UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Albatross
a scalable simulation-based inference pipeline for analysing stellar streams in the Milky Way

Alvey, J.; Gerdes, M.; Weniger, C.

DOI
10.1093/mnras/stad2458

Publication date
2023

Document Version
Final published version

Published in
Monthly Notices of the Royal Astronomical Society

License
CcCBY

Link to publication

Citation for published version (APA):

Alvey, J., Gerdes, M., & Weniger, C. (2023). Albatross: a scalable simulation-based inference
pipeline for analysing stellar streams in the Milky Way. Monthly Notices of the Royal
Astronomical Society, 525(3), 3662-3681. https://doi.org/10.1093/mnras/stad2458

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:24 Jan 2024


https://doi.org/10.1093/mnras/stad2458
https://dare.uva.nl/personal/pure/en/publications/albatross(ac3503ce-c6cd-4822-a6e4-1d54ba518496).html
https://doi.org/10.1093/mnras/stad2458

of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 525, 3662-3681 (2023) https://doi.org/10.1093/mnras/stad2458
Advance Access publication 2023 August 16

Albatross: a scalable simulation-based inference pipeline for analysing
stellar streams in the Milky Way

James Alvey ~,* Mathis Gerdes and Christoph Weniger

GRAPPA Institute, Institute for Theoretical Physics Amsterdam, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands

Accepted 2023 August 10. Received 2023 August 10; in original form 2023 April 30

ABSTRACT

Stellar streams are potentially a very sensitive observational probe of galactic astrophysics, as well as the dark matter population
in the Milky Way. On the other hand, performing a detailed, high-fidelity statistical analysis of these objects is challenging for a
number of key reasons. First, the modelling of streams across their (potentially billions of years old) dynamical age is complex
and computationally costly. Secondly, their detection and classification in large surveys such as Gaia renders a robust statistical
description regarding e.g. the stellar membership probabilities, challenging. As a result, the majority of current analyses must
resort to simplified models that use only subsets or summaries of the high quality data. In this work, we develop a new analysis
framework that takes advantage of advances in simulation-based inference techniques to perform complete analysis on complex
stream models. To facilitate this, we develop a new, modular dynamical modelling code sstrax for stellar streams that is highly
accelerated using jax. We test our analysis pipeline on a mock observation that resembles the GD1 stream, and demonstrate that
we can perform robust inference on all relevant parts of the stream model simultaneously. Finally, we present some outlook as to
how this approach can be developed further to perform more complete and accurate statistical analyses of current and future data.

Key words: software: data analysis — software: simulations — galaxies: star clusters: general — Galaxy: structure —dark matter.

1 INTRODUCTION 1.2 Observational status

In the early 2000s, the first observations of cold (and hot) stellar
1.1 Motivation streams in the Milky Way were obtained by the SDSS survey (Abaza-
jian et al. 2009), the most well-known of which being the GD1
stream (Grillmair & Dionatos 2006; Eyre 2010; Carlberg & Grillmair
2013; Price-Whelan & Bonaca 2018; Bonaca et al. 2020). Since then,
many more streams have been discovered in surveys such as SDSS
and Gaia (Abazajian et al. 2009; Gaia Collaboration 2018, 2021;
Malhan, Ibata & Martin 2018; Ibata et al. 2021a; Martin et al. 2022),
but perhaps more importantly, the resolution of the observations
has improved dramatically. Current observations have revealed, for
example, interesting substructure and features in cold stellar streams
such as GD1 (Ibata, Lewis & Irwin 2002; Johnston, Spergel & Haydn
2002; de Boer et al. 2018; Price-Whelan & Bonaca 2018; Bonaca
et al. 2020). This is the context in which we want to consistently
analyse both the large scale structure of the streams (such as its
location on the sky and track), and the small scale structure that
is sensitive to e.g. the dynamics and details of the tidal stripping
process, or baryonic/dark matter interactions.
There are a number of relevant aspects to analysing stellar streams
— stream modelling, inference, and observations. Since the main
focus of this work is the statistical analysis of streams, we will briefly
review its current status and the corresponding claims, although we
will return to computational models for streams when we describe
our dynamics code below. Previous analyses have typically focused
on either the global structure of the stream, see e.g. Refs. (Koposov
et al. 2010; Bonaca et al. 2014; Gibbons et al. 2014; Sanderson et al.
2014; Bowden, Belokurov & Evans 2015; Bovy et al. 2016; Gialluca
* E-mail: j.b.g.alvey @uva.nl etal. 2021; Pavanel & Webb 2021; Shipp et al. 2021; Dillamore et al.

Stellar streams are very old, dynamical objects consisting of a
collection of stars that originate from tidal disruptions of a dwarf
galaxy (e.g. the Sagittarius stream (Belokurov et al. 2006; Gibbons,
Belokurov & Evans 2014)) or globular cluster (e.g. the GDI1
stream (Grillmair & Dionatos 2006; Eyre 2010; Carlberg & Grillmair
2013; Price-Whelan & Bonaca 2018; Bonaca et al. 2020)). In a
galaxy such as the Milky Way, these systems have the potential to
be an extremely sensitive probe of dark matter substructure (Erkal &
Belokurov 2015b; Banik et al. 2018; Banik & Bovy 2019; Bechtol
et al. 2019; Banik et al. 2021a, b; Hermans et al. 2021b; Malhan,
Valluri & Freese 2021; Pavanel & Webb 2021), baryonic physics
and Milky Way properties (Koposov, Rix & Hogg 2010; Bonaca
et al. 2014; Sanderson, Helmi & Hogg 2014; Amorisco et al. 2016;
Bovy et al. 2016; Bovy, Erkal & Sanders 2017; Erkal et al. 2019;
Helmi 2020; Koposov et al. 2023), as well as the evolution history of
the stream (Balbinot & Gieles 2018; Banik & Bovy 2021; Gialluca,
Naidu & Bonaca 2021; Doke & Hattori 2022; Malhan et al. 2022).
In principle, this can be achieved by combining high precision
observations at facilities such as Gaia (Gaia Collaboration 2018,
2021) or the Vera Rubin observatory (Abell et al. 2009; Bechtol et al.
2019), and consistent modelling of these stellar orbits as the systems
are disrupted over the course of O(billions) of years.

© 2023 The Author(s).
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2022) (where it is on the sky and the fits to the general stream track)
or construct some sort of summary statistics to study perturbations
in the stellar density along the stream object, see e.g.(Carlberg &
Grillmair 2013; Erkal & Belokurov 2015b; Amorisco et al. 2016;
Bovy et al. 2017; Banik et al. 2018; Bonaca et al. 2018; Banik &
Bovy 2019; Erkal et al. 2019; Bonaca et al. 2020; Banik et al. 2021a,
b; Hermans et al. 2021b; Doke & Hattori 2022).! The former of
these analysis methodologies is well suited for studying properties
and phenomena that are specific to the orbit and evolution of a
given stream. For example, one can constrain quantities such as
the Milky Way potential (Koposov et al. 2010; Bonaca et al. 2014;
Gibbons et al. 2014; Sanderson et al. 2014; Bowden et al. 2015; Bovy
et al. 2016; Erkal et al. 2019; Shipp et al. 2021; Craig et al. 2023;
Nibauer et al. 2022; Nibauer, Bonaca & Johnston 2023), the age of
the stream (Bovy et al. 2017; Hermans et al. 2021b), or possibly
even gain information about close encounters with large perturbers
which can leave large gaps or features in the stream track (Erkal &
Belokurov 2015b; Amorisco et al. 2016; Bovy et al. 2017; Bonaca
etal. 2020; Banik et al. 2021b, a). The classic examples that are often
quoted in the literature along these latter lines are the so-called ‘spur’
and ‘gaps’ in the GD1 stream (Carlberg & Grillmair 2013; Bonaca
et al. 2018; Price-Whelan & Bonaca 2018; Doke & Hattori 2022).
On the other hand, the substructure of the stream is better suited to
asking questions about e.g. the physics of tidal stripping mechanisms
in the Milky Way, see e.g. (Baumgardt 1998; Takahashi & Portegies
Zwart 2000; Taylor & Babul 2001; Baumgardt & Makino 2003;
Drakos, Taylor & Benson 2022), the internal dynamics and nature
of the progenitor, and population level information about smaller
(or more distant) perturbers (Amorisco et al. 2016; Balbinot &
Gieles 2018; Gialluca et al. 2021; Dillamore et al. 2022; Doke &
Hattori 2022). From the perspective of the dark matter community,
both the large and small perturbing objects are of huge significance
in the context of the distribution of dark matter subhaloes in the
Milky Way (and other galaxies). Indeed, one of the key goals of
stellar stream analyses is to constrain possible subhalo populations
(Banik et al. 2018, 2021a, b; Banik & Bovy 2019; Hermans et al.
2021b; Pavanel & Webb 2021; Delos & Schmidt 2022), or provide
a detection of some larger mass (say, 107 My) subhalo (Erkal &
Belokurov 2015b; Bonaca et al. 2018). The main motivation behind
our work is to provide a path towards a robust analysis pipeline to
consistently (and simultaneously) analyse all of the above scenarios.

1.3 Statistical challenge

Making statistically robust statements about quantities of interest
— the gravitational potential of the host, the disruption history,
internal dynamics of the progenitor etc. — can be extremely chal-
lenging (Huang et al. 2019; Hermans et al. 2021b; Koposov et al.
2023). To do so requires us to have good control over the dynamical
history and initial conditions of the stream (Penarrubia et al. 2006;
Kuepper et al. 2010; Kuepper, Lane & Heggie 2012; Bovy 2014;
Bovy 2015; Bowden et al. 2015; Buist & Helmi 2015; Fardal,
Huang & Weinberg 2015; Qian, Arshad & Bovy 2022), its stochastic
interactions with dark matter or baryonic substructures (Erkal &

'In this regard, the case of GD1 is interesting since there is some evidence
that the observed density variations exhibit periodicity along the stream
track consistent with the well-known epicyclic variations. See e.g. fig. 14
in Ibata et al. (2020) which constructs the power spectrum as a function
of wavenumber along the stream track and highlights a clear peak at
k!~ 2.64kpc.
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Belokurov 2015a; Bovy et al. 2017; Delos & Schmidt 2022), as
well as a reasonable model for foreground and selection effects
in the observations, see e.g. (Huang et al. 2019). As a result of
the large number of free parameters this can introduce, together
with relatively costly simulations, classical statistical methods scale
quite poorly. Currently, this means that one must instead rely on
constructing bespoke summary statistics such as the power spectrum
of density perturbations along the stream, significantly reducing the
dimensionality of the data via e.g. only considering the stream track,
orignoring a subset of effects in the modelling to lower the simulation
overhead. This approach has been used to obtain relevant results
regarding e.g. the properties of the Milky Way potential (Bonaca
et al. 2014; Gibbons et al. 2014; Sanderson et al. 2014; Erkal et al.
2019; Helmi 2020; Panithanpaisal et al. 2022; Koposov et al. 2010,
2023), or the evolution history of progenitors (Balbinot & Gieles
2018; Banik & Bovy 2021; Gialluca et al. 2021; Doke & Hattori 2022;
Malhan et al. 2022). In this paper, we propose using the modern tools
and techniques of simulation based inference (Brehmer & Cranmer
2020; Cranmer, Brehmer & Louppe 2020) to analyse stellar streams
and overcome some of these challenges.

1.4 Simulation-based inference

Given the context described above, we briefly argued that the
analysis of stellar streams was a problem that is well-suited for
the application of simulation-based inference (SBI) (Brehmer &
Cranmer 2020; Cranmer et al. 2020). Currently, there are a wide
range of available approaches and implementations that have been
shown to be successful in a number of settings such as CMB data
analysis (Cole et al. 2022), point source searches (Anau Montel &
Weniger 2022), gravitational wave inference (Bhardwaj et al. 2023),
and others, see e.g. (Dax et al. 2021; Hermans et al. 2021b; Montel
et al. 2022; Gagnon-Hartman, Ruan & Haggard 2023; Karchev,
Trotta & Weniger 2023). In general, the advantages of SBI techniques
fall into three categories: (i) a consistent inference methodology for
any forward simulator, irrespective of the complexity, stochasticity,
or data dimensionality of the model, (ii) the possibility of extremely
simulation efficient inference compared to traditional methods,? and
(iii) the methods do not require an explicit likelihood to be written
down, allowing for arbitrarily detailed physics simulations, and
observational/detection models. The last point has interesting outlook
for stellar streams as it allows for the possibility to significantly
improve the modelling and to investigate the implications of e.g.
selection effects, observation strategies, and instrument errors. This
could have important implications for inference results based on e.g.
small-scale structure in the observed streams or concrete features
such as the GD1 spur and gaps (Carlberg & Grillmair 2013; Bonaca
et al. 2018; de Boer et al. 2018; Price-Whelan & Bonaca 2018).

1.5 Key contributions

This work contributes in a number of ways to the problems and
analysis challenges identified above. First, and most importantly, we
develop and test a brand new analysis pipeline that leverages recent
advances in SBI. We argue that the use of SBI to study stellar streams
is motivated for a number of reasons. In particular, it allows one to
make use of the highest fidelity modelling and observational models
via the fact that it is an implicit-likelihood framework. It has also been
shown in numerous settings to be highly simulation-efficient (Cole

2This is not necessarily generic across the various methods, but has been
observed empirically in a number of settings (Cole et al. 2022).

MNRAS 525, 3662-3681 (2023)
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et al. 2022) compared to more traditional methods such as Markov
Chain Monte Carlo (MCMC) (Mackay 2003; Foreman-Mackey et al.
2013).3 This is of high relevance to the analysis of streams, since
modelling of the complex and varied physics can be computationally
costly, making sampling the posterior for large dimensional models
typically infeasible. One way we overcome this in this work is to use
a specific targeted (in the sense of analysing a particular observation)
SBI algorithm known as truncated marginal neural ratio estimation
(TMNRE) (Miller et al. 2022b), implemented within the framework
of swyft (Miller et al. 2021, 2022b). Secondly, we also developed
and will release a public code called sstrax for the modelling of
stellar streams in the Milky Way. The current version of the code
is designed to be highly modular and extendable for any aspect of
streams modelling (e.g. the gravitational dynamics or tidal stripping).
It is written in pyTHON but is highly accelerated through the use of
jax (Bradbury et al. 2018), allowing for fast (O(1)s) sampling of
realistic forward models. This speed is crucial for doing sampling
on large dimensional models. Our implementation of the TMNRE
algorithm, coupled to the s st rax modelling code will also be made
publicly available in the package albatross.

1.6 Structure of the work

The rest of this work is structured as follows: In Section 2 we
describe the physics behind the forward modelling of stellar streams,
and highlight our numerical implementation in sstrax. Then, in
Section 3, we describe the use of SBU for studying and analysing
stellar streams, including a detailed explanation of the TMNRE
algorithm. In Section 4, we demonstrate that our analysis pipeline
can reliably perform parameter inference on all of the parameters in
our forward model and discuss the sort of validation tests we can
perform on the resulting posteriors. Finally, in Section 5, we present
the key conclusions to the study as well as some outlook as to the
relevant use cases and data analysis challenges.

2 MODELLING STELLAR STREAMS

Arguably one of the most challenging aspects for analysing stellar
streams is balancing the complexity of the modelling with the ability
to do full parameter inference without resorting to e.g. fixing a
number of parameters. One of the key arguments we will make
later in this work is that SBI can be a path towards a highly sample
efficient analysis framework (Cole et al. 2022). This opens up the
possibility for using higher fidelity forward models for the dynamics
and observation of stellar streams. It is for this reason that we decided
to simultaneously develop and test a new modelling code for stellar
streams, sstrax, that is modular and designed to be extendable
in all aspects with the aim to move towards highly realistic stream
modelling for sampling tasks. For the purposes of this work, we have
developed what we believe is a simulator that contains all the key
elements for a robust proof-of-principle inference analysis. It will
highlight the fact that the analysis and inference pipeline that we
develop in later sections is not reliant on particularly symmetric or
statistically simple (e.g. at the level of the data likelihood) models.
We do note, however, that as far as the analysis methodology is
concerned, any forward model could be used (introducing its own
set of modelling assumptions, of course), including e.g. the current
state-of-the-art models developed in galpy (Bovy 2014, 2015) or

3In the current context, the application of MCMC techniques to the analysis
of streams was pioneered in Varghese, Ibata & Lewis (2011).
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other works (Bowden et al. 2015; Erkal & Belokurov 2015a; Fardal
et al. 2015; Bovy et al. 2017; Delos & Schmidt 2022).

In this section, we describe the key components to our modelling
code, and discuss in each case some relevant improvements that could
be made. The generation of a single stream is split broadly into five
steps:

(i) Cluster trajectory. Given some current position x. and velocity
v, for the disrupted cluster, we trace the trajectory back for some time
tag¢ in the relevant gravitational potential to find the initial conditions.

(i1) Cluster mass-loss. We then solve an equation for the evolution
of the mass of the cluster M.(f), due to e.g. tidal disruption events,
given its trajectory from Step 1, the gravitational potential, and
choices for the parameters in the mass-loss model.

(iii) Star stripping times. Given this mass-loss history, we can
then generate a set of stripping times {#;};=1_n,,, for stars released
from the cluster. These are chosen to be a random sample from a
probability distribution that is a normalized version of dM,/dt.

(iv) Stream stars evolution. For each stripping time 7;, we generate
initial conditions for a star released from the cluster and evolve the
star forward in the gravitational potential for a time (... — ;) before
noting its final position and velocity.

(v) Observation. Given the full set of stream stars, we construct
an observation by projecting to a co-ordinate frame relevant for the
stream and accounting for errors in the measurements of e.g. the
positions and proper motions of the stream stars. We also account for
possible background contamination and misidentification that may
occur when applying selection cuts.

We will discuss each step in detail below. A concrete example of
each step of the analysis process is shown in Fig. 2 along with the
mock observation used later in the case study.

2.1 Cluster trajectory

The first step in the modelling is to take the cluster position* x, =
(x¢, Ye, z¢) and velocity v, = (v ¢, Uy, ¢, VU, () at time ¢ = O (today)
and construct the trajectory for all times ¢ € [ — f,g, O]. In other
words, we project the current position and velocity backwards to
find the initial conditions of the cluster a time f, ago. To do
so, we need to know the gravitational potential ®(x, f) and solve
the equation ¥.(t) = —V®(x,, ). In terms of implementation, we
use the publicly available diffrax differential equation solver
library (Kidger 2021), written in jax (Bradbury et al. 2018).

In principle, the gravitational potential ®(x, f) can include all
contributions from, e.g. the Milky Way dark matter halo, baryonic
structures, dark matter sub-haloes, dynamical clusters, or dwarf
galaxies etc. In this work, we restrict our attention to a fixed,
time-independent Milky Way potential ® = ®yw(x) which consists
of a dark matter halo, and baryonic disc and bulge components.
Specifically, we choose the MWPotential2014 implementation
in galpy (Bovy 2015), whose parameters are given in table 1 of
Ref. (Bovy 2015). We note, however, that it is trivial to include
arbitrarily complex potentials in our modelling framework. One
should also check the level of impact mild to strong mismodelling
has in this regards if e.g. the true potential is not exactly the
one with which the simulations are generated. One reason for this
is that we do not need to analytically construct action-angle co-
ordinates (although in principle, this could be possible numerically,

4All of our dynamical modelling is performed in a Cartesian co-ordinate
frame (x, y, z) with its origin at the galactic centre.
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see e.g. Ibata et al. 2021b). Instead, we take advantage of jax-
accelerated differential equation solvers to efficiently evolve the
cluster and stars. With this choice, it is also simple to include
time-dependent potentials that would arise from either the evolution
of the Milky Way itself (Penarrubia et al. 2006; Buist & Helmi
2015; Hammer et al. 2023), or through interactions with dynamical
objects such as dark matter sub-haloes or dwarf galaxies (Carlberg &
Grillmair 2013; Erkal & Belokurov 2015b; Bonaca et al. 2018, 2020;
Doke & Hattori 2022). These can be modelled without any additional
approximations, and are represented simply by an additional term in
the gravitational force. It would also be straightforward to let the
parameters in the Milky Way potential vary and constrain them at
the same time as the other model parameters.

2.2 Cluster mass-loss

Once we have the trajectory of the cluster x.(#), we want to solve for
the evolution of its mass as a function of time M. (). This mass-loss
typically occurs for a number of reasons, due to, e.g. disruption
as a result of tidal forces, stellar evolution, or dissolution, see
e.g. (Baumgardt 1998; Takahashi & Portegies Zwart 2000; Taylor &
Babul 2001; Baumgardt & Makino 2003; Drakos et al. 2022). None
the less, the vast majority of semi-analytic mass-loss models take
the form (van den Bosch et al. 2018; Delos 2019; Drakos, Taylor &
Benson 2020),

M. fMeir) o

dt Torb

where r; is the instantaneous tidal radius, fis some model-dependent
function of the cluster mass and tidal radius, and 7.4 iS some
characteristic time-scale. In this initial implementation of sstrax,
we choose to work with a semi-analytic model given by (Baumgardt
1998),

dM. o )’
= (22)4/1 2 M, 2
dr (zrh) + (ar,> @

where &) and « are dimension-less parameters that in initial works
were fitted to N-body simulations, r;, is the half-mass radius of the
cluster, and 7., is the relaxation time given by (Baumgardt 1998),

N
/G log(0.4N)
In this expression, 7 is the average mass of a star in the cluster,
and N(t) = M (t)/m is the total number of stars in the cluster. In

addition, r, is the tidal radius, and is computed using (Bowden et al.
2015),

tm = 0.138 (3)

M)\
0= (G Gomar) @

where 2 is the instantaneous angular frequency of the cluster around
the galactic centre, r = |x|, and we compute the second derivative of
the potential using the autodifferentiation capabilities of jax.

This model quantitatively reproduces interesting features in the
mass-loss such as the fact that more stars should be stripped near the
pericentre of the orbit, which can introduce density variations that are
totally separate from e.g. epicycles in the stream evolution (Kuepper
et al. 2010, 2012; Ibata et al. 2020). Again, as in the case of the
gravitational potential, this mass-loss model can be improved, either
by generalizing the form, or through a modern calibration to high-
resolution N-body simulations of cluster evolution (Baumgardt &
Makino 2003; Loyola & Hurley 2013; Rossi, Bekki & Hurley 2016;
Madrid et al. 2017; Banik & Bovy 2021; Stiicker et al. 2023).

Albatross: SBI for stellar streams 3665

Of course, there is a ‘gold standard’ approach which would be to
perform N-body evolution in every simulation. However, we do
not expect simulation efficiencies for this type of computation to
drop significantly enough for this to become viable in parameter
inference. As such, in any inference analysis, one will almost
certainly have to resort to a semi-analytic form.

Atthe level of implementation, we solve this mass-loss differential
equation numerically using diffrax (Kidger 2021), taking the
(densely interpolated) cluster trajectory solution x.(#) and initial clus-
ter mass M, as input. As mentioned above, since we directly forward
model the mass-loss, the code can be modified to use any form of
dM./dt, including e.g. contributions due to impacts with sub-haloes
or other transient interactions (Carlberg & Grillmair 2013; Erkal &
Belokurov 2015b; Bonaca et al. 2018, 2020; Doke & Hattori 2022).

2.3 Stripping times

Once we have obtained the cluster mass M_.(¢) as a function of time ¢,
we want to stochastically generate a set of stripping times {7 }. These
times define the moment the stars which will ultimately form the final
stream are released. To go from cluster mass to stripping times, we
identify (— dM.(¢)/d¢) as the instantaneous stripping rate. We could
model this faithfully as an inhomogeneous Poisson process, however
a simple approximate scheme, which we outline below, is sufficient
for our purposes.

First, we introduce the average mass of a star 7z as a new parameter,
although we note that this is a somewhat toy simulation parameter
since real systems are known to not have monochromatic mass
functions. We then compute the total number of stars that should
be in the final stream as Ny, = AM /i, where AM = (Mg, —
M.(t = 0)) is the total mass-loss of the cluster.’ Now, each of the
Ngiars Stripping time can be sampled individually according to the
distribution (— dM.(¢)/dt)/ AM. This can be done in a number of ways,
but in sstrax we choose to construct the cumulative distribution
function and sample uniformly from U[0, 1] before projecting back
to the #-space.

Note that this scheme does not explicitly use a distribution over star
masses. Nevertheless, if one were to compute the differences of the
heuristic cluster mass function between stripping times, one would
obtain some mass distribution clustered around . The important
point to realize is that we already make an approximation in using
a continuous cluster mass M.(¢). If the particular distribution of star
masses becomes relevant, both the stripping and the cluster mass
modelling would have to be replaced by a more realistic framework.
This could be achieved, for example, by sampling the next star mass
my ~ p(ms) (Schulz, Plamm-Altenburg & Kroupa 2015), treating
the cluster mass-loss in equation (2) as the instantaneous event
frequency of an inhomogeneous Poisson process, and only reducing
the cluster mass by discrete steps m, whenever a star is released. It
would be interesting to explore the implications of these two effects
(i.e. star mass distributions and modelling the cluster mass via an
instantaneous Poisson process instead of a continuous function) in
the context of limits derived from density variations along the stream
tracks, see e.g. (Banik et al. 2018, 2021b; Hermans et al. 2021b). We
have also assumed that the cluster system is collision-less, whereas
in some systems populations of e.g. dark masses (see e.g. Vitral et al.
2022) towards their centre or accretion of halo clusters (see Mackey

SFor context, in a stream such as GD-1, there are typically around 1000 stars
reported as probable members (with some variation according to the detection
method). In the mock observation we present here, there are Nrs = 968 stars,
so represents qualitatively the same scale of system.

MNRAS 525, 3662-3681 (2023)
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3666 J. Alvey, M. Gerdes and C. Weniger
et al. 2019; Malhan et al. 2019) could break this assumption and
should be modelled properly before targeting real data.

Finally, note that our stripping process is stochastic and can
therefore lead to different realizations of the density profile along
the stream track if the same stream is generated multiple times.

2.4 Stream star evolution

The final dynamical step for generating the stream is quite simple —
we just need to release stars from nearby the cluster at the times #;
and evolve them forward in the same gravitational potential ®(x, 1)
as the cluster until today t = 0. The only choice left to be made is
one regarding the initial conditions for the stars, which we choose in
accordance with observations made in N-body simulations of tidally
disrupted clusters (Baumgardt & Makino 2003; Loyola & Hurley
2013; Rossi et al. 2016; Madrid et al. 2017; Stiicker et al. 2023). It
has been shown that the majority of stars escape from near one of the
two Lagrange points x; » = (1 £ (r/r))x. of the cluster (Varghese
etal. 2011; Bowden et al. 2015) (one on either side of the radial line
joining the galactic centre and the cluster centre), where r = |x.|.

In the sstrax implementation, we generalize this slightly and
introduce three additional parameters: A, Amach, and Ppea. Re-
spectively, these describe how far away from the cluster the star
is released, i.e. X = (1 £ Awe(r/r))x.(t;), at what distance the
velocity matching is done (specifically, the velocity is matched so
that the angular velocity of the star and the cluster agree at a distance
Xmateh = (1 £ Amaten(r:/7))x.(2;)), and finally the probability ppear Of
being released from the closer Lagrange point. Finally, to model the
velocity dispersion of the cluster itself, we choose the initial velocity
of the star to be this matching velocity plus an additional random
vector Av sampled on the unit sphere and rescaled by a factor v/30,,
where o, is the velocity dispersion.

In much the same way as the mass-loss model, the most realistic
way to actually model this process would be to account for the full
dynamics inside the cluster via some N-body approach. For the same
reason, this is still too costly for parameter inference tasks, so a
semi-analytic approach like the one above needs to be used. Again,
and in line with the prescription we chose for the mass-loss, since
we directly forward model the evolution of the stars, the generation
of these initial conditions can be tuned arbitrarily to either analytic
expectations, or some new high-resolution simulations. In any case,
the analysis pipeline will remain the same.

2.5 Observational model

An important aspect of SBI approaches is that the forward model
must also include the detector response, observational model, or
noise generation. This is in contrast perhaps to traditional approaches
where typically some clean signal output of the forward model is
input into an explicit data likelihood. In practice, the statistics results
should be identical in either formulation. In the context of stellar
streams, given some final stream configuration {xi, vi}izlmNm,
we need to model, (i) the observational measurement errors, (ii)
the detection of the stream in the sky, and (iii) the contaminating
background of other stars.

SIn principle, one can also evolve them in the gravitational potential of the
cluster as well as the Milky Way, but we found that this was indistinguishable
at the level of inference results. It is also well-known that we do not need to
include the self-gravity of the stream itself (Delos & Schmidt 2022).
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In this work, we develop a simple initial observational model,
meant mostly as a proof of principle. Specifically, we assume that
the stream has been ‘detected’ through some form of selection cuts
and vetoes in survey data (Malhan & Ibata 2018; Huang et al. 2019;
Borsato, Martell & Simpson 2020; Shih et al. 2021; Shih, Buckley &
Necib 2023). We use this to define an observational window which
we choose to focus on (i.e. we do not model the full sky). In the
rest of the analysis, we will be focusing on a mock stream that is
supposed to resemble the GD1 stream (Grillmair & Dionatos 2006;
Eyre 2010; Price-Whelan & Bonaca 2018). There are a standard
set of co-ordinates used in the literature (Koposov et al. 2010)
to describe the phase-space structure of this stream. Specifically,
there are two angle co-ordinates (¢, ¢,) which are approximately
aligned with the stream track at ¢, >~ 0 deg, the corresponding proper
motions (iig, , i¢,), and radial distances and velocities (d, vraq). The
definitions for these can be found in Appendix A.

Given these definitions, to construct the observation from the list of
stream stars, we first define the region of interest in the sky/velocity
phase space, i.e. we ignore all stars with (¢, @2, ..., Vrag) ¢
[@min, pIaX] x ... x [vMil yMX] Then, we add random observa-
tional errors to the values generated by sstrax via sampling
e.g. qu’bs ~ N(¢1, 8¢1). Finally, we model two aspects of stream
detection and selection effects. In particular, we assume that we
have some selection efficiency € that measures how often we
accidentally miss a star in a given detection algorithm that should
have been correctly classified as part of the stream (Malhan &
Ibata 2018; Huang et al. 2019; Borsato et al. 2020; Shih et al.
2021; Shih et al. 2023). We also model the fact that there can
be contamination from the background stars that are not part of
the stream, but are none the less, not removed by the detection
algorithm and are in the observing window (Huang et al. 2019). This
is quantified by assuming there is some number Nyackgrouna Stars, of
which we are able to successfully remove (1 — €pqckground) Per cent
via the selection process. We then distribute Npackground€background Stars
uniformly across the observational windows to model the background
contamination. Finally, we bin the remaining data into three channels
of size (N> Niins) €ach: (@1, $2), (g, » Lg,)s and (d, vyaa).” All the
choices for the particular values of the observational model described
here are given in Table 2.

As in the other components, there is significant room for more
detailed modelling. For example, we know just from looking at Gaia
data that the background stars will not be uniformly distributed across
the sky (Gaia Collaboration 2018, 2021; Boubert & Everall 2020),
with higher concentrations near the galactic centre. Similarly, the
efficacy of the sort of selection criteria or cuts that are applied based
on e.g. metallicity or proper motions are likely at least stream- and sky
location-dependent. The extent to which this impacts the inference
is a different question, and something that we can actually test in our
framework by modifying the observational model.

2.6 Acceleration with jax

Making the decision to directly forward model the evolution of the
stream, rather than construct either some effective description (De-

"It is worth noting that for streams with relatively low stellar counts, binning
the data may not be the most appropriate data representation. Arguably one
of the key benefits of the SBI paradigm, however, is that if a more relevant
data choice can be made/simulated, then the statistical implications will be
automatically taken into account. This final point also holds if e.g. some
aspects of the data are unavailable for some reason (such as the radial positions
and velocities in the current context).
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los & Schmidt 2022), or accelerate the dynamical solutions through
action-angle co-ordinate constructions opens up the possibility for
far more general simulation frameworks. On the other hand, it is also
potentially much more computationally intensive, e.g. if we include
the effect of a large population of subhaloes in the future. This is
compounded by the additional simulation budget that is potentially
required to perform inference on the large number of parameters any
augmentation of the model can introduce.

As such, an important component of our implementation is its
computational efficiency. We have achieved this by using the jax
framework (Bradbury et al. 2018), which allows for just-in-time
compilation caching and highly optimized custom vectorization.

3 SIMULATION BASED INFERENCE FOR
STELLAR STREAMS

In this section, we will give a brief review of general SBI methods
before describing the specific implementation we will use in this
work. We will end the section by presenting some of the algorithm
design choices that are relevant to stellar stream analysis.

3.1 Overview of simulation-based inference

Recently, there have been significant advances in high fidelity
physics simulations, and machine learning techniques for processing
complex data structures, alongside the emergence of increasingly
challenging data analysis problems. This has led to the rapid devel-
opment of ‘SBI” as a competitive alternative to traditional techniques
as far as scalability, model realism, and unbiased analysis pipelines
are concerned (Brehmer & Cranmer 2020; Cranmer et al. 2020). Atits
heart, the field of SBI asks: given some forward model or simulator,
can we perform efficient and correct Bayesian inference ? Ultimately,
the goal of SBI is to develop a robust statistical pipeline that can make
use of the most realistic and state-of-the-art modelling tools.

To be more concrete, suppose we have some forward model p(x, 9)
that takes the model parameters 8 — which could be a range of physical
parameters, effective model components, nuisance parameters etc.
— to some data x that resembles the real observed data xy. In a
Bayesian context, we sample 6 from some chosen?® prior distribution
p(0) so that the forward model takes the form p(x, ) = p(x|6)p(6).
This expression is at the heart of simulation-based methods, since
it formally represents the notion that ‘running your simulator’ is
the same as sampling from the (simulated-)data likelihood p(x|0).
Indeed, this is the origin of the terms ‘likelihood-free’ or ‘implicit
likelihood’ inference to describe SBI (Brehmer & Cranmer 2020;
Cranmer et al. 2020). These descriptions are supposed to convey
the distinction between analytically evaluating some expression to
compute the likelihood p(x|0) and sampling from it.

To understand the different ways in which SBI methods approach
the Bayesian inference problem, it is useful to briefly review how
the forward model fits into Bayes’ theorem. As far as scientific
conclusions are concerned, we are typically® interested in computing
the posterior p(6|x) of the parameters given some data x,

p(x10)p©)

p@|x) = W ©)

81deally with some physical motivation for the ranges chosen, or some
maximally uninformative choice otherwise.

90f course, there are use cases e.g. in model comparison or goodness-of-fit
tests (Spurio Mancini et al. 2022), where computing other quantities such as
the data evidence or maximum likelihood is more relevant.
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Here, as above, p(x|0) is the data likelihood, p(#) is the prior over
our parameters 6 = (0, ---), and p(x) is the evidence. Given this
setup, there are various ways that SBI algorithms tackle posterior
estimation given the ability to sample from the forward model (x,
0) ~ p(x, ) = p(x|0)p(0). Specifically, these can be categorized as
follows (with the method we use highlighted in bold):

(1) Neural posterior estimation (NPE). In NPE (Papamakarios &
Murray 2016; Zeghal et al. 2022), the goal is to directly estimate
the posterior distribution p(6|x) by representing it as some flexible
parametrized probability density. This has been applied successfully
in a number of contexts, e.g. gravitational wave analysis (Dax
et al. 2021) and open source implementations are available (Tejero-
Cantero et al. 2020).

(ii) Neural likelihood estimation (NLE). In contrast, NLE (Alsing
et al. 2019; Papamakarios, Sterratt & Murray 2019) attempts to
construct an estimator for the (simulated-)likelihood function itself
p(x|0). This can then be used to carry out standard inference tech-
niques such as MCMC (Mackay 2003; Foreman-Mackey et al. 2013)
or nested sampling (Skilling 2006; Handley, Hobson & Lasenby
2015; Ashton et al. 2022) and generate samples from the posterior.

(iii) Neural ratio estimation (NRE). Finally, NRE (Hermans,
Begy & Louppe 2019; Durkan, Murray & Papamakarios 2020;
Rozet & Louppe 2021; Delaunoy et al. 2022; Miller et al. 2022b)
considers the ratio p(x|6)/p(x) appearing on the right-hand side of
equation (5). This particular approach will be the focus of this work,
in the form of an algorithm known as TMNRE (Miller et al. 2022b),
implemented within the framework of swyft (Miller et al. 2021).

3.2 The TMNRE algorithm

We will now focus on the specific implementation of SBI used in
this work. This is known as TMNRE (Miller et al. 2022b), and is
implemented in the swyft software (Miller et al. 2021). We have
summarized the method in Fig. 1 for reference, however, there are a
number of features we wish to emphasize in terms of its applicability
to stellar streams.

(1) Targeted inference. TMNRE is both a ‘targeted’ and ‘sequen-
tial’ algorithm in the sense that it performs inference on a specific
target observation xy (as opposed to amortizing over all possible
model outputs) over a number of discrete rounds. In each round,
the prior is truncated based on inference in the current round (see
description below) to avoid simulating in parameter regions which
do not contribute significantly to the likelihood ratio, given the fixed
target observation.

(ii) Marginal posteriors. There are a number of quantities of
interest in Bayesian inference, including the full joint posterior
p(@|xp) given some observation xy, the evidence of a particular
observation p(xp), or marginalized posteriors'® p(6;|x,) for some
individual parameter 6; or subset of parameters in 6. In TMNRE, a
significant portion of the achieved simulation efficiency arises due to
the fact that we directly estimate the marginal posterior, rather than
marginalizing over samples from the full joint distribution.

In combination, these two properties are the key to achieving
a highly simulation efficient inference strategy. For more discus-
sions along these lines, see e.g. works discussing the application
of TMNRE to CMB (Cole et al. 2022) and gravitational wave
analyses (Bhardwaj et al. 2023).

101 the strict technical sense that pOF|x) = fd”@ p@1x)8O; — 6})
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Figure 1. A schematic illustration of the data analysis pipeline developed in this work. We use the TMNRE algorithm (see Section 3) to carry out parameter
inference on Milky Way stellar streams (see Section 4), using our new modelling code sstrax (see Section 2). We also publicly release the albatross

analysis code.

Although the details of the method can be found in the original lit-
erature (Miller et al. 2022b), it is useful to give a brief overview of the
setup of the ratio estimation problem. This will highlight the features
described above and how they will be beneficial for the analysis of
stellar streams. The goal of TMNRE is to estimate the following ratio,

] px10)  p@lx) p(x,0)
r(x;0) = = = ,
px) p©®) p(x)p(0)

where the last two equalities follow from an application of Bayes’
theorem in equation (5) and the definition of the joint distribution
px, 8) = p(x|0)p(0). In other words, access to the ratio r(x; 6)
is equivalent to estimating (i) the likelihood-to-evidence ratio
p(x|0)/p(x), (ii) the posterior-to-prior ratio p(0|x)/p(0) which will be
used for parameter estimation, and (iii) the joint-to-marginal ratio
p(x, 0)/p(x)p(6) which will be the technically important form to
perform ratio estimation in practice.

If we focus on the last form, r(x; ) = p(x, 6)/p(x)p(B), we
can make the observation that given a set of simulations {(x, 6)}
from our forward model p(x, 8) = p(x|6)p(0), we can construct two
distinct classes of sample. The first is simply a sample from the full
joint distribution p(x, ), which amounts to picking an individual
simulation pair (x, 6). The second is a sample from the combined
marginal distribution p(x)p(6) which can be obtained by picking two
random samples, then taking x from one, and 6 from the other. Having
these two distinct distributions is the origin of ratio estimation as a
binary classification task'! — it asks the question given a pair (x, 8),
did 0 generate x? Intuitively, the relative precision of the posterior
distribution in this case reflects how difficult it is to discriminate
between joint and marginal samples. For instance, the larger the
observational error is, the more overlap there will be between these
two classes and the posterior will be wider.

More formally, we can frame this binary classification task and
ratio estimation as an attempt to optimize (specifically minimize)

Q]

UThis can actually be generalized in interesting ways to form multiclass
classification problems that are applicable to e.g. hierarchical models (Miller,
Weniger & Forré 2022a).
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the following loss function'? (Miller et al. 2021),

LLfy] = — / dxdd p(x. 0)In (o(fi(x. 6)) )

+ p)p@) In (1 — o (f4(x,6))) .

Here o(x) = [1 + exp (— x)]~! is the sigmoid function, and f,(x, 6)
is the classifier with some set of free parameters ¢ that should be op-
timized. One of the key justifications for the correctness of TMNRE
as an inference algorithm is to realize that this loss can actually be
minimized analytically. In particular, one can show that the optimal
classifier is given by fdj (x,0) =Inr(x;0) (Miller et al. 2021). In
other words, if one can successfully minimize the loss in equation (7),
then one directly obtains the posterior-to-prior ratio r(x; ).

Practically, this is where the ‘N(eural)’ part of TMNRE is relevant,
especially for very high dimensional data/parameter spaces. Modern
machine learning methods, architectures, and hardware allow for
very flexible parametrizations of the classifier f,, and there is a well
established methodology to optimize their parameters ¢ (also more
commonly called their weights). As far as the analysis of stellar
streams is concerned, this gives us access to data representations
that are as close as possible to real data from e.g. Gaia, without any
need for compression into hand-crafted summary statistics, spline
fits, or similar data reductions. In this work, the task of optimizing is
achieved through the use of the software swyft, which is built on
top of pytorch.

With (neural) ratio estimation set up this way, we can now see how
to directly estimate marginal posteriors in this framework. Suppose
we wish to estimate the fully marginalized posterior for a single
parameter'® 6, in @, then we can start by taking our full suite of
simulations (x, ) ~ p(x, 6) which (crucially) vary all parameters
0. Then, however, instead of constructing the loss based on all

12This is nothing other than the binary cross-entropy for a classifier that tries
to discriminate between joint (x, 6) ~ p(x, #) and marginal (x, 8) ~ p(x)p(6)
samples.

3oy any subset of parameters (6;,, 6;,, . . ., 0;, ) to generate the k-dimensional
marginal posterior p(6;,, ..., 6; |x). We will give explicit examples for k =
2, 3 in Section 4.
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parameters, we can only ‘show’ the single parameter 6;. This is
equivalent to replacing & — 6; in equation (7) above. Importantly,
however, the analytic arguments will still hold and allow us to
obtain directly the marginal posterior-to-prior ratio p(6;|x)/p(6;).
In contrast to e.g. MCMC where this marginalization is performed
after obtaining samples from the posterior, we implicitly marginalize
by varying all parameters in the simulations simultaneously, but
constructing the marginal posterior directly rather than via the joint.
As far as analysing stellar streams is concerned, this is not just a useful
trick for quickly obtaining the marginal posteriors, but is crucial in
making the algorithm simulation efficient. Looking forwards, if the
goal is to perform inference with extremely high fidelity stream
simulations in order to extract the maximum possible information
from the data, analysis methods that break the traditional scaling of
sampling algorithms such as MCMC or nested sampling will be vital.

The final aspect to discuss before we summarize the algorithm
and the design choices relevant to stellar streams is the truncation
process that allows us to target a particular observation xy. As far
as simulation efficiency is concerned, the idea behind truncation
is to minimize the number of simulations performed in regions
where there is extremely low posterior density, since, by definition,
they provide almost no information about the parameter estimation
problem. Formally we achieve this by performing the inference
sequentially in several rounds. In each round, we generate a set of
simulations (x, 8) ~ p(x, ) from the full model. Then we train and
optimize our classifiers f; (x, 6;) for the parameters of interest from
which we can obtain marginal posteriors on each parameter p(6;|x¢)
for some specific target observation xy. This will highlight regions of
parameter space where the posterior density for 6; is both very high,
and of course other regions where the density is low, indicating that
given the observation xy, this particular set of parameters is unlikely.
We use these latter regions to truncate our prior region by imposing
the condition r;(x, 6;) < € on the estimated ratios.'* Then, we re-
simulate by sampling from this truncated prior, repeat the inference
and then truncate again. Eventually, once the posteriors converge
to the level of statistical uncertainty, the truncation will just return
the restricted prior and the algorithm will terminate. This truncation
process is highlighted below in Fig. 5.

In summary, the TMNRE algorithm splits into four steps that are
highlighted in the schematic shown in Fig. 1:

(i) Step 1: Sample a set of simulations'> from the full forward
model (x, 6) ~ p(x, 0) = p(x|6)p(H).

(ii) Step 2: Train a set of classifiers fdi (x, 6;) to obtain an estimate
of the ratio r;(x; 6;) = p(0;|x)/p(6;).

(iii) Step 3: Use this trained ratio to obtain estimates of the
marginal posteriors p(6;]xo) for a specific target observation xy.

(iv) Step 4: Take these marginal posterior distributions and derive
bounds on the prior region to truncate for the next round of inference
by imposing the condition p; (6;|xo)/maxg, p;(6;|xp) < €.

140f course, this will introduce a slight error in the estimate of the marginal
posterior proportional to A p(67|xp) ~ fr( o d"@ p(01x0)8(6; — 6;), where
I'(e) is the region excluded by the truncation procedure. However, it is exactly
in this region where the joint posterior density is (necessarily) low, and as
such, the error induced is small and strictly controlled by €. To be conservative,
we typically choose € ~ 1073, which corresponds to exclusion at around the
4.50 level for a Gaussian distribution (Miller et al. 2022b). Provided € is not
too large, any other choice should not change our results at all, only affecting
the time that the algorithm takes to converge.

I5Note that this step can be fully parallelized, something that is implemented
directly in albatross.
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(v) Repeat from Step 1 until the truncation procedure stabilizes,
then take the final round of inference as the set of posteriors p(6;|xo)
and terminate the algorithm.

3.3 Design choices for stellar streams

In order to use the TMNRE algorithm in practice, we must make
a number of design choices. These include (i) building or using
a pre-implemented forward model that generates the data x (here a
representation of the stellar stream) given parameters 6, (ii) designing
a neural network architecture that is able to efficiently process the
data format of x and 6, (iii) making choices for the prior distributions
over the parameters 6, and (iv) choosing the hyperparameters relevant
to the TMNRE algorithm.

3.3.1 Forward simulator

To generate stellar stream simulations, we use the implementation of
our modelling approach described in detail above (see Section 2). To
very briefly recap, we solve for the full evolution history of the stream
including e.g. the orbit-dependent tidal stripping in a framework that
can accommodate for any time-dependent or time-independent grav-
itational potential. In addition, we develop a simple observational
model that is supposed to represent experimental and statistical
uncertainties at the level of a current survey. This is implemented
in the jax-accelerated modelling code sstrax, which we couple
directly to the swyft software (Miller et al. 2021) in our analysis
code albatross. The parameters that we vary in this analysis 6 =
(tages Miat, - . . ) are described in Tables 1 (stream modelling) and 2
(observation model). An example output of our simulator (and the
case study that we investigate below) is shown in Fig. 2.

3.3.2 Inference network

As discussed above, the main aim of (neural) ratio estimation is
to design a procedure that can reliably train a classifier, or set
of classifiers fq’; (x, 6;) to distinguish between joint and marginal
samples (Hermans et al. 2019; Durkan et al. 2020; Miller et al. 2021;
Rozet & Louppe 2021; Delaunoy et al. 2022). To do this in practice,
we need a flexible way to parametrize fy, and although there are
arguments from e.g. the loss function in equation (7) that any flexible
enough parametrization (i.e. just having enough trainable parameters
in ¢) will be able to optimize the loss, in reality this is only in some
infinite training data limit. As such, we should try to make sensible
design choices regarding the network to take full advantage of the
known structure and physics associated to our signal and data format.
Empirically, making physics-informed choices at this stage leads to
huge increases in performance, robustness, simulation efficiency, and
the general applicability of the method.

In our case of stellar streams, the signal is a collection of stars and
their properties (positions, velocities, perhaps even metallicity etc.).
As described in Section 2, we focus on the phase-space information in
this work, including e.g. the selection procedure in our observational
model. As part of our forward model, we chose to bin the data into
a 3-channel image to preserve the spatial structure and morphology
of the signal. This data format is then well suited for the application
of standard image processing network structures.

More precisely, we know that a stream binned at a given resolution
can have structure on a range of scales. For instance, the large-scale
orbit of the stream is typically governed by e.g. the ambient gravita-
tional potential, as well as the initial conditions of the cluster. On the
other hand, the smaller scale features (gaps, spurs etc.) are more likely
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Figure 2. Upper panels: Illustration of the various modelling steps (finding the cluster trajectory, mass-loss history, final stream formation etc.) described in
Section 2. Lower panels: Example mock observation generated using the sstrax modelling code with the parameters in Table 1. Analysed as a case study in

Section 4.

Table 1. Parameters, prior range choices, and injection values for the stream model parameters described in Section 2.

Parameter Prior range True value
(Log of) Initial cluster mass log;o(Msa/Mg) [3.0, 4.5] 4.05
Cluster velocity dispersion o, [0.1,5.01kms~! 1.1

Cluster final pos. Xsat = (Xc, Ve, 2¢)
Cluster final vel. vsa = (Vy, ¢, Uy, ¢, Uz, ¢)
Stream age fage

Release distance parameter Are|

Release velocity parameter Amatch
Stripping asymmetry ppear

Mass-loss prefactor &g

Mass-loss parameter o

Half-mass radius ry,

Average stellar mass m

Stream dependent®
Stream dependent®

(11.8,0.79, 6.4)
(109.5, —254.5, —90.3)

[500, 5000] Myr 3000
[0.1,2.0] 1.405
[0.1, 2.0] 1.846

[0, 1] 0.5
[1074,1072] 0.001
[10, 30] 20.9
[1074,107%] pc 0.001
(1.0, 20] Mg 3

Note. *In particular, we choose these parameters to span the observational window of interest for an individual observation.
In the analysis presented in Section 4, we choose the priors ([10, 14], [0.1, 2.5], [6, 8]) and ([90, 115], [ — 280, —230],
[ — 120, —80]) on the cluster position and velocity respectively.

Table 2. Choices for observational model parameters described in Section 2.

Observation model parameter Value

Observing window ¢ [—120, 70] deg

Observing window ¢ [—8, 2] deg
Observing window i, cos ¢ [—2, 1] mas yr‘1
Observing window fi4, [—0.1,0.1]mas yr~!
Observing window d [6, 20] kpc
Observing window vraq [—250, 250] kms~!
Number of bins [64, 32]
Observational error §¢; 0.001 deg
Observational error §¢o 0.15deg
Observational error 814, cos ¢ 0.1 masyr~!
Observational error 844, 0.0 mas yr~!
Observational error 6d 0.25 kpe
Observational errors §vy,q 5kms~!
Stream selection success rate €. 95 per cent

Background stars in window Npackground 100
Background contamination rate €packground 1073 per cent
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to be impacted by the dynamical evolution history, tidal stripping,
or interactions with perturbers. The aim is to analyse both of these
classes of signal simultaneously, and as such we should choose a
network architecture accordingly. In particular, with this observation,
it is simple to see that applying e.g. a standard convolutional network
which applies the same kernel to each part of the image identically
would be a poor choice and unlikely to be able to simultaneously
extract the small-scale and large-scale information. With this in mind,
we choose to use the well-known unet architecture (Ronneberger,
Fischer & Brox 2015), which is well suited for image analysis and
segmentation. It is designed to simultaneously analyse the image at a
larger scale, before performing follow up analysis on each identified
segment and then combining the results.

There is another part of the inference network (a full description
and network diagram can be found in Appendix B) which performs
the ratio estimation. Schematically, one can understand the overall
structure as first performing some data compression through the
unet and a small linear network to extract an optimal set of
summary statistics. Then, these summary statistics (which are
automatically learned and optimized during the training), are passed
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Table 3. Choices for the hyperparameters and settings for the TMNRE
algorithm in this work, as described in Section 3.

TMNRE setting Value

Number of rounds 7

Simulation schedule 30k, 30k, 30k, 30k, 30k, 60k, 150k
Bounds threshold e 1073

Noise shuffling True

Min./Max. training epochs 0/50

Early stopping patience 20

Initial learning rate 5x 1074
Training/Validation batch size 64/64

Train : Validation ratio 0.9:0.1

Note. *This is the minimum number of rounds, if the algorithm has not
converged, we continue rounds of inference until the truncation procedure
terminates.

to the default ratio estimator implemented in swyft along with the
model parameters 0. All the details regarding the implementation
can be found in the albatross library. In terms of specificity, we
expect the network to be broadly applicable to the analysis of any
stream model or observation, since it only assumes that the signal
has structure on various scales.

3.3.3 Prior choices

The prior choices for all the parameters of interest are shown in
Table 1. They are chosen to either represent our knowledge about the
physics from current astrophysical observations or simulation results
(e.g. the mass-loss parameter «), or to be maximally uninformative.
An example of the latter case are the cluster position and velocity
priors which are chosen in the first instance to span the full
observational window.

3.3.4 TMNRE hyperparameters

There are a number of hyperparameters that need to be set when
one runs the TMNRE algorithm. Broadly these can be categorized
as either parameters that control the network training process, or
parameters specific to the TMNRE algorithm. For the inference and
analysis detailed in this work, the particular choices can be found
in Table 3, as well as in the example configuration files supplied
with albatross. Briefly, the training parameters describe how
long to train the network for (min./max. training epochs), how many
epochs to wait before the validation loss should decrease again (early
stopping patience),'¢ the split between training and validation data
(Train : Validation ratio), and the batch sizes shown to the network
during training (training/validation batch size). The TMNRE settings
consist of the minimum number of rounds (number of rounds),
the schedule for the number of simulations per round (simulation

19During the training, we track both the current loss on the training data set,
as well as the loss evaluated on some separate validation set. Looking for
good performance on the validation data set is typically a good strategy to
avoid overfitting, and therefore we use it as a metric to indicate whether we
are starting to overfit to the training data. The early stopping criterion waits
for a specified number of passes through the training data (or epochs), over
which the validation loss has not decreased before terminating the training.
It then re-initializes the network parameters to the state where the minimum
validation loss was observed.
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schedule),'” and the threshold for truncation (¢). Finally, we have
the ‘noise shuffling’ setting, which breaks down the data x into
the stream and background components. In a given batch it then
randomly permutes the background elements, essentially showing
the network a brand new example (with the same signal component)
every epoch at zero simulation cost. We found this to be an extremely
effective way of reducing the possibility of overfitting, especially in
the early rounds where we have small simulation batches.'® Indeed,
this strategy should be applicable to any additive noise model, see for
example its application to gravitational wave data analysis (Bhardwaj
et al. 2023).

In this section we have discussed the broad field of SBI and a
specific algorithm, known as TMNRE that we have used to build
our data analysis pipeline. We argued that the targeted and marginal-
focused approach could be a key advantage for stellar stream analysis,
including the resulting simulation efficiency, statistical robustness,
and the opportunities for increased model complexity. Finally, we
discussed some of the design choices that need to be made in order to
successfully apply TMNRE to a given problem. In the next section,
we will present a case study for a mock stream to illustrate the
application of our modelling and analysis strategy.

4 RESULTS: GD1-LIKE CASE STUDY

Now that we have set up the framework of SBI, and specifically
described the application of the algorithm to the analysis of stellar
streams, we can present a case study to highlight its functionality.
In this section, we will illustrate the full analysis and validation
of a mock observation that is generated using our stellar streams
modelling code sstrax. This is in order to have full control over
the reconstruction of the parameters, as well as the physics input to
the model. Of course, the longer term goal is to analyse current and
future state-of-the-art spectroscopic and photometric surveys, such
as Gaia and the Vera Rubin observatory (Abell et al. 2009; Gaia
Collaboration 2018, 2021; Bechtol et al. 2019).

4.1 Case study description

Perhaps the most well-studied and well-observed Milky Way stellar
stream is the GD1 stream (Grillmair & Dionatos 2006; Eyre 2010;
Price-Whelan & Bonaca 2018). It was first identified in the SDSS
catalogue in the early 2000s (Grillmair & Dionatos 2006; Eyre
2010), but recently it has been observed by e.g. Gaia in significantly
more detail (Price-Whelan & Bonaca 2018; Gaia Collaboration
2018, 2021). Indeed, observations are currently at the level where
individual substructures (e.g. the so-called ‘gaps’ and ‘spur’) are
reasonably well resolved (de Boer et al. 2018; Price-Whelan &
Bonaca 2018). In some sense, the purpose of developing our analysis
method is to take full advantage of these improvements and perform

71t is typically the case that in the early rounds, only a small number of
parameters are meaningfully constrained, and so it is more efficient to have
a more reduced simulation batch, truncate, and then re-simulate again. In
the last rounds, however, to achieve the correct level of statistical precision,
significantly more training data is required.

18 As an aside, we also explicitly tested that resampling the stripping times
and regenerating the ‘same’ stream (at least statistically) also lead to
improvements in the smoothness of the training and validation losses, but
importantly did not affect the precision of the posteriors. This approach was
especially effective for small simulation batches.
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Figure 3. Full set of 1d marginal posteriors (orange curves) for all parameters in the sstrax stream model described in Section 2 applied to the mock
observation in Fig. 2. The 1o, 20, and 30 contours are overlaid behind. Finally, the black vertical lines indicate the true injected parameters from Table 1.

inference on streams like GD1 in as realistic as possible simulation
framework.

To illustrate and test our method, we construct a case study
to closely resemble the sky location and structure of the GDI1
stream. To do so, we choose a stream closely aligned with the
¢> = Odeg plane in the GD1 specific co-ordinate system defined
in Section 2. We centre the location of the cluster (remnant) at
¢ ~ —25deg, and choose the age of the stream such that it extends
across a significant portion of the sky, as in the case of the real
GD1 observation (Grillmair & Dionatos 2006; Eyre 2010; Price-
Whelan & Bonaca 2018). Similarly, the dominant part of the stream
is located around 6 — 10 kpc away from the galactic centre. The full
set of parameter values that we choose for the mock observation are
shown in Table 1, along with the priors for the subsequent Bayesian
inference. The mock observation that these parameters generate,
and the focus of the analysis below is shown in Fig. 2. We do
note, however, that whilst the mock observation we present here has
general features that represent a GD1-like stream, it is important to
acknowledge that some aspects of the modelling could be improved
in this regard. One important example is the presence of a clear
remnant at the cluster centre, which is not present in the real GD1
data. Concretely, this has the effect that the reconstruction of the
cluster position in our analysis may be overly optimistic compared
to a more realistic case.
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4.2 Parameter estimation with TMNRE

We carry out parameter estimation using the priors for the model
parameters indicated in Table 1, the observational model described
in Table 2, and the TMNRE algorithm settings given in Table 3. The
key results for this section are given in Figs 3, 4, and 5.

4.2.1 Overview

There are a few levels at which to discuss our results from applying
the TMNRE algorithm described in Section 3 to the mock GD1-like
observation in Fig. 2. The first is simply in the context of robust and
faithful inference — in Fig. 3, we show the full set of converged 1d-
posteriors for all parameters in the model. We see that we reconstruct
the true value in all cases either via a direct measurement (e.g. the
final position or velocity of the cluster) or as some clear upper or
lower bound (e.g. the mass-loss parameter «). Importantly, we can
reconstruct with very high precision the age of the stream (t,g.), the
velocity dispersion of the cluster (¢ ,), the current cluster position and
velocity ([x¢, Ye, Zcl, [Ux, ¢ Vy, e» Uz, ¢]), and the relative asymmetry in
the tidal stripping (pyear)- This sort of constraint is easy to motivate
physically via e.g. the length and width of the stream, which is
strongly affected by the age and velocity dispersion, as well as the
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Figure 4. Corner plot: Follow up analysis on the mass-loss model given the 1d marginals in Fig. 3. The orange contours show the trained 2d posteriors on the
parameters relevant to the mass-loss model (£, o, rp,, 7). Upper right-hand panel and inset: Derived marginal posteriors (orange contours) in the (¢1, ¢2)-plane
on the final cluster position overlaid on top of the mock target observation. In addition, we highlight the observational errors (black error bars) and the true value

(yellow star) to be reconstructed.

stream’s spatial location and orientation which is controlled by the
relative cluster position and velocity."

4.2.2 Degeneracies

Of course, not every parameter is measured with high precision,
such as the parameters (£¢, o, r;, m) that control the mass-loss
rate of the cluster as it orbits the Milky Way. Whilst we can set
relevant upper or lower bounds on these parameters,” it is interesting
to explore the degeneracies between these parameters also. This
is where we can use the flexibility of the TMNRE algorithm to

19Indirectly, the exact orientation will be affected, of course, by the gravita-
tional potential of the Milky Way, see e.g. (Koposov et al. 2010; Bonaca et al.
2014; Gibbons et al. 2014; Sanderson et al. 2014; Bowden et al. 2015; Bovy
et al. 2016; Erkal et al. 2019; Shipp et al. 2021), which we have fixed in this
analysis. It is easy to generalise to a case where the potential is allowed to
freely vary with an analysis pipeline that would remain identical.

20Which again we might be able to motivate physically — for example, it
makes sense that we can set a lower bound on the total mass of the cluster
just by having some count of the total number of observed stream stars and
multiplying by the average stellar mass.

efficiently estimate posteriors of choice. Specifically, we only need
to estimate the relevant 2d posteriors for exploring the degeneracy
structure of the mass-loss model. To do so, we train additional ratio
estimators r(x; {0;, 0,}) with 6;, 0; € (&, «, ry, 7). The results for
these 2d-posteriors, along with the corresponding 1d-posteriors are
shown in Fig. 4. We see some clear degeneracies highlighted in the
parameter inference such as those between &, and r;,. Again, whilst
we do not investigate these degeneracies in detail, this could be
expected from e.g. the scaling of dM,/d¢ in equation (2).

4.2.3 Precision

As discussed in Section 3, SBI has now been used extensively in other
fields, and has been shown to qualitatively and quantitatively repro-
duce known results and results obtained using traditional methods. In
the present case, a full comparison to e.g. a traditional method such
as MCMC is challenging because we only have a forward simulator
for the observational and noise models. This is another way to say
that we do not have an explicit form of the data likelihood. Of course,
this is a key strength of the class of simulation-based methods, since
it allows for arbitrarily complex data simulators, which can account
for complicated aspects of detection and selection in a statistically

MNRAS 525, 3662-3681 (2023)

$20Z Aienuep G| uo Jasn wepislswy UBA NIBNISISAIUN AQ 66EEYZ//299E/E/SZS/a1oNIB/SBIUW/WOD dnoolwapeoe//:sdiy woll papeojumoq



3674  J. Alvey, M. Gerdes and C. Weniger

2z, [kpe] vy . [km,/s]
0 65 7.0 75 BO 9 95 100 105 110 115 1

@

o, [km/s] 7a [pe] Ara
2 3

4 5 0.002  0.004 0.006  0.008 0.010 0.5 1.0 L.a 2.0

|
|

Ground Truth

\ B uia 72 16 100 105 L5
.8 T2 T 5 ._J) o £

LA LN,

625 650 6.75 96 104 112

T
\ Ground Truth

52 64 66 01 108 112

o
|

B i

\

|

6.30 6.45 6.60 104 108 112 J

100

1.25 1.50

1 630 645 660 104 108 112 j

A\

Round6 Round5 Round4 Round3 Round2 Roundl

6.30 6.45 6.60

1.0 1.2

>55
[

N

1075 1100 1123
= s n .

-

~

]

5]

3 bt

S | 640 648 W .l 105 1.20 i

60 65 70 75 50 90 9% 10 105 10 115 1 2 3 1 0002 0004 0006 0008 0010 0.5 L0 15 2.0
2z [kpe] vy ¢ [km,/s] o, [km/s] 4 [pe] Arel

Figure 5. Examples of the truncation procedure in TMNRE applied to five of the model parameters. From left to right, we illustrate the evolution of the posterior
estimates for z, vy, ¢, 0y, 7, and Arj. From top to bottom we show the development over the number of rounds of the TMNRE algorithm. The insets zoom in
on the bounded region (blue vertical lines) to highlight the coverage of the true value (vertical black dotted line).

meaningful way. On the other hand, this means we should consider
additional ways to test our results. A simple qualitative test we can
perform is to compare the precision (and accuracy) with which we
reconstruct the cluster position to the intrinsic observational errors on
the stellar positions. To test this, we construct the 3d-joint posterior
P(xe, Yes Ze|Xo) by training a 3d ratio estimator r(x; {xc, y., z. }) on the
final round of simulations. From this joint posterior, we can generate
posterior samples in the (¢, ¢,) parameter space’! for the current
position of the cluster that are distributed as ¢, ¢ ~ p(p1, ¢2|xo).
These are shown in the top right-hand panel (and inset) of Fig. 4
along with the observational model errors on the positions of the
stars 8¢p1, §¢,. We see that we are able to reconstruct the cluster
position to a good degree of accuracy and precision.

4.2.4 Simulation efficiency

One of the key arguments we made for using TMNRE was the fact
that it gave us the ability to use high fidelity simulators. This is
both from a statistical perspective in the sense that we can perform
Bayesian inference without explicit likelihoods, but also from the
scalability point of view. Indeed, one of the main obstacles for a
full analysis of stellar streams is that fact that performing enough
simulations to do inference on a large number of parameters is
typically infeasible. This is where the marginal and targeted aspects
of TMNRE are relevant, as well as the acceleration of the simulator.
To be more specific, in the case study described above, we required
a total of only 350k simulations to perform inference on all 16 pa-
rameters simultaneously. Crucially, this simulation budget was split
across a total of seven rounds, as illustrated in Table 3. In between

2INote that, of course, it would have been statistically incorrect to generate
these from the individual marginal posteriors on the cluster positions, even
though they are well measured.
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the rounds, the truncation procedure described in Section 3 was
applied, which ensures that we are targeting the specific observation
of interest, and that the variance in the training data is significantly
reduced compared to the previous round. This is very important for
simulation efficiency, and results in much higher quality inference
results on targeted observations compared to e.g. the case where a
fixed simulation budget is used in a single round.??> This truncation
process is highlighted in Fig. 5, where we see how the different
classes of parameter respond to the truncation process. For example,
the first three columns of parameters (one component of the position
and velocity, and the velocity dispersion of the stream) are extremely
well constrained once the algorithm converges. On the other hand, the
last two panels show parameters that are only broadly reconstructed
(rn and A.). For this second class of parameter, however, we
see that in the initial rounds, the marginal posterior estimates of
e.g. p(ry|xo) are quite poor.”> As the rounds evolve and the well-
measured parameters are better constrained, subsequently reducing
the training data variance, the posterior estimates on the poorly
reconstructed parameters significantly improve. This is a general
feature of TMNRE, where convergence and truncation in one set of
parameters leads to marked improvements in the inference of other
model parameters, even if they themselves are not well measured.
In terms of actual run time, we performed this analysis on a 72
CPU core cluster node, with a single NVIDIA A100 GPU to train
the ratio estimators. The total run time for the analysis was around
19 h, of which approximately 90 per cent was simulation time. Note

220f course, if the goal is to perform some sort of amortized inference across
all possible observations, then one should use this hypothetical simulation
budget differently. For an example in the context of gravitational waves, see
e.g. (Bhardwaj et al. 2023).

2In fact, it is a good example of where we should be careful not to interpret
these early-round ratio estimators as strict posteriors, since the algorithm has
not converged.
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that this can therefore be improved immediately by either (i) further
speeding up the simulator, or (ii) having access to more CPU cores
where the simulations can be further parallelized.

4.3 Consistency and validation tests

The posterior sanity checks and explicit evidence for excellent
reconstruction of the true values for the parameters in our case study
are an important step towards developing and testing our analysis
pipeline. On the other hand, given that our goal is to target data
analysis challenges where there are no traditional methods available
— either because they scale too poorly with the number of parameters,
or because they have an analytically intractable data likelihood — we
need to develop additional consistency checks to validate our results.
This is very much an active field of research in SBI, and a set of
established methods now exist (Hermans et al. 2021a; Lueckmann
et al. 2021).

The most common, and the one that we will present here, are
known as coverage tests (Hermans et al. 2021a). We will focus on
expected coverage tests of our inference pipeline, which make precise
the idea of variations in posterior estimates over various observational
or statistical fluctuations. In particular, expected coverage tests ask
the following question: how often does the x per cent credible interval
contain the true value, averaged over observations generated from
the joint distribution x, 6 ~ p(x, 6)? By definition, a well-calibrated
posterior distribution will contain the true value inside the x per cent
credible internal x percent of the time. As such, to carry out this
test, we can generate a set of simulations>* from the truncated prior
in the final round of inference (so that we test the most relevant
region of parameter space), and then perform inference on each
simulation using our trained final round ratio estimators. For each
confidence level x percent € [0, 1], we can then count how many
simulations have inference results that contain the corresponding true
value within this confidence interval. A posterior will pass this test if
this results in an approximately diagonal line in the expected versus
empirical coverage plane. Importantly, since the inference must be
done individually for each mock observation, it is typically infeasible
to perform this sort of coverage test with fully sequential methods
(including e.g. MCMC or nested sampling), especially in scenarios
with high simulation cost such as stellar streams. Finally, one should
note that this coverage test is diagnostic in the sense that a failure
indicates a poorly calibrated posterior estimate, but success does not
guarantee that the correct posterior has been found.

We provide the coverage test results for all 16 parameters in the
Appendix (see Figs B2 and B3), but also give a specific example for
the age of the stream t,g. in Fig. 6 opposite. We see that in all cases we
achieve good coverage results, which can easily be improved further
by allocating a slightly larger simulation budget. This coverage test
diagnostic will remain applicable irrespective of the forward model
or parameter choices, and is one of the key metrics for being able to
validate SBI methods.

5 CONCLUSIONS AND OUTLOOK

In this work, we have presented the development and application of
a brand new SBI data analysis pipeline for modelling (see Section 2)
and analysing stellar streams (see Sections 3 and 4). In this last
section, we present our key conclusions and provide some outlook
as to the classes of analysis challenge we can now attempt to tackle,

24Here we generate 1000 new simulations.
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Figure 6. Example of the coverage tests applied in this work for the age
of the stream f,g.. Top panel: Empirical (observed) against the nominal or
expected coverage. Bottom panel: The same information as the top panel but
plotted in terms of the corresponding p values. The red lines indicate the
actual coverage results, whilst the blue contours represent the 1o confidence
interval on this estimate.

as well as the steps that would be required to achieve them. The key
contributions in the work are as follows:

(1) Scalable SBI pipeline. We have developed a brand new SBI
algorithm to analyse stellar streams in the Milky Way (see Section 3
for a discussion on the application of simulation-based methods to
stellar streams). In particular, we have implemented the TMNRE
algorithm (Miller et al. 2022b) with the aim to develop a scalable
inference method. The motivation for choosing this algorithm for
the analysis of stellar streams is mainly due to simulation efficiency
that results from targeting individual observations and focusing on
marginals. We showed in Section 4 that we were able to perform
inference on all 16 parameters of our model with only 350k
simulations. This sort of performance is the key argument for the
ability of our approach to analyse streams with far more realistic
forward models.

(ii) Robust and flexible method. Another important aspect of the
analysis methodology developed here is its flexibility and robustness
to changes in observation strategy or simulation model. By definition,
our approach is simulation-based and therefore has the advantages
that it does not (i) assume any explicit likelihood for e.g. the
observational model, only the existence of a forward simulator, and
(ii) assume any particular form of the data output. On the latter point,
whilst we have developed the algorithm alongside our modelling
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code sstrax, the analysis pipeline would remain identical for any
simulator. This is the crucial aspect that will allow our method to
be used for making direct comparisons between different stream
simulation strategies and observational models.

(iii) Public analysis code. We have built our analysis method
on top of the swyft software which is a pytorch-based imple-
mentation of TMNRE (Miller et al. 2022b). Specifically, we have
publicly released the albatross code that is currently coupled to
the sstrax modelling code by default. The albatross code is
highly modular and can in principle be coupled to any forward model,
for example galpy (Bovy 2015), without any change in the analysis
methodology. This will eventually allow for direct comparisons in
the inference between different modelling strategies.

(iv) Public modelling code. As mentioned above, one of the key
motivations for developing the albatross implementation of the
TMNRE algorithm was to create a framework that allows for robust,
scalable inference on complex models. In the same vein, we devel-
oped a new modelling code sstrax that is accelerated through the
jax programming paradigm (Bradbury et al. 2018). This allows for
fast (around a second per simulation) and realistic forward modelling
of streams. We have designed the code to be readily extendable
to include any physical effects such as subhalo impacts, varying
gravitational potentials, higher fidelity tidal disruption models etc.
As above, regardless of the modelling choices, the inference pipeline
will crucially remain identical.

5.1 Outlook

We argued in the introduction that stellar streams are an exciting
probe of galactic and dark matter physics. This is particularly true as
the quality of observations continues to significantly improve in the
eras of Gaia and the Vera Rubin observatory (Abell et al. 2009; Gaia
Collaboration 2018, 2021; Bechtol et al. 2019). Taking full advantage
of this data is challenging, however, both in terms of robust statistical
analysis and the complexity of simulations required. Ultimately, if we
are interested in using stellar streams to analyse scenarios such as the
origin and statistics of substructure in the stream (Banik et al. 2018,
2021a, b; Banik & Bovy 2019), or the impact of a large population of
low mass subhaloes on streams in the Milky Way (Erkal & Belokurov
2015a, b; Bonacaetal. 2018), we will have to overcome these hurdles.
This is the context we had in mind when developing albatross
and sstrax. The aim was to develop a scalable, simulation-efficient
framework that did not make any assumption about the complexity
of the forward simulator. This is exactly the sort of task that SBI
methods were developed to address. In terms of specific outlook, we
believe there are a number of interesting avenues to pursue given the
capabilities developed here.

On the analysis side, there are a number of interesting claims in
the literature about the origin and characterization of the gaps and
features in streams such as GD1 (Grillmair & Dionatos 2006; Eyre
2010; de Boer et al. 2018; Price-Whelan & Bonaca 2018). More
specifically, it would be an extremely important result to classify
e.g. the gap in GD1 as being due to a compact object or subhalo
collision (Carlberg & Grillmair 2013; de Boer et al. 2018; Price-
Whelan & Bonaca 2018). To obtain a definitive answer, however,
one needs to show that the features cannot (at least to some degree of
statistical certainty) arise by chance as a result of some stochasticity
in the tidal stripping process, selection effects at the level of stream
detection, or as a result of a more complex model of the Milky
Way potential including known substructure such as dwarf galaxies
or globular clusters (Amorisco et al. 2016; Dillamore et al. 2022;
Doke & Hattori 2022). Similarly, it would be interesting to provide a
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conclusive answer as to the relative shape and size of the Milky Way
gravitational potential from an analysis of individual or multiple
streams (Shipp et al. 2021). The key advantage of the framework
we have put forward here is that one can (and should) ask all of
these questions simultaneously. This is a more precise version of the
statement in the introduction where we argued that we would ideally
like to analyse the large- and small-scale structures present in stellar
streams at the same time. On a more cautionary note, in order to move
towards analysing real data in its full complexity with this class of SBI
methods, it will be important to characterize and quantify the sensi-
tivity of the inference method to perturbations or misspecifications in
the forward model. This is particularly relevant in the case of stellar
streams where the physics is highly complex, and it is unlikely to be
possible for a simulation model to be developed that is simultane-
ously fully self-consistent and fast enough for parameter inference.
One step towards this goal could include analysing mock streams
generated from N-body simulations (see e.g. Varghese et al. 2011)
with identifiable parameters that match those in the model (such as
the cluster velocity dispersion, analytic potential, or the age of the
stream). One should bear in mind, however, that this is not necessarily
anissue directly with SBI, but also affects traditional approaches such
as MCMC if e.g. the modelling or data likelihood is miscalibrated.

Of course, to achieve these analysis goals, we must also make
progress on modelling. Having a flexible analysis and simulation
pipeline that does not assume e.g. symmetry in the Milky Way
potential, or uniform stripping times in the evolution of the cluster
motivates us to focus on improving the realism of each aspect.
In particular, there are a number of key developments that would
place the analysis questions above on a much more solid footing and
allow us to analyse real data with confidence. First, we should focus
attention on the observational model — in this work we constructed
a very simple framework to describe the detection and measurement
of Milky Way streams. In reality, however, data such as that from
Gaia is significantly more complicated (Gaia Collaboration 2018,
2021), accounting for e.g. position dependent errors, selection effects
based upon proper motions and metallicities, and spatially varying
background densities (Gaia Collaboration 2018, 2021). Realistic
modelling of this will be particularly relevant for robustly studying
e.g. small-scale features in streams. Secondly, the dynamics of tidal
disruption and the release of stars from the cluster is vital for
generating realistic density perturbations along the stream track.
Again, since this could be an interesting observable for studying e.g.
the collective implications of a population of small perturbers (Banik
etal.2018; Bonacaetal. 2018; Banik & Bovy 2019; Delos & Schmidt
2022), or the internal properties of globular clusters (Gialluca et al.
2021), development of the model realism will inevitably lead to more
informative inference results. Thirdly, we know that on the sort of
time-scales relevant to stellar streams, the Milky Way and its potential
are dynamical, both in terms of its global structure, as well as the
large amount of substructure in the form of dwarf galaxies, other
clusters, or gas clouds (Amorisco et al. 2016; Dillamore et al. 2022;
Doke & Hattori 2022). It would be interesting to take input from e.g.
N-body simulations of Milky Way formation and trace the evolution
of streams in such a dynamical potential. As we argued above, this
could be done without any change in the analysis pipeline.

In summary, the development of a scalable and flexible SBI ap-
proach to analysing stellar streams can allow us to answer important
questions about the evolution of, and substructure in our own galaxy.
Aided by high quality observations by the latest surveys (Abell et al.
2009; Gaia Collaboration 2018, 2021; Bechtol et al. 2019), we can
use this to start asking concrete questions regarding the nature of dark
matter, the evolution, and structure of the Milky Way, or the dynamics
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of dwarf galaxies and globular clusters. To achieve this will require
development from the perspective of modelling stream dynamics and
survey observations. However, having a robust simulation efficient
inference strategy is strong motivation for starting to move further
towards this ambitious goal.
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APPENDIX A: CO-ORDINATE
TRANSFORMATIONS IN SSTRAX

Here we detail the co-ordinate transformations we use in sstrax
to move from the Cartesian simulation frame Xp,o = (x, y, 2)
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to the GD1 co-ordinates (r, ¢y, ¢>). This is implemented in the
projection.py module, and is explicitly given by the following
set of relations,

Xhato = (x, Y, 2), (Al)
Then, in a frame centred at the sun with x,, = 8 kpc,

XsunE(iv va)z(xsun_xs y,Z)- (Az)
We can convert to galactic co-ordinates Xy, = (7, b, I) via,
r=+x24+53*+72, (A3)
b = arcsin(y/r), (A4)
| = arctan(y/X). (AS)

Then, we can rotate to equatorial co-ordinates Xequae = (7, o, §)
through,

_1 cos b sin(Ingp — 1)
o = tan - -
cos Sngp Sin b — sin Sngp cos b cos(Ingp — 1)
+ anGp (A6)
& = arcsin (sin Sygp sin b + cos Sngp €os b cos(Ingp — 1)), (A7)
with SNGP = 27.12825118085622 deg, lNGP =

122.9319185680026 deg, and  angp = 192.85948deg.  After
this, we can rotate to a Cartesian co-ordinate frame aligned with the
stream Xoqi, cart = (Xg, Vg, Zg) With,

Xg —0.4776303088 —0.1738432154 0.8611897727
Yo | = 0.510844589 —0.8524449229 0.111245042
Zg 0.7147776536  0.4930681392 0.4959603976
r coS @ COS §
X | rcosasiné |, (A8)
7 Ccosd

taken from Ref. (Koposov et al. 2010). Finally, we can construct our
GD1 co-ordinates X,q; = (7, ¢1, ¢2) via,

¢1 = arctan(yg/xg), ¢ = arcsin(z, /r). (A9)

The final step in the co-ordinate transformations is to construct the
velocity in a different co-ordinate frame given the velocity in the
simulation frame. For this, we take advantage of the autodifferen-
tiation capability of jax and numerically compute the Jacobian
Jij = 8Xéd1/8Xlﬂalo. The velocity in the GD1 co-ordinate frame
Va1 = (Vrads $1, $2) s givenby Vaat = J - Viato- The proper motions
Iy, are then given by jug. = ;/r.

APPENDIX B: NETWORK ARCHITECTURE

In Fig. B1, we show the network architecture used in the alba-
tross code to process output from the simulator and estimate the
relevant likelihood-to-evidence ratios.
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Figure B1. Schematic network diagram illustrating the data processing and
ratio estimation network architecture employed in albatross.
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Figure B2. Coverage results for the case study given in Section 4 for all parameters in the sstrax stream model. This is the same information as Fig. B3, but
with more emphasis placed on the tail regions via the definition p = [ zgp dz (1/+/2m) exp(—z%/2). The pink curves indicate the average coverage, whilst the

blue contours represent the 1o uncertainty of this estimate.
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Figure B3. Coverage results for the case study given in Section 4 for all parameters in the sstrax stream model. The pink curves indicate the average
coverage, whilst the blue contours represent the 1o uncertainty of this estimate.

This paper has been typeset from a TEX/I&TEX file prepared by the author.

© 2023 The Author(s).
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 525, 3662-3681 (2023)

$20Z Aienuep G| uo Jasn wepislswy UBA NIBNISISAIUN AQ 66EEYZ//299E/E/SZS/a1oNIB/SBIUW/WOD dnoolwapeoe//:sdiy woll papeojumoq


https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 MODELLING STELLAR STREAMS
	3 SIMULATION BASED INFERENCE FOR STELLAR STREAMS
	4 RESULTS: GD1-LIKE CASE STUDY
	5 CONCLUSIONS AND OUTLOOK
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: CO-ORDINATE TRANSFORMATIONS IN SSTRAX
	APPENDIX B: NETWORK ARCHITECTURE

