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The Intestinal Microbiota Associated With

Obesity, Lipid Metabolism, and
Metabolic Health-Pathophysiology and

Therapeutic Strategies

“Er zijn geen shortcuts voor gezondheid.”
Max Nieuwdorp



Abstract

Changes in the intestinal microbiome have been associated with obesity and type 2 diabetes, in
epidemiological studies and studies of the effects of fecal transfer in germ-free mice. We review
the mechanisms by which alterations in the intestinal microbiome contribute to development of
metabolic diseases, and recent advances, such as the effects of the microbiome on lipid metabo-
lism. Strategies have been developed to modify the intestinal microbiome and reverse metabolic
alterations, which might be used as therapies. We discuss approaches that have shown effects in
mouse models of obesity and metabolic disorders, and how these might be translated to humans
to improve metabolic health.



Introduction

Obesity prevalence reached 40% in the United States in 2016, with major interindividual socio-
economic disparities, and is predicted to further increase,' together with its associated metabolic
comorbidities.? To date, while a few antiobesity medications are available and efficient, on top
of lifestyle interventions, to achieve 5% weight loss, they present several limitations: they are
reserved for individuals with already existing overweight/obesity® or to genetic forms,* they can
sometimes induce adverse events leading to treatment discontinuation, and their cost is signifi-
cant. Thus, to bend the worldwide obesity epidemic curve and its associated management costs,
safe and inexpensive public health interventions need to be developed and implemented in adults
as was done in children, which led to decreased or plateaued prevalence in individuals aged young-
er than 11 years.? Furthermore, trying to decipher novel pathophysiological mechanisms involved
in obesity and related disease might help develop new preventive or therapeutic strategies in the
future.

The intestinal microbiome (IM), which is mostly shaped by the environment,>® in partic-
ular the diet, and varies across ethnicities,” maybe in link with differences in food cultural habits,
because large human studies have shown genetics do not appear to strongly influence the IM
composition.® The IM is involved in several major physiological functions that maintain metabolic
homeostasis. Among others, the IM processes and digests nutrients, produces metabolites,8 and
shapes the immune system.’

This field has been revolutionized by high-throughput sequencing techniques, such as the
16S-sequencing approach, which delivers valuable composition information, and metagenomics,
which provides additional knowledge on microbial genes and their potential functions.” Meth-
odologic pros and cons of both techniques are detailed in a previous study.”®

Complementary metabolomics analysis enables researchers to dive deeper into function-
ality assessment when combined with metagenomics.? These tools led to the discovery of major
compositional changes in the IM during metabolic disorders, such as obesity, insulin-resistance,
type 2 diabetes (T2D), dyslipidemia, and nonalcoholic fatty liver disease (NAFLD),"%"3 %8 which sug-
gest its involvement in their physiopathology.

While most studies have used IM originating from feces in human and animal studies,
some have used IM from the cecum or jejunum. Since it is known that the IM composition strongly
differs according to the different parts of the digestive tract,” as well as its function and most
probably its effects on host health, the IM origin when different than fecal will be specified in this
review.

Intestinal Microbiome Contributes to Metabolic Disorders

In vivo models, such as cohousing experiments®* or comparison of conventional and germ-free
(GF) mice,” postweaning pups,?antibiotic-treated mice,” or all 3, that undergo fecal microbiota
transplantation (FMT) from mice or humans donors,* enables investigators to further dig into
causality. Translation to humans of results obtained in animals is also possible using the in vi-
tro gut stimulator model,? intervention trials, such as FMT from human to human,?*? antibiotic
treatment,? or diet interventions.” Although these techniques have their own advantage or draw-
back to infer causality, they nevertheless advanced progress in the understanding of the IM contri-
bution?” in metabolic diseases with the discovery of new mechanistic pathways.

Intestinal Microbiome Affects Body Weight
Firstly, GF mice have lower body weight and white adipose tissue (WAT) than conventional mice*
fed a chow or high-fat diet (HFD), despite increased calorie intake.?"*2 Their colonization with
a normal IM for 14 days enables them to reach similar weight than conventional mice.*® Note-
worthy, while conventional mice gain significantly more weight on the HFD than the low-fat diet
(LFD), the weight of GF mice remains stable, whatever their diet, pointing at the IM contribution
to properly handle energy storage from food intake.®

Secondly, the increase of body weight in GF mice depends on the source of the FMT. In-



deed, FMT from obese conventional mice (diet-induced or genetically obese animals [ob/ob]) into
GF recipients fed a chow diet leads to higher weight gain and WAT depot than FMT from lean
mice'13,21,34,35

Thirdly, FMT from obese humans into GF recipients translates into higher weight gain
than FMT from their lean twins.*

Importantly, differences in food qualitative intake modulate the IM, its implantation after
FMT, and its capacity to store energy from food, leading to different transferred phenotypes.’*¥
Dietary fat content modulates IM, which affects body weight and inflammation in WAT. While
recipient mice fed an HFD display a microbiome similar to the twin with obesity, upon being fed
a LFD, the dominant colonized microbiota resembles the lean twin's.?® Moreover, upon being fed
an isocaloric diet containing saturated (lard) or polyunsaturated fat (fish oil), the lard-fed group
shows increased food intake, leading to higher weight and adiposity, more inflamed WAT, and
worse metabolic alterations.” Likewise, the 2 groups display major differences in their IM,¥ which
is responsible for the clinical phenotype. Indeed, FMT from fish-fed mice into antibiotic-treated
recipients fed a lard diet results in lower weight gain and WAT inflammation than FMT from lard-
fed animals.

Several human FMT case reports corroborate mouse observations. FMT from a nor-
mal-weight donor (ie, body mass index [BMI] of 25 kg/m2) to underweight anorexic women en-
abled a modest weight gain and weight stabilization.?® Likewise, obesity developed in a woman
who received FMT from her overweight daughter to treat Clostridium difficile (CD).3* These obser-
vations led an international consensus to propose drastic selection for human donors before FMT
and to exclude those with overweight or obesity.*® This caution was probably wise, because pa-
tients receiving FMT for CD infection do not gain more weight than those receiving conventional
therapy* after a mean of 3.8 years of follow-up. Overall, whereas these FMT experiments using GF
mice or human recipients showed that IM can transmit weight gain, even with chow diet feeding,
human data remain less conclusive to date.

Intestinal Microbiome and Genetics Affect Lipid Profile in Mice

Compared with conventional mice, GF fed a chow diet*' display reduced fasting systemic triglycer-
ide,”, total cholesterol,® and high-density lipoprotein-cholesterol (HDL-C) levels,*" and reduced
portal triglycerides,* concomitant with increased liver cholesterol and decreased triglyceride con-
tent.> This phenotype is explained by the enhancement of liver cholesterol synthesis (ie, increased
liver gene expression of hydroxymethylglutaryl-coenzyme A [CoA] reductase)®*? and protein level
of the nuclear transcription factor sterol regulatory element-binding proteins® involved in the
upregulation of sterol biosynthesis. Similar to mechanisms involved in weight storage, the diet
and the quality of its lipid content** modulates the IM and its associated lipid phenotype. Upon be-
ing fed an HFD, GF mice display increased triglyceride concentration compared with conventional
mice as seen with direct measures* or lipidomic analysis.** However, the genetic background*
strongly influences IM lipid profile interactions. Indeed, atherosclerotic-prone mice (ie, apolipo-
protein E knockout [ApoE-/-] mice) fed a chow diet and with their IM depleted by broad-spec-
trum antibiotics display increased levels of cholesterol (specifically in very low-density lipoprotein
and low-density lipoprotein cholesterol [LDL-C] particles) compared with conventionally raised
ApoE-/- mice.*? Furthermore, FMT from humans with a high systemic cholesterol concentration
into antibiotic-treated ApoE—/- mice induced a higher cholesterol concentration and intestinal
expression of genes involved in cholesterol absorption in the recipient than in a similar recipient
receiving FMT from human donors with low cholesterol levels.*> Importantly, the IM composition
from donors with high or low cholesterol levels was significantly different,* suggesting the impact
of the modified IM in cholesterol absorption.

The Role of the Intestinal Microbiome on the Lipid Profile in Humans

Large cohort studies have examined the bidirectional relationships between the variation in IM
composition and that of blood lipid levels*#; that is, how much one explained the variability of
the other and vise versa. In 800 individuals from the LifeLines DEEP study, the IM composition ex-
plained 6.0% and 4.0% of triglyceride and HDL-C level variation, respectively, whereas IM hardly
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had any significant impact on LDL-C levels.” On the other hand, the European Union-supported
Metagenomics in Cardiometabolic Diseases (MetaCardis) study evaluated which clinical or biolog-
ical factors explained IM composition variation and to what degree. Therein, triglycerides concen-
trations significantly explained 0.39% of IM composition variation in 764 individuals without any
lipid-lowering drugs.® Studies examining the effect of statins**=* on metabolic health also provide
insights into the role of the IM in lipid metabolism and regulation (detailed in Table 1).

Effects of Bacterial Components, Lipopolysaccharide, Flagella, and DNA on Metabolic Diseases
Because GF mice display an immature immune system, which plays an important role in metabolic
alterations, the role of the IM in metabolic diseases has rather been studied in conventional mice
who have received infusion of bacterial membrane molecules (lipopolysaccharide [LPS]) and in
several genetic models such as knockout (KO) for LPS Toll-like receptors (TLRs).
Long-term LPS subcutaneous infusion in mice recapitulates the altered phenotype of HFD mice: in-
crefased weight gain, insulin resistance, WAT inflammation, increased systemic LPS,* and increased
intestinal permeability, thus linking the IM to metabolic health.***” Again, the diet modulates
the IM and its associated metabolic health.>®** For example, palm oil gavage in mice induces a
rapid disruption of the cell-cell junction within the intestine, an increased gut permeability, and
inflammation®® before any significant weight gain. Noteworthy, some microbial-produced metab-
olites (microbe-associated molecular patterns) are transferred from the gut into the host and
recognized by the innate immune system, mainly through TLRs, to activate inflammatory and ad-
verse metabolic outcomes.? LPS binds to TLR4, a pattern recognition receptor, which activates
the innate immune system® and is highly expressed in the WAT of obese mice, where it induces
a proinflammatory response. Compared with WT mice, TLR4-KO mice fed an HFD display low-
er weight and hepatic steatosis, decreased WAT inflammation, and a switch toward alternative
macrophage polarization.®? Importantly, the specific expression of TLR4 on hematopoietic cells
is mandatory to induce WAT inflammation as well as liver and WAT insulin resistance.®® Several
studies further confirmed the protective metabolic effects of TLR4 deficiency,®*%’as reviewed in
Warmbrunn et al.®® Finally, the relevance of TLR4 was suggested in humans, because TLR4 expres-
sion, protein content, and signaling are higher in the muscle tissue of individuals with obesity and
T2D than in lean controls.®

However, while increased levels of LPS are mandatory to induce major WAT macrophage
infiltration, altered glucose and insulin tolerance occur after the sole colonization of GF mice by
IM, irrespective of the level of microbiota-related LPS production.*® Going further, the compar-
ison of conventional or GF mice proved that the IM regulates numerous liver gene expressions,
in particular those related to LPS transport through Myd88.7° Furthermore, LPS-binding protein
(LBP) impairs insulin signaling in hepatocytes in the presence of low LPS doses in vitro, while by
contrast, pharmacologic LBP blocking improves insulin signaling in vitro and glucose homeosta-
sis in vivo.” Flagella, another bacterial component, influences metabolic diseases. TLR5-KO mice
display hyperphagia” and develop low-grade inflammation and metabolic syndrome as well as
modification of their IM composition compared with their WT counterparts. FMT from TLR5-KO
mice into GF mice replicates the metabolic alterations in the recipients,”” demonstrating the im-
portance of the IM through flagellin-TLR activation to modulate host metabolism. Importantly,
metabolic alterations and modified IM composition originated from TLR5 activation upon intes-
tinal epithelial cells’? but not dendritic cells. ?However, TLR5-KO in dendritic cells abrogated the
intestinal production of interleukin (IL) 22,72 a cytokine involved in intestinal health.” Yet, a recent
study comparing TLR5-KO and WT mice did neither confirm the difference in metabolic alteration
upon being fed the chow diet or HFD nor the differences in IM composition,” suggesting the need
to further investigate the TLR5 pathway. The IM composition in mice from both genotypes in this
study was considerably different from the original study, possibly pointing at a major impact of
the environment™ in IM-host phenotype interactions. Noteworthy, a previous study on the impact
of IM and TLRs in the context of liver metabolic diseases (ie, NAFLD/nonalcoholic steatohepa-
titis) also concluded that TLR5 deficiency-related microbiota dysbiosis was not involved in the
exacerbation of NAFLD to nonalcoholic steatohepatitis.?> Nevertheless, dysbiotic microbiota are
involved in NAFLD physiopathology through several mechanisms, including LPS and other TLRs
activation, as reviewed in detail in a previous study.”
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Figure 1. Intestinal microbiota, weight storage, and metabolic health. HFD in conventional mice, depicted
in red, induces intestinal microbiome dysbiosis, decreases fecal content, reduces Fiaf, increases LPL activity,
decreases indole production, thus upregulating miR-181, and decreases insulin signaling. By contrast, in GF
mice or in conventional mice with beneficially modified intestinal microbiota, weight storage is prevented by
(1) the increase in intestinal Fiaf, which inhibits LPL in the WAT, (2) the increase in stool quantity and fecal lip-
id content, (3) increased b-oxidation in the liver and muscle, (4) the increase of tryptophan-derived indoles,
which downregulates miR-181, thus improving insulin signaling and beiging of WAT, and (4) WAT undergoes
beiging through M2 signaling, leading to increased energy expenditure. Likewise, resveratrol and GE are able
to modulate the intestinal microbiome beneficially and promote WAT beiging. GE increases E faecalis and
myristoleic acid, both of which replicate the WAT beiging effects, when they are supplemented to mice.

Translating these results in human studies is challenging. Nevertheless, some recent indi-
rect evidence confirms the interaction between the microbiome and metabolic diseases in humans.
While the presence of bacteria had previously been suggested in the blood” or within metabolic
tissues,’®”” probably due to increased intestinal permeability, these features were recently con-
firmed by an independent group and showed associations with metabolic alterations.” A carefully
controlled study confirmed the higher presence of bacterial DNA in the liver and omental WAT of
individuals with morbid obesity”® compared with subcutaneous WAT and mesenteric WAT. Indeed,
several types of controls during each analysis step demonstrated that bacterial DNA presence in
WAT was not due to environmental contamination, by contrast to plasma. Moreover, microbial
species evenness (determined by a-diversity using Shannon'’s index) was significantly lower within
the mesenteric WAT of obese individuals with T2D than those without,”® mirroring the decreased
IM bacterial diversity in individuals with obesity and metabolic alteration."™" Furthermore, the
mesenteric WAT bacterial signature of T2D individuals (ie, increased Enterobacteria’®) also mirrors
that of the IM from patients with insulin resistance.”? Overall, these studies indicate that the IM,
some of its components, or both are modified by the qualitative aspects of the diet and may be
involved in weight storage, lipid profile, and insulin resistance.

Mechanisms of Intestinal Microbiome in Weight Regulation

Energy Extraction From Food, Handling, and Storage

IM produces enzymes to break down indigestible carbohydrates by the host. Compared with
conventional mice, GF mice fed an HFD or antibiotic-treated mice fed a chow diet’*#° display de-



creased digestive absorption, as shown by increased 24-hour stool quantity*? and caloric fecal
content.?"3? Interestingly, decreased digestive absorption is a common mechanism involved in the
IM-lipid profile interaction, because GF mice also display a 40% higher lipid (ie, total, cholesterol
and triglyceride) fecal content®? (Figure 1). This differential energy extraction from food partly
originates from IM functional properties, which may differ according to the donor corpulence.™#!
Compared with lean mice, cecal IM from obese mice are enriched in enzymes breaking down in-
digestible carbohydrates by the host,* leading to increased production of short-chain fatty acids
(SCFA), the end-products of the fermentation process® involved in energy storage.®? Nevertheless,
conflicting results™¢818 are found, thus warranting more research in the field.

IM inhibits fiaf gene expression to increase lipid storage in WAT. Compared with conven-
tional mice, GF mice display increased expression of intestinal and WAT fiaf, an inhibitor of lipo-
protein lipase (LPL) activity.? Upon microbiota conventionalization, fiaf decreases, thus enhancing
LPL activity, which leads to WAT lipid storage.®* Moreover, while fiaf-KO GF mice are no longer
protected from diet-induced obesity,** transgenic mice overexpressing fiaf display lower adiposity
than their WT littermates.® These results highlight the important dialog between the IM, the in-
testine, and WAT to store energy.

GF mice are also protected from diet-induced obesity through increased muscle and liver
B-oxidation.* First, GF display increased phosphorylated adenosine 5’ monophosphate-activated
protein kinase.** Second, fiaf increases peroxisome proliferator-activated receptor-gamma coact-
ivator-la (PGC-1a), which regulates positively B-oxidation genes. Likewise, fiaf-KO GF mice show
increased genes involved in fat oxidation.*

Beiging of the White Adipose Tissue

A recent discovery suggests that the IM regulates body weight through its role in WAT beiging
and increased energy expenditure® (Figure 1), a mechanism common to its role in insulin resis-
tance. Compared with room temperature (RT), mice exposed to cold (ie, 4°C) modify their IM
composition, increase energy expenditure, and reduce body weight despite higher caloric intake.”
FMT from cold-exposed mice into GF recipients fed a chow diet recapitulates the decrease in body
weight and fat mass, improved insulin sensitivity, increased energy expenditure, and development
of WAT beiging (histologic changes and increased uncoupling protein 1 [UCP1]),”” compared with
FMT from RT-exposed mice. These data suggest an interplay between cold-modified IM and WAT
beiging, where the role of the LPS and LBP axis has been emphasized. Indeed, cold-exposed mice
display reduced LBP and increased WAT expression of UCP1.88 LBP-KO mice have increased WAT
beiging and decreased body weight on both chow and HFD compared with WT mice.®® Notewor-
thy, after initial weight loss, weight from cold-exposed conventional mice stabilized in the lon-
ger-term and originated from intestine adaptation,’”” namely, a major increase of the digestive
absorptive surface. This intestinal adaptation was also replicated upon “cold” microbiota transfer
to GF mice, suggesting the importance of the cross talk between IM and the host to maintain body
weight.”

GF or antibiotic-treated conventional lean or obese (ob/ob or HFD-induced) mice raised
at RT (ie, 22°C) or thermoneutrality (ie, 30°C) also display reduced adiposity and a switch toward
a decreased number of large adipocytes and an increased number of small adipocytes together
with functionally active beige adipocytes within WAT® with increased thermogenic capacity.®’ By
contrast, FMT from conventional mice into GF led to the reverse phenotype.

This induced beiging originates from increased M2 macrophages and their related cyto-
kine production in WAT (IL4, IL5, and IL13),% confirming previous findings.*® Microbiota-depleted
mice KO for type 2 signaling are not able to induce beiging and display adverse metabolic alter-
ations, suggesting that the IM is involved in this beiging effect through anti-inflammatory type 2
cytokine production in WAT.# Nevertheless, a recent study challenged those results and rather
observed that IM depletion negatively regulated WAT beiging, both in antibiotic-treated mice orin
GF at RT or at thermoneutrality.2° The high variability in IM composition across different settings,
could partly explain these discrepant results. Whether IM plays a role in beiging still warrants
more studies.
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Figure 2. Role of intestinal microbiota in lipid metabolism. (A). GF mice have reduced lipid and cholesterol
absorption and decreased portal triglyceride levels seen together with an increase of hydroxymethylglutaryl
(HMG)-CoA reductase activity and sterol regulatory element-binding protein 2 (SREBP2) expression. Circu-
lating lipids are decreased, but hepatic cholesterol and triglycerides are increased. GF mice also have higher
expression of Fiaf in the gut, which inhibits LPL activity, resulting in decreased lipid storage. (B) Mice colo-
nized with specific bacteria produce SCFA upon fiber supplementation, which increases de novo free fatty
acid (FA) synthesis through GPR43 activation, leading to increased circulating MUFA and decreased PUFA.

Indoles, Tryptophan-Derived Microbial Metabolites Control Adiposity via MicroRNAs in
White Adipose Tissue

Some microbial-produced metabolites control the expression of microRNAs (miRs) in WAT,
namely the miR-181 family, which in turn regulates energy expenditure and body weight®' (Figure.
1). miR-181is notably induced in the WAT of diet-induced obese mice and in obese individuals. By
contrast, compared with WT mice, miR-181-KO mice fed an HFD are protected from developing
obesity. They display reduced WAT, smaller adipocytes, and increased energy expenditure.
*miR-181 controls the expression of genes involved in metabolic fitness,*?adipocyte function, and
insulin signaling. Furthermore, GF mice have lower miR-181in their WAT than conventional mice.
FMT from conventional to GF mice induces the increase of miR-181in the WAT of recipients, sug-
gesting a role of the IM in this miR regulation.

Finally, reduced tryptophan-derived microbial metabolites (ie, indoles) during obesity, as
detailed below, leads to increased miR-181in WAT. By contrast, indole administration decreases
miR-181 within the WAT and protects against diet-induced obesity, a phenotype not seen in miR-
181-KO mice, demonstrating the obligatory role of the cross talk between the IM, its produced
metabolites, and miR within the WAT to control weight.”" Altogether, accumulating evidence sug-
gests a role of the IM in weight storage, with detailed mechanisms studies in animal models, yet
warrants their evaluation and confirmation in humans.

Some indirect evidence has aimed to address the relevance of mice studies in humans. In
a cohort of individuals with obesity, with or without insulin-resistance assessed by the euglyce-
mic-hyperinsulinemic clamp, insulin sensitivity-associated IM composition was correlated with
WAT gene expression involved in beiging (UCP-1and PR domain containing 16 [PRDM16]). Howev-



er, this study did not evaluate whether these brown adipose tissue (BAT) genes were also correlat-
ed with body weight or adiposity.

Second, in morbid obesity, LBP gene expression negatively correlates with UCP-1 and
PRDM16 within the WAT.8 Future human research will need to confirm the link between the IM and
the presence of WAT beiging markers as well as the BAT activity by positron emission tomography
imaging with radiotracers.®* ** This could be addressed before and after a 7-day antibiotic cocktail,
as previously described in trimethylamine N-oxide (TMAO) studies.®**” Previous studies, however,
using solely 1 antibiotic for 7 days (ie, vancomycin or amoxicillin) led to only modest changes in
WAT? and no change in total body weight, no effect in adipocyte size, yet increased expression of
genes involved in increased oxidative metabolism. Markers of beiging were not assessed. Finally,
an interesting line of future translational research is to explore in humans whether strategies such
as polyphenol use modifying IM composition lead to decreased weight through increased beiging.

Functional Mechanisms Involving the Intestinal Microbiome in Lipid

Metabolism
Clearance and Intestinal Absorption

The use of a lipid challenge has enabled researchers to demonstrate that GF mice fed an HFD
have increased triglyceride concentrations due to reduced postprandial triglyceride clearance.** %
This originates from LPL inhibition secondary to increased fiaf in the absence of the IM.* Recent
data from a radiolabeled lipid challenge®**> have now also demonstrated that the IM is involved in
small-intestine lipid*2and cholesterol* digestive absorption. Indeed, after LPL-inhibitor treatment
enabling to solely study the absorption pathway, triglyceride and cholesterol absorption was de-
creased in GF mice compared with conventional mice that received LFD. Because an HFD is not
able to restore systemic lipid levels in GF mice after an LFD, this proved the obligatory role of the
IM in lipid absorption.

32 Importantly, an HFD modifies IM composition within the ileum and jejunum. Subsequently, FMT
using jejunum IM from HFD mice into GF recipient (fed an LFD or HFD??) restored lipid absorption
to the same extend as that seen in conventional mice. This experiment demonstrates the impor-
tance of the small IM and the diet (here the HFD, which modulates the IM) in its related-lipid
absorption (Figure 2). Furthermore, HFD-induced changes in the IM (ie, for example Lactobacillus
rhamnosus and Clostridium bifermentans) are involved in microbes-host interaction to increase
lipid absorption in the digestive tract® through bioactive mediators® able to increase the expres-
sion of diacylglycerol O-acyltransferase, an enzyme involved in triglyceride biosynthesis.”

Microbial Signals Involved in Lipid Profile
IM-produced metabolites or IM-modulated signals are involved in lipid metabolism (Figure 2). Bile
acids, which are modulated by the IM, are involved in lipid metabolism through host farnesoid X
receptor and G-protein-coupled bile acid receptor (TGR5), which have already been reviewed in
detail elsewhere.”®

SCFAs, derived from dietary fiber digestion by IM, serve as the fuel for host lipid synthe-
sis.”®' A recent study comparing GF and conventional mice, using lipidomic, liver gene expression,
and liver proteome analysis, confirmed that pathways involved in lipid metabolism were increased
in GF mice,"? which translated into increased circulating levels of saturated (SFA) and polyun-
saturated fatty acid (PUFA), whereas conventional mice had increased levels of monounsaturat-
ed fatty acids (MUFA), thus improved lipid profile. Indeed, compared with SFA, MUFA decreases
postprandial triglycerides and induces a shift from small dense LDL-C particles to larger less ath-
erogenic ones,'® leading to reduced cardiovascular events in human randomized controlled trial.
By contrast, while w-3 PUFAs are beneficial on cardiovascular disease health and lipid profile, w-6
PUFAs are associated with no change or with increased LDL-C particle size."

Radiolabeled studies confirmed that microbial-derived acetate is involved in increased
fatty acid de novo synthesis. Interestingly, antibiotic-treated mice displayed decreased fatty acid
de novo synthesis.’® The importance of the IM in these mechanisms involving SCFA, was further
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Figure 3. Summarized effects of intestinal microbiota and microbiota-derived metabolites on metabolic
health. (A) HFD results in obesity and altered intestinal microbiome composition, termed dysbiosis. It is
associated with intestinal inflammation and decreased intestinal tight junctions (ie, increased intestinal
permeability), thus facilitating the translocation of microbiota- derived molecules such as flagellin and LPS
into the circulation, where LPS is bound to LPS-binding protein. LPS activates TLR4, which is associated with
liver steatosis and altered insulin signaling. TLR5 activation by flagellin results in hepatic gene expression
modulation. LPS activates TLR4-mediated inflammatory response within the WAT, and bacteria traces have
been found in individuals with obesity and dysbiosis. (B) The breakdown of several amino acids is altered
in obesity. Histidine is metabolized by the intestinal microbiota into the metabolite imidazole propionate,
which has been shown to result in insulin receptor degradation. Increased levels of circulating BCAA in obe-
sity have been associated with impaired fatty acid and b- oxidation as well as impaired glucose homeosta-
sis. Tryptophan can be processed by the intestinal microbiota in 3 different ways. Dysbiosis increases IDOT1
activity, leading to increased kynurenine. Dysbiosis during obesity decreases the AhR pathway, leading to
decreased indole production, thus reducing its inhibitory effect on inflammation, and decreased IL22 levels,
which facilitates intestinal interstitial inflammation. Dysbiosis also increases the tryptophan hydroxylase 1
(TpH1) pathway, resulting in increased serotonin production, which could influence satiety.

confirmed when specific pathogen-free mice were fed cellulose or fiber, where solely the latter
is degraded into SCFA by the IM. Indeed, upon fiber supplementation and not cellulose, specific
pathogen-free mice displayed increased levels of MUFA and decreased levels of PUFA."°? Impor-
tantly, SCFAs play their role through G-protein-coupled receptor 43 (GPR43) activation. Indeed,
whereas acetate suppresses insulin-induced glucose and fatty acid uptake in adipocytes of WT
mice, this is not the case in GPR43-KO mice.”® Furthermore, although WT mice have normal WAT
LPL activity, it is significantly increased in GPR43-KO mice and, by contrast, decreased in mice
with GPR43 overexpression. These differences in LPL activity are abolished in WT or GPR43-KO GF
mice, confirming that insulin-signaling suppression in the WAT alters lipid metabolism through
the IM-acetate-dependent GPR43 pathway.!**

Finally, a recent human study confirmed that circulating triglyceride levels were negative-
ly correlated to the butyryl-CoA-acetate CoA-transferase pathway within the IM, the most com-
mon butyrate production pathway in colon bacteria,* again confirming the link between SCFA,
IM, and lipid concentrations in humans. Interestingly, intervention studies have shown that oral
butyrate supplementation affects plasma lipids and IM differentially in lean vs metabolic syn-
drome individuals.'®®

Functional Mechanisms Involving Microbial Metabolites in Insulin Resistance



The development of insulin resistance is orchestrated by a complex interplay of different metabo-
lites that influence insulin signaling and inflammatory processes. As already described in the lipid
section, several IM-derived metabolites (namely, amino acids and their downstream metabolites)
influence insulin resistance®® (Figure 3).

Imidazole Propionate

Imidazole propionate, produced by the IM from degradation of the amino acid histidine, is in-
creased (1) in vivo in diabetic compared with healthy individuals or those with glucose intoler-
ance, and (2) in vitro in a gut stimulator where feces from diabetic individuals are challenged with
histidine compared with feces from nondiabetic individuals. Furthermore, injection of imidazole
propionate in mice increases fasting and postprandial glucose levels through impaired insulin sig-
naling.”

Tryptophan-Derived Metabolites

Tryptophan is another important amino acid that influences host metabolism through its metab-
olites produced by 3 major fermentation pathways orchestrated by both the IM and gastrointes-
tinal cells. A previous review'”” showed tryptophan (1) can be broken down by the IM into indoles
and its derivative known to be aryl hydrocarbon receptor (Ahr) ligand, (2) can be metabolized
through the kynurenine pathway in immune and epithelial cells through the enzyme indoleamine
2,3-dioxygenase 1 (IDO1), whose activity is modulated by the IM, and (3) can lead to serotonin
production by tryptophan hydroxylase 1in enterochromaffin cells. These pathways are altered in
metabolic diseases.

Indoles. A study of individuals with obesity and metabolic syndrome compared with
healthy individuals™® found indoles are reduced, whereas kynurenine is increased in the feces. In
agreement, in vitro studies objectified a decreased AhR feces activity during metabolic diseas-
es. These results were confirmed in HFD and ob/ob mice compared with controls along with the
observation that IM composition significantly differed between groups. IL22 intestinal expression,
the end-product of AhR activity,'”’ is also decreased in the colon of HFD mice.’® FMT from HFD
mice into GF recipient recapitulated the decreased AhR fecal activity in the recipient compared
with FMT from controls. By contrast, HFD mice treated with AhR agonist or with a bacteria able
to produce high AhR ligand™ improved their glucose metabolism and rescued IL22 intestinal ex-
pression, albeit with no changes in IM composition.””® These data demonstrate the role of altered
IM composition in defective AhR activity during metabolic disorders. Interestingly, during obesity,
intestinal inflammation, evaluated by CD3 infiltration within the epithelium is increased™ and
negatively correlates with AhR and IL22 gene expression."™ Furthermore, while palm oil feeding
disrupted the epithelial tight junction and induced epithelial inflammation, treating those mice
with an AhR agonist restored tight junctions™ and improved intestinal inflammation, yet was not
sufficient to prevent palm oil-induced increased intestinal permeability.

Progress in mechanistic understanding has been made. The use of AhR agonists improved
HFD-induced intestinal permeability.”” ™ Likewise, although HFD mice displayed reduced gluca-
gon-like peptide 1 (GLP-1) production, it increased with AhR agonist treatment both in vivo and in
vitro and, in contrast, was completely abolished in vitro with AhR antagonist treatment.”® Indole
metabolites, derived from the Ahr pathway, stimulated the release of GLP-1after a short exposure
in vitro, yet decreased its production after longer exposure.™ Overall, this shows how bacterial
metabolites can modulate host metabolism through GLP-1 effects on satiety and insulin release
by pancreatic B-cells.™ A recent study further demonstrated that supplementing HFD mice with a
plant-based AhR agonist improved glucose and insulin tolerance, together with reduced intestinal
and WAT inflammation, improved intestinal permeability, and increased intestinal IL22 produc-
tion compared with control HFD mice."

Kynurenine. Tryptophan is also metabolized into kynurenine via the rate-limiting enzyme
IDO. Compared with lean individuals, obese patients display reduced circulating levels of tryp-
tophanTrp™ and an increased kynurenine/tryptophan ratio™™ indicating increased IDO activity.
The increased kynurenine/tryptophan ratio is confirmed in overweight/obese individuals with
the metabolic syndrome.™ In obesity, systemic inflammation correlates positively with the ky-



nurenine/tryptophan ratio and negatively with tryptophan

"and indoles, suggesting that IDO is induced during inflammation as demonstrated in vitro.°
Furthermore, IDOT1 inhibits the anti-inflammatory cytokine IL10 in mice, and double-deficient
IDOT/IL10 mice develop severe colitis, further linking tryptophan metabolism to inflammation.”
Moreover, IDO1 is activated in the WAT of obese individuals™'? and HFD mice.”™ By contrast,
IDO1-deficient mice fed an HFD are protected against obesity, WAT inflammation, liver steatosis,
and insulin resistance. Pharmacologic inhibition of IDO1 leads to similar findings.

By contrast, antibiotic-treated IDO1-deficient or WT mice fed the HFD do not display the
previously observed phenotype difference, pointing at the IM contribution in these outcomes.”
Furthermore, upon cohousing, the dominant phenotype is the protective one displayed by
IDO1-deficient mice rather than that of WT mice fed the HFD. IDO1-deficient mice fed the HFD
also show a profoundly different IM composition that results in differential functionality: HFD
mice (with increased IDO1 activity) display increased kynurenic acid and fewer indoles compared
with IDO1-deficient mice.””* Overall, HFD dysbiosis induces a shift in the tryptophan degradation
process toward an increased kynurenine pathway. IDO1-deficient mice maintain intestinal barrier
function by IM-dependent IL22 production, thus linking altered IM composition, metabolites, and
metabolic health.™

Interestingly, mice prone to develop atherosclerosis (LDL receptor KO) upon being fed the
HFD display increased kynurenin/tryptophan ratio, which is suppressed in double KO mice (LDL
receptor and IDO-KO), thus displaying a link between the altered tryptophan pathway and car-
diovascular complications.” In humans, kynurenic acid is increased in patients with obesity,'?>"*
metabolic alterations,”™™> and in patients with coronary artery diseases * and is a good predictor
of an increased risk of acute angina.” ™ This could explain recent findings where patients with
coronary artery disease display severe IM dysbiosis in composition”® and function as seen with
enhanced tryptophan metabolism in patients with cardiovascular disease.”””

Serotonin. Finally, during obesity and metabolic diseases, tryptophan conversion toward
serotonin precursor 5-hydroxytryptamine synthesis is decreased, due to tryptophan activated
transformation through the kynurenin pathway." This could be a common mechanism involving
the IM to obesity because serotonin and its precursors are involved in satiety in the brain.™° Se-
rotonin cannot pass the blood-brain barrier; therefore, the brain depends on distribution of tryp-
tophan and the intermediate precursor 5-hydroxytryptophan by blood. In agreement, serotonin
levels correlated negatively with BMI in a cohort composed of lean to overweight individuals.™
Literature remains scarce on the relation between IM, circulating serotonin concentrations, and
weight and metabolism, nevertheless with existing conflicting results.®? Therefore, that field still
warrants more in-depth mechanistic studies in mice and their subsequent translation into hu-
mans.

Branched-Chain Amino Acids

Branched-chain amino acids (BCAA) (ie, leucine, isoleucine, and valine) are partly produced and
metabolized by the IM,™ but their pathophysiological involvement in insulin resistance is not en-
tirely elucidated.® Increased BCAA circulating levels are associated with insulin resistance.®*'*
Mice fed a BCAA-restricted diet lose weight, and glycemic control is improved.®*"*” Moreover, a
recent randomized controlled trial included T2D individuals who consumed a BCAA-restricted
diet, which resulted in decreased systemic BCAA levels, improved oral glucose sensitivity index,
decreased postprandial insulin secretion, and modified the IM composition™® compared with indi-
viduals who consumed a normal control diet.

Increased circulating BCAA levels could arise from an inability to sufficiently catabolize
BCAA,™ as shown in WAT of humans with insulin resistance.**" Newgard? proposed another
possible mechanism, where the increased BCAA pool spills over into the catabolic pathway with-
in the liver and muscle. Therein, the produced metabolites would reduce the efficiency of fatty
acid and glucose oxidation.”? While this shift between the substrate for oxidation is mandatory
to maintain healthy metabolic flexibility,"** metabolic inflexibility occurs in obese individuals."*

Patients with insulin resistance or obesity display a dysbiotic IM with increased capacity
of BCAA synthesis and decreased BCAA catabolism'3¢; however, whether and how the IM can
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Table 2. abbreviations: AGB, adjustable gastric band; BS, bariatric surgery; HbA1lc, glycated hemoglobin;
HOMA-IR homeostasis model assessment-insulin resistance; IGT, impaired glucose tolerance; MO, morbidly
obese; qPCR, quantitative polymerase chain reaction; RCT, randomized controlled trial; RYGB Roux-en-Y
gastric bypass; SG, sleeve gastrectomy; VBG, vertical banded gastroplasty; VLCD, very-low-calorie diet; VSG,
vertical sleeve gastrectomy.

influence circulating BCAA levels still remains unclear. GF mice receiving FMT from an obese twin,
whose gut microbiota is enriched in genes involved in BCAA biosynthesis, display higher BCAA cir-
culating levels than GF mice receiving FMT from a lean twin. Likewise, FMT from insulin-resistant
individuals into GF mice replicates the insulin-resistance profile with increased circulating BCAA
levels.

2 Furthermore, individuals with a dysbiotic IM with decreased capacity to catabolize BCAA display
higher levels of circulating BCAA,

5 suggesting that the IM is partly responsible for the circulating levels of BCAA during obesity.*

Exercise intervention studies that modulate the IM composition™ corroborate this. Indi-
viduals with prediabetes who participated in a 12-week intensive exercise training program dis-
played heterogeneous responses. Those with improved insulin sensitivity displayed significant IM
changes compared with nonresponders, namely, a decrease in Prevotella copri(involved in BCAA
synthesis) and an increase in genes involved in BCAA catabolism, which translated into reduced
circulating BCAA levels. Finally, FMT from responders leads to reduced circulating BCAA in GF
recipients compared with FMT from nonresponders.'#

Likewise, berberine, which has shown its beneficial effects on insulin-resistance and its
ability to modify the IM," was tested in HFD mice. Berberine supplementation leads to reduced
weight gain and improved insulin sensitivity along with modified IM functions toward reduced
BCAA synthesis and increased BCAA catabolism. This translated into reduced circulating BCAA
levels."®

Short-Chain Fatty Acids

By contrast, SCFAs are among the microbiota-derived metabolites with beneficial effects on host
metabolism. Microbiome-wide association studies in human confirmed the beneficial effects of
SCFA on insulin sensitivity."® Butyrate oral supplementation improves insulin-sensitivity and de-
creases weight through increased energy expenditure in HFD mice.® The effect of SCFA on the
improvement of insulin sensitivity has been reviewed in detail elsewhere.™

Strategies Modifying the Intestinal Microbiome to Improve Metabolic Alter-
ations

A number of strategies aiming at modifying the IM are available to improve metabolic health, as
previously reviewed in detail.2¢™2™>* They include probiotics,™ multistrain probiotic cocktails,*>¢°
third-generation probiotics, prebiotics, symbiotics, and nutrients with prebiotic or probiotic ac-
tivities.™ Importantly, although their efficacy and mechanism of action has been relatively well
proven in animal studies, translation to humans sometimes results in controversy or positive yet
minor effects. By contrast, other therapeutics, such as FMT,* now represent a novel therapeutic
tool in metabolic diseases that has been tested in several human studies, where it objectified its
effects on improved insulin-sensitivity, yet not on weight loss as detailed in Table 2.

Bariatric surgery, which can dramatically improve weight and insulin resistance, rep-
resents another example where numerous human studies have demonstrated its effect on mod-
ifying the IM.
¥ Furthermore, some of these microbial changes are associated with weight loss or improvement
in insulin resistance or T2D."""%2 They are summarized in Table 2.

Finally, some drugs, such as statins or metformin, also modify the IM, which partly ex-
plain their related clinical improvement (summarized in Table 1).

We chose to only focus on recent dietary interventions that induce metabolic improve-
ments and changes in IM composition through the above-described mechanisms.



Caloric Restriction

Lean mice fed a diet with a 40% caloric restriction (CR) lose weight and adiposity while stabiliz-
ing their lean mass. They display a switch toward M2-macrophage polarization within the WAT,
improvement in insulin sensitivity, together with major changes in the IM composition and func-
tionality'®*™*(Figure 1). FMT from CR mice into GF recipients replicates beneficial phenotypes com-
pared with FMT from controls, despite no difference in food intake, both at room temperature
or thermoneutrality. Mechanistic studies™*'* showed that GF mice receiving FMT from CR mice
developed WAT beiging phenotype. By contrast, GF or antibiotic-treated mice under similar CR do
not display these improvements, pointing at the importance of the modified IM in these CR-in-
duced beiging effects.s*

This beiging phenotype probably involves decreased LPS biosynthesis, leading to reduced
TLR4 activation because mice treated with TLR4 inhibitors or in TLR4-KO mice display the same
phenotype observed upon CR. These recent data partly confirm previous findings, where mice
maintained on life-long CR showed improved lifespan, weight, and metabolic health, both under
LFD and HFD."¢ CR durably modifies the IM composition together with reducing circulating LBP,"®’
yet the LPS/TLR4 pathway and WAT beiging were not assessed.'”” Although a first human trial did
not confirm those findings, WAT beiging was solely evaluated in specimens of WAT biopsy per-
formed at room temperature,*® emphasizing the need for more translational research in this field.

Intermittent Fasting
Animal studies support the notion that intermittent fasting or time-restricted feeding improves
metabolic health.”® Human studies performed in overweight or obese individuals replicate these
beneficial effects.”®"”! A recent randomized controlled trial found that CR and intermittent fasting
similarly induced weight loss and metabolic improvement.” Mice studies further substantiated
the role of the modified IM in these improvements. Compared with mice fed ad libitum, lean mice
who underwent 15 cycles of intermittent fasting displayed reduced body weight and adiposity de-
spite similar food intake.” This was due to increased energy expenditure through lipid utilization
and WAT beiging (demonstrated by increased multilocular adipocytes and UCP-1gene expression),
which occurred before weight loss. Similar findings were replicated in diet-induced obese mice.

The obligatory role of the IM in intermittent fasting-induced weight loss via WAT beig-
ing”*was proposed based on several observations. First, intermittent fasting modifies the IM com-
position. Second, FMT from intermittent fasting mice into microbiota-depleted mice replicates
the beneficial phenotype compared with FMT from ad libitum mice. Third, microbiota-depleted
mice submitted to intermittent fasting do not display this beneficial phenotype. Likewise, 28 days’
intermittent fasting in db/db mice induced weight and adiposity reduction and improvement in
insulin sensitivity despite no change in caloric intake.? Circulating LPS decreased and gut per-
meability improved. Concomitantly, diabetic-induced anxious behavior as well as synapse ultra-
structure and insulin brain signaling improved, highlighting the importance of a gut-brain axis in
these improvements. Antibiotic treatment partly abrogated these intermittent fasting-induced
beneficial effects, substantiating the role of the IM in these phenomenons.?

Translational research in human is now warranted to evaluate whether intermittent fast-
ing or time-restriction feeding also modulates the human IM, explaining metabolic health im-
provements. Only 1 pilot study in humans with obesity who underwent 12 weeks of time restric-
tion feeding observed a significant yet small weight loss. Nevertheless, using 16S-pyrosequencing,
no significant change in IM diversity or composition at the phylum level was observed. Whether
some modifications occurs at a lower taxonomic level has not been evaluated.” Two randomized
controlled trials are currently registered at ClinicalTrials.gov (NCT04355910 and NCT03608800)
to further substantiate the effect of intermittent fasting or time restriction feeding on metabolic
health and the IM.

Dietary Supplementation Recapitulates Beiging of Adipose Tissue in Mice
Polyphenol supplementation also provides evidence of the link between the IM and WAT beiging
(Figure 1). First, compared with controls, resveratrol-supplemented lean mice display increased



energy expenditure, BAT gene expression (ie, UCP-1, cidea,” PRMD16,”> and PGCla") and de-
creased WAT depots.”” Similar results were obtained after 10 weeks of resveratrol supplemen-
tation in db/db mice along with IM modifications as well as in a model of diet-induced obesity.”
By contrast, treating those mice with antibiotics abrogated the increased WAT beiging and BAT
activity, confirming the role of the IM in these phenomena.” Finally, FMT from resveratrol-sup-
plemented mice into recipient mice replicated the increased WAT beiging capacity, whereas no
change was observed with FMT from control mice.” Interestingly, resveratrol supplementation
also protected mice from major HFD-induced weight gain, despite similar energy intake to control
mice on HFD. Resveratrol supplementation similarly reversed HFD-induced gut microbiota alter-
ation toward a composition similar to chow-fed mice. FMT from resveratrol-supplemented mice
(fed an HFD or chow diet) replicated in recipients the decrease in body weight, the reduced adi-
posity, and increased WAT beiging capacities (ie, increased markers of BAT within the WAT: UCP-1,
PGC-1a, PPARy,™° and SIRT-1%" gene expression as well as protein content.”

Concordant results were replicated in HFD mice supplemented with other polyphenol ex-
tracts (ie, grape extract from cabernet sauvignon wine).®® Compared with controls, polyphenol re-
duced body weight and WAT depots, increased energy expenditure, and restored HFD-induced IM
dysbiosis. Polyphenol-induced beiging occurred through modulation of bile acids that upregulate
G-protein-coupled bile acid receptor (TGR5), at the gene and protein level, in the BAT, together
with genes involved in thermogenesis. Finally, upon cold exposure, this polyphenol-induced BAT
increase was indeed functional, as displayed by increased thermogenesis and glucose uptake mea-
sured by positron emission tomography-computed tomography.’

Ginseng extract (GE), which modulates the IM in rats,® also induces WAT beiging, thus
limiting weight gain. GE supplementation in db/db mice resulted in decreased weight and adiposity
and in increased energy expenditure compared with control mice despite similar energy intake.”*
These phenotypes were accompanied by increased BAT activity (ie, increased UCP-1and oxidative
phosphorylation staining in BAT and WAT), a phenomenon that was absent at thermoneutrality.
Interestingly, GE supplementation led to increased Enterococcus faecalis in the feces, which in
turn, when supplemented to HFD-fed mice replicated the beneficial phenotype observed upon
GE treatment. This phenotype was not observed at thermoneutrality, again suggesting the impli-
cation of BAT. Finally, GE supplementation also induced a 12-fold increase in systemic myristoleic
acid, a long-chain fatty acid that E faecalis is able to produce thanks to its genetic machinery.
Myristoleic acid supplementation in db/db mice replicated the beneficial phenotype observed af-
ter both GE or E faecalis, notably its role in inducing BAT activity and WAT beiging. Important-
ly, the beneficial effects observed upon GE, E faecalis or myristoleic acid supplementation were
abrogated in a model of mice KO for the enzyme able to synthesize myristoleic acid, thus firmly
confirming the role of microbial-produced metabolites in reducing weight through increased BAT
activity.’®

Therapeutic Innovation

New therapeutic nutritionally derived strategies are also under development to target the IM and
the metabolites it produces with subsequent health benefit. For example, in the atherosclero-
sis field, TMAQ, a microbial metabolite produced from dietary choline or carnitine, is involved in
atherosclerosis,” whereas 3,3-dimethyl-1-butanol (DMB), a nontoxic compound found in olive oil
or red wine, acts as a substrate mimicking choline and functions as a potent TMA lyase inhibitor.
DMB prevents TMAO production and leads to reduced atherosclerosis®®'®” in mouse models. Such
strategies, targeted at the production of microbial-derived indoles, kynurenine, BCAA, or imidaz-
ole propionate, which display adverse metabolic effects, would appear as promising therapeutic
perspective to improve metabolic diseases and should be evaluated in mice models before turning
to humans.

Another example implies the caseinolytic protease B (ClpB) protein produced by bacteria,
which is an antigen-mimetic of the anorexigenic a-melanocyte stimulating hormone.™® Oral ga-
vage with WT Escherichia coli (thus producing ClpB) leads to reduced food intake and lower body
weight than oral gavage with ClpB-deficient E coli both in lean™® and ob/ob mice.” In vitro studies
show that bacterially produced ClpB stimulates peptide YY secretion by intestinal cells,”™® suggest-



ing that this antiobesity effect acts through increased satiety. Interestingly, Hafnia alve HA4597,
a bacteria found in raw milk and cheese, produces 10-times more ClpB than E coli, and its oral
gavage to HFD or ob/ob mice similarly reduces body weight and adiposity compared with con-
trols.®®"'In the human Metagenomics of the Human Intestinal Tract (MetaHIT) cohort, BMI cor-
related negatively with ClpB gene abundance in the IM. Therefore, the food-grade status of Hafnia
alvei HA4597 could lead to its development into third-generation probiotics to treat obesity and
related diseases.

In this regard, a recent study using different dosages of Anaerobutyricum soehngenii (an
anaerobic butyrate producer) improved insulin sensitivity in humans with metabolic syndrome.
Moreover, in this dose-finding study, viability and growth of this strain in the human intestine
could be linked to clinical efficacy.” Yet, human randomized controlled trials are still needed to
translate the beneficial findings of animal studies, as is currently done for Akkermansia muciniph-
ila. This bacterium is associated with improved metabolic phenotypes in mice™® and humans.™ Its
subsequent live or pasteurized use showed minor beneficial outcomes and was safe in humans.”
Nevertheless, its use as a third-generation probiotic in overweight/obese metabolic patients still
needs deeper investigation.”® This last study shows how important human randomized control
trials are to replicate findings demonstrated in vivo or in vitro concerning the IM, its related me-
tabolites, and their effects on host health.

Conclusion

High-throughput sequencing coupled with omic analysis in humans or in different models of
IM-depleted mice, with or without FMT, have shown the important role of the IM and its produced
metabolites in maintaining energy homeostasis and metabolic health. Several mechanisms were
deciphered highlighting causality aspects. Moreover, examples of therapeutic strategies targeting
the IM directly and even the metabolites it produces to improve health outcomes are encouraging
in mouse models. Future studies should now focus on translating these discoveries in humans and
evaluate their clinical relevance.®"’
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