β.
Inserting (5.73) into (5.64) in this regime, we obtain

Z̃Eavg(β + iT, β − iT ) ∼ Te−2βEavg−λT (5.74)

which of course matches with the bulk calculation obtained in (5.63), for λ = Cϕ2
0.

5.6 Conclusions
In this chapter we considered the simplest examples of Euclidean wormholes in
AdSd+1 with two asymptotic boundaries. For simplicity, we assumed that the
boundaries were flat, with the topology to be that of d-dimensional torus. This
could easily be extended to the case of positively curved boundaries. We first
studied examples of a minimally coupled scalar field to gravity where an ansatz
for the metric and the potential of the field allowed us to solve the field equations
using first order flow equations. These had the peculiar property that the boundary
sources for the scalar were fixed to specific constants.

Subsequently, we explored additional instances of wormholes by permitting a
broader class of spacetime metrics. By choosing a judicious ansatz for the metric,
we again expressed the field equations as first order equations. In this case, the
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5.6. Conclusions

two-sided solutions we obtained were singular, analogous to the double cone worm-
holes of [141]. We saw that these solutions exist even in the absence of matter. In
the presence of a free field, we studied an example of a backreacted double cone
geometry. The proper treatment here required us to consider complex spacetime
metrics.

Finally we considered an even more general class of wormholes configurations
which are constrained saddles. These have similar properties to the double cone
geometries, without unnecessary complexities. We again studied these constrained
saddles in d-dimensions, in the presence of a scalar field. To stabilize these worm-
holes, we used a constraint that fixes the average of the two boundary energies,
as introduced in [140]. We looked at an example involving random matrices with
this fixed average energy constraint, and compared the results of the constrained
saddles with some boundary predictions.
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5. Wormholes with Matter
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6 Summary & Outlook

The research presented in this dissertation explores two topics: complexity and
wormholes, both of which have proven to be essential ingredients in deepening our
understanding of holography. In Part I, we discuss holographic complexity, and in
Part II, we explore Euclidean wormholes. At the beginning of each part, we have
provided background information and motivations for studying these topics. In
this brief concluding chapter, we will gather our final thoughts, reflect on some of
the motivations, and offer an outlook for the future.

Complexity

In chapters 2 and 3 we explored various ways of assigning a cost to holographic
path integrals. The path integrals we considered were in bulk gravitational theo-
ries, which have Dirichlet boundary conditions on a varying radial cutoff surface.
On the boundary, these would be path integrals in T T̄ deformed CFTs. These
path integrals can be interpreted as continuous quantum circuits which map an
initial state at a given bulk cutoff to some final state at another bulk cutoff. We
took a phenomenological approach towards quantifying the costs of such path inte-
grals and imposed a set of physical conditions that any reasonable cost functional
should satisfy. Then, in chapter 3, we explicitly showed that by optimising costs
over suitably chosen bulk subregions we can re-obtain some familiar complexity
proposals present in the literature.

The general approach towards complexity in holography has been that, despite
encapsulating a single and very useful concept, there exist various definitions or
methods for measuring it. We have seen this in the huge space of possibilities
for defining cost functions that satisfy all of our physical requirements. Similarly,
there are also an infinite class of diffeomorphism invariant bulk quantities all of
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6. Summary & Outlook

which have the requisite properties of holographic complexity [69]. This is in stark
contrast to something like entanglement entropy, which has a precisely defined
bulk dual. Boundary definitions of complexity such as circuit complexity similarly
have a lot of freedom in choosing a gate set and penalty factors for costly gates.
Recently, another notion of complexity, called as Krylov complexity has been the
subject of significant study [170–173]. This can be defined for all quantum systems
and naturally avoids many ambiguities present in other definitions. For the case of
a specific one-dimensional quantum system this was shown [174,175] to be dual to
a bulk volume in JT gravity, and there is a more general argument that this holds
in higher dimensions in [176]. Even with definitions like Krylov complexity, which
appear to isolate the simplest bulk dual for complexity (the maximal volume), it
remains mysterious how we should interpret all the other diffeomorphism-invariant
quantities, all of which exhibit a behavior expected from complexity.

The principle reason for studying complexity in holography was to understand the
growth of black hole interiors. The growth and late time saturation in particular
has been well understood [177, 178] again for the volume of black hole interior
in JT gravity. It is currently unclear how such a saturation is achieved for holo-
graphic complexity proposals other than maximal volume. It would be interesting
to understand these issues in the near future.

Wormholes
The chapters 4 and 5 were devoted to a different topic, Euclidean wormholes. We
began by reviewing some important recent developments which arose as a direct
consequence of including contributions from Euclidean wormholes with discon-
nected boundaries. We learned in chapter 4 that the Euclidean wormholes encoded
statistical information of some underlying microscopic data. Replica wormholes
capture statistical information about the entanglement spectrum of the black hole
radiation which leads to a unitary Page curve. Similarly, Euclidean wormholes
with two disconnected boundaries capture the spectral statistics of the black hole
microstates. These also gave a gravitational explanation of the ramp in the spec-
tral form factor. We also saw examples where Euclidean wormholes capture the
statistics of OPE coefficients in 3d gravity. In JT gravity, which is dual to an en-
semble of random matrices, the wormhole with disconnected boundaries compute
moments in the ensemble. But such wormholes in higher dimensions, where we
do not expect an ensemble in the boundary, lead to a factorization puzzle. To
overcome this, we choose the viewpoint that calculations in semi-classical gravity
only have access to a coarse-grained version of the underlying microscopic data.

In chapter 5, inspired by the recent developments, our aim was to explore worm-

124



holes in general dimensions. Wormholes with multiple disconnected (flat) bound-
aries do not arise as solutions to vacuum Einstein equations [134]. To overcome
this, we first studied wormholes that are supported by a scalar field with imagi-
nary sources at the boundaries. We developed a general strategy using which many
such generic wormhole solutions can be constructed. All of them have the property
that the sources for the scalar have to be precisely fine-tuned at the boundaries.
Later, we expanded our search by considering a more general ansatz, and found
wormholes that were singular solutions, akin to the double cone wormholes studied
in [141]. We regulated these solutions and also constructed a backreacted double
cone geometry in the presence of a massless scalar. When the boundary conditions
of the field are set to be slightly different on both the boundaries, we observed
that this geometry, instead of having a linear ramp, has an exponential decay. We
also considered a similar analysis for constrained saddles [138, 140] with matter,
where we had to stabilise the wormholes by adding a constraint on the energy.
Furthermore, we showed how such a constraint works in a simple model involving
random matrices.

The wormholes similar to double cones and the constrained wormhole saddles
both reaffirm the statistical interpretation of semi-classical gravity. In fact, as we
showed, in the presence of a massless scalar with different boundary conditions,
the computations of these wormholes lead to a modified (smooth) spectral form
factor which can be reproduced from general arguments in random matrix theory.
It would be interesting to see if this persists for massive scalars and other types of
matter.

On the other hand, the initial instances we encountered of wormholes with mat-
ter, which included scalar fields sourced by specific imaginary sources, appear to
be somewhat challenging to reconcile with this statistical interpretation. These
wormholes are related to axionic wormholes [156], and also are very similar to
holographic RG flows, with the scalar acting like a running coupling. One out-
come could be that these wormholes are not stable and such saddle points never
really local minima in the path integral, and are thus unreliable. On a slightly un-
related note, there exist several stable and generic wormhole solutions with matter
as constructed in [157]. Do these wormholes also have a statistical interpretation?
We leave these questions for future work.
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A Cost as Lorentzian
gravitational action

Let us calculate the gravitational action of the subregion of Lorentzian Poincaré
AdS3 depicted in figure 3.5. The gravitational action is

I = IEH + IGHY + IHayward. (A.1)

The Einstein-Hilbert term is

IEH = 1
16πGN

∫ √
−G(R − 2Λ), (A.2)

where R = −6 and Λ = −1 in AdS3 with L = 1. Then IEH is proportional to the
spacetime volume,

IEH = − 1
8πGN

∫
dx

∫ tf

ti

dt
1
ρ2 . (A.3)

Our region has two corners, both of which are spacelike surfaces meeting a timelike
surface, both of which contribute to the gravitational action1

IHayward = 1
8πGN

∫ √
ση, (A.4)

where σ is the induced metric on the joint, and

sinh η = −t1 · n2, (A.5)

where t1 is the (timelike) normal to the t = {ti, tf} slices, and n2 is the (spacelike)
normal to z = ρ(t). For our setup it’s easy to show that

η = ± arctanh ρ̇ (A.6)

with +(−) at the tf (ti) joint. This gives

IHayward = 1
8πGN

∫
dx

[
arctanh ρ̇(tf )

ρ(tf ) − (tf ↔ ti)
]
. (A.7)

1See appendix A of [84] for Hayward corner terms for every kind of corner.
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A. Cost as Lorentzian gravitational action

Let us calculate the contribution of the finite cutoff time-like boundary to the grav-
itational action through the Gibbons-Hawking-York (GHY) term. The boundary
is the hypersurface

z = ρ(t) (A.8)
in Poincaré AdS3 (3.80). We want to calculate the extrinsic curvature of this
surface

K = ∇µn
µ = z3∂µ(z−3nµ), (A.9)

where the unit normal to the hypersurface is given by

nµ := Gµνζν
|ζ| (A.10)

with un-normalised normal

ζµ = ∂µ(ρ(t) − z); ζx = 0, ζt = ρ̇, ζz = −1 (A.11)

and
|ζ| = z

√
1 − ρ̇2. (A.12)

Plugging these in to the formula for K gives

K|z=ρ = −ρρ̈+ 2(1 − ρ̇2)
(1 − ρ̇2)3/2 , (A.13)

which is exactly what you get if you Wick rotate the Euclidean answer, so that
ρ̇2 → −ρ̇2, and ρ̈ → −ρ̈. The GHY term is

IGHY = 1
8πGN

∫ √−gK

= 1
8πGN

∫
dx

∫ tf

ti

dt
−ρρ̈+ 2(1 − ρ̇2)
ρ2(1 − ρ̇2) .

(A.14)

Integrating the double derivative term by parts gives a boundary contribution that
cancels the Hayward terms in our case (however, this cancellation would not have
happened with general spacelike boundaries rather than the constant time slices
we have considered). Combining everything gives

I = 1
8πGN

∫
dx

∫ tf

ti

dt

(
1 − ρ̇ arctanh ρ̇

ρ2

)
, (A.15)

which agrees with the Wick rotation of the Euclidean result of [1]. We note
that while the GHY term (A.14) by itself may remain finite when a null-limit of
the surface ρ(t) is taken (see [179]), the full action (A.15) diverges in this limit.
This can be shown to be a consequence of the Hayward-type corner terms (A.4).
In general, the procedure of obtaining gravitational action of a region with null
boundaries as a null-limit of timelike or spacelike regions is ambiguous, see [45].
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B Conical singularities in the
Gauss-Bonnet formula

B.0.1 Euclidean case
While most sources don’t state the Gauss-Bonnet theorem explicitly including
terms necessary for conical singularities, it is not hard to find the appropriate
terms. While a formal proof was given in [98], a less rigorous but quite simple
approach would be the one of [180] where it was simply postulated that the Gauss-
Bonnet theorem should continue to hold in the presence of conical singularities,
and then the necessary correction term was derived by looking at one simple ex-
ample1. In this section, we will give our own argument which easily generalises to
the Lorentzian case in the next subsection.

To do so, we consider a body with a conical singularity like the one sketched on
the left side of figure B.1. Of course we know that a conical singularity can be
resolved, in a sense, by introducing a cut and spreading the cone on a flat plane as
indicated in the figure. Hence, let us now assume that, as indicated by the dashed
red lines in the figure, we introduce a cut that goes from the exact location of the
conical singularity to a point elsewhere in the surface where it is locally smooth.
Before introducing this cut, we assume the Gauss-Bonnet theorem holds in a form

∫

M̃

R

2 dV +
∫

∂M̃

kgds+
∑

(old) corners c

αc +Xconical sing. = 2πχ. (B.1)

Herein, Xconical sing. is the as of now unkown contribution from the conical singu-
larity which we want to derive.

How does introducing the cut change both sides of this equation? The first term
stays the same because we don’t assume to spread the cut open by deforming

1This can be justified by observing that at least for the symmetric conical singularities on
surfaces of revolution, all conical singularities are locally equivalent up to their deficit angle, and
hence the correction term should only depend on the deficit angle.
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B. Conical singularities in the Gauss-Bonnet formula

Figure B.1: Left: Illustration for the derivation of the Gauss-Bonnet-theorem in the
presence of conical singularities. We consider a two dimensional surface, either Euclidean
or Lorentzian, with a conical singularity, and introduce a cut (red dashed lines) from the
conical singularity to a point elsewhere in the surface, where it is locally smooth. The
conical deficit of the singularity (or its Lorentzian analogue) is δ. Right: Construction
of the lemon’s induced metric by taking a region between two timelike geodesics in AdS2

and identifying the boundary. At the intersection of the two geodesics that form the
boundary of the region, their two tangent vectors cross with a relative boost factor δ,
which is the Lorentzian analogue of the deficit angle for the conical singularity that is
formed at this location due to the identification. The two vertical lines indicate the AdS2

boundaries at θ2 = ± π
2 .

130



the surface, both edges of the cut remain at the same location. We have merely
indicated a slight spread of the cut as a visual aid in the figure. Due to the cut, new
contributions to the second term could in principle appear, however we argue this
won’t matter for multiple reasons. Firstly, the contributions from the two sides of
the cut should cancel exactly. Secondly, we could choose the cut to be geodesic,
setting kg = 0. Thirdly, we can take a limit where the cut is infinitesimally short.
The fourth term will not be present anymore due to the resolution of the conical
singularity, hence on the left hand side all changes come down to the additional
terms due to the two corners at both ends of the cut. Of course, introducing
the cut also causes a change of the topology like removing a disk, and due to
the behaviour of the Euler characteristic under connected sums this means χ is
reduced by 1. Hence, we find

∫

M̃

R

2 dV +
∫

∂M̃

kgds+
∑

(old) corners c

αc +
∑

new corners c
αc = 2π(χ− 1). (B.2)

Comparing (B.1) and (B.2), we find that the correct contribution for conical sin-
gularities is hence determined by the contributions for corners along boundaries
via

Xconical sing. =
∑

new corners c
αc + 2π. (B.3)

So what are now the contributions from the two corners at which the cut starts
and ends? Firstly, at the point in a locally smooth neighbourhood of the surface,
essentially the new boundary introduced by the cut makes a 180-degree turn there,
i.e. αc1 = −π. Note the negative sign because this corner is a concave one from
the point of view of the surface. The corner located at the position of the conical
singularity is also concave from the point of view of the surface, but there, with
respect to the local geometry, the angle by which the boundary changes its direc-
tion is reduced by the deficit angle δ of the conical singularity as evident from the
figure B.1. Hence, the contribution is αc2 = −(π − δ), and we find

Xconical sing. = αc1 + αc2 + 2π = δ. (B.4)

This means that the contribution of a conical singularity in the Gauss-Bonnet
theorem should be simply its deficit angle δ, as also realised in [98, 180]. Our
derivation makes it obvious why the terms coming from conical singularities and
terms coming from corners of the boundary are so similar (just sums over angles),
and can readily be generalised to the Lorentzian case as we show in the next
subsection.
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B. Conical singularities in the Gauss-Bonnet formula

B.0.2 Lorentzian case
Generalisations of the Euclidean Gauss-Bonnet theorem to the Lorentzian case
were worked out in [99–102]2, and while none of these papers explicitly discusses
conical singularities, the generalisation of the concept of an angle to the Lorentzian
case lies at the heart of all of these works. As the appropriate terms for conical
singularities are just sums over deficit-angles which can be derived from the terms
needed for boundaries with corners, as shown in the previous subsection, it is
hence easy to generalise this also to the Lorentzian case. The papers [99–102]
differ in some of the details of exactly how to define Lorentzian angles, e.g. some
use complex quantities, so for concreteness we follow [99] and define the (always
real valued) oriented Lorentzian angle or boost parameter δ between two future
pointing normalised timelike vectors X and Y to satisfy3

cosh(δ) = −X · Y. (B.5)

The Lorentzian Gauss-Bonnet-theorem then takes the form [99]
∫

M̃

R

2 dV +
∫

∂M̃

kgds+
∑

corners c
αc = 0, (B.6)

where some care has to be taken concerning the signs of the generalised angles αc.
In fact, the difference to the Euclidean case is two-fold: Firstly, the right hand
side automatically vanishes (χ ≡ 0), secondly, traversing a closed timelike geodesic
polygon in flat space yields the total Lorentzian angle

α12 + α23 + ...+ αn1 = 0, (B.7)

whereas in the Euclidean case the exteriour angles of a polygon sum to 2π. This
means that we can quite easily generalise our derivation from the previous sub-
section to the Lorentzian case, however while there on both the left- and the
right-hand side an additional term 2π appeared, this will not be the case in the
Lorentzian setting, and we find that the appropriate contribution to (B.6) to ac-
count for Lorentzian conical singularities will be a term Xconical sing. = δ where δ
is the Lorentzian analogue of the deficit angle at the conical singularity.

B.0.3 Application to Lemons
Let us now demonstrate how the Lorentzian version of the Gauss-Bonnet theorem
(including terms for conical singularities) can be applied to the example of a lemon

2See also [181] for an analysis of the Gauss-Bonnet theorem for surfaces of varying signature.
3For our specific case of future pointing timelike vectors, this follows from the more general

equations given in [99] by using the relation cosh(log(x)) = 1+x2

2x
, the normalisation of the vecors,

and some algebra.
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surface from section 3.8.5, where for simplicity we will assume a ϕ-independent
parameter E. To do this, we view the lemon as a boundary-less closed surface
which however has two conical singularities, as e.g. the example on the top-left of
figure 3.9. Hence as χ ≡ 0 in the Lorentzian case, we need to verify

RV

2 + δpast conical sing. + δfuture conical sing. = 0. (B.8)

To correctly calculate the Lorentzian analogue of the deficit angle, the easiest
way in this case (but not necessarily the only or most general one) is to resolve
the conical singularity by introducing a cut. For this, consult the right side of
figure B.1. As we showed in section 3.8.2, the induced metric on the surface
should be locally AdS2. But of course, when thinking about AdS space we usually
envision a static spacetime with an asymptotic boundary as opposed to something
resembling a periodic cosmology that starts from an initial (conical) singularity,
expands, contracts, and ends in a final (conical) singularity, like the surfaces shown
in figure 3.9. The resolution of this issue is of course that the induced metric of
the lemons is only locally AdS, and we know that global identifications can yield
very non-trivial geometries, like for example the BTZ black hole. The right side of
figure B.1 shows how an identification applied to (global) AdS2 with line element

ds2 = 1
cos(θ2)2

(
−dt22 + dθ2

2
)
, (B.9)

can yield the induced geometry of a lemon surface. Note that we have introduced
coordinates t2, θ2 on AdS2 to distinguish them from the coordinates of global AdS3
(3.112), which in this section we explicitly replace by t → t3, θ → θ3. Also note
that (3.112) and (B.9) have the same AdS-radius (which we set to one), hence the
three dimensional Ricci scalar is R = −6 and the two dimensional one is R = −2,
as required by our construction (e.g. (3.97)).

To create the lemon, we have to take the region between two intersecting timelike
geodesics in AdS2 and then identify these two geodesics. For concreteness, we
assume both boundary geodesics in figure B.1 to turn around at a maximal ra-
dial coordinate |θmax,2| = arccos (1/E2) according to the coordinate system (B.9).
Concerning the lemon surface embedded into the AdS3 ambient space with coor-
dinate system (3.112) as shown in figure 3.9, we introduce the turnaround radius
θmax,3 = arccos (1/E3). These two sets of parameters are related because the
diameter of the AdS2 region (the shaded region in figure B.1) has to be equal to
the circumference of the surface when embedded into AdS3 (the surfaces in 3.9).
This yields the relation

4arctanh
(

tan
(
θmax,2

2

))
= 2π tan(θmax,3). (B.10)
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B. Conical singularities in the Gauss-Bonnet formula

The first term in (B.8) is easy to compute from the induced metric (3.120), and
we find

RV

2 = −4π
√
E2

3 − 1 = −4π tan(θmax,3). (B.11)

For the evaluation of δfuture conical sing. (which equals δpast conical sing. by symmetry),
we note that at the point (θ2 = 0) where the two boundary geodesics intersect,
their future pointing normalised tangent vectors (drawn read in figure B.1) read
(this can be shown from (3.118))

Xm
± =

(
Xt2

±
Xθ2

±

)
=
(

E2
±
√
E2

2 − 1

)
(B.12)

and hence are boosted with respect to each other by a boost parameter/Lorentzian
angle

δfuture conical sing. = arccosh (−X+ ·X−) = arccosh
(
2E2

2 − 1
)

= 2π tan(θmax,3)
(B.13)

even though by the identification of the two boundary geodesics also these two
vectors are formally identified. With (B.11) and (B.13), we verify that (B.8) is
satisfied as required.
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CLemons in higher dimensions

Let us try to find analogues of the lemon surfaces studied in section 3.8.5 in global
Lorentzian AdS4,

ds2 = 1
cos(θ)2

(
−dt2 + dθ2 + sin(θ)2dψ2 + sin(θ)2 sin(ψ)2dϕ2) , (C.1)

with boundary at θ = π/2. Assuming rotational symmetry, we just have to propose
an embedding parametrized as

t(θ, ψ, ϕ) = f(θ). (C.2)

After some computations, equation (3.96) then yields the ODE

4 cot(θ)f ′(θ)f ′′(θ) − 2
(
csc2(θ) + 2

)
f ′(θ)2 (f ′(θ)2 − 1

)
= 0, (C.3)

which effectively is a first order ODE for f ′, as f does not show up in the equation.
We find the solution:

f ′(θ) =
√

sin(2θ) cot(θ)√
C + sin(2θ) cot2(θ)

(C.4)

Unfortunately this is hard to integrate to get an analytic expression for f . Nev-
ertheless, we can distinguish three cases, see also figure C.1. For C > 0, f ′ ≤ 1
and the curve f(θ) we obtain is spacelike and reaches all the way to the boundary
at θ = π/2. For C < 0, f ′ ≥ 1 and the curve t = f(θ) we obtain is timelike
and f ′ diverges at some finite θmax ≤ π/2, the turning point of the surface. For
C = 0 we get f ′ = 1, i.e. we obtain the null boundary of the WDW patch in
this limit. This means that these spherically symmetric lemons in AdS4 (and also
higher dimensions as we have verified) will share many qualitative features with
their AdS3 counterparts, but there are also some interesting qualitative differences
that make the AdS3 lemons special.
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C. Lemons in higher dimensions

0.5 1.0 1.5
θ

0.5

1.0

1.5

2.0
f'

Figure C.1: Equation (C.4) for C varying in equal steps between −1 (blue) and 1 (red).
As before, the AdS4 boundary is at θ = π/2.

First of all, while ansatz (3.98) would of course also work in higher dimensions, it
is not generic in these cases, and in fact the extrinsic curvature tensor of the solu-
tions discussed here will not have this form. Consequently, the higher dimensional
lemons are not foliated by timelike geodesics of the ambient AdS space. Further-
more, note that f ′(0) = 1 for any C in (C.4), so at the center the embeddings
will always approach the local lightcone. We have discussed the appearance of a
conical singularity already in section 3.8.5, but there for finite turning point radius
the embedding at the conical singularity did not approach the lightcone. What
this means is that unlike the AdS3 case, for AdSd≥4 the metric will degenerate
close to the conical singularity and this is accompanied by the appearance of a
curvature singularity of the induced metric there. While R is of course constant
by construction, this happens for example for the Kretschmann scalar. Another
qualitative difference between AdS3 lemons and the higher dimensional case is that
the former all neatly fit into a time interval of size ∆t = π as shown in figure 3.9.
This is because the periodicity of the timelike AdS geodesics is independent of the
parameter E introduced in section 3.8.5. In contrast, integrating (C.4) numeri-
cally shows that the AdSd≥4 lemons will have different sizes, depending on how
close to the boundary they reach.
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Samenvatting

Alle wetten van de natuurkunde zoals wij die kennen berusten grofweg op twee
fundamentele pijlers: de kwantummechanica en de algemene relativiteitstheorie.
De kwantummechanica beschrijft ons universum op zijn kleinste schaal. Het is
een paradigma van de natuurkunde dat de klassieke mechanica vervangt en dat
een raamwerk biedt voor het begrijpen van de vele contra-intuïtieve effecten die
je tegenkomt op het microscopische niveau van elementaire deeltjes. Het heeft
talloze toepassingen in de echte wereld, variërend van elektronenmicroscopen tot
de halfgeleiders die aanwezig zijn in alle moderne elektronica. De algemene relati-
viteitstheorie daarentegen is Einsteins theorie van ruimte en tijd. Het beschrijft de
zwaartekracht als gevolg van de kromming veroorzaakt door materie in de ruim-
tetijd. De algemene relativiteitstheorie is belangrijk op de grootste schaal in het
universum. Het geeft aanleiding tot voorspellingen zoals het bestaan van zwarte
gaten en de uitdijing van ons heelal.

De meeste natuurkundige scenario’s kunnen worden verklaard met behulp van
alleen de kwantummechanica of alleen de algemene relativiteitstheorie. Maar er
zijn situaties waarin we ze allebei tegelijkertijd moeten begrijpen. Een belangrijk
voorbeeld van een dergelijke situatie vormen zwarte gaten. Dit zijn zeer massieve
objecten die de ruimtetijd zo sterk krommen dat zelfs licht niet kan ontsnappen
zodra het een oppervlak binnengaat dat de gebeurtenishorizon wordt genoemd.
Om ze goed te kunnen begrijpen, moeten we de effecten van de kwantummechanica
en de algemene relativiteitstheorie combineren. Daarmee liet Hawking zelfs zien
dat zwarte gaten niet echt zwart zijn. Ze gedragen zich als thermische objecten
en hebben daardoor een temperatuur en entropie en zenden ook Hawking-straling
uit.

De entropie van zwarte gaten, die in het algemeen een telling is van het aantal
microscopische configuraties dat mogelijk is voor een gegeven macroscopische con-
figuratie, blijkt een belangrijk mysterie te herbergen. Het is evenredig met het
gebied van de horizon. Naïef zou de entropie evenredig moeten zijn met het vo-
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lume van een bepaald object. Dit suggereert dat de fundamentele bouwstenen van
zwarte gaten zich in een lagere dimensie bevinden. Dit feit leidde tot het holografi-
sche principe, dat stelt dat elke theorie van kwantumzwaartekracht microscopische
vrijheidsgraden heeft in één lagere dimensie. Een precieze realisatie hiervan werd
gevonden in de snaartheorie, de zogenaamde AdS/CFT-correspondentie. Dit is
een verklaring die ons vertelt dat de kwantumzwaartekracht in een bepaald uni-
versum genaamd Anti-de Sitter-ruimtetijd precies tweeledig is met een specifieke
kwantumtheorie die een conforme veldtheorie wordt genoemd in een lagere dimen-
sie. Er kan worden aangenomen dat deze CFT op de grens van de AdS-ruimtetijd
leeft. Omdat deze verklaring een dualiteit is, kunnen we objecten van de CFT naar
de AdS vertalen en omgekeerd. In feite is het begrijpen van zo’n woordenboek een
hoofdthema van onderzoek op dit gebied geweest.

De binnenkant van zwarte gaten is verre van saai. Ze blijven heel lang groeien.
Dit roept een puzzel op in AdS/CFT, omdat het impliceert dat er een overeen-
komstige grootheid moet bestaan in de grenskwantumtheorie die op equivalente
wijze lange tijd blijft groeien. Veel gebruikelijke grootheden, zoals correlatiefunc-
ties of entropieën, verzadigen in korte tijd tot hun thermische waarden. Er werd
aangenomen dat een grootheid die kwantumcomplexiteit wordt genoemd precies
de juiste eigenschappen had om zo’n langdurige groei te beschrijven. Het begrip
complexiteit heeft hier betrekking op het kwantificeren van de moeilijkheidsgraad
van een bepaalde taak, wanneer we een bepaalde reeks hulpmiddelen ter beschik-
king krijgen. Dit is van groot belang op het gebied van de informatica, waarbij
de moeilijkheidsgraad van het oplossen van algoritmen wordt bestudeerd en deze
dienovereenkomstig worden geclassificeerd. In de AdS-ruimtetijd werd voorgesteld
dat de kwantumcomplexiteit van de dubbele toestand duaal is ten opzichte van een
geometrisch object zoals het volume van een maximaal oppervlak. In het eerste
deel van het proefschrift hebben we laten zien dat we subregio’s van de bulkruimte-
tijd kunnen interpreteren als kwantumcircuits, en hebben we verschillende kosten
voor deze subregio’s voorgesteld. We hebben ook laten zien hoe dergelijke kos-
ten kunnen worden geoptimaliseerd, waardoor we de complexiteit krijgen van het
meest efficiënte circuit dat een eindtoestand vanuit een begintoestand voorbereidt.

Het tweede deel van het proefschrift was gewijd aan het begrijpen van wormga-
ten. Dit zijn geometrieën die verschillende regio’s in een universum of zelfs twee of
meer losgekoppelde universums met elkaar verbinden. We bestuderen ruimtetijd-
wormgaten, ook bekend als Euclidische wormgaten, dit zijn verbonden ruimtetijd-
gebieden met twee of meer niet-verbonden grenzen. Een paar decennia geleden
werden dergelijke geometrieën als pathologisch beschouwd in de kwantumzwaar-
tekracht, en zelfs in het bijzonder in AdS/CFT. Maar recente vooruitgang, vooral
dankzij het begrijpen van een tweedimensionaal model genaamd JT-zwaartekracht,
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heeft aangetoond dat Euclidische wormgaten ons iets vertellen over statistische in-
formatie over het microscopische systeem. Het begrijpen van de bijdragen van
dergelijke wormgaten leidt ook tot enorme vooruitgang bij het oplossen van de
informatieparadox over zwarte gaten. We bestuderen de constructie van enkele
eenvoudige voorbeelden van Euclidische wormgaten in algemene afmetingen in de
aanwezigheid van een scalair veld. We hebben ook geprobeerd de implicaties van
het bestaan van dergelijke wormgaten te begrijpen.
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Summary

All the laws of physics as we know them broadly stand on two foundational pillars:
Quantum Mechanics and General Relativity. Quantum mechanics describes our
universe at its smallest scales. It is a paradigm of physics replacing classical me-
chanics, that provides a framework for understanding the many counter-intuitive
effects one encounters at the microscopic level of elementary particles. It has nu-
merous applications in the real world, ranging from electron microscopes to the
semi-conductors present in all modern electronics. General relativity on the other
hand is Einstein’s theory of space and time. It describes gravity as a result of the
curvature caused by matter on spacetime. General relativity is important at the
largest scales in the universe. It gives rise to predictions such as the existence of
black holes and the expansion of our universe.

Most physical scenarios can be explained either using only quantum mechanics
or only general relativity. But there are situations when we need to understand
both of them simultaneously. An important example of such a situation is given
by black holes. These are very massive objects that curve spacetime so much that
not even light can escape once it enters a surface called the event horizon. To
properly understand them we need to combine effects of quantum mechanics and
general relativity. In fact, by doing so Hawking showed that black holes are not
really black. They behave like thermal objects, and hence have a temperature,
entropy and also emit Hawking radiation.

The entropy of black holes, which in general is a count the number of microscopic
configurations possible for a given macroscopic configuration, turns out to hold a
key mystery. It is proportional to the area of the horizon. Naively, the entropy
should be proportional to the volume of a given object. Then, this suggests that the
fundamental building blocks of black holes live in one lower dimension. This fact
lead to the holographic principle, which states that any theory of quantum gravity
has microscopic degrees of freedom in one lower dimension. A precise realisation
of this was found in string theory, called the AdS/CFT correspondence. This
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is a statement which tells us that quantum gravity in a certain universe called
Anti-de Sitter spacetime is exactly dual to a specific quantum theory called as a
conformal field theory in one lower dimension. This CFT can be thought to live on
the boundary of the AdS spacetime. This statement being a duality, allows us to
translate objects from the CFT to the AdS and vice versa. In fact, understanding
such a dictionary has been a main theme of research in this area.

The interiors of black holes are far from dull. They keep on growing for a very
long time. This raises a puzzle in AdS/CFT, as it implies that there must exist a
corresponding quantity in the boundary quantum theory that equivalently keeps
on growing for long times. Many usual quantities such as correlation functions
or entropies saturate to their thermal values in a short period of time. It was
conjectured that a quantity called as quantum complexity had exactly the right
properties to describe such a long time growth. The notion of complexity here
deals with quantifying the difficulty of a given task, when we are given a certain
set of resources at hand. This is a very important in the field of computer science,
which involves studying the difficulty of solving algorithms, and classifying them
accordingly. In the AdS spacetime, the quantum complexity of the dual state was
proposed to be dual to a geometric object such as the volume of a maximal surface.
In the first part of the thesis we showed that we can interpret subregions of the bulk
spacetime as quantum circuits, and proposed various costs for these subregions.
We also showed how such costs can be optimised, giving us the complexity of most
efficient circuit that prepares a final state from an initial state.

The second part of the thesis was devoted to understand wormholes. These are
geometries that connect different regions in a universe or even two or more dis-
connected universes. We study spacetime wormholes, also known as Euclidean
wormholes, which are connected spacetime regions having two or more discon-
nected boundaries. A few decades ago, such geometries were considered patholog-
ical in quantum gravity, and even in AdS/CFT specifically. But recent progress,
especially coming from understanding a two-dimensional model called JT gravity
showed that Euclidean wormholes tell us about some statistical information of the
microscopic system. Understanding the contributions of such wormholes also lead
to tremendous progress towards solving the black hole information paradox. We
study the construction of some simple instances of Euclidean wormholes in general
dimensions in the presence of a scalar field. We also attempted to understand the
implications of the existence of such wormholes.
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