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Abstract
The present paper studies formal properties of so-called modal information logics
(MILs)—modal logicsfirst proposed in (vanBenthem1996) as awayof usingpossible-
worlds semantics to model a theory of information. They do so by extending the
language of propositional logic with a binary modality defined in terms of being the
supremum of two states.
First proposed in 1996, MILs have been around for some time, yet not much is known:
(van Benthem 2017, 2019) pose two central open problems, namely (1) axiomatizing
the two basic MILs of suprema on preorders and posets, respectively, and (2) proving
(un)decidability.
The main results of the first part of this paper are solving these two problems: (1) by
providing an axiomatization [with a completeness proof entailing the two logics to be
the same], and (2) by proving decidability. In the proof of the latter, an emphasis is put
on the method applied as a heuristic for proving decidability ‘via completeness’ for
semantically introduced logics; the logics lack the FMPw.r.t. their classes of definition,
but not w.r.t. a generalized class.
These results are build upon to axiomatize and prove decidable the MILs attained by
endowing the language with an ‘informational implication’—in doing so a link is also
made to the work of (Buszkowski 2021) on the Lambek Calculus.

Keywords Modal information logic Modal logic Axiomatization Completeness
Decidability

Introduction

This introduction is divided into two parts. First, we give a more general introduction,
forwarding the logics of concern and motivating their study. Second, we break down

B Søren Brinck Knudstorp
s.b.knudstorp@uva.nl

1 ILLC & Philosophy, University of Amsterdam, Amsterdam, The Netherlands

123

© The Author(s) 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10992-023-09724-5&domain=pdf
http://orcid.org/0009-0008-9835-4195


1724 S.B Knudstorp

the paper section-by-section, outlining the mathematical issues at hand and how they
are solved, ending with a list of the main results achieved.

Motivation and General Introduction

Aiming to model a theory of information by using the possible-worlds semantics of
modal logic, [15] introduces a modal logic of a single binary modality ‘ sup ’ with
semantics:

x sup iff there exist y z such that y ; z ; and x sup y z

This is motivated by construing the ‘worlds’ as information states; the relation as an
ordering of the information states; and the supremum modality ‘ sup ’ as providing
language for speakingof ‘merge’ (or ‘fusion’) of information states. In accordancewith
this interpretation, modal logics with such a modality are called modal information
logics (MILs).

The main focus of this paper is to study formal properties of MILs, primarily by
providing axiomatizations and proving decidability results. Notably, this study also
includes solutions to open axiomatization and decidability problems posed in [16–18].
However, it is worth emphasizing that there is a non-technical reason for studying these
logics:1 By describing basic patterns of information in- and decrease in qualitative
yet logically precise manners, MILs are (or can be viewed as) attempting to solve a
major problem in the foundations of information, namely that of unifying theories of
information: ranging from ‘quantitative’ theories (such as Fisher information, Shannon
entropy, and Kolmogorov complexity) to ‘qualitative’ ones (more akin to our everyday
usage of the word ‘information’), cf. [1].

Looking at modal information logics in this light, the paper is, foremost, concerned
with the following two questions:

Axiomatization: What are, according to a MIL, the fundamental principles

governing information?

Decidability: Is there an algorithm that given any principle can tell whether

it is a valid principle of information?

Now, for these questions to be well-defined, we must get clear on a principal way in
which MILs can differ, namely in their notion of ‘fusion’: on what class of structures
do we want to interpret the ‘ sup ’-modality – what is our choice of frames? Rather
general are preorders where the modality ‘ sup ’ is defined in terms of quasi-least
upper bounds; i.e., ‘merges’ are not unique but come in clusters. This defines the basic
modal information logic, denoted MILPre. The informational interpretation further

1 In fact, there are many: see [11] for more reasons.
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Modal Information Logics... 1725

suggests examining the case where the relation is also anti-symmetric (resulting in
posets).2 We denote the corresponding logic asMILPos.

After solving the problems of axiomatization and decidability for MILPre and
MILPos, we show that our techniques for doing so extend to the MILs, MIL\-Pre and
MIL\-Pos, obtained by enlarging the language with the modality ‘\’ with semantics

y \ iff for all x z, if z and x sup y z , then x

This extension was suggested in [18], and is motivated under the informational inter-
pretation as an ‘informational implication’: an information state y ‘satisfies’ \ iff
for all information states z and all merges x sup y z of information states y z, if
z satisfies (the antecedent), then the merge x satisfies (the consequent).

It should be noted that connectives with this kind of semantics feature prominently
in several logics: in fact, our informational interpretation is that of the relevance logic
of [13, 14] where ‘\’ is relevant implication; and the symbol ‘\’ is the (left) residual
of the Lambek Calculus [12] – a logic we will make a junction with. Moreover, ‘\’
compliments ‘ sup ’ very naturally: if, say, x sup y z , then ‘\’ accesses this from
the perspective of y (or z) while ‘ sup ’ accesses it from the perspective of x . It is
thus not surprising that the ‘intensional conjunction’ of [13, 14] and the ‘product
connective’ of [12] are analogues of ‘ sup ’.

As observed in [15–18], a final interesting aspect of MILPre and MILPos we want
to mention is that, using ‘ sup ’, the past-looking modality ‘P’ becomes definable,
so by being modal logics of preorders and posets, they mildly extend S4. Moreover,
using ‘\’, the future-looking modality ‘F’ becomes definable as well. Put in this light,
MILPre and MILPos (and MIL\-Pre and MIL\-Pos, respectively) are quite natural exten-
sions of (temporal) S4 obtained by adding vocabulary for describing further structure
of preorders and posets. Thus, seen from a purely mathematical angle, these MILs
can be motivated by an interest in seeking a modal perspective on rather ubiquitous
mathematical structures, namely preorders and posets.

Guide to Sections

Zooming in, in the order as they occur in this paper, we explain the mathematical prob-
lems we will be addressing. Starting off, we examine MILPre and MILPos, motivated
by two central open problems posed by [16–18], namely (1) axiomatizing the logics
and (2) proving (un)decidability. The first three sections of this paper are concerned
with these two problems.

In Section 1, after having formally defined the logics, we, in particular, show that
MILPre lacks the finite model property (FMP) w.r.t. preorders. This proof extends to
all above mentioned MILs on their respective classes of frames as well. Although this

2 Moreover, this interpretation naturally suggests considering the case where any two worlds (or ‘infor-
mation states’), additionally, have a unique merge (resulting in join-semilattices). However, as to keep this
paper within reasonable length, we concentrate on preorders and posets and postpone a study of modal
information logics on join-semilattices (and other structures) for another paper – in line with us setting out
to solve the open problems posed in [16–18].
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1726 S.B Knudstorp

can be taken as a (clear) indication of undecidability, we end the section by explaining
why this need not be, forwarding amethod for proving decidability ‘via completeness’
when dealing with semantically introduced logics (like MILs).3

In Section 2, we provide an axiomatization ofMILPre and prove it to be sound and
strongly complete. We do so by, given a consistent set, constructing a model for it. As
the constructedmodels are, in fact, posets, we get as a corollary thatMILPre MILPos;
thus, solving problem (1) for both logics in one go.

Following the method laid out in Section 1, in Section 3, we, first, use this axiomati-
zation to find another class of structures for which the logic also is complete. Second,
we show that on this class of structures we do, in fact, have the FMP—allowing us to
deduce decidability.

Next, in Section 4, we explore the conservative extensions MIL\-Pre and MIL\-Pos
obtained by adding the informational implication ‘\’. Combining ideas from our study
of MILPre MILPos with some new ones—among which some are ours and some,
more interestingly, are due to work on the Lambek Calculus of [6]—we (i) axiomatize
the logics, (ii) show that MIL\-Pre MIL\-Pos, and (iii) prove them to be decidable.
This crossing with the Lambek Calculus sheds one more illuminating light on modal
information logics: MIL\-Pre MIL\-Pos is the Lambek Calculus (augmented with
classical propositional logic) of suprema on preorders (or posets).

In summary, the main results achieved are:

Axiomatizing MILPre and deducing MILPre MILPos.

Proving MILPre decidable.

Axiomatizing MIL\-Pre and deducing MIL\-Pre MIL\-Pos.

Proving MIL\-Pre decidable.

1 Preliminaries

We start off this section by formally defining the basic modal information logics
(Subsection 1.1). Then, in Subsection 1.2, we, first, show lacks of properties related to
that of decidability, most notably proving that all of the logics of concern lack the finite
model property w.r.t. their respective classes of definition; and then, second, sketch a
general method for proving decidability in cases like ours – a method which we will
employ in Sections 2 and 3.

1.1 Defining the Logics

Definition 1.1 (Language). The basic language M of modal information logic is
defined using a countable set of proposition letters P and a binary modality sup . The
formulas M are then given by the following BNF-grammar

p sup

3 ‘Semantically introduced’ as contrasting logics introduced by a syntactic (or proof-theoretical) definition.
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Modal Information Logics... 1727

where p P and is the falsum constant.

Modal information logics are defined by semantical means; i.e., as sets of M -
validities on classes of structures. Themost general class of interest is that of preorders;
formally, we define as follows:

Definition 1.2 (Frames and models). A (Kripke) preorder frame for M is a pair
W where

W is a set; and

is a preorder on W , i.e., reflexive and transitive.

A (Kripke) preorder model for M is a triple W V where

W is a preorder frame; and

V is a valuation on W , i.e., a function V P W .

For clarity, before defining the next class of structures we will be considering, we
set out the basic modal information logic of preorders in full detail. Having defined
the structures in which to interpret the M -formulas, we are about to define the actual
semantics. In order to do so, we provide the following definition generalizing the
notion of supremum from partial orders to preorders:

Definition 1.3 (Supremum). Given a preorder frame W and worlds u W ,
we say that is a quasi-supremum (or simply supremum) of u and write
sup u iff

is an upper bound of u , i.e., u and ; and

x for all upper bounds x of u .

In general, sup u denotes the set of quasi-suprema of u , and if this happens to
be a singleton , we may write sup u .4

Definition 1.4 (Semantics). Given a preorder model W V and a world
W , satisfaction of a formula M at in (written ‘ ’ or ‘ ’

for short) is defined using the following recursive clauses on :

p iff V p

iff

iff or

sup iff there exist u W such that u

and sup u .

Notions like global truth, validity, etc. are defined as usual in possible-worlds seman-
tics (see, e.g., [4, ch. 1]).

4 Note how sup u on a preorder iff sup u on its ‘skeletal’ partial order .
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1728 S.B Knudstorp

With these notions laid out, we can define the logic as follows:

Definition 1.5 The basic modal information logic of suprema on preorders is denoted
byMILPre, and defined as the set of M -validities on the class of all preorder frames;
that is,

MILPre M W for all preorder frames W

Analogously, we denote by MILPos the basic modal information logic of suprema on
poset frames, i.e., frames W where ‘ ’ is a partial order (viz. an antisymmetric
preorder).

1.2 Road to Decidability

Having formally set out these logics and semantics,we continuewith somepreliminary
remarks. Objective being to get a feel for how the semantics works by stating a few
minor results, and, most notably, showing that the logics lack the FMP w.r.t. their
respective frames of definition; viz., for instance,MILPre does not have the FMP w.r.t.
preorder frames. Foremost, we mention how to express the past-looking modality.

Remark 1.6 Besides the connectives ‘ ’, ‘ ’, ‘ ’, ‘ sup ’, and ‘ ’ being definable
in the standard way, the past-looking unary modality ‘P’ is definable as

P sup

This can be seen by recalling the definition

P :iff there exists such that ,

and observing that also

sup iff there exists such that .5

Using this observation, the first contribution of our paper is to show a lack of the
FMP.

Proposition 1.7 MILPre does not have the FMP w.r.t. preorder frames.

Proof Consider the formula

N H P sup pp H P sup pp

where H P is the dual of P . We claim that N only is satisfiable in infinite
models.6

First, we show that N is, indeed, satisfiable on an infinite model. Accordingly, let
V where

5 Thus, as promised in the introduction,MILPre andMILPos are (quite natural) extensions of S4.
6 The subscript ‘N ’ is short for ‘negative’, as N witnesses a negative property.
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is the set of negative integers;

is the less than or equal to relation on the negative integers; and

V p is the set of even negative integers.

Then , clearly, is a preorder model, and for all z :

z sup pp iff z is even

Thus, for all z :

z P sup pp P sup pp

But then N must be globally true in ; in particular, N is satisfied in , proving
the first part of the claim

Second, to see that N isn’t satisfiable in any finite model, observe that for any
preorder, if two points are situated in the same cluster,7 then they are suprema of the
exact same (sets of) points. It follows that for any preorder model, points in the same
cluster satisfy the exact same ‘ sup ’-formulas (those are: formulas with ‘ sup ’ as
main connective).

With this in mind, it is easy to see that the satisfaction of N necessitates the
existence of an infinite, strictly descending chain: if some N and some i

satisfies, say, sup pp, then, in particular, there must be some i 1 i s.t. i 1
sup pp, whence i 1 must be in a cluster strictly below i . Thus, N cannot be

satisfied in any finite model.

It is worth noting how the proof made essential use of the additional expressive
power of our language compared to that of S4. S4 famously enjoys the FMP w.r.t.
preorders—its language is, so to speak, too weak to distinguish clusters from chains.

Remark 1.8 The above proof applies to the class of posets as well since the frame
was, in fact, a poset, hence neither doesMILPos enjoy the FMP w.r.t. its class

of definition.

Beyond not having the FMP, there are even more indicators of undecidability. For
the purpose of this paper, these are not central, so we mention them without elaborate
proof.

Remark 1.9 MILPre does not have the tree model property (TMP) w.r.t. preorder
frames. That is, there is a formula N which is satisfiable in a preorder frame, but
not in a preorder frame W where W is a reflexive and transitive tree.8

7 For clarity, recall that given a preorder , are said to be in the same cluster :iff .
8 Consult, e.g., [4, ch. 1, def. 1.7] for the definition of a tree and, in particular, a reflexive and transitive
one. Additionally, note how we define the TMP in terms of the converse relation ‘ ’; this is motivated by
the way in which ‘ sup ’ is backward-looking. Otherwise, for the case of ‘ ’, a formula like ‘p sup q
p q p ’ already shows the lack of ‘a TMP’.
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1730 S.B Knudstorp

Proof The following formula is satisfiable but not in a (converse) tree

N p q sup p q p q

H p q P p q H p q P p q

H sup p q 2 p q

Tosee that it is satisfiable, consider the four-elementBoolean algebra a b
with valuation V s.t. a b p q, a p q, b p q, p q.
Then a b N .

To see that it is not satisfiable in a (converse) tree, suppose that some W
x N . Since trees, in particular, are antisymmetric, we may assume that ‘ ’ is a

partial order.9 Then x p q and there are y z s.t. x sup y z , y p q and
z p q. I.e., x y z 3, so y z y. Further, by the second line of N ,
there must be y z s.t. y y p q and z z p q. Now if the partial
order were to be a tree, we would have that x sup y z , but then by the third line
of N , we would have that x p q, which would be a contradiction.

Remark 1.10 Witnessed by the same proof, not having the TMP extends toMILPos as
well.

Observation 1.11 Our modal information logics are neither guarded nor packed (as,
e.g., the guarded and packed fragments do enjoy the FMP).

At first glance, the results of this subsection might make decidability appear
unlikely. But, as it turns out, there is an alternative way of proving decidability, cir-
cumventing these problems. We end this section by laying out our method for doing
so. This will serve two purposes: by describing the method, we hope to (i), generally,
elucidate how and when our method can work as a heuristic for proving decidability,
and (ii), specifically, help the reader get a better grasp of the underlying ideas and
structure of the ensuing two sections of this paper.

We (1) axiomatize the logics (and show that MILPre MILPos), (2) use this to
show the logic(s) to be complete with respect to another class of structures (where the
ternary relation of sup won’t necessarily be the supremum relation of a preorder,
but something more general), and then (3) prove that the logic(s) enjoy the FMP on
this other class of structures, from which we can deduce decidability. So to make the
salient point clear: when dealing with logics introduced by a semantic definition, not
having (e.g.) the FMPw.r.t. the class of definitionmight not be very telling. The reason
being that the resulting logic can very well be complete w.r.t. to another, bigger class
of structures for which it does have the FMP.

9 If we also allowed for general preorders ‘ ’ only satisfying that their skeletal partial orders ‘ ’ are
converse trees, then the proof of noTMPwould go throughby changing the conjunct ‘ sup p q p q ’
in N to the more complicated ‘ sup p q P p q p q P p q ’.
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2 AxiomatizingMILPre

While [18] obtains an axiomatization of a variant of MILPre extended with nominals
and the global modality, the very same paper also inquires finding an axiomatization
without hybrid extensions. In this section, we answer this inquiry, providing a purely
modal axiomatization. In Subsection 2.1, we give a proof-theoretic description of
MILPre, prove it to be sound, and lay some groundwork for the completeness proof of
Subsection 2.2, which also allows us to conclude that MILPre MILPos.

2.1 Soundness and Preparatory Lemmas

We begin by syntactically defining a logic, suggestively called MILPre.10 Through a
soundness and completeness proof, we then showMILPre exactly is an axiomatization
of our semantically defined logic MILPre.

Definition 2.1 (Axiomatization).We defineMILPre to be the least normalmodal logic
(NML)11 in the language of M containing the following axioms:

(Re.) p q sup pq

(4) PPp Pp ( sup sup p sup p , cf. Remark 1.6)

(Co.) sup pq sup qp

(Dk.) p sup qr sup pq12

Having proof-theoretically defined the logic MILPre, we can promptly show it to
be sound w.r.t.MILPre.

Theorem 2.2 (Soundness). MILPre MILPre.

Proof Standard, tedious task checking that MILPre is a normal modal logic and that
(Re.), (4), (Co.), and (Dk.) all are valid on preorder frames.

As oftentimes is the case, while proving soundness is straightforward, proving
completeness is much more intricate. Our proof will be a construction using maximal
consistent sets (MCSs) for which some preparatory observations and lemmas are
needed.

First hurdle is that the sup -modality is in a general sense a ‘logical modality’:
although accompanied by a ternary relation (namely the supremum relation) its inter-
pretation is fixed given a binary relation (namely a preorder). For starters, this means
that the standard construction of the canonical frame forMILPre won’t come equipped

10 As a convention, we boldface when having ‘syntactic’ presentations of logics in mind and italicize
when having ‘semantic’ presentations of logics in mind.
11 Caution: As a reviewer has brought to my attention, the definition of a normal modal logic in a language
with polyadicmodalities given in [4, def. 4.13] iswrong. The necessitation rules are tooweak: each occurring
‘ ’ should be replaced by arbitrary formulae i .
12 (Re.) is short for ‘Reflexivity’; (4) is the transitivity axiom; (Co.) is short for ‘Commutativity’; and (Dk.)
is short for ‘Don’t know what to call this axiom’.
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1732 S.B Knudstorp

with a binary relation for interpreting the binary modality sup —as is the case for the
preorder frames of MILPre—but with a ternary one. Fortunately, defining an under-
lying preorder from this ternary relation spells no trouble. This is summarized in the
definition below.

Definition 2.3 We denote the set of all maximal consistentMILPre-sets by WPre, and
the ternary relation of the canonicalMILPre-frame byCPre.13 That isCPre holds
just in case

sup

From CPre, we define the following binary relation on the canonical frame:

Pre WPre WPre CPre

We want to show that Pre actually is a preorder. To do so, we begin by making
two observations.

Observation 2.4 Since MILPre is an NML, we have all the usual lemmas regarding
its canonical model.

Observation 2.5 The formula

(T) p Pp

is derivable inMILPre.
In fact, (T) (4) (Co.) (Dk.) is an alternative axiomatization of MILPre.

Proof Some straightforward syntactical manipulations prove the claim; the key steps
being

(Re.) (T): uniformly substitute q for in (Re.); and

(T) (Re.): use (T) to get p q p Pq and then use (Dk.).

Using these observations, in the ensuing lemma, we prove that not only is Pre a
preorder, but more ‘supremum-like’ properties hold of the canonical relation CPre.

Lemma 2.6 The following hold:

(a) CPre iff CPre

(b) Pre

i
iff CPre

i i
iff P .

(c) Pre is a preorder.

(d) CPre only if Pre Pre .

13 Consult [4, ch. 4] for basic definitions, results, and techniques regarding canonical models for modal
logics; we have sought to align our notation and terminology with this.
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Proof Since (Re.), (4), (Co.), (Dk.) all are Sahlqvist, one can prove all but (b) ii via
the Sahlqvist-van Benthem algorithm (cf. next section’s Lemma 3.1). As often is the
case, though, a direct argument is faster; we provide such here.

(a) Let M be arbitrary. Then – by (Co.), uniform substitution (US) of
MILPre, and closure under modus ponens (MP) of MCSs – we have

sup sup

which suffices to prove the claim.

(b) Right-to-left of i is immediate (using (a)). For left-to-right, suppose that
CPre for some WPre and that . Since , we
have that sup , hence sup and so we get by (Dk.)
(and US and MP of MCSs) that sup —as suffices. Regarding i i ,
left-to-right follows by (a), while right-to-left is proven using (Dk.).

(c) Reflexivity. Let WPre and be arbitrary. By (b), it suffices to show
that P , but this follows by MILPre p Pp.
Transitivity. Suppose 1 Pre 2 Pre 3 and 1 1. Then by applying (b)
twice, we get that PP 1 3, hence since MILPre PPp Pp, we’re
done.

(d) Consequence of (a).

2.2 Completeness: Constructing our Model

Given the previous subsection’s results – indicating that the canonical frame is well
behaved – one might start wondering whether the canonical relation CPre is, in fact,
the supremum relation on Pre. If so, we would have completeness in our pocket.
Unfortunately, this is far from being the case: not only is the canonical relation CPre
not the supremum relation on Pre, it is utterly wild.14

This forces us tomake a rather complicated constructionwherewe do not workwith
the canonical model per se. Instead, we construct our frame by recursively repairing
so-called ‘defects’ and ‘labeling’ points of a subset of our frame with MCSs for which
we prove a truth lemma. This somewhat generalized approach is useful since it (a)
allows for reuse of the sameMCS – i.e., different points of the frame might get labeled
with the sameMCS – and (b) utilizes that, in the extreme, we only need a truth lemma
for one MCS, namely the one extending a given consistent set; thus, we may and will
include (non-labeled) points in our construction only to ensure that other (labeled)
points satisfy formulas dictated by their MCS-label. That is, we do not care what
formulas these points satisfy themselves—their role is entirely auxiliary.15

14 As to not interlude the completeness proof, observations regarding the wildness of the canonical frame
have been put off to Appendix A.
15 It is worth noting that it is not that we cannot make a construction in which all points are labeled (as,
essentially, is done in our later Lemma 4.20 and Proposition 4.23), but doing so would obscure the central
idea making the construction work.
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1734 S.B Knudstorp

To bemore concrete, when recursively constructing this frame, wemake sure that at
each stage, its corresponding ‘approximating frame’ is determined by a triple l D
satisfying the definition (of ) below. Specifically, in the recursive step from, say, n to
n 1, we will make sure that if ln n Dn then also ln 1 n 1 Dn 1 .16

This is needed for the colimit construction – i.e., the structure obtained after all finite
stages in the recursive construction – to be of the right form.

Definition 2.7 Let W be countable set, and the set of all triples l D such that

1. l is a partial function from W to the set of all MCSs, WPre.

2. dom l 0, where ‘dom l ’ refers to the domain of l.

3. D W D 0.

4. D dom l .

5. d D d a a d.

6. is a partial order on dom l D, and the diagonal on W dom l D .

7. If y x then l y Pre l x (whenever x y dom l ).17

As mentioned, the recursion is carried out by repeatedly repairing ‘defects’. Since
our goal will be to prove a truth lemma for labeled points, any defect is, in essence,
either

(1) that a point x’s MCS-label dictates that x satisfies some formula sup
which it doesn’t, i.e., sup l x but x sup ; or

(2) that a point x’s MCS-label dictates that x satisfies some formula sup
which it doesn’t, i.e., sup l x but x sup .

Although this captures the gist of what defects are, as it turns out, for the proof to work,
the precise definitions must be more detailed than this. We proceed giving these.

Definition 2.8 ( sup -defect). Let l D . Then a pair sup x denotes a
sup -defect (of l D ) :iff

(i) x dom l (ii) sup l x

and (iii) there are no y z dom l s.t.

l y CPrel x l y l z y x y y x

l z x sup y z z x z z x

16 Our framework is loosely that of [5] with terminology borrowed from [4, sec. 4.6].More generally, this is
a ‘step-by-step’ construction for which an(other) excellent introduction is the exposition of the ‘construction
method C’ in [9].
17 l (short for ‘label’) labels worlds with MCSs, while D-worlds (short for ‘dummy worlds’) sole purpose
is to ensure ‘ sup ’-formulas are satisfied at dom l -worlds.
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where .18

Definition 2.9 ( sup -defect). Let l D . Then aquadruple sup x y z

is denoted a sup -defect (of l D ) :iff

x dom l x sup y z 19 sup l x

l y l z

With these defects defined, next up is repairing them. Before providing the actual
repair lemmas demonstrating how to coherently repair each of the defects (making
sure that if ln n Dn , then also ln 1 n 1 Dn 1 ), we give an example
to convey intuition for the repairs and the general construction.

Example 2.10 Suppose l D and sup 0 0 x constitutes a sup -defect;
that is, (i) x dom l , (ii) sup 0 0 l x , and there are no y z fulfilling (iii).
Put crudely, the problem is that x’s label l x requires x to satisfy sup 0 0, but x
is not the supremum of any y z s.t. 0 l y 0 l z . To solve this, we simply
add two fresh points y z immediately below x . Then using the existence lemma of
the canonical model for the case sup 0 0 l x , we get two MCSs y z s.t.
CPrel x y z .20 Setting l y y and l z z , the defect has been repaired. The
idea is illustrated in the top left corner of the figure below.

Further, if, say, sup 1 1 x also constitutes a sup -defect, we simply repeat the
process as illustrated in the top right corner of the figure below.

While these two repairs did solve the problems they intended to, they might have
created new ones. If, say, sup l x l z and l z , in solving
these problems they have made sup x z z constitute a sup -defect. This
is where we need the ‘dummies’: to repair this defect, we add a quasi-blind point d as
an incomparable upper bound of z z so that x no more is the supremum of z z
(cf. the bottom part of the figure).21 Since d is quasi-blind—and stays quasi-blind (viz.
condition 5.)—whatever formula it satisfies is of absolutely no influence to the rest of
the points: they cannot ‘access’ d. So, at bottom, adding dummies is a technique for
altering the supremum relationwithout having to give second thought towhat formulas
the added points (the dummies) are to satisfy: they are entirely auxiliary (and, hence, do
not get labeled, cf. condition 4.). And, most importantly, the alteration of a supremum
relation caused by adding a dummy is sufficiently local to not mess up previously
repaired defects; in this simplest of cases, we still have x sup y z sup y z
after having added the dummy d.

18 That is, a sup -defect is a failure of a rather strict requirement on a dom l -world x when sup
l x . The ‘upset requirements’ on y z, state that – besides from themselves – if they see a point that x does
not, then that point is ‘incompatible’ with x .
19 Note that if x dom l and x sup y z , then y z dom l . This follows by dummies being
quasi-blind, cf. 5.
20 Regarding the existence lemma, recall Observation 2.4.
21 Note that x does stay a minimal upper bound of z z . This might suggest that the MIL defined by
interpreting ‘sup’ in terms of minimal upper bounds instead (i.e., allowing for multiple, incomparable
‘fusions’ of info states) results in a different logic. Perhaps surprisingly, in other work (excluded from this
paper for reasons of length), we have shown that this isn’t the case.
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We continue by making this basic intuition rigorous – starting with providing the
repair lemmas.

Lemma 2.11 ( sup -repair lemma). Suppose sup x is a sup -defect of some
l D . Then we can extend to l D by taking distinct y z
W dom l D s.t.

l l y z y u z u x u D D

CPrel x

and y z witness that sup x does not constitute a sup -defect of l D .

Proof Define as in the lemma by taking fresh y z and mapping them to
obtained via the existence lemma for sup l x . Then the last claim is easily
checked to be satisfied, and l D also clearly satisfies 1.-6.; thus, it remains to
show 7. Since l D – and having the definition of in mind – it suffices to
consider the subset

y u z u x u

and the cases y y z z. For these, we find:

y y l y Pre l y follows by Pre being a preorder, hence reflexive, cf.
Lemma 2.6 (c).
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y x l y Pre l x follows by Lemma 2.6 (d).

y u For u x , l y Pre l u follows by transitivity of Pre.

z z x u Same as for y.22

Lemma 2.12 ( sup -repair lemma). Suppose sup x y z is a sup -
defect of some l D . Then we can extend to l D by taking
d W dom l D , letting

l l u d d u y z D D d

and getting x sup y z .

Proof Extend to l D as described. It follows that l D . To show

x sup y z

since d y and d z, it suffices to show

d x

To see this, observe that if x y, since z x , we would have by 7. that l z Pre l x
hence (cf. Lemma 2.6 (b))

CPrel x l y l z

but then sup x y z couldn’t have been a sup -defect. Same for x z.
Thus,

y x and z x

whence d x by definition of and being a partial order by assumption (cf.
condition 6.).

With all of these preliminaries out of theway,we are finally in a position to construct
the needed frame and prove completeness.

Theorem 2.13 (Completeness).MILPre is strongly complete w.r.t. MILPre. So, in par-
ticular, MILPre MILPre.

Proof Suppose 0 is consistent. It suffices to show that 0 is satisfiable. As previously
mentioned, to show so, we will construct a model satisfying a truth lemma for labeled
points by taking the colimit of a sequence of models getting ever closer to satisfying

22 Observe how the axioms are being used via Lemma 2.6; each ‘item’ employs an axiom: first (Re.), then
(Dk.), then (4), then (Co.). This elucidates their role, and why they are – even if rather weak – adequate:
they need only ‘encode’ this lemma 2.6, which enables extending to l D , and then the ‘dummies’
do the rest.
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this truth lemma. We begin by extending 0 to a maximal consistent set 0,
letting 0 be the diagonal on some (any) countable set W , and setting D0
and l0 x0 for some x0 W . Then 1.-7. are satisfied, where 7. follows by
reflexivity of Pre. We continue by constructing a sequence

l0 0 D0 l1 1 D0 ln n Dn

s.t. for all i

li li 1 i i 1 Di Di 1

using the repair lemmas repeatedly. We do so by enumerating the set of all pairs
sup x and all quadruples sup x y z .23 Then at each stage n 1 we

pick the least tuple constituting a defect to ln n Dn , which we repair obtaining
ln 1 n 1 Dn 1 . Letting

l D
n

ln
n

n
n

Dn

we get that (1) l D satisfies 4.-7.; (2) l is a (partial) function from W to the
set of all MCSs; and (3) l D neither has any sup - nor sup -defects. Only
(3) isn’t straightforward. To show this, we prove two claims, and in order to do so, we
need the following observation.

Observation. Let n and x dom ln be arbitrary s.t.

n nx n n nx

where n y z y n z . Then for all m n:

m mx m m mx

hence also
x x

This is easily seen by induction, using that each lm 1 m 1 Dm 1 is obtained
from lm m Dm using either of the repair lemmas.

Claim (a). Suppose sup x does not constitute a defect for some ln n Dn

at which (i) x dom ln and (ii) sup ln x . Then this must be witnessed by
some y z (cf. Definition 2.8). We show that for all m n:

sup x does not constitute a defect for lm m Dm , witnessed by y z.

A fortiori, neither does it for l D .

23 Such an enumeration exists because (1) W is countable, and (2) there are countably many formulas.
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By the observation and noting that li li 1 for all i , it suffices to show that
for all m n:

x supm y z

where supm y z sup
m

y z is the least upper bound of y z w.r.t. the relation
m . We prove this by induction on m n. By assumption, this holds for m n.

Accordingly, suppose it holds for an arbitrary m n. We show it holds for m 1. We
have two cases, depending on the type of defect being repaired at stage m 1.

First, suppose the defect repairedwas a sup -defect for someworld s. Since the cor-
responding introduced dom lm 1 -worlds ys zs have no proper m 1-predecessors,
the claim follows. Reason being that, cf. the IH and the definition

m 1 m ys u zs u s m u

ys and zs are the only possible counterexamples to the claim.
Second, suppose lm 1 m 1 Dm 1 was obtained via sup -repairing some

s ys zs by introducing the dummy ds . Notice that, by IH and the definition

m 1 m u ds ds u m ys m zs

the only possible counterexample to the claim is ds . Accordingly, suppose ds m 1
y z. Going by cases, we prove that this implies ds m 1 x :

If ys m y z, then, by IH, ys m x so ds m 1 x .

If zs m y z, then as above.

If ys m y and zs m z, then, by the observation, either (a) ys y or (b)
ys m x or (c) m ys mx . If (b), then ds m 1 x . And if (c), then note
that as s is a m-upper bound of ys zs , it must also be a m-upper bound of
y z , hence, by IH, x m s – contradicting m ys mx . Thus, we may
assume (a) ys y; and, analogously, zs z. But then s sup m ys zs
sup m y z x , hence s ys zs x y z couldn’t have constituted a

sup -defect because CPrelm x lm y lm z .

If zs m y and ys m z, then as above.

This exhausts all cases, showing ds m 1 x , which completes the induction. (a)

Claim (b). Suppose n and a b dom ln Dn are s.t. a n b. Then for all
m n, we have that a m b. A fortiori, a b.

Follows by induction on m, noting that if lm 1 m 1 Dm 1 was obtained by
sup -repairing some x by introducing some y z, we would have

m 1 m y u z u x u

that is, there is no change in successors of b.
Likewise, if lm 1 m 1 Dm 1 was obtained by sup -repairing some x y z

by introducing a dummy d, there is no change in predecessors of a. This exhausts the
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cases, hence proves the claim. (b)

Using (a) and (b), it is straightforward to see (c): If some tuple did constitute a
defect at some stage n, but no longer at some later stage m n, then it didn’t for all
k m.

With these claims at hand, we can show (3) that l D neither has sup -
nor sup -defects. For sup , let

sup x i

be an arbitrary pair in our enumeration s.t. x dom l and sup l x . Then
x dom ln for some n , hence

x dom lm sup lm x

for allm n. If, on one hand, sup x i didn’t constitute a defect to ln n Dn

– using claim (a) (and the observation) –we get that it wouldn’t for l D either.
On the other, in case it did, it would nomore no later than at stage n i 1 (cf. (c)), and
henceforth – by claim (c) – remain repaired. Thus, l D has no sup -defects.

For sup , suppose towards contradiction that

sup x y z i

denotes a sup -defect. Then x y and x z, so there is some n s.t.

x n y z

If
x sup m y z

for some m n, there must be some a dom lm Dm s.t.

y z m a m x

but then – cf. claim (b) –
y z a x

which, in particular, shows x sup y z —contradicting sup x y z i

being a sup -defect. Thus, we must have

x sup m y z

for all m n, implying – and simultaneously contradicting – that the defect will be
repaired no later than at stage n i 1 (cf. (c)). That is, there can be no sup -defects
either.
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Finally, setting

V p x dom l p l x

we show our truth lemma, namely that for all x dom l and all M :

W V x iff l x

The proof goes by induction on the complexity of formulas. Base case is by definition
and Boolean cases are straightforward. For the sup -case, we get

x sup 1 2

Def
iff y z x sup y z y 1 z 2

(IH)
iff y z x sup y z 1 l y 2 l z
(i)
iff sup 1 2 l x

where we in the left-to-right direction of (IH) use – apart from the induction hypothesis
itself – that l D satisfies 5.-6.; i.e., in particular, neither of the witnessing y z
are dummies nor in W dom l D , and so they must be in dom l . Further,
left-to-right of i holds by there being no sup -defects, while right-to-left follows
from there being no sup -defects.

This completes the induction, from which it follows that

W V x0 0

showing that 0 is satisfiable in a preorder model and, thus, at long last, finalizing our
proof of completeness.

Corollary 2.14 MILPre MILPos.

Proof Clearly, MILPre MILPos, and the other inclusion follows from the frame
constructed in the completeness proof being a partial order.

3 Decidability ofMILPre

This section consists of two parts. In Subsection 3.1, we show thatMILPre is complete
w.r.t. another class of structures . Then, in Subsection 3.2, we show that MILPre
has the FMP w.r.t. -frames and conclude that MILPre (and MILPos) are, after all,
decidable—solving a problem posed in [16–18].

3.1 Reinterpreting sup on Generalized Structures C

Following themethod laid out in Subsection 1.2, and with an axiomatization ofMILPre
at hand, we continue our road to decidability by proving completeness relative to a

123



1742 S.B Knudstorp

different class of structures. These structures will be named -frames, alluding to our
denoting this class of structures as .

Before we get that far, though, the first key observation to make is that there is
nothing in the syntactic definition ofMILPre implying that the binarymodality-symbol
sup need be interpreted in terms of the supremum relation on a preorder. I.e., there
is nothing a priori hindering us from reinterpretingMILPre through reinterpreting the
symbol sup .

Further, MILPre being an NML means that there might be a canonical reinterpre-
tation, namely the one reached through frame correspondence ofMILPre on the class
of all pairs W C whereW is a set and C is an arbitrary ternary relation onW . And,
indeed, that is how we proceed.

Lemma 3.1 Let W C be a frame for the modal language with a single binary modal-
ity. Then we have the following frame correspondences:

i W C Re iff W C C

ii W C 4 iff W C x C x C uy z [C uz]

i i i W C Co iff W C u C u C u

i W C Dk iff W C u C u C

Proof Standard frame correspondence proofs work, using arguments similar to the
ones in the proof of Lemma 2.6(a), (b)(i), (c) and (d). Alternatively, the Sahlqvist-van
Benthem algorithm also applies because the formulas are Sahlqvist.

Definition 3.2 We denote the first-order correspondents of (Re.), (4), (Co.) and (Dk.)
as (Re.f), (4f’), (Co.f) and (Dk.f), respectively.

While (Re.f), (Co.f), and (Dk.f) all match neatly with (Re.), (Co.), and (Dk.),
respectively, (4f’) is a slightly less elegant FO-correspondent of (4). However, as the
following proposition shows, in the presence of the other axioms, the correspondence
crystallizes.

Proposition 3.3 Let W C be a frame for the modal language with a single binary
modality. Then W C MILPre iff

W C Re f Co f Dk f u C C u C u

In other words, (4f’) and (4f) are equivalent modulo (Re.f), (Co.f) and (Dk.f),24 where

4 f u C C u C u

Proof Straightforward consequence of Lemma 3.1.

It now follows that we have obtained a different class of structures, namely , which
is complete w.r.t.MILPre. This is summarized in the ensuing corollary.

24 In fact, even modulo (Dk.f) and (Co.f).
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Corollary 3.4 MILPre is sound and (strongly) complete w.r.t.

W C Re f Co f Dk f 4 f

In particular,

MILPre Log

where Log M W C W C denotes the NML of .

Proof The preceding proposition implies soundness, and then our earlier completeness
theorem (2.13) gives us (strong) completeness because preorder frames are particular
instances of -frames, namely those where the ternary relation ‘C’ happens to be the
supremum relation of an underlying preorder.25

This corollary proven, we have arrived at the final step described in Subsection 1.2:
showing the FMP ofMILPre when reinterpreted on . Before proving this in the next
subsection, we find it instructive to revisit the formula N from Proposition 1.7 and
show that, although not satisfiable on a finite preorder frame, it is satisfiable on a finite
-frame. We do this right after observing the following:

Observation 3.5 It is not hard to prove that for any W C x W , valuation V
on W C and formula , we have that

W C V x P iff y W Cxxy y

and hence also

W C V x H iff y W Cxxy y

Remark 3.6 Although

N H P sup pp H P sup pp

only is satisfiable on infinite preordermodels under the standard interpretation of sup
(cf. Proposition 1.7), it is satisfiable on a finite -frame.

Proof Set

W V p

C

We claim that W C and W C V N .

25 Alternatively, as noted by an anonymous referee, this follows by Sahlqvist canonicity.
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The former can be seen by a quick (yet tedious) check that W C models the given
first-order conditions. The latter can be seen by first noting that

(a) sup pp while (b) sup pp

since, respectively, (a) C and p, and (b) C and p.
Moreover, using that W C , we get

HP sup pp iff x W C x x P sup pp

iff x W C x y Cxxy y sup pp

hence also

HP sup pp iff x W C x y Cxxy y sup pp

With this spelt out, we find that N as we have C C C C ;
i.e., the existential consequents are always fulfilled.

3.2 The Finite Model Property

As promised, we go on proving that MILPre enjoys the FMP w.r.t. and then use
this to deduce decidability of MILPre. The proof of the FMP is done by employing a
filtration-style argument. To this end, we define a notion extending the standard notion
of a set of formulas being subformula closed.

Definition 3.7 We say that a set of M -formulas is -closed :iff

(Sub) it is subformula closed;

(Com) sup implies sup ; and

(S-P) sup implies P .

Moreover, for any set of formulas 0, we say that is the -closure of 0 :iff it is
the least -closed set of formulas extending 0.26

An immediate consequence of the definition is the following lemma:

Lemma 3.8 Suppose 0 is a finite set of M-formulas. Then its -closure 0 is
finite as well.

Less immediate is how to use this notion for a filtration-style argument of the FMP.
This is the content of the following theorem, whose proof contains the actual definition
of a filtration through a -closed set of formulas.

26 Note that the -closure of a set of formulas always exists.
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Theorem 3.9 MILPre admits filtration w.r.t. the class . Thus,

MILPre Log F

where Log F denotes the NML of the class of finite -frames.

Proof Cf. Lemma 3.8 and the obvious inclusion Log Log F , it suffices to
show that for any -model W C V and -closed set of formulas , the following
hold:

1. W C , where our filtered universe is

W x x W

with relation

C x y z :iff sup y z x sup and

[ y P z P x P P ]

where x x denotes the equivalence class on the set of worlds W defined
as satisfying the same -formulas as x .

2. For all x W :

W C V x iff W C V x

where V p x W x V p for all p .

We begin by proving 1.; i.e., showing W C . This we do as follows:

W C Re f can be seen using W C Re .27

W C Co f can be seen using W C Co and the (Com)-closure.

Showing W C Dk f is a bit more tricky. Accordingly, suppose
C x y z and let sup be arbitrary. It then suffices to show

x y x sup and x P y P x P P

For the former, since sup P by (Com)- and (S-P)-closure, we
have that if y , then x sup because C x y z . So if also x ,
then using W C Dk , we get x sup .

27 Alternatively, below we show that this filtration indeed satisfies the homomorphic filtration condition:
Cxyz CC x y z . From this and surjectivity of x x , Re f follows. On this node, it is worth
(foot)noting that the culprit in hindering this inheritance argument for the three other FO-conditions are the
implications in their respective definitions; e.g., for (Dk.f) we have C u C C u C ,
so when this implication holds by virtue of the first disjunct, namely ‘ C u’, we cannot likewise conclude
CC u . This also explains that the filtration relation and the set of formulas we are filtering through

have been defined to accommodate these three axioms. As for the transitivity axiom, we have drawn
inspiration from the Lemmon filtration.
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Further, for the latter, if y P , using z P because W C T [and,
again, sup P and C x y z ], we get x P .

Lastly, to prove W C 4 f , suppose C x x y C y y z and
sup . We show that

x z x sup and x P z P x P P

For the former, if z , then C y y z and sup imply y
sup , hence y P by W C Co . But then this alongwith x P
and C x x y imply that x P . So if also x , then W C Dk
implies x sup .
Further, if z P , using z P , then y P , and in turn x P .

This completes our proof of 1. For proving 2., it suffices to show that W C V is
a filtration of W C V through . That is, we need to check two conditions, namely

(F1) Cxyz C x y z ; and

(F2) C x y z sup y z x sup .

(F2) follows by definition of our filtration relation. For (F1), suppose Cxyz and
sup . Then the only non-trivial part is to show that

y P z P x P P

Since W C Dk f Co f , we also have Cxxy and Cxxz. Thus, if y P
and z P , we get that

x PP PP

hence from W C 4 , we get

x P P

as desired.

Finally, we end this section by deducing decidability.28

Corollary 3.10 MILPre is decidable (and so is MILPos).

Proof Cf. Theorem 2.13 and Corollary 3.4, we know that

MILPre MILPre Log F

So since MILPre is a finitely axiomatized NML admitting filtration w.r.t. , we get
decidability.29

28 For the interested reader, in [11] it is also shown that the general heuristic regarding decidability and the
FMP outlined in Subsection 1.2 also applies to the TMP.
29 Similarly, using that our filtration argument establishes the strong finite model property, one can prove
decidability.
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4 MIL with Informational Implication

With MILPre MILPos axiomatized and proven decidable, this section investigates
their enrichments,MIL\-Pre andMIL\-Pos, with the ‘informational implication’ ‘\’. The
main goals are to provide an axiomatization and a decidability proof.

In Subsection 4.1, we formally set out the logics of concern and briefly comment on
the increased expressibility. In Subsection 4.2, we, first, put forward an axiomatization
and point out on an interesting junction with the Lambek Calculus. Before, second,
pausing our investigation of MIL\-Pre and MIL\-Pos per se, to show that the proposed
axiomatization is sound and complete w.r.t. the class . Using this result, in Subsection
4.3, we obtain soundness and completeness w.r.t. our poset frames through combining
two representation results: the first achieved via an adaptation of ‘bulldozing’, and the
second via supplementing the framework of Subsection 2.2 with an additional defect.
We deduce thatMIL\-Pre MIL\-Pos. Lastly, in Subsection 4.4, wemodify the filtration
technique of Subsection 3.2 to attain decidability of MIL\-Pre.

4.1 Augmenting with ‘\’

As noted, we seek to study the enrichment of the basic modal information logic(s),
MILPre andMILPos, given by adding an informational implication as a binarymodality.
In this subsectionwe cover some preliminaries; specifically, some definitions followed
by a few comments on expressivity. We start with supplying the following pertinent
definitions:

Definition 4.1 (Language). The language \-M is given by extending the basic lan-
guage of modal information logic M with a binary modality symbol ‘\’.

As a convention we use infix notation for ‘\’ instead of prefix/Polish notation; that
is, we write ‘ \ ’, rather than ‘\ ’ (as we, e.g., would do with ‘ sup ’ and ‘ sup ’).

Definition 4.2 (Semantics). Given a preorder model W V , a world W
and a formula \ \-M with main connective ‘\’, we let

\ iff for all u W , if u and sup u ,

then 30

Definition 4.3 (Logic). We denote the modal information logic on preorders in the
enriched language of \-M as MIL\-Pre, which – to be explicit – is defined as

MIL\-Pre \-M W for all preorder frames W

MIL\-Pos is defined analogously.

Remark 4.4 As a minor interlude, as mentioned in the introduction, the choice of
symbol ‘\’ concurs with standard notation in the Lambek Calculus.With the semantics

30 Notice how ‘\’ is the ‘ -ed’ and not the ‘ -ed’ half of a modality pair.
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given, the reason becomes evident: the interpretation is the same (given a supremum
relation). It is also worth pointing out that the commutativity of suprema implies that
the other Lambek residual – typically denoted by ‘ ’ – collapses into ‘\’ in the sense
that \ . Lastly, the modality ‘ sup ’ is interpreted (again, given a supremum
relation) exactly as the binary product ‘ ’ is in the Lambek Calculus. In the next
subsection, we expound this connection even further.

Now, recall that the primary results we are after are (1) axiomatizing MIL\-Pre and
MIL\-Pos and (2) showing them to be decidable. Once more, we will be following
the heuristic laid out in Subsection 1.2; however, this time our completeness theorem
will not be proven via model constructions but via representation results. For this to
work, we, needless to say, must (a) have another class of structures for which we can
prove the representation results, and (b) also already have the logic of this other class
axiomatized. Regarding (a), a natural candidate arises: the -frames of the previous
section. Before being able to (b) axiomatize the logic of this class (as we will in the
next subsection), we must clarify how ‘\’ is to be interpreted on -models. This is the
content of the following definition:

Definition 4.5 Given a frame W C , a valuation V on W C , a world W
and a formula \ \-M with main connective ‘\’, we let

W C V \ iff for all u W , if W C V u and C u,

then W C V

To be precise, we explicate how this generalizes our definition on preorder frames.

Definition 4.6 Let Pre (resp. Pos) be the class of pairs W S whereW is a set and
S W 3 is a ternary relation for which there is some preorder (resp. partial order)
on W s.t. for all u W :

S u iff sup u 31

Then the semantics of ‘\’ on a preorder model W V comes down to

W S V \ iff for all u W , if W S V u and S u,

then W S V

where S is the supremum relation induced by .

As the last definition of this subsection, we set forth the logic of -frames in this
extended language:

Definition 4.7 We write Log\ for the logic of -frames in the language \-M ; i.e.,
Log\ denotes the set of \-M -validities on -frames.

31 I.e., S is the supremum relation induced by a preorder (resp. poset).
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With these definitions out of the way, we finish up this subsection with the promised
comments on expressivity. First off, we show that with the additional vocabulary
provided, we are not only able to express the past-looking unary modality ‘P’, but
also the future-looking ‘F’.

Remark 4.8 The future-looking unary modality ‘F’ (i.e., the standard ‘ ’) is definable
as

F \ 32

This can be seen by recalling the definition

F :iff

and observing that also

\ iff u sup u u

iff

Finally, for goodmeasure, observe that ‘\’ is not expressible in our simpler language
M . To see this, take, e.g., a two-chain 0 1 where 0 1 and a one-chain 0 ; and

let 0 p, 1 p, and 0 p. Then 0 Fp while 0 Fp, but for all M :
0 iff 0 .

4.2 Axiomatizing Log\(C)

Now for the promised axiomatization of Log\ , which – via the representation results
of the next subsection – entails that it even is an axiomatization ofMIL\-Pre andMIL\-Pos.

Definition 4.9 (Axiomatization). We define MIL\-Pre to be the least set of \-M -
formulas that (i) is closed under the axioms and rules of MILPre; (ii) contains the
K-axioms for \;33 (iii) contains the axioms

(I1) sup p p\q q, and

(I2) p q\ sup pq ;34

and (iv) is closed under the rule

(N\) if \-Pre , then \-Pre \ .35

32 Notice that this places us in an extension of temporal S4.
33 For reference, the K-axioms for \ are: p q \r p\r q\r and p\ q r p\q
p\r .

34 ‘(I1)’ and ‘(I2)’ are short for ‘inverses’: they capture how ‘ sup ’ and ‘\’ relate.
35 ‘(N\)’ is short for ‘necessitation’. Observe that the other necessitation rule is not validity preserving.
We, e.g., have Log\ but we do not have Log\ \ .
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Before showing thatMIL\-Pre is sound and strongly complete w.r.t. -frames, some
remarks are due.

Remark 4.10 (Lambek Calculus of suprema on preorders). In its basic version, the
Lambek Calculus only contains the three binary connectives ‘ ’, ‘\’ and ‘ ’, of which
the first matches our ‘ sup ’ and the last two, modulo (Co.), both match our ‘\’. It is
defined proof-theoretically with the constitutive rules of the connectives (when given
in our language) being

(L1) if sup , then \ ; and its converse
(L1) if \ , then sup .

Unsurprisingly, both of these rules are derivable in ourHilbert system forMIL\-Pre.We
refer the reader to [6] for a proof; in this paper, Buszkowski considers the extensions of
both the associative and non-associative Lambek Calculus—which he denotes L and
NL, respectively—with the classical propositional calculus, resulting in the logical
systems L-CL and NL-CL, respectively. It is his proof of derivability of (L1) and
(L2) in his Hilbert system for NL-CL that readily applies to our MIL\-Pre. Reason
being thatMIL\-Pre turns out to be nothing but an extension of NL-CLwith the axioms
(Re.), (4), (Co.), and (Dk.)—shedding another interesting light on modal information
logics and, especially, MIL\-Pre (and MIL\-Pos) when having in mind that we end up
proving thatMIL\-Pos MIL\-Pre MIL\-Pre. In other words,MIL\-Pre is the Lambek
Calculus (augmented with CL) of suprema on preorders (or on posets).

Remark 4.11 Besides from [6] being a recent gem in the literature on the Lambek
Calculus extended with CL (i.e., essentially, studying it as a classical modal logic with
three binary modalities), it has received some newborn attention: in [7] NL-CL is
denoted BFNL, and in [10]L-CL andNL-CL are denoted PL and PNL, respectively.

We continue with the pledged completeness proof.

Theorem 4.12 MIL\-Pre is sound and strongly complete w.r.t. the class . Thus, in
particular, MIL\-Pre Log\ .

Proof Soundness MIL\-Pre Log\ is routine.36

For strong completeness, we define the canonical frame as we did in Definition 2.3,
but now defined w.r.t. the language \-M instead; i.e., we let W\-Pre denote the set of
MIL\-Pre-MCSs, and set C\-Pre :iff

sup

Note that Lindenbaum’s Lemma and standard properties ofMCSs hold, since our logic
contains all classical propositional tautologies and is closed under MP and US. As in
Lemma 2.6, we then get that W\-Pre C\-Pre .

Thus, it suffices to show the standard truth lemma. The base and Boolean cases
are straightforward by standard properties of MCSs, and since ‘ sup ’ is a normal

36 Nevertheless, for soundness, to understand how ‘\’ and ‘ sup ’ capture different aspects of the same
relation, it might be instructive for the reader to check that (I1) and (I2) are valid on -frames.
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modality and C\-Pre is defined in terms of it(s dual), the corresponding inductive step
of the truth lemma goes through. Therefore, it only remains to cover the inductive step
for ‘\’.37 To this end, the following two claims will suffice:

Claim: If \ and C\-Pre , then .
Proof. Assume \ and C\-Pre . By definition of C\-Pre, we
would have that sup \ . then follows by (I1), (Co.), US, and
MP of MCSs.

Claim (existence lemma for ‘\’): If \ , then there are some s.t.
and C\-Pre .

Proof. Assume \ . Then

0 sup

is consistent because if not, then

\-Pre

i k

sup i

for some finite 0 k , hence (a)

\-Pre sup

where i k i . Moreover, since , we get by (I2), US, and MP of
MCSs that (b) \ sup . Thus, since all MCSs extendMIL\-Pre and the
monotonicity rule

if \-Pre 0 1, then \-Pre \ 0 \ 1

is easily derived, we get by (a), (b), US and MP of MCSs that \ –
contradiction. Consequently, 0 must be consistent.

Now, let 0 1 be an enumeration of all \-M -formulas, and define

0

and

n 1
n n if sup n n is consistent

n n otherwise

We claim that the set
sup n

37 For another, more elaborate proof of a truth lemma which resembles ours, see the one given for the
canonical model of NL-CL (their PNL) in [10]. We provide our own proof and keep it brief, assuming
familiarity with the techniques involved. This will be done in the terminology of [4, ch. 4], which also is an
excellent resource for an explication of arguments and details sufficiently similar to the ones we will omit.
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is consistent for all n . For the base case, notice that 0 being consistent
precisely means that

sup 0

is consistent.
So assume

sup n

is consistent for some n . If

sup n n

is consistent, we are done, so suppose not. Enumerating the formulas of as
0 1 and setting i j j i , there must then be some k s.t. for
all m k:

\-Pre sup m n n ( )

Furthermore, since by the IH

sup n

is consistent, using Lindenbaum, we can extend it to an MCS n . For this MCS
n , we must then have for all i :

sup i n n n n

So for all i :

sup i n n n or sup i n n n

Thus, combining this with ( ) [and having in mind that n], we get that
for all m k:

sup m n n n

But this entails that

sup n n n

wherefore sup n 1 is consistent, as required for the
induction proof.
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From this [and having in mind that i j for i j], one easily sees that
(1)

n

sup n

is consistent, and (2)

n
n

is an MCS. Extending to an MCS, we get that 0
and C\-Pre , which precisely shows the claim.

With these claims at our disposal, the inductive step regarding ‘\’ in a proof of the truth
lemma is immediate (the two claims cover one direction each). Since this was the last
obstacle for proving the truth lemma, andwe have already noted that W\-Pre C\-Pre
, we can deduce strong completeness—finishing not only our proof, but also this

subsection.

4.3 Bulldozing and Completeness-Via-Representation

With Log\ axiomatized, next up is showing Log\ MIL\-Pre MIL\-Pos via
representation; i.e., via onto ‘p-morphisms’.38

Importantly, to find the technique of onto p-morphisms in our arsenal of validity-
preserving techniques, when dealing with preorder frames, we have to define the
‘back’- and ‘forth’-conditions in terms of the accompanying ternary (and not binary)
relations. For ease of reference, let us spell this out:

Definition 4.13 Given any two frames W C W C , a function

f W W

is denoted a p-morphism if it satisfies the following conditions:

(forth) if C x y z , then C f x f y f z ; and

( sup -back) if C f x yz, then there exist y z W s.t. f y y f z z
and C x y z .

If f additionally satisfies

(\-back) if Cx f y z, then there exist x z W s.t. f x x f z z
and C x y z ,

we denote it a \-p-morphism.39

38 Another commonly used term for ‘p-morphism’ is ‘bounded morphism’.
39 Notice the symmetry in the two back clauses: this is caused by ‘\’ and ‘ sup ’ referring to the same
relation, but from different perspectives.
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When dealing with preorder frames W , [\-]p-morphisms are defined in terms
of the induced W S Pre .40

Now to be clear, onto p-morphisms preserve validity (and, generally, consequences)
of M -formulas, while onto \-p-morphisms even preserve validity (and consequences)
of \-M -formulas. This means we have a formal framework for developing represen-
tation results. In this subsection, this is a substantial part of what we will be doing.41

First up is our plighted proof that any -frame W C is the \-p-morphic image
of a poset frame W S Pos, entailing that with MIL\-Pre we have achieved
an axiomatization of both MIL\-Pre and MIL\-Pos. This representation is obtained by
composing two other representations; the first of which generalizes ‘bulldozing’ from
the usual unary-modality setting to our binary-modality setting. To explain how this
works, we briefly observe the following:

Observation 4.14 For any W C , let C and C be given as follows:

C y x Cxxy C y x z Cxyz Cxzy

Then, by definition of the class , it is not too hard to see that (a) C C , and (b)
C is a preorder on W .
Moreover, if C happened to be the supremum relation of some preorder , i.e., if

Cxyz iff x sup y z , then C .

With this observed, we are ready for the first representation result, mending -
frames W C so that C becomes a partial order.

Proposition 4.15 (Bulldozing). Let W C . Then W C is a \-p-morphic image
of some W C for which C is a partial order.

Proof Let W C be arbitrary.We construct W C by adapting the well-known
bulldozing technique from the binary-relation setting to our ternary-relation setting.
More precisely, let denote the set of maximal non-degenerate clusters of W C
w.r.t. the preorder C .42 We then define the underlying set as

W W
K

K
K

K

and let the function
f W W

40 These definitions extend to the notion of p-morphisms between models as well. Moreover, the notion of
bisimulation for modal information logics is also defined in terms of the induced W S Pre; i.e., the
back and forth conditions are defined in terms of the supremum relation and not in terms of the preorder
‘ ’.
41 Regarding \-p-morphisms, it is important to have inmind that they are also required tomeet ( sup -back).
A notion for simply meeting (forth) and (\-back) would appear appropriate, but we will not be needing such
since we do not deal with modal logics having only the modality ‘\’. In general, of course, the results of
this section have these modal logics as special cases; e.g., our decidability proof in the next subsection.
42 Recall that a cluster is non-degenerate :iff it contains at least two elements. It is maximal :iff no proper
superset is a cluster.
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be given by

f x
x x W K K

k x k z K K

To define the relation C , fix some linear order K for each K , and for all
x a b W , let C xab :iff C f x f a f b and

(i) x W
K

K or

(ii) x k z K K a b or

(iii) x kx zx K ka za a b K zx za or zx za and kx
K ka or

(iv) x kx zx K kb zb b a K zx zb or zx zb and kx
K kb or

(v) x a b K x kx zx a ka za b kb zb

zx za or zx za and kx
K ka zx zb or zx zb and kx

K kb

We claim that (1) W C ; (2) W C is a \-p-morphic image of W C
witnessed by f ; and (3) C is a partial order.

We begin by proving (1) W C . We have that

(Re.f) is satisfied because (a) W C Re f by assumption and (b) for all
K : K is, as a (weak) linear order, in particular, reflexive;

(4f) can be seen to be satisfied by a straightforward, but tedious check using
W C 4 f . Only non-trivial case is whenC xxa by virtue of (iii): there
one must observe that if C aab then f b cannot be in the same cluster as
f x by maximality of clusters K ;

(Co.f) is satisfied because (a) W C Co f and (b) the definition of C is
symmetrical in the two last arguments; and

(Dk.f) is satisfied because (a) W C Dk f and (b) if C xab holds by virtue
of (i), then C xxa holds by virtue of (i); if C xab holds by virtue of (ii) or
(iv), then C xxa holds by virtue of (iii); if C xab holds by virtue of (iii),
then C xxa holds by virtue of (v); and if C xab holds by virtue of (v), then
C xxa holds by virtue of (v).

Having proven (1), we continue by proving (2). f is clearly (a) surjective and (b) a
homomorphism. Therefore, it remains to show that (c) the back conditions are satisfied.
Beginning with ( sup -back), suppose C f x a b for arbitrary x W , a b W .
We then have to find a b W s.t.C xab, f a a , and f b b . We go by cases:

(i) If x W K K , pick any a f 1 a and b f 1 b using surjec-
tivity of f .

(ii) If x k z K and a b K , pick any a f 1 a and
b f 1 b .
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(iii) If x kx zx K and a K b , set a a zx 1 and pick any
b f 1 b .

(iv) If x kx zx K and b K a , set b b zx 1 and pick any
a f 1 a .

(v) If x kx zx K and a K b , set a a zx 1 and b
b zx 1 .

This exhausts all cases, hence f satisfies the ( sup -back) condition, thus is a p-
morphism. Continuing with (\-back), suppose Cx f a b for some a W and
x b W . Again, we go by cases:

i If a W K K or [a ka za K and x K ], then begin
by picking any x f 1 x . Then C f x f x b by (Dk.f) and (Co.f) of
W C and because Cx f a b, so by the just proved sup -back condition
and the definition of C , we can find a b W s.t. C x x b and f b b.
We claim that C x a b . To see this, first recall that Cx f a b, f x x and
f b b. Second, notice that C x x b must hold by virtue of (i), (iii) or (v).
If by virtue of (i), then so does C x a b ; if by virtue of (iii), then C x a b
holds by virtue of (ii) (since, by assumption, either a W K K or
[a ka za K and x K ]); and if by virtue of (v), then C x a b
holds by virtue of (iv).

ii And if a ka za K and x K , then setting x x za 1 ,
we, again by (Dk.f) and (Co.f), get that C f x f x b, hence by the sup -back
condition we can find a b W s.t. C x x b and f b b. Now because
(1) Cx f a b and (2) C x x b must hold by virtue of (iii) or (v), we get that
C x a b likewise holds by virtue of either (iii) or (v) since za 1 za .

This covers all cases—completing our proof of f being an onto \-p-morphism.

Lastly, we show that (3) C is a partial order. Reflexivity and transitivity are con-
sequences of W C . To show anti-symmetry, let x y W be arbitrary s.t.
C xxy and C yyx . We have to show that x y. Going by cases we find that:

If x y W K K , then Cxxy and Cyyx by definition of f and C ,
so since W K K contains no non-degenerate clusters by definition, we
must have x y.

If x W K K and y k z K , then Cxxk and Ckkx so
x K—contradicting x W K K .

If y W K K and x k z K , then as above.

If x kx zx K and y ky zy K for K K , then
Ckxkxky and Ckykykx so kx K —contradicting maximality of the clusters
(which implies that whenever K K , we even have K K ).
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If x kx zx K ky zy y, then x y follows by anti-symmetry
of our lexicographical ordering (since the ordering of the integers is linear and
so is K ).

Thus, we’ve shown C to be anti-symmetric, which completes our proof of (3) C
being a partial order, thus finalizing our bulldozing proof.

Using this representation, we continue further mending -frames W C into real
poset frames (i.e., frames whose ternary relation is the supremum relation of a partial
order). We do so through another representation, which is obtained by adopting the
framework of the completeness proof of Section 2 (2.13). In brief, in the proof to
come, we will also be constructing a poset frame recursively by repairing defects.
However, this time, the defects will be determined by an onto function, which we
iteratively extend seeking to make it an onto \-p-morphism. And, although the sup -
and sup -defects only need minor revision, we do need to include a third kind of
defect corresponding to (\-back).

Many of the arguments will be almost identical to the ones of the completeness
proof of Section 2, and so will be omitted or only hinted at. But – although the general
set-up is very similar – since there are some differences, it is worth spelling out. We
proceed doing so.

Definition 4.16 Given any W C , we let E be some set disjoint from W of
cardinality max W 0 , and W C be the set of all quadruples f D X such
that

1.’ f is an onto function from W D X to W ;

2.’ D X E ;

3.’ D X E ;

4.’ D X ;

6.’ is a partial order on W D X ; and

7.’ if y x then f y C f x .43

Next, we define the revised versions of the sup - and sup -defects and their
complementary revised repair lemmas, before subsequently stating and proving the
last defect/repair pair.

Definition 4.17 (( sup -back)-defect). Let W C and f D X W C .
Then a triple x y z W E W W denotes a ( sup -back)-defect (of
f D X ) :iff

(i) x W D X (ii) C f x yz

43 The only significant change is the present deletion of what was condition 5. of Definition 2.7.
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and (iii) there are no y z W D X s.t. x sup y z and

f y y y x y y x

f z z z x y z x 44

Definition 4.18 ((forth)-defect). Let W C and f D X W C . Then a
triple x y z W E W E W E is denoted a (forth)-defect (of
f D X ) :iff

x y z W D X x sup y z C f x f y f z 45

Lemma 4.19 (( sup -back)-repair lemma). Suppose x y z is a ( sup -back)-defect
of some f D X W C . Then we can extend to f D X W C by
taking distinct y z E D X and setting

f f y y z z X X y z

y u z u x u y y z z

Then, witnessed by y and z , x y z does not constitute a ( sup -back)-defect of
f D X .

Proof Defining as described, the proof of f D X W C resembles the one
of Lemma 2.11: 1.’-6.’ are obvious, and 7.’ is shown using C f x f y f z and
W C .
Moreover, the latter claim is immediate.

Lemma 4.20 ((forth)-repair lemma). Suppose x y z is a (forth)-defect of some
f D X W C . Then we can extend to f D X W C by (a)

taking d E D X , (b) letting

f f d f x D D d

u d d u y z d d

and (c) getting x sup y z .46

Proof Extending to f D X as described, it follows similarly to the proof of
Lemma 2.12 that f D X satisfies 1.’-7.’ and x sup y z . Only two
things are worth mentioning: (1) for proving 7.’, we use that if u d then u x ,
hence f u f u C f x f d , and (2) for proving x sup y z , we
need that is a partial order (this is where we use bulldozing).

44 Notice the similarity between ( sup -back)-defects and sup -defects (2.8).
45 And between (forth)-defects and sup -defects (2.9).
46 Now ‘d ’ is no longer short for ‘dummy’, but for ‘duplicate’ (of x ): f d f x . We stress: this
is key. (However, this is only a good intuition for the D-worlds introduced in this repair lemma—not for
those in the next.)
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Our third and last defect, naturally, bears much resemblance to the ( sup -back)-
defect. It is defined as follows:

Definition 4.21 ((\-back)-defect). Let W C and f D X W C . Then
a triple x y z W W E W denotes a (\-back)-defect (of f D X )
:iff

(i) y W D X (ii) Cx f y z

and (iii) there are no x z W D X s.t. x sup y z and

f x x y x y y x

f z z z x z z x

This new defect is repaired in this fashion:

Lemma 4.22 ((\-back)-repair lemma). Suppose x y z is a (\-back)-defect of some
f D X W C . Then we can extend to f D X W C by taking

distinct x z E D X and setting

f f x x z z D D x X X z

u x u y x x z z z x

Then, witnessed by x and z , x y z does not constitute a \-back defect of
f D X .

Proof A matter of going over the definition.

Employing these repairs, we are ready to prove the desired representation result.

Proposition 4.23 Every W C for which C is a partial order, is a \-p-morphic
image of a poset frame.

Proof Let W C be arbitrary s.t. C is a partial order. For the sake of simplicity,
assumeW is countable: as oftentimes is the case, the adjustments of the ensuing proof
needed for the case where W 0 are conceptually insignificant but notationally
taxing.47 Besides, by a ‘standard translation’ and the Löwenheim-Skolem Theorem,
has the countable model property w.r.t. \-M -formulas, so, for instance, starting with
a countable frame, we can bulldoze it into a countable -frame whose underlying
preorder is a partial order.

As in the completeness proof of Section 2, using the repair lemmas repeatedly, we
will be constructing a sequence

f0 D0 X0 0 f1 D1 X1 1

such that for all i

fi Di Xi i W C fi fi 1 Di Di 1 Xi Xi 1 i i 1

47 The adjustments in case W 0 are doing transfinite recursion and induction instead.
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We begin the sequence by setting

f0 I d W W D0 X0 0 C

Then f0 D0 X0 0 W C .
At each stage n 1, we then pick the least tuple constituting a defect to

fn Dn Xn n —according to a fixed enumeration of the set of all triples x y z
W E W W and all triples x y z W E 3 and all triples48

x y z W W E W—and repair it to obtain fn 1 Dn 1 Xn 1 ln 1 .
Letting

f D X
n

fn
n

Dn
n

Xn
n

n

we get that (1) f D X satisfies 1.’ and 3.’-7.’, and (2) f D X
has no defects whatsoever. Again, only (2) is not straightforward, and, again, for
proving (2) two claims and an observation are helpful.

Observation’. Let n and x W Dn Xn be arbitrary s.t.

n nx n n nx

Then for all m n:

m mx m m mx

hence also

x x

This follows by an easy induction, using that each fm 1 Dm 1 Xm 1 m 1 is
obtained from fm Dm Xm m using one of the repair lemmas.

Claim (a’). Let n and x y z W Dn Xn be arbitrary s.t.

x supn y z C fn x fn y fn z

n y nx y n y n nx

nz nx z nz n nx

Then for all m n:
x supm y z

a fortiori, x sup y z .
We prove the claim by induction. By assumption, it holds for m n, so assume

it holds for some m n. We show it holds for m 1. This time we have three

48 For simplicity of argument, we assume all x0 y0 x0 W E W W to be distinct from all
x1 y1 z1 W E 3 – and so forth.
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cases, depending on the type of defect being repaired at stage m 1. The cases of a
( sup -back)-repair and (forth)-repair are the exact same as in Theorem 2.13.

Consequently, suppose stage m 1 was obtained by (\-back)-repairing some
s ys zs through introducing the worlds s zs . Then s is the only possible coun-
terexample to x supm 1 y z , so assume y m 1 s m 1 z . Then we must
have y m ys m z , so by the IH x m ys , hence x m 1 s . Claim (a’)

Claim (b’). Let n and suppose that a b W Dn Xn are s.t. a n b.
Then for all m n, we have that a m b. A fortiori, a b.

Once again by induction on m n with no change concerning the cases of
( sup -back)-repairs and (forth)-repairs. Therefore, assume lm 1 m 1 Dm 1 was
obtained by (\-back)-repairing some x y z by introducing x z . Then there is no
change in predecessors of a, which suffices for the claim. Claim (b’)

Finally, from these claims we likewise get (c): If some tuple did constitute a defect
at some stage n, but no longer at some later stage m n, then it didn’t for all k m.

Noteworthy is the overlap between our definitions of ( sup -back)-defects and (\-
back)-defects, which assures that claim (a’) applies to both types of defects. And
using (c) along with claim (a’) and (b’) in an analogous manner to what we did in the
completeness proof, we get that f D X neither has (forth)-, ( sup -back)-
nor (\-back)-defects.

Lastly, the fact that there are no defects, entails that f is a \-p-morphism from
W D X to W C , so since f also is onto, we’ve shown the desired.

At long last, combining the two representations, we can deduce that we have achieved
the axiomatization we were seeking.

Theorem 4.24 Every W C is a \-p-morphic image of a poset frame.
Thus,MIL\-Pre is sound and strongly complete w.r.t. preorder frames, and, in par-

ticular,
MIL\-Pre MIL\-Pos MIL\-Pre

Additionally, as a special case, we get another proof of MILPre being sound and
strongly complete w.r.t. preorder frames, and, particularly

MILPre MILPos MILPre

Proof The first assertion follows from propositions 4.15 and 4.23 because onto \-p-
morphisms are closed under composition.

Soundness and strong completeness is the upshot of onto \-p-morphisms preserving
the consequence relation of a frame and the fact that Pos Pre ; so also, in
particular

MIL\-Pre MIL\-Pos MIL\-Pre

Lastly, since \-p-morphisms are p-morphisms and M \-M , this also restricts to
the special case of the basic modal information language.
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4.4 Decidability

The problem of axiomatizing our conservative extension(s), MIL\-Pre MIL\-Pos, of
the basic modal information logic(s),MILPre MILPos, solved, the biggest remaining
problem is, arguably, that of decidability. As already mentioned, we continue being
guided by the procedure outlined in Subsection 1.2, thus showing decidability qua a
proof of the FMP w.r.t. another class of frames, which, of course, is anew. Albeit the
M -filtration through a -closed set of formulas (cf. Subsection 3.2) is not an \-M -

filtration—that is, through a -closed set of formulas it does not preserve satisfaction
of \-M -formulas, but only of M -formulas—we are not at a loss: only some minor
modifications are needed.

Borrowing the idea of a suitable set of formulas from [6], we define a notion
extending our notion of a -closed set of formulas.

Definition 4.25 We say that a set of \-M -formulas is -suitably closed :iff

( ) it is -closed; and

(Suit) \ implies sup \ .

Moreover, for any set of \-M -formulas 0, we say that is the -suitable closure of
0 :iff it is the least -suitably closed set of formulas extending 0.49

Afresh, an immediate consequence is:

Lemma 4.26 For any finite set of \-M-formulas 0, its -suitable closure 0,
too, is finite.

As the last ingredient for achieving decidability, we show that when filtrating
through -suitably closed sets of formulas, the M -filtration of Theorem 3.9 lifts
to an \-M -filtration:

Theorem 4.27 MIL\-Pre admits filtration w.r.t. the class . Consequently,

MIL\-Pre Log\ F

where Log\ F denotes the logic of the class of finite -frames in the language of
\-M .

Proof Let W C V be an arbitrary -model; an arbitrary -suitably closed set
of formulas; and W C V be the filtration of W C V through defined in
Theorem 3.9. Then, as shown in the proof of said theorem, W C and the
filtration conditions (F1) and (F2) hold for the modality ‘ sup ’. Thus, because of
Lemma 4.26 and the inclusion Log\ Log\ F , we need only show that the
synonymous filtration conditions for the modality ‘\’ likewise are met.

The former, homomorphism condition is evidently the same, while the latter
becomes

49 Note that the -suitable closure of a set of formulas always exists.
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(F2’) C x y z \ [ y \ z x ].50

Consequently, all that remains to be proven is (F2’).51 So assume C x y z , and
let \ be arbitary s.t. y \ and z . By (Suit), sup \ so by
(Com) we have that sup \ . But then (F2) entails that x sup \ ,
whence x sup \ by W C Co f , so finally since W C I1 , we
have x as required.

Using this, we can conclude that the basic modal information logic of preorders (or
posets) endowed with the informational implication is decidable.

Corollary 4.28 MIL\-Pre is decidable (and so is MIL\-Pos).

Proof We have shown that

MIL\-Pre MIL\-Pre Log\ F

so since MIL\-Pre is finitely axiomatizeable and complete w.r.t. a recursively enu-
merable (r.e.) class of finite frames [simply check for satisfaction of the first-order
formulas (Re.f), (4f), (Co.f), and (Dk.f)], we obtain decidability ofMIL\-Pre.

Closing off this section, we state the following corollary:

Corollary 4.29 Let -M be the extension of the basic language M with the unary
modality ‘ ’, and let the semantics for ‘ ’ be the usual one, namely those of
the forward-looking modality ‘F’ given in Remark 4.8. Then letting MIL -Pre and
MIL -Pos be the MILs of this language on preorders and posets, respectively, we get
that both are decidable.

Proof A decision procedure is given as follows: For any -M -formula , translate it
into a formula t \-M in accordance with Remark 4.8, and then use the decision
procedure of the preceding corollary.

Conclusion and FutureWork

This paper’s exploration of modal information logics has come to an end. We summa-
rize this inquiry, clarify where it leaves us, and point to future lines of research.

First, we examined the basic modal information logics of suprema on preorders
and posets, namely MILPre and MILPos. We showed that – even if they do not enjoy
the FMP w.r.t. their frames of definition – they are decidable. This was shown ‘via
completeness’ by (1) axiomatizing them; (2) deducing that they are one and the same
logic; and (3) obtaining another class of frames complete w.r.t. the logic(s), which,
importantly, did enjoy the FMP.

50 Recall that ‘\’ is a ‘ -ed’ modality; therefore, this presentation of the second filtration clause.
51 The proof of Lemma 2 in [6] pertains to showing the satisfaction of (F2’) in our present setting, so the
ensuing argument is only given for the sake of completeness of the current proof—we claim no originality
whatsoever.
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Second and last, we tackled these sameproblems but for the enriched logicsMIL\-Pre
and MIL\-Pos and achieved analogous results. However now, already having a clear
candidate for a generalized class of frames, namely , we could axiomatize this logic
first, and subsequently solve the problem of axiomatization of MIL\-Pre and MIL\-Pos
through representation.

This brings us to directions for further research. We find two such to be of great
interest:

Further examining how MILs relate to other logics, not only those mentioned
in the introduction, but also more: analogues of ‘ sup ’ occur in an array of
logical systems: ‘intensional conjunction’ or simply ‘fusion’ in relevance logics
([3]); regular conjunction in semantics for exact truthmaking ([8, 19]); ‘tensor
disjunction’ in the team semantics of [21, 22]; and ‘split disjunction’ in the
state-based semantics of [2], to name some.

This could shed new perspicuous lights on not only MILs but also on the
logics of comparison (cf. 4.10).

Expanding the inquiry fromMILs on preorders and posets toMILs on different,
more concrete structures.52 This would be in line with the work of [20], where
the authors axiomatize the MIL on lattices in the language extended with an
‘ inf ’-modality and nominals. Additionally, it could enable linking up with
work on other information-oriented logics, such as relevance logics and domain
theory.

Appendix AWildness of the canonical frame

As an informal addendum to Section 2, we briefly remark that the canonical relation
CPre of the canonical frame forMILPre is not the supremum relation of Pre.

Remark A.0.1. The following hold:

1. There areMCSs s.t.CPre even if Pre . In other words, although
and aren’t in the same cluster ( Pre ), ‘claims’ to be the ‘supremum’

of .

2. In fact, there are continuummany suchMCSs i all claiming to be the supremum
of .

Proof Consider the model depicted below where the worlds satisfy all and only the
proposition letters shown.

p

1 p 2 p

52 As mentioned in the introduction, we have already initiated this study by finding an axiomatization of
the basic MIL on join-semilattices, but for reasons of length, we have decided not to include it in this paper.
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Then 1 2 are MCSs where x M x . Moreover,
Pp 1 2 , so (a) since p we have that Pre 1 ,
and (b) since sup 1 2 we also have CPre , which proves the first claim.

For the second, simply change the valuation of for proposition letters q p to
get the same results for differentMCSs i . Since there are countablymany proposition
letters (so continuum many subsets of proposition letters), we get continuum many
MCSs claiming to be supremum of 1 2 .53
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