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A B S T R A C T 

Stellar streams are potentially a very sensitive observational probe of galactic astrophysics, as well as the dark matter population 

in the Milky Way. On the other hand, performing a detailed, high-fidelity statistical analysis of these objects is challenging for a 
number of key reasons. First, the modelling of streams across their (potentially billions of years old) dynamical age is complex 

and computationally costly . Secondly , their detection and classification in large surv e ys such as Gaia renders a robust statistical 
description regarding e.g. the stellar membership probabilities, challenging. As a result, the majority of current analyses must 
resort to simplified models that use only subsets or summaries of the high quality data. In this work, we develop a new analysis 
framew ork that tak es adv antage of adv ances in simulation-based inference techniques to perform complete analysis on complex 

stream models. To facilitate this, we develop a new, modular dynamical modelling code sstrax for stellar streams that is highly 

accelerated using jax . We test our analysis pipeline on a mock observation that resembles the GD1 stream, and demonstrate that 
we can perform robust inference on all rele v ant parts of the stream model simultaneously . Finally , we present some outlook as to 

how this approach can be developed further to perform more complete and accurate statistical analyses of current and future data. 

Key w ords: softw are: data analysis – software: simulations – galaxies: star clusters: general – Galaxy: structure – dark matter. 
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 I N T RO D U C T I O N  

.1 Moti v ation 

tellar streams are very old, dynamical objects consisting of a
ollection of stars that originate from tidal disruptions of a dwarf
alaxy (e.g. the Sagittarius stream (Belokurov et al. 2006 ; Gibbons,
elokurov & Evans 2014 )) or globular cluster (e.g. the GD1

tream (Grillmair & Dionatos 2006 ; Eyre 2010 ; Carlberg & Grillmair
013 ; Price-Whelan & Bonaca 2018 ; Bonaca et al. 2020 )). In a
alaxy such as the Milky Way, these systems have the potential to
e an extremely sensitive probe of dark matter substructure (Erkal &
elokurov 2015b ; Banik et al. 2018 ; Banik & Bovy 2019 ; Bechtol
t al. 2019 ; Banik et al. 2021a , b ; Hermans et al. 2021b ; Malhan,
alluri & Freese 2021 ; Pavanel & Webb 2021 ), baryonic physics
nd Milky Way properties (Koposov, Rix & Hogg 2010 ; Bonaca
t al. 2014 ; Sanderson, Helmi & Hogg 2014 ; Amorisco et al. 2016 ;
ovy et al. 2016 ; Bovy, Erkal & Sanders 2017 ; Erkal et al. 2019 ;
elmi 2020 ; Koposov et al. 2023 ), as well as the evolution history of

he stream (Balbinot & Gieles 2018 ; Banik & Bovy 2021 ; Gialluca,
aidu & Bonaca 2021 ; Doke & Hattori 2022 ; Malhan et al. 2022 ).

n principle, this can be achieved by combining high precision
bservations at facilities such as Gaia (Gaia Collaboration 2018 ,
021 ) or the Vera Rubin observatory (Abell et al. 2009 ; Bechtol et al.
019 ), and consistent modelling of these stellar orbits as the systems
re disrupted o v er the course of O(billions) of years. 
 E-mail: j.b.g.alv e y@uva.nl 
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.2 Obser v ational status 

n the early 2000s, the first observations of cold (and hot) stellar
treams in the Milky Way were obtained by the SDSS survey (Abaza-
ian et al. 2009 ), the most well-known of which being the GD1
tream (Grillmair & Dionatos 2006 ; Eyre 2010 ; Carlberg & Grillmair
013 ; Price-Whelan & Bonaca 2018 ; Bonaca et al. 2020 ). Since then,
any more streams have been discovered in surveys such as SDSS

nd Gaia (Abazajian et al. 2009 ; Gaia Collaboration 2018 , 2021 ;
alhan, Ibata & Martin 2018 ; Ibata et al. 2021a ; Martin et al. 2022 ),

ut perhaps more importantly, the resolution of the observations
as impro v ed dramatically. Current observations hav e rev ealed, for
xample, interesting substructure and features in cold stellar streams
uch as GD1 (Ibata, Lewis & Irwin 2002 ; Johnston, Spergel & Haydn
002 ; de Boer et al. 2018 ; Price-Whelan & Bonaca 2018 ; Bonaca
t al. 2020 ). This is the context in which we want to consistently
nalyse both the large scale structure of the streams (such as its
ocation on the sky and track), and the small scale structure that
s sensitive to e.g. the dynamics and details of the tidal stripping
rocess, or baryonic/dark matter interactions. 
There are a number of rele v ant aspects to analysing stellar streams
stream modelling, inference, and observations. Since the main

ocus of this work is the statistical analysis of streams, we will briefly
e vie w its current status and the corresponding claims, although we
ill return to computational models for streams when we describe
ur dynamics code belo w. Pre vious analyses have typically focused
n either the global structure of the stream, see e.g. Refs. (Koposov
t al. 2010 ; Bonaca et al. 2014 ; Gibbons et al. 2014 ; Sanderson et al.
014 ; Bowden, Belokurov & Evans 2015 ; Bovy et al. 2016 ; Gialluca
t al. 2021 ; Pavanel & Webb 2021 ; Shipp et al. 2021 ; Dillamore et al.
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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022 ) (where it is on the sky and the fits to the general stream track)
r construct some sort of summary statistics to study perturbations 
n the stellar density along the stream object, see e.g.(Carlberg & 

rillmair 2013 ; Erkal & Belokurov 2015b ; Amorisco et al. 2016 ;
ovy et al. 2017 ; Banik et al. 2018 ; Bonaca et al. 2018 ; Banik &
ovy 2019 ; Erkal et al. 2019 ; Bonaca et al. 2020 ; Banik et al. 2021a ,
 ; Hermans et al. 2021b ; Doke & Hattori 2022 ). 1 The former of
hese analysis methodologies is well suited for studying properties 
nd phenomena that are specific to the orbit and evolution of a
iv en stream. F or e xample, one can constrain quantities such as
he Milky Way potential (Koposov et al. 2010 ; Bonaca et al. 2014 ;
ibbons et al. 2014 ; Sanderson et al. 2014 ; Bowden et al. 2015 ; Bovy

t al. 2016 ; Erkal et al. 2019 ; Shipp et al. 2021 ; Craig et al. 2023 ;
ibauer et al. 2022 ; Nibauer, Bonaca & Johnston 2023 ), the age of

he stream (Bovy et al. 2017 ; Hermans et al. 2021b ), or possibly
ven gain information about close encounters with large perturbers 
hich can leave large gaps or features in the stream track (Erkal &
elokurov 2015b ; Amorisco et al. 2016 ; Bovy et al. 2017 ; Bonaca
t al. 2020; Banik et al. 2021b , a ). The classic examples that are often
uoted in the literature along these latter lines are the so-called ‘spur’
nd ‘gaps’ in the GD1 stream (Carlberg & Grillmair 2013 ; Bonaca
t al. 2018 ; Price-Whelan & Bonaca 2018 ; Doke & Hattori 2022 ).
n the other hand, the substructure of the stream is better suited to

sking questions about e.g. the physics of tidal stripping mechanisms 
n the Milky W ay, see e.g. (Baumgardt 1998 ; T akahashi & Portegies
wart 2000 ; Taylor & Babul 2001 ; Baumgardt & Makino 2003 ;
rakos, Taylor & Benson 2022 ), the internal dynamics and nature 
f the progenitor, and population level information about smaller 
or more distant) perturbers (Amorisco et al. 2016 ; Balbinot & 

ieles 2018 ; Gialluca et al. 2021 ; Dillamore et al. 2022 ; Doke &
attori 2022 ). From the perspective of the dark matter community, 
oth the large and small perturbing objects are of huge significance 
n the context of the distribution of dark matter subhaloes in the

ilky Way (and other galaxies). Indeed, one of the key goals of
tellar stream analyses is to constrain possible subhalo populations 
Banik et al. 2018 , 2021a , b ; Banik & Bovy 2019 ; Hermans et al.
021b ; Pavanel & Webb 2021 ; Delos & Schmidt 2022 ), or provide
 detection of some larger mass (say, 10 7 M �) subhalo (Erkal &
elokurov 2015b ; Bonaca et al. 2018 ). The main moti v ation behind
ur work is to provide a path towards a robust analysis pipeline to
onsistently (and simultaneously) analyse all of the abo v e scenarios. 

.3 Statistical challenge 

aking statistically robust statements about quantities of interest 
the gravitational potential of the host, the disruption history, 

nternal dynamics of the progenitor etc. – can be extremely chal- 
enging (Huang et al. 2019 ; Hermans et al. 2021b ; Koposov et al.
023 ). To do so requires us to have good control over the dynamical
istory and initial conditions of the stream (Penarrubia et al. 2006 ;
uepper et al. 2010 ; Kuepper, Lane & Heggie 2012 ; Bovy 2014 ;
ovy 2015 ; Bowden et al. 2015 ; Buist & Helmi 2015 ; Fardal,
uang & Weinberg 2015 ; Qian, Arshad & Bovy 2022 ), its stochastic

nteractions with dark matter or baryonic substructures (Erkal & 
 In this regard, the case of GD1 is interesting since there is some evidence 
hat the observed density variations exhibit periodicity along the stream 

rack consistent with the well-known epicyclic variations. See e.g. fig. 14 
n Ibata et al. ( 2020 ) which constructs the power spectrum as a function 
f wavenumber along the stream track and highlights a clear peak at 
 

−1 
s � 2 . 64 kpc . 

i  

m
v  

s

2

o

elokuro v 2015a ; Bo vy et al. 2017 ; Delos & Schmidt 2022 ), as
ell as a reasonable model for foreground and selection effects 

n the observations, see e.g. (Huang et al. 2019 ). As a result of
he large number of free parameters this can introduce, together 
ith relatively costly simulations, classical statistical methods scale 
uite poorly . Currently , this means that one must instead rely on
onstructing bespoke summary statistics such as the power spectrum 

f density perturbations along the stream, significantly reducing the 
imensionality of the data via e.g. only considering the stream track,
r ignoring a subset of effects in the modelling to lower the simulation
 v erhead. This approach has been used to obtain rele v ant results
egarding e.g. the properties of the Milky Way potential (Bonaca 
t al. 2014 ; Gibbons et al. 2014 ; Sanderson et al. 2014 ; Erkal et al.
019 ; Helmi 2020 ; Panithanpaisal et al. 2022 ; Koposov et al. 2010 ,
023 ), or the evolution history of progenitors (Balbinot & Gieles
018 ; Banik & Bovy 2021 ; Gialluca et al. 2021 ; Doke & Hattori 2022 ;
alhan et al. 2022 ). In this paper, we propose using the modern tools

nd techniques of simulation based inference (Brehmer & Cranmer 
020 ; Cranmer, Brehmer & Louppe 2020 ) to analyse stellar streams
nd o v ercome some of these challenges. 

.4 Simulation-based inference 

iv en the conte xt described abo v e, we briefly argued that the
nalysis of stellar streams was a problem that is well-suited for
he application of simulation-based inference (SBI) (Brehmer & 

ranmer 2020 ; Cranmer et al. 2020 ). Currently, there are a wide
ange of available approaches and implementations that have been 
hown to be successful in a number of settings such as CMB data
nalysis (Cole et al. 2022 ), point source searches (Anau Montel &
eniger 2022 ), gra vitational wa ve inference (Bhardwaj et al. 2023 ),

nd others, see e.g. (Dax et al. 2021 ; Hermans et al. 2021b ; Montel
t al. 2022 ; Gagnon-Hartman, Ruan & Haggard 2023 ; Karchev, 
rotta & Weniger 2023 ). In general, the advantages of SBI techniques

all into three categories: (i) a consistent inference methodology for 
n y forward simulator, irrespectiv e of the comple xity , stochasticity ,
r data dimensionality of the model, (ii) the possibility of extremely
imulation efficient inference compared to traditional methods, 2 and 
iii) the methods do not require an explicit likelihood to be written
o wn, allo wing for arbitrarily detailed physics simulations, and 
bservational/detection models. The last point has interesting outlook 
or stellar streams as it allows for the possibility to significantly
mpro v e the modelling and to investigate the implications of e.g.
election ef fects, observ ation strategies, and instrument errors. This 
ould have important implications for inference results based on e.g. 
mall-scale structure in the observed streams or concrete features 
uch as the GD1 spur and gaps (Carlberg & Grillmair 2013 ; Bonaca
t al. 2018 ; de Boer et al. 2018 ; Price-Whelan & Bonaca 2018 ). 

.5 Key contributions 

his work contributes in a number of ways to the problems and
nalysis challenges identified abo v e. First, and most importantly, we
evelop and test a brand new analysis pipeline that leverages recent
dvances in SBI. We argue that the use of SBI to study stellar streams
s moti v ated for a number of reasons. In particular, it allows one to
ake use of the highest fidelity modelling and observational models 

ia the fact that it is an implicit-likelihood framework. It has also been
hown in numerous settings to be highly simulation-efficient (Cole 
MNRAS 525, 3662–3681 (2023) 

 This is not necessarily generic across the various methods, but has been 
bserved empirically in a number of settings (Cole et al. 2022 ). 
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t al. 2022 ) compared to more traditional methods such as Markov
hain Monte Carlo (MCMC) (Mackay 2003 ; F oreman-Macke y et al.
013 ). 3 This is of high rele v ance to the analysis of streams, since
odelling of the complex and varied physics can be computationally

ostly, making sampling the posterior for large dimensional models
ypically infeasible. One way we o v ercome this in this work is to use
 specific targeted (in the sense of analysing a particular observation)
BI algorithm known as truncated marginal neural ratio estimation
TMNRE) (Miller et al. 2022b ), implemented within the framework
f swyft (Miller et al. 2021 , 2022b ). Secondly, we also developed
nd will release a public code called sstrax for the modelling of
tellar streams in the Milky Way. The current version of the code
s designed to be highly modular and extendable for any aspect of
treams modelling (e.g. the gravitational dynamics or tidal stripping).
t is written in PYTHON but is highly accelerated through the use of
ax (Bradbury et al. 2018 ), allowing for fast ( O(1) s) sampling of

ealistic forward models. This speed is crucial for doing sampling
n large dimensional models. Our implementation of the TMNRE
lgorithm, coupled to the sstrax modelling code will also be made
ublicly available in the package albatross . 

.6 Structure of the work 

he rest of this work is structured as follows: In Section 2 we
escribe the physics behind the forward modelling of stellar streams,
nd highlight our numerical implementation in sstrax . Then, in
ection 3 , we describe the use of SBU for studying and analysing
tellar streams, including a detailed explanation of the TMNRE
lgorithm. In Section 4 , we demonstrate that our analysis pipeline
an reliably perform parameter inference on all of the parameters in
ur forward model and discuss the sort of validation tests we can
erform on the resulting posteriors. Finally, in Section 5 , we present
he key conclusions to the study as well as some outlook as to the
ele v ant use cases and data analysis challenges. 

 M O D E L L I N G  STELLAR  STREAMS  

rguably one of the most challenging aspects for analysing stellar
treams is balancing the complexity of the modelling with the ability
o do full parameter inference without resorting to e.g. fixing a
umber of parameters. One of the key arguments we will make
ater in this work is that SBI can be a path towards a highly sample
fficient analysis framework (Cole et al. 2022 ). This opens up the
ossibility for using higher fidelity forward models for the dynamics
nd observation of stellar streams. It is for this reason that we decided
o simultaneously develop and test a new modelling code for stellar
treams, sstrax , that is modular and designed to be extendable
n all aspects with the aim to mo v e towards highly realistic stream
odelling for sampling tasks. For the purposes of this work, we have

eveloped what we believe is a simulator that contains all the key
lements for a robust proof-of-principle inference analysis. It will
ighlight the fact that the analysis and inference pipeline that we
evelop in later sections is not reliant on particularly symmetric or
tatistically simple (e.g. at the level of the data likelihood) models.
e do note, ho we ver, that as far as the analysis methodology is

oncerned, any forward model could be used (introducing its own
et of modelling assumptions, of course), including e.g. the current
tate-of-the-art models developed in galpy (Bovy 2014 , 2015 ) or
NRAS 525, 3662–3681 (2023) 

 In the current context, the application of MCMC techniques to the analysis 
f streams was pioneered in Varghese, Ibata & Lewis ( 2011 ). 

4

f

ther works (Bowden et al. 2015 ; Erkal & Belokurov 2015a ; Fardal
t al. 2015 ; Bovy et al. 2017 ; Delos & Schmidt 2022 ). 

In this section, we describe the key components to our modelling
ode, and discuss in each case some rele v ant impro v ements that could
e made. The generation of a single stream is split broadly into five
teps: 

(i) Cluster tr ajectory. Giv en some current position x c and v elocity
 c for the disrupted cluster, we trace the trajectory back for some time
 age in the rele v ant gravitational potential to find the initial conditions.

(ii) Cluster mass-loss. We then solve an equation for the evolution
f the mass of the cluster M c ( t ), due to e.g. tidal disruption events,
iven its trajectory from Step 1, the gravitational potential, and
hoices for the parameters in the mass-loss model. 

(iii) Star stripping times. Given this mass-loss history, we can
hen generate a set of stripping times { t i } i= 1 ..N stars for stars released
rom the cluster. These are chosen to be a random sample from a
robability distribution that is a normalized version of d M c /d t . 
(iv) Stream stars e volution. F or each stripping time t i , we generate

nitial conditions for a star released from the cluster and evolve the
tar forward in the gravitational potential for a time ( t age − t i ) before
oting its final position and velocity. 
(v) Observation. Given the full set of stream stars, we construct

n observation by projecting to a co-ordinate frame rele v ant for the
tream and accounting for errors in the measurements of e.g. the
ositions and proper motions of the stream stars. We also account for
ossible background contamination and misidentification that may
ccur when applying selection cuts. 

We will discuss each step in detail below. A concrete example of
ach step of the analysis process is shown in Fig. 2 along with the
ock observation used later in the case study. 

.1 Cluster trajectory 

he first step in the modelling is to take the cluster position 4 x c =
 x c , y c , z c ) and velocity v c = ( v x , c , v y , c , v z, c ) at time t = 0 (today)
nd construct the trajectory for all times t ∈ [ − t age , 0]. In other
ords, we project the current position and velocity backwards to
nd the initial conditions of the cluster a time t age ago. To do
o, we need to know the gravitational potential � ( x , t ) and solve
he equation ẍ c ( t) = −∇� ( x c , t). In terms of implementation, we
se the publicly available diffrax differential equation solver
ibrary (Kidger 2021 ), written in jax (Bradbury et al. 2018 ). 

In principle, the gravitational potential � ( x , t ) can include all
ontributions from, e.g. the Milky Way dark matter halo, baryonic
tructures, dark matter sub-haloes, dynamical clusters, or dwarf
alaxies etc. In this work, we restrict our attention to a fixed,
ime-independent Milky Way potential � = � MW 

( x ) which consists
f a dark matter halo, and baryonic disc and bulge components.
pecifically, we choose the MWPotential2014 implementation

n galpy (Bovy 2015 ), whose parameters are given in table 1 of
ef. (Bovy 2015 ). We note, ho we ver, that it is trivial to include
rbitrarily complex potentials in our modelling framework. One
hould also check the level of impact mild to strong mismodelling
as in this regards if e.g. the true potential is not exactly the
ne with which the simulations are generated. One reason for this
s that we do not need to analytically construct action-angle co-
rdinates (although in principle, this could be possible numerically,
 All of our dynamical modelling is performed in a Cartesian co-ordinate 
rame ( x , y , z) with its origin at the galactic centre. 
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ee e.g. Ibata et al. 2021b ). Instead, we take advantage of jax -
ccelerated differential equation solvers to ef ficiently e volve the 
luster and stars. With this choice, it is also simple to include
ime-dependent potentials that would arise from either the evolution 
f the Milky Way itself (Penarrubia et al. 2006 ; Buist & Helmi
015 ; Hammer et al. 2023 ), or through interactions with dynamical
bjects such as dark matter sub-haloes or dwarf galaxies (Carlberg & 

rillmair 2013 ; Erkal & Belokurov 2015b ; Bonaca et al. 2018 , 2020 ;
oke & Hattori 2022 ). These can be modelled without any additional

pproximations, and are represented simply by an additional term in 
he gravitational force. It would also be straightforward to let the 
arameters in the Milky Way potential vary and constrain them at 
he same time as the other model parameters. 

.2 Cluster mass-loss 

nce we have the trajectory of the cluster x c ( t ), we want to solve for
he evolution of its mass as a function of time M c ( t ). This mass-loss
ypically occurs for a number of reasons, due to, e.g. disruption
s a result of tidal forces, stellar evolution, or dissolution, see 
.g. (Baumgardt 1998 ; Takahashi & Portegies Zwart 2000 ; Taylor &
abul 2001 ; Baumgardt & Makino 2003 ; Drakos et al. 2022 ). None

he less, the vast majority of semi-analytic mass-loss models take 
he form (van den Bosch et al. 2018 ; Delos 2019 ; Drakos, Taylor &
enson 2020 ), 

d M c 

d t 
= −f ( M c , r t ) 

τorb 
, (1) 

here r t is the instantaneous tidal radius, f is some model-dependent 
unction of the cluster mass and tidal radius, and τ orb is some 
haracteristic time-scale. In this initial implementation of sstrax , 
e choose to work with a semi-analytic model given by (Baumgardt 
998 ), 

d M c 

d t 
= −

(
ξ0 

t rh 

)√ 

1 + 

(
α

r h 

r t 

)3 

M c , (2) 

here ξ 0 and α are dimension-less parameters that in initial works 
ere fitted to N -body simulations, r h is the half-mass radius of the

luster, and t rh is the relaxation time given by (Baumgardt 1998 ), 

 rh = 0 . 138 

√ 

M c r 
3 / 2 
h 

m̄ 

√ 

G log (0 . 4 N ) 
. (3) 

n this expression, m̄ is the average mass of a star in the cluster,
nd N ( t) = M c ( t) / ̄m is the total number of stars in the cluster. In
ddition, r t is the tidal radius, and is computed using (Bowden et al.
015 ), 

 t ( x , t) = 

(
GM c ( t) 

�2 − d 2 � MW 

/ d r 2 

)1 / 3 

, (4) 

here � is the instantaneous angular frequency of the cluster around 
he galactic centre, r = | x | , and we compute the second deri v ati ve of
he potential using the autodifferentiation capabilities of jax . 

This model quantitatively reproduces interesting features in the 
ass-loss such as the fact that more stars should be stripped near the

ericentre of the orbit, which can introduce density variations that are 
otally separate from e.g. epicycles in the stream evolution (Kuepper 
t al. 2010 , 2012 ; Ibata et al. 2020 ). Again, as in the case of the
ravitational potential, this mass-loss model can be impro v ed, either 
y generalizing the form, or through a modern calibration to high- 
esolution N -body simulations of cluster evolution (Baumgardt & 

akino 2003 ; Loyola & Hurley 2013 ; Rossi, Bekki & Hurley 2016 ;
adrid et al. 2017 ; Banik & Bovy 2021 ; St ̈ucker et al. 2023 ).
f course, there is a ‘gold standard’ approach which would be to
erform N -body evolution in every simulation. However, we do 
ot expect simulation efficiencies for this type of computation to 
rop significantly enough for this to become viable in parameter 
nference. As such, in any inference analysis, one will almost 
ertainly have to resort to a semi-analytic form. 

At the level of implementation, we solve this mass-loss differential 
quation numerically using diffrax (Kidger 2021 ), taking the 
densely interpolated) cluster trajectory solution x c ( t ) and initial clus-
er mass M sat as input. As mentioned abo v e, since we directly forward

odel the mass-loss, the code can be modified to use any form of
 M c /d t , including e.g. contributions due to impacts with sub-haloes
r other transient interactions (Carlberg & Grillmair 2013 ; Erkal &
elokurov 2015b ; Bonaca et al. 2018 , 2020 ; Doke & Hattori 2022 ). 

.3 Stripping times 

nce we have obtained the cluster mass M c ( t ) as a function of time t ,
e want to stochastically generate a set of stripping times { t i } . These

imes define the moment the stars which will ultimately form the final
tream are released. To go from cluster mass to stripping times, we
dentify ( − d M c ( t )/d t ) as the instantaneous stripping rate. We could
odel this faithfully as an inhomogeneous Poisson process, ho we ver
 simple approximate scheme, which we outline below, is sufficient 
or our purposes. 

First, we introduce the average mass of a star m̄ as a new parameter,
lthough we note that this is a somewhat toy simulation parameter
ince real systems are known to not have monochromatic mass 
unctions. We then compute the total number of stars that should
e in the final stream as N stars = �M/ ̄m , where � M = ( M sat −
 c ( t = 0)) is the total mass-loss of the cluster. 5 Now, each of the
 stars stripping time can be sampled individually according to the 
istribution ( − d M c ( t )/d t )/ � M . This can be done in a number of ways,
ut in sstrax we choose to construct the cumulative distribution 
unction and sample uniformly from U [0, 1] before projecting back
o the t -space. 

Note that this scheme does not explicitly use a distribution o v er star
asses. Nevertheless, if one were to compute the differences of the

euristic cluster mass function between stripping times, one would 
btain some mass distribution clustered around m̄ . The important 
oint to realize is that we already make an approximation in using
 continuous cluster mass M c ( t ). If the particular distribution of star
asses becomes rele v ant, both the stripping and the cluster mass
odelling would have to be replaced by a more realistic framework.
his could be achiev ed, for e xample, by sampling the next star mass
 s ∼ p ( m s ) (Schulz, Pflamm-Altenburg & Kroupa 2015 ), treating

he cluster mass-loss in equation ( 2 ) as the instantaneous event
requency of an inhomogeneous Poisson process, and only reducing 
he cluster mass by discrete steps m s whenever a star is released. It
ould be interesting to explore the implications of these two effects

i.e. star mass distributions and modelling the cluster mass via an
nstantaneous Poisson process instead of a continuous function) in 
he context of limits derived from density variations along the stream
racks, see e.g. (Banik et al. 2018 , 2021b ; Hermans et al. 2021b ). We
ave also assumed that the cluster system is collision-less, whereas 
n some systems populations of e.g. dark masses (see e.g. Vitral et al.
022 ) towards their centre or accretion of halo clusters (see Mackey
MNRAS 525, 3662–3681 (2023) 
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t al. 2019 ; Malhan et al. 2019 ) could break this assumption and
hould be modelled properly before targeting real data. 

Finally, note that our stripping process is stochastic and can
herefore lead to different realizations of the density profile along
he stream track if the same stream is generated multiple times. 

.4 Stream star evolution 

he final dynamical step for generating the stream is quite simple –
e just need to release stars from nearby the cluster at the times t i 

nd evolve them forward in the same gravitational potential � ( x , t ) 6 

s the cluster until today t = 0. The only choice left to be made is
ne regarding the initial conditions for the stars, which we choose in
ccordance with observations made in N -body simulations of tidally
isrupted clusters (Baumgardt & Makino 2003 ; Loyola & Hurley
013 ; Rossi et al. 2016 ; Madrid et al. 2017 ; St ̈ucker et al. 2023 ). It
as been shown that the majority of stars escape from near one of the
wo Lagrange points x 1, 2 = (1 ± ( r t / r )) x c of the cluster (Varghese
t al. 2011 ; Bowden et al. 2015 ) (one on either side of the radial line
oining the galactic centre and the cluster centre), where r = | x c | . 

In the sstrax implementation, we generalize this slightly and
ntroduce three additional parameters: λrel , λmatch , and p near . Re-
pectively, these describe how far away from the cluster the star
s released, i.e. x rel = (1 ± λrel ( r t / r )) x c ( t i ), at what distance the
elocity matching is done (specifically, the velocity is matched so
hat the angular velocity of the star and the cluster agree at a distance
 match = (1 ± λmatch ( r t / r )) x c ( t i )), and finally the probability p near of
eing released from the closer Lagrange point. Finally, to model the
elocity dispersion of the cluster itself, we choose the initial velocity
f the star to be this matching velocity plus an additional random
ector � v sampled on the unit sphere and rescaled by a factor 

√ 

3 σv ,
here σ v is the velocity dispersion. 
In much the same way as the mass-loss model, the most realistic

ay to actually model this process would be to account for the full
ynamics inside the cluster via some N -body approach. For the same
eason, this is still too costly for parameter inference tasks, so a
emi-analytic approach like the one abo v e needs to be used. Again,
nd in line with the prescription we chose for the mass-loss, since
e directly forward model the evolution of the stars, the generation
f these initial conditions can be tuned arbitrarily to either analytic
xpectations, or some new high-resolution simulations. In any case,
he analysis pipeline will remain the same. 

.5 Obser v ational model 

n important aspect of SBI approaches is that the forward model
ust also include the detector response, observational model, or
oise generation. This is in contrast perhaps to traditional approaches
here typically some clean signal output of the forward model is

nput into an explicit data likelihood. In practice, the statistics results
hould be identical in either formulation. In the context of stellar
treams, given some final stream configuration { x i � , v i � } i= 1 ...N stars ,
e need to model, (i) the observational measurement errors, (ii)

he detection of the stream in the sky, and (iii) the contaminating
ackground of other stars. 
NRAS 525, 3662–3681 (2023) 

 In principle, one can also evolve them in the gravitational potential of the 
luster as well as the Milky Way, but we found that this was indistinguishable 
t the level of inference results. It is also well-known that we do not need to 
nclude the self-gravity of the stream itself (Delos & Schmidt 2022 ). 
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In this work, we develop a simple initial observational model,
eant mostly as a proof of principle. Specifically, we assume that

he stream has been ‘detected’ through some form of selection cuts
nd vetoes in survey data (Malhan & Ibata 2018 ; Huang et al. 2019 ;
orsato, Martell & Simpson 2020 ; Shih et al. 2021 ; Shih, Buckley &
ecib 2023 ). We use this to define an observ ational windo w which
e choose to focus on (i.e. we do not model the full sky). In the

est of the analysis, we will be focusing on a mock stream that is
upposed to resemble the GD1 stream (Grillmair & Dionatos 2006 ;
yre 2010 ; Price-Whelan & Bonaca 2018 ). There are a standard
et of co-ordinates used in the literature (Koposov et al. 2010 )
o describe the phase-space structure of this stream. Specifically,
here are two angle co-ordinates ( φ1 , φ2 ) which are approximately
ligned with the stream track at φ2 � 0 deg , the corresponding proper
otions ( μφ1 , μφ2 ), and radial distances and velocities ( d , v rad ). The

efinitions for these can be found in Appendix A . 
Given these definitions, to construct the observation from the list of

tream stars, we first define the region of interest in the sky/velocity
hase space, i.e. we ignore all stars with ( φ1 , φ2 , ..., v rad ) / ∈
 φmin 

1 , φmax 
1 ] × · · · × [ v min 

rad , v 
max 
rad ]. Then, we add random observa-

ional errors to the values generated by sstrax via sampling
.g. φobs 

1 ∼ N ( φ1 , δφ1 ). Finally, we model two aspects of stream
etection and selection effects. In particular, we assume that we
ave some selection efficiency εsel that measures how often we
ccidentally miss a star in a given detection algorithm that should
ave been correctly classified as part of the stream (Malhan &
bata 2018 ; Huang et al. 2019 ; Borsato et al. 2020 ; Shih et al.
021 ; Shih et al. 2023 ). We also model the fact that there can
e contamination from the background stars that are not part of
he stream, but are none the less, not remo v ed by the detection
lgorithm and are in the observing window (Huang et al. 2019 ). This
s quantified by assuming there is some number N background stars, of
hich we are able to successfully remo v e (1 − εbackground ) per cent
ia the selection process. We then distribute N background εbackground stars
niformly across the observ ational windo ws to model the background
ontamination. Finally, we bin the remaining data into three channels
f size ( N 

x 
bins , N 

y 

bins ) each: ( φ1 , φ2 ), ( μφ1 , μφ2 ), and ( d , v rad ). 7 All the
hoices for the particular values of the observational model described
ere are given in Table 2 . 
As in the other components, there is significant room for more

etailed modelling. For example, we know just from looking at Gaia
ata that the background stars will not be uniformly distributed across
he sky (Gaia Collaboration 2018 , 2021 ; Boubert & Everall 2020 ),
ith higher concentrations near the galactic centre. Similarly, the

fficacy of the sort of selection criteria or cuts that are applied based
n e.g. metallicity or proper motions are likely at least stream- and sky
ocation-dependent. The extent to which this impacts the inference
s a different question, and something that we can actually test in our
ramework by modifying the observational model. 

.6 Acceleration with jax 

aking the decision to directly forward model the evolution of the
tream, rather than construct either some ef fecti ve description (De-
 It is worth noting that for streams with relatively low stellar counts, binning 
he data may not be the most appropriate data representation. Arguably one 
f the key benefits of the SBI paradigm, ho we ver, is that if a more rele v ant 
ata choice can be made/simulated, then the statistical implications will be 
utomatically taken into account. This final point also holds if e.g. some 
spects of the data are unavailable for some reason (such as the radial positions 
nd velocities in the current context). 
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os & Schmidt 2022 ), or accelerate the dynamical solutions through 
ction-angle co-ordinate constructions opens up the possibility for 
ar more general simulation frameworks. On the other hand, it is also
otentially much more computationally intensive, e.g. if we include 
he effect of a large population of subhaloes in the future. This is
ompounded by the additional simulation budget that is potentially 
equired to perform inference on the large number of parameters any 
ugmentation of the model can introduce. 

As such, an important component of our implementation is its 
omputational efficiency. We have achieved this by using the jax 
ramework (Bradbury et al. 2018 ), which allows for just-in-time 
ompilation caching and highly optimized custom vectorization. 

 SIMULATION  BA SED  INFERENCE  F O R  

TELLAR  STREAMS  

n this section, we will give a brief re vie w of general SBI methods
efore describing the specific implementation we will use in this 
ork. We will end the section by presenting some of the algorithm
esign choices that are rele v ant to stellar stream analysis. 

.1 Ov er view of simulation-based inference 

ecently, there have been significant advances in high fidelity 
hysics simulations, and machine learning techniques for processing 
omplex data structures, alongside the emergence of increasingly 
hallenging data analysis problems. This has led to the rapid devel- 
pment of ‘SBI’ as a competitive alternative to traditional techniques 
s far as scalability, model realism, and unbiased analysis pipelines 
re concerned (Brehmer & Cranmer 2020 ; Cranmer et al. 2020 ). At its
eart, the field of SBI asks: given some forward model or simulator,
an we perform efficient and correct Bayesian inference? Ultimately, 
he goal of SBI is to develop a robust statistical pipeline that can make
se of the most realistic and state-of-the-art modelling tools. 
To be more concrete, suppose we have some forward model p ( x , θ )

hat takes the model parameters θ – which could be a range of physical
arameters, ef fecti ve model components, nuisance parameters etc. 
to some data x that resembles the real observed data x 0 . In a

ayesian context, we sample θ from some chosen 8 prior distribution 
 ( θ ) so that the forward model takes the form p ( x , θ ) = p ( x | θ ) p ( θ ).
his expression is at the heart of simulation-based methods, since 

t formally represents the notion that ‘running your simulator’ is 
he same as sampling from the (simulated-)data likelihood p ( x | θ ).
ndeed, this is the origin of the terms ‘likelihood-free’ or ‘implicit 
ikelihood’ inference to describe SBI (Brehmer & Cranmer 2020 ; 
ranmer et al. 2020 ). These descriptions are supposed to conv e y

he distinction between analytically e v aluating some expression to 
ompute the likelihood p ( x | θ ) and sampling from it. 

To understand the different ways in which SBI methods approach 
he Bayesian inference problem, it is useful to briefly re vie w ho w
he forward model fits into Bayes’ theorem. As far as scientific 
onclusions are concerned, we are typically 9 interested in computing 
he posterior p ( θ | x ) of the parameters given some data x , 

 ( θ | x) = 

p ( x| θ ) p ( θ ) 

p ( x) 
. (5) 
 Ideally with some physical moti v ation for the ranges chosen, or some 
aximally uninformative choice otherwise. 
 Of course, there are use cases e.g. in model comparison or goodness-of-fit 
ests (Spurio Mancini et al. 2022 ), where computing other quantities such as 
he data evidence or maximum likelihood is more relevant. 

a  

s
o  

a

1

ere, as abo v e, p ( x | θ ) is the data likelihood, p ( θ ) is the prior o v er
ur parameters θ = ( θ1 , ···), and p ( x ) is the e vidence. Gi ven this
etup, there are various ways that SBI algorithms tackle posterior 
stimation given the ability to sample from the forward model ( x ,
) ∼ p ( x , θ ) = p ( x | θ ) p ( θ ). Specifically, these can be categorized as
ollows (with the method we use highlighted in bold): 

(i) Neural posterior estimation (NPE). In NPE (Papamakarios & 

urray 2016 ; Zeghal et al. 2022 ), the goal is to directly estimate
he posterior distribution p ( θ | x ) by representing it as some flexible
arametrized probability density. This has been applied successfully 
n a number of contexts, e.g. gravitational wave analysis (Dax 
t al. 2021 ) and open source implementations are available (Tejero-
antero et al. 2020 ). 
(ii) Neural likelihood estimation (NLE). In contrast, NLE (Alsing 

t al. 2019 ; Papamakarios, Sterratt & Murray 2019 ) attempts to
onstruct an estimator for the (simulated-)likelihood function itself 
 ( x | θ ). This can then be used to carry out standard inference tech-
iques such as MCMC (Mackay 2003 ; F oreman-Macke y et al. 2013 )
r nested sampling (Skilling 2006 ; Handley, Hobson & Lasenby 
015 ; Ashton et al. 2022 ) and generate samples from the posterior. 
(iii) Neur al r atio estimation (NRE). Finally, NRE (Hermans, 

egy & Louppe 2019 ; Durkan, Murray & Papamakarios 2020 ;
ozet & Louppe 2021 ; Delaunoy et al. 2022 ; Miller et al. 2022b )
onsiders the ratio p ( x | θ )/ p ( x ) appearing on the right-hand side of
quation ( 5 ). This particular approach will be the focus of this work,
n the form of an algorithm known as TMNRE (Miller et al. 2022b ),
mplemented within the framework of swyft (Miller et al. 2021 ). 

.2 The TMNRE algorithm 

e will now focus on the specific implementation of SBI used in
his work. This is known as TMNRE (Miller et al. 2022b ), and is
mplemented in the swyft software (Miller et al. 2021 ). We have
ummarized the method in Fig. 1 for reference, ho we ver, there are a
umber of features we wish to emphasize in terms of its applicability
o stellar streams. 

(i) Tar geted infer ence. TMNRE is both a ‘targeted’ and ‘sequen-
ial’ algorithm in the sense that it performs inference on a specific
arget observation x 0 (as opposed to amortizing o v er all possible

odel outputs) o v er a number of discrete rounds. In each round,
he prior is truncated based on inference in the current round (see
escription below) to a v oid simulating in parameter regions which
o not contribute significantly to the likelihood ratio, given the fixed
arget observation. 

(ii) Marginal posteriors. There are a number of quantities of 
nterest in Bayesian inference, including the full joint posterior 
 ( θ | x 0 ) given some observation x 0 , the evidence of a particular
bservation p ( x 0 ), or marginalized posteriors 10 p ( θ i | x 0 ) for some
ndividual parameter θ i or subset of parameters in θ . In TMNRE, a
ignificant portion of the achieved simulation efficiency arises due to 
he fact that we directly estimate the marginal posterior, rather than
arginalizing o v er samples from the full joint distribution. 

In combination, these two properties are the key to achieving 
 highly simulation efficient inference strate gy. F or more discus-
ions along these lines, see e.g. works discussing the application 
f TMNRE to CMB (Cole et al. 2022 ) and gravitational wave
nalyses (Bhardwaj et al. 2023 ). 
MNRAS 525, 3662–3681 (2023) 

0 In the strict technical sense that p( θ� 
i | x) = 

∫ 
d n θ p( θ | x) δ( θi − θ� 

i ) 
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M

Figure 1. A schematic illustration of the data analysis pipeline developed in this work. We use the TMNRE algorithm (see Section 3 ) to carry out parameter 
inference on Milky Way stellar streams (see Section 4 ), using our new modelling code sstrax (see Section 2 ). We also publicly release the albatross 
analysis code. 
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Although the details of the method can be found in the original lit-
rature (Miller et al. 2022b ), it is useful to give a brief o v erview of the
etup of the ratio estimation problem. This will highlight the features
escribed abo v e and how they will be beneficial for the analysis of
tellar streams. The goal of TMNRE is to estimate the following ratio, 

( x ; θ ) = 

p( x | θ ) 

p( x ) 
= 

p( θ | x ) 
p( θ ) 

= 

p( x , θ ) 

p( x ) p( θ ) 
, (6) 

here the last two equalities follow from an application of Bayes’
heorem in equation ( 5 ) and the definition of the joint distribution
 ( x , θ ) ≡ p ( x | θ ) p ( θ ). In other words, access to the ratio r ( x ; θ )
s equi v alent to estimating (i) the likelihood-to-evidence ratio
 ( x | θ )/ p ( x ), (ii) the posterior-to-prior ratio p ( θ | x )/ p ( θ ) which will be
sed for parameter estimation, and (iii) the joint-to-marginal ratio
 ( x , θ )/ p ( x ) p ( θ ) which will be the technically important form to
erform ratio estimation in practice. 
If we focus on the last form, r ( x ; θ ) = p ( x , θ )/ p ( x ) p ( θ ), we

an make the observation that given a set of simulations { ( x , θ ) }
rom our forward model p ( x , θ ) = p ( x | θ ) p ( θ ), we can construct two
istinct classes of sample. The first is simply a sample from the full
oint distribution p ( x , θ ), which amounts to picking an individual
imulation pair ( x , θ ). The second is a sample from the combined
arginal distribution p ( x ) p ( θ ) which can be obtained by picking two

andom samples, then taking x from one, and θ from the other. Having
hese two distinct distributions is the origin of ratio estimation as a
inary classification task 11 – it asks the question given a pair (x, θ ),
id θ generate x? Intuiti vely, the relati ve precision of the posterior
istribution in this case reflects ho w dif ficult it is to discriminate
etween joint and marginal samples. For instance, the larger the
bservational error is, the more o v erlap there will be between these
wo classes and the posterior will be wider. 

More formally, we can frame this binary classification task and
atio estimation as an attempt to optimize (specifically minimize)
NRAS 525, 3662–3681 (2023) 

1 This can actually be generalized in interesting ways to form multiclass 
lassification problems that are applicable to e.g. hierarchical models (Miller, 
eniger & Forr ́e 2022a ). 
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t
s
1

m
2

he following loss function 12 (Miller et al. 2021 ), 

 [ f φ] = −
∫ 

d xd θ p( x, θ ) ln 
(
σ ( f φ( x, θ )) 

)
(7) 

+ p ( x) p ( θ ) ln 
(
1 − σ ( f φ( x, θ )) 

)
. 

ere σ ( x ) = [1 + exp ( − x )] −1 is the sigmoid function, and f φ( x , θ )
s the classifier with some set of free parameters φ that should be op-
imized. One of the key justifications for the correctness of TMNRE
s an inference algorithm is to realize that this loss can actually be
inimized analytically. In particular, one can show that the optimal

lassifier is given by f � φ ( x, θ ) = ln r( x; θ ) (Miller et al. 2021 ). In
ther words, if one can successfully minimize the loss in equation ( 7 ),
hen one directly obtains the posterior-to-prior ratio r(x; θ ) . 

Practically, this is where the ‘N(eural)’ part of TMNRE is rele v ant,
specially for very high dimensional data/parameter spaces. Modern
achine learning methods, architectures, and hardware allow for
 ery fle xible parametrizations of the classifier f φ , and there is a well
stablished methodology to optimize their parameters φ (also more
ommonly called their weights). As far as the analysis of stellar
treams is concerned, this gives us access to data representations
hat are as close as possible to real data from e.g. Gaia , without any
eed for compression into hand-crafted summary statistics, spline
ts, or similar data reductions. In this work, the task of optimizing is
chieved through the use of the software swyft , which is built on
op of pytorch . 

With (neural) ratio estimation set up this way, we can now see how
o directly estimate marginal posteriors in this framework. Suppose
e wish to estimate the fully marginalized posterior for a single
arameter 13 θ i in θ , then we can start by taking our full suite of
imulations ( x , θ ) ∼ p ( x , θ ) which (crucially) vary all parameters
. Then, ho we ver, instead of constructing the loss based on all
2 This is nothing other than the binary cross-entropy for a classifier that tries 
o discriminate between joint ( x , θ ) ∼ p ( x , θ ) and marginal ( x , θ ) ∼ p ( x ) p ( θ ) 
amples. 
3 Or any subset of parameters ( θi 1 , θi 2 , . . . , θi k ) to generate the k -dimensional 
arginal posterior p( θi 1 , . . . , θi k | x). We will giv e e xplicit e xamples for k = 

, 3 in Section 4 . 
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arameters, we can only ‘show’ the single parameter θ i . This is
qui v alent to replacing θ → θ i in equation ( 7 ) abo v e. Importantly,
o we ver, the analytic arguments will still hold and allow us to
btain directly the marginal posterior-to-prior ratio p ( θ i | x )/ p ( θ i ).
n contrast to e.g. MCMC where this marginalization is performed 
fter obtaining samples from the posterior, we implicitly marginalize 
y varying all parameters in the simulations simultaneously, but 
onstructing the marginal posterior directly rather than via the joint. 
s far as analysing stellar streams is concerned, this is not just a useful

rick for quickly obtaining the marginal posteriors, but is crucial in 
aking the algorithm simulation efficient. Looking forwards, if the 

oal is to perform inference with extremely high fidelity stream 

imulations in order to extract the maximum possible information 
rom the data, analysis methods that break the traditional scaling of
ampling algorithms such as MCMC or nested sampling will be vital. 

The final aspect to discuss before we summarize the algorithm 

nd the design choices rele v ant to stellar streams is the truncation
rocess that allows us to target a particular observation x 0 . As far
s simulation efficiency is concerned, the idea behind truncation 
s to minimize the number of simulations performed in regions 
here there is extremely low posterior density, since, by definition, 

he y pro vide almost no information about the parameter estimation 
roblem. F ormally we achiev e this by performing the inference 
equentially in several rounds. In each round, we generate a set of
imulations ( x , θ ) ∼ p ( x , θ ) from the full model. Then we train and
ptimize our classifiers f i φ( x, θi ) for the parameters of interest from
hich we can obtain marginal posteriors on each parameter p ( θ i | x 0 )

or some specific target observation x 0 . This will highlight regions of
arameter space where the posterior density for θ i is both very high, 
nd of course other regions where the density is low, indicating that
iven the observation x 0 , this particular set of parameters is unlikely.
e use these latter regions to truncate our prior region by imposing

he condition r i ( x 0 , θ i ) < ε on the estimated ratios. 14 Then, we re-
imulate by sampling from this truncated prior, repeat the inference 
nd then truncate again. Eventually, once the posteriors converge 
o the level of statistical uncertainty, the truncation will just return 
he restricted prior and the algorithm will terminate. This truncation 
rocess is highlighted below in Fig. 5 . 
In summary, the TMNRE algorithm splits into four steps that are 

ighlighted in the schematic shown in Fig. 1 : 

(i) Step 1: Sample a set of simulations 15 from the full forward 
odel ( x , θ ) ∼ p ( x , θ ) = p ( x | θ ) p ( θ ). 
(ii) Step 2: Train a set of classifiers f i φ( x, θi ) to obtain an estimate

f the ratio r i ( x ; θ i ) = p ( θ i | x )/ p ( θ i ). 
(iii) Step 3: Use this trained ratio to obtain estimates of the 
arginal posteriors p ( θ i | x 0 ) for a specific target observation x 0 . 
(iv) Step 4: Take these marginal posterior distributions and derive 

ounds on the prior region to truncate for the next round of inference
y imposing the condition p i ( θi | x 0 ) / max θi 

p i ( θi | x 0 ) < ε. 
4 Of course, this will introduce a slight error in the estimate of the marginal 
osterior proportional to �p( θ� 

i | x 0 ) ∼
∫ 

�( ε) d 
n θ p( θ | x 0 ) δ( θi − θ� 

i ) , where 
( ε) is the region excluded by the truncation procedure. Ho we ver, it is exactly 

n this region where the joint posterior density is (necessarily) low, and as 
uch, the error induced is small and strictly controlled by ε. To be conserv ati ve, 
e typically choose ε ∼ 10 −5 , which corresponds to exclusion at around the 
.5 σ level for a Gaussian distribution (Miller et al. 2022b ). Provided ε is not 
oo large, any other choice should not change our results at all, only affecting 
he time that the algorithm takes to converge. 
5 Note that this step can be fully parallelized, something that is implemented 
irectly in albatross . 
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(v) Repeat from Step 1 until the truncation procedure stabilizes, 
hen take the final round of inference as the set of posteriors p ( θ i | x 0 )
nd terminate the algorithm. 

.3 Design choices for stellar streams 

n order to use the TMNRE algorithm in practice, we must make
 number of design choices. These include (i) building or using
 pre-implemented forward model that generates the data x (here a
epresentation of the stellar stream) given parameters θ , (ii) designing
 neural network architecture that is able to efficiently process the
ata format of x and θ , (iii) making choices for the prior distributions
 v er the parameters θ , and (iv) choosing the hyperparameters rele v ant
o the TMNRE algorithm. 

.3.1 Forward simulator 

o generate stellar stream simulations, we use the implementation of 
ur modelling approach described in detail abo v e (see Section 2 ). To
ery briefly recap, we solve for the full evolution history of the stream
ncluding e.g. the orbit-dependent tidal stripping in a framework that 
an accommodate for any time-dependent or time-independent grav- 
tational potential. In addition, we develop a simple observational 
odel that is supposed to represent experimental and statistical 

ncertainties at the level of a current surv e y. This is implemented
n the jax -accelerated modelling code sstrax , which we couple
irectly to the swyft software (Miller et al. 2021 ) in our analysis
ode albatross . The parameters that we vary in this analysis θ =
 t age , M sat , . . . ) are described in Tables 1 (stream modelling) and 2
observation model). An example output of our simulator (and the 
ase study that we investigate below) is shown in Fig. 2 . 

.3.2 Inference network 

s discussed abo v e, the main aim of (neural) ratio estimation is
o design a procedure that can reliably train a classifier, or set
f classifiers f i φ( x, θi ) to distinguish between joint and marginal
amples (Hermans et al. 2019 ; Durkan et al. 2020 ; Miller et al. 2021 ;
ozet & Louppe 2021 ; Delaunoy et al. 2022 ). To do this in practice,
e need a flexible way to parametrize f φ , and although there are

rguments from e.g. the loss function in equation ( 7 ) that an y fle xible
nough parametrization (i.e. just having enough trainable parameters 
n φ) will be able to optimize the loss, in reality this is only in some
nfinite training data limit. As such, we should try to make sensible
esign choices regarding the network to take full advantage of the
nown structure and physics associated to our signal and data format.
mpirically, making physics-informed choices at this stage leads to 
uge increases in performance, robustness, simulation efficiency, and 
he general applicability of the method. 

In our case of stellar streams, the signal is a collection of stars and
heir properties (positions, velocities, perhaps even metallicity etc.). 
s described in Section 2 , we focus on the phase-space information in

his work, including e.g. the selection procedure in our observational 
odel. As part of our forward model, we chose to bin the data into
 3-channel image to preserve the spatial structure and morphology 
f the signal. This data format is then well suited for the application
f standard image processing network structures. 
More precisely, we know that a stream binned at a given resolution

an have structure on a range of scales. For instance, the large-scale
rbit of the stream is typically go v erned by e.g. the ambient gravita-
ional potential, as well as the initial conditions of the cluster. On the
ther hand, the smaller scale features (gaps, spurs etc.) are more likely 
MNRAS 525, 3662–3681 (2023) 
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Figure 2. Upper panels: Illustration of the various modelling steps (finding the cluster trajectory, mass-loss history, final stream formation etc.) described in 
Section 2 . Lower panels: Example mock observation generated using the sstrax modelling code with the parameters in Table 1 . Analysed as a case study in 
Section 4 . 

Table 1. Parameters, prior range choices, and injection values for the stream model parameters described in Section 2 . 

Parameter Prior range True value 

(Log of) Initial cluster mass log 10 ( M sat /M �) [3.0, 4.5] 4.05 
Cluster velocity dispersion σv [0 . 1 , 5 . 0] km s −1 1.1 
Cluster final pos. x sat = ( x c , y c , z c ) Stream dependent � (11.8, 0.79, 6.4) 
Cluster final vel. v sat = ( v x , c , v y , c , v z, c ) Stream dependent � (109.5, −254.5, −90.3) 
Stream age t age [500 , 5000] Myr 3000 
Release distance parameter λrel [0.1, 2.0] 1.405 
Release velocity parameter λmatch [0.1, 2.0] 1.846 
Stripping asymmetry p near [0, 1] 0.5 
Mass-loss prefactor ξ0 [10 −4 , 10 −2 ] 0.001 
Mass-loss parameter α [10, 30] 20.9 
Half-mass radius r h [10 −4 , 10 −2 ] pc 0.001 
Average stellar mass m̄ [1 . 0 , 20] M � 3 

Note. � In particular, we choose these parameters to span the observ ational windo w of interest for an individual observation. 
In the analysis presented in Section 4 , we choose the priors ([10, 14], [0.1, 2.5], [6, 8]) and ([90, 115], [ − 280, −230], 
[ − 120, −80]) on the cluster position and velocity respectively. 

Table 2. Choices for observational model parameters described in Section 2 . 

Observation model parameter Value 

Observing window φ1 [ −120 , 70] deg 
Observing window φ2 [ −8 , 2] deg 
Observing window μφ1 cos φ2 [ −2 , 1] mas yr −1 

Observing window μφ2 [ −0 . 1 , 0 . 1] mas yr −1 

Observing window d [6 , 20] kpc 
Observing window v rad [ −250 , 250] km s −1 

Number of bins [64, 32] 
Observational error δφ1 0 . 001 deg 
Observational error δφ2 0 . 15 deg 
Observational error δμφ1 cos φ2 0 . 1 mas yr −1 

Observational error δμφ2 0 . 0 mas yr −1 

Observational error δd 0 . 25 kpc 
Observational errors δv rad 5 km s −1 

Stream selection success rate εsel. 95 per cent 
Background stars in window N background 10 6 

Background contamination rate εbackground 10 −3 per cent 
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o be impacted by the dynamical evolution history, tidal stripping,
r interactions with perturbers. The aim is to analyse both of these
lasses of signal simultaneously, and as such we should choose a
etwork architecture accordingly. In particular, with this observation,
t is simple to see that applying e.g. a standard convolutional network
hich applies the same kernel to each part of the image identically
ould be a poor choice and unlikely to be able to simultaneously

xtract the small-scale and large-scale information. With this in mind,
e choose to use the well-known unet architecture (Ronneberger,
ischer & Brox 2015 ), which is well suited for image analysis and
egmentation. It is designed to simultaneously analyse the image at a
arger scale, before performing follow up analysis on each identified
egment and then combining the results. 

There is another part of the inference network (a full description
nd network diagram can be found in Appendix B ) which performs
he ratio estimation. Schematically, one can understand the o v erall
tructure as first performing some data compression through the
net and a small linear network to extract an optimal set of
ummary statistics. Then, these summary statistics (which are
utomatically learned and optimized during the training), are passed
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Table 3. Choices for the hyperparameters and settings for the TMNRE 

algorithm in this work, as described in Section 3 . 

TMNRE setting Value 

Number of rounds 7 � 

Simulation schedule 30k, 30k, 30k, 30k, 30k, 60k, 150k 
Bounds threshold ε 10 −5 

Noise shuffling True 
Min./Max. training epochs 0/50 
Early stopping patience 20 
Initial learning rate 5 × 10 −4 

Training/Validation batch size 64/64 
Train : Validation ratio 0.9 : 0.1 

Note. � This is the minimum number of rounds, if the algorithm has not 
converged, we continue rounds of inference until the truncation procedure 
terminates. 
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o the default ratio estimator implemented in swyft along with the 
odel parameters θ . All the details regarding the implementation 

an be found in the albatross library. In terms of specificity, we
xpect the network to be broadly applicable to the analysis of any
tream model or observation, since it only assumes that the signal 
as structure on various scales. 

.3.3 Prior choices 

he prior choices for all the parameters of interest are shown in
able 1 . They are chosen to either represent our knowledge about the
hysics from current astrophysical observations or simulation results 
e.g. the mass-loss parameter α), or to be maximally uninformative. 
n example of the latter case are the cluster position and velocity
riors which are chosen in the first instance to span the full
bserv ational windo w. 

.3.4 TMNRE hyperparameters 

here are a number of hyperparameters that need to be set when
ne runs the TMNRE algorithm. Broadly these can be categorized 
s either parameters that control the network training process, or 
arameters specific to the TMNRE algorithm. For the inference and 
nalysis detailed in this work, the particular choices can be found 
n Table 3 , as well as in the example configuration files supplied
ith albatross . Briefly, the training parameters describe how 

ong to train the network for (min./max. training epochs), how many 
pochs to wait before the validation loss should decrease again (early 
topping patience), 16 the split between training and validation data 
Train : Validation ratio), and the batch sizes shown to the network
uring training (training/validation batch size). The TMNRE settings 
onsist of the minimum number of rounds (number of rounds), 
he schedule for the number of simulations per round (simulation 
6 During the training, we track both the current loss on the training data set, 
s well as the loss e v aluated on some separate validation set. Looking for 
ood performance on the validation data set is typically a good strategy to 
 v oid o v erfitting, and therefore we use it as a metric to indicate whether we 
re starting to o v erfit to the training data. The early stopping criterion waits 
or a specified number of passes through the training data (or epochs), o v er 
hich the validation loss has not decreased before terminating the training. 

t then re-initializes the network parameters to the state where the minimum 

alidation loss was observed. 
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chedule), 17 and the threshold for truncation ( ε). Finally, we have
he ‘noise shuffling’ setting, which breaks down the data x into
he stream and background components. In a given batch it then
andomly permutes the background elements, essentially showing 
he network a brand new example (with the same signal component)
very epoch at zero simulation cost. We found this to be an extremely
f fecti ve way of reducing the possibility of overfitting, especially in
he early rounds where we have small simulation batches. 18 Indeed, 
his strategy should be applicable to any additive noise model, see for
xample its application to gravitational wave data analysis (Bhardwaj 
t al. 2023 ). 

In this section we have discussed the broad field of SBI and a
pecific algorithm, known as TMNRE that we have used to build
ur data analysis pipeline. We argued that the targeted and marginal-
ocused approach could be a key advantage for stellar stream analysis, 
ncluding the resulting simulation efficiency, statistical robustness, 
nd the opportunities for increased model complexity . Finally , we
iscussed some of the design choices that need to be made in order to
uccessfully apply TMNRE to a given problem. In the next section,
e will present a case study for a mock stream to illustrate the

pplication of our modelling and analysis strategy. 

 RESULTS:  G D 1 - L I K E  CASE  STUDY  

ow that we have set up the framework of SBI, and specifically
escribed the application of the algorithm to the analysis of stellar
treams, we can present a case study to highlight its functionality.
n this section, we will illustrate the full analysis and validation
f a mock observation that is generated using our stellar streams
odelling code sstrax . This is in order to have full control o v er

he reconstruction of the parameters, as well as the physics input to
he model. Of course, the longer term goal is to analyse current and
uture state-of-the-art spectroscopic and photometric surv e ys, such 
s Gaia and the Vera Rubin observatory (Abell et al. 2009 ; Gaia
ollaboration 2018 , 2021 ; Bechtol et al. 2019 ). 

.1 Case study description 

erhaps the most well-studied and well-observed Milky Way stellar 
tream is the GD1 stream (Grillmair & Dionatos 2006 ; Eyre 2010 ;
rice-Whelan & Bonaca 2018 ). It was first identified in the SDSS
atalogue in the early 2000s (Grillmair & Dionatos 2006 ; Eyre
010 ), but recently it has been observed by e.g. Gaia in significantly
ore detail (Price-Whelan & Bonaca 2018 ; Gaia Collaboration 

018 , 2021 ). Indeed, observations are currently at the level where
ndividual substructures (e.g. the so-called ‘gaps’ and ‘spur’) are 
easonably well resolved (de Boer et al. 2018 ; Price-Whelan &
onaca 2018 ). In some sense, the purpose of developing our analysis
ethod is to take full advantage of these impro v ements and perform
MNRAS 525, 3662–3681 (2023) 

7 It is typically the case that in the early rounds, only a small number of 
arameters are meaningfully constrained, and so it is more efficient to have 
 more reduced simulation batch, truncate, and then re-simulate again. In 
he last rounds, ho we ver, to achie ve the correct le vel of statistical precision, 
ignificantly more training data is required. 
8 As an aside, we also explicitly tested that resampling the stripping times 
nd regenerating the ‘same’ stream (at least statistically) also lead to 
mpro v ements in the smoothness of the training and validation losses, but 
mportantly did not affect the precision of the posteriors. This approach was 
specially ef fecti ve for small simulation batches. 

 2024
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M

Figure 3. Full set of 1d marginal posteriors (orange curves) for all parameters in the sstrax stream model described in Section 2 applied to the mock 
observation in Fig. 2 . The 1 σ , 2 σ , and 3 σ contours are o v erlaid behind. Finally, the black vertical lines indicate the true injected parameters from Table 1 . 
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nference on streams like GD1 in as realistic as possible simulation
ramework. 

To illustrate and test our method, we construct a case study
o closely resemble the sky location and structure of the GD1
tream. To do so, we choose a stream closely aligned with the
2 = 0 deg plane in the GD1 specific co-ordinate system defined

n Section 2 . We centre the location of the cluster (remnant) at
1 ∼ −25 deg , and choose the age of the stream such that it extends
cross a significant portion of the sky, as in the case of the real
D1 observation (Grillmair & Dionatos 2006 ; Eyre 2010 ; Price-
helan & Bonaca 2018 ). Similarly, the dominant part of the stream

s located around 6 − 10 kpc away from the galactic centre. The full
et of parameter values that we choose for the mock observation are
hown in Table 1 , along with the priors for the subsequent Bayesian
nference. The mock observation that these parameters generate,
nd the focus of the analysis below is shown in Fig. 2 . We do
ote, ho we ver, that whilst the mock observation we present here has
eneral features that represent a GD1-like stream, it is important to
cknowledge that some aspects of the modelling could be impro v ed
n this regard. One important example is the presence of a clear
emnant at the cluster centre, which is not present in the real GD1
ata. Concretely, this has the effect that the reconstruction of the
luster position in our analysis may be o v erly optimistic compared
NRAS 525, 3662–3681 (2023) 

o a more realistic case. s  
.2 Parameter estimation with TMNRE 

e carry out parameter estimation using the priors for the model
arameters indicated in Table 1 , the observational model described
n Table 2 , and the TMNRE algorithm settings given in Table 3 . The
ey results for this section are given in Figs 3 , 4 , and 5 . 

.2.1 Overview 

here are a few levels at which to discuss our results from applying
he TMNRE algorithm described in Section 3 to the mock GD1-like
bservation in Fig. 2 . The first is simply in the context of robust and
aithful inference – in Fig. 3 , we show the full set of converged 1d-
osteriors for all parameters in the model. We see that we reconstruct
he true value in all cases either via a direct measurement (e.g. the
nal position or velocity of the cluster) or as some clear upper or

ower bound (e.g. the mass-loss parameter α). Importantly, we can
econstruct with very high precision the age of the stream ( t age ), the
elocity dispersion of the cluster ( σ v ), the current cluster position and
elocity ([ x c , y c , z c ], [ v x , c , v y , c , v z, c ]), and the relative asymmetry in
he tidal stripping ( p near ). This sort of constraint is easy to moti v ate
hysically via e.g. the length and width of the stream, which is
trongly affected by the age and velocity dispersion, as well as the
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Figure 4. Corner plot: Follow up analysis on the mass-loss model given the 1d marginals in Fig. 3 . The orange contours show the trained 2d posteriors on the 
parameters rele v ant to the mass-loss model ( ξ0 , α, r h , m̄ ). Upper right-hand panel and inset: Derived marginal posteriors (orange contours) in the ( φ1 , φ2 )-plane 
on the final cluster position o v erlaid on top of the mock target observation. In addition, we highlight the observational errors (black error bars) and the true value 
(yellow star) to be reconstructed. 
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tream’s spatial location and orientation which is controlled by the 
elative cluster position and velocity. 19 

.2.2 Degeneracies 

f course, not every parameter is measured with high precision, 
uch as the parameters ( ξ 0 , α, r h , m̄ ) that control the mass-loss
ate of the cluster as it orbits the Milky Way. Whilst we can set
ele v ant upper or lower bounds on these parameters, 20 it is interesting
o explore the degeneracies between these parameters also. This 
s where we can use the flexibility of the TMNRE algorithm to
9 Indirectly, the exact orientation will be affected, of course, by the gravita- 
ional potential of the Milky Way, see e.g. (Koposov et al. 2010 ; Bonaca et al. 
014 ; Gibbons et al. 2014 ; Sanderson et al. 2014 ; Bowden et al. 2015 ; Bovy 
t al. 2016 ; Erkal et al. 2019 ; Shipp et al. 2021 ), which we have fixed in this 
nalysis. It is easy to generalise to a case where the potential is allowed to 
reely vary with an analysis pipeline that would remain identical. 
0 Which again we might be able to moti v ate physically – for example, it 
akes sense that we can set a lower bound on the total mass of the cluster 

ust by having some count of the total number of observed stream stars and 
ultiplying by the average stellar mass. 
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fficiently estimate posteriors of choice. Specifically, we only need 
o estimate the rele v ant 2d posteriors for exploring the de generac y
tructure of the mass-loss model. To do so, we train additional ratio
stimators r ( x ; { θ i , θ j } ) with θi , θj ∈ ( ξ0 , α, r h , m̄ ). The results for
hese 2d-posteriors, along with the corresponding 1d-posteriors are 
hown in Fig. 4 . We see some clear degeneracies highlighted in the
arameter inference such as those between ξ 0 and r h . Again, whilst
e do not investigate these degeneracies in detail, this could be

xpected from e.g. the scaling of d M c /d t in equation ( 2 ). 

.2.3 Precision 

s discussed in Section 3 , SBI has now been used e xtensiv ely in other
elds, and has been shown to qualitatively and quantitatively repro- 
uce known results and results obtained using traditional methods. In 
he present case, a full comparison to e.g. a traditional method such
s MCMC is challenging because we only have a forward simulator
or the observational and noise models. This is another way to say
hat we do not have an explicit form of the data likelihood. Of course,
his is a key strength of the class of simulation-based methods, since
t allows for arbitrarily complex data simulators, which can account 
or complicated aspects of detection and selection in a statistically 
MNRAS 525, 3662–3681 (2023) 
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M

Figure 5. Examples of the truncation procedure in TMNRE applied to five of the model parameters. From left to right, we illustrate the evolution of the posterior 
estimates for z c , v x , c , σv , r h , and λrel . From top to bottom we show the development over the number of rounds of the TMNRE algorithm. The insets zoom in 
on the bounded region (blue vertical lines) to highlight the coverage of the true value (vertical black dotted line). 
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eaningful way. On the other hand, this means we should consider
dditional ways to test our results. A simple qualitative test we can
erform is to compare the precision (and accuracy) with which we
econstruct the cluster position to the intrinsic observational errors on
he stellar positions. To test this, we construct the 3d-joint posterior
 ( x c , y c , z c | x 0 ) by training a 3d ratio estimator r ( x ; { x c , y c , z c } ) on the
nal round of simulations. From this joint posterior, we can generate
osterior samples in the ( φ1 , φ2 ) parameter space 21 for the current
osition of the cluster that are distributed as φ1 , φ2 ∼ p ( φ1 , φ2 | x 0 ).
hese are shown in the top right-hand panel (and inset) of Fig. 4
long with the observational model errors on the positions of the
tars δφ1 , δφ2 . We see that we are able to reconstruct the cluster
osition to a good degree of accuracy and precision. 

.2.4 Simulation efficiency 

ne of the key arguments we made for using TMNRE was the fact
hat it gave us the ability to use high fidelity simulators. This is
oth from a statistical perspective in the sense that we can perform
ayesian inference without explicit likelihoods, but also from the

calability point of view. Indeed, one of the main obstacles for a
ull analysis of stellar streams is that fact that performing enough
imulations to do inference on a large number of parameters is
ypically infeasible. This is where the marginal and targeted aspects
f TMNRE are rele v ant, as well as the acceleration of the simulator.
o be more specific, in the case study described abo v e, we required
 total of only 350k simulations to perform inference on all 16 pa-
ameters simultaneously . Crucially , this simulation budget was split
cross a total of seven rounds, as illustrated in Table 3 . In between
NRAS 525, 3662–3681 (2023) 

1 Note that, of course, it would have been statistically incorrect to generate 
hese from the individual marginal posteriors on the cluster positions, even 
hough they are well measured. 

b
e
2

t
n

he rounds, the truncation procedure described in Section 3 was
pplied, which ensures that we are targeting the specific observation
f interest, and that the variance in the training data is significantly
educed compared to the previous round. This is very important for
imulation efficiency, and results in much higher quality inference
esults on targeted observations compared to e.g. the case where a
xed simulation budget is used in a single round. 22 This truncation
rocess is highlighted in Fig. 5 , where we see how the different
lasses of parameter respond to the truncation process. For example,
he first three columns of parameters (one component of the position
nd velocity, and the velocity dispersion of the stream) are extremely
ell constrained once the algorithm converges. On the other hand, the

ast two panels show parameters that are only broadly reconstructed
 r h and λrel ). For this second class of parameter, ho we ver, we
ee that in the initial rounds, the marginal posterior estimates of
.g. p ( r h | x 0 ) are quite poor. 23 As the rounds evolve and the well-
easured parameters are better constrained, subsequently reducing

he training data variance, the posterior estimates on the poorly
econstructed parameters significantly impro v e. This is a general
eature of TMNRE, where convergence and truncation in one set of
arameters leads to marked impro v ements in the inference of other
odel parameters, even if they themselves are not well measured. 
In terms of actual run time, we performed this analysis on a 72

PU core cluster node, with a single NVIDIA A100 GPU to train
he ratio estimators. The total run time for the analysis was around
9 h, of which approximately 90 per cent was simulation time. Note
udget differently. For an example in the context of gravitational waves, see 
.g. (Bhardwaj et al. 2023 ). 
3 In fact, it is a good example of where we should be careful not to interpret 
hese early-round ratio estimators as strict posteriors, since the algorithm has 
ot converged. 
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Figure 6. Example of the co v erage tests applied in this work for the age 
of the stream t age . Top panel: Empirical (observed) against the nominal or 
e xpected co v erage. Bottom panel: The same information as the top panel but 
plotted in terms of the corresponding p values. The red lines indicate the 
actual co v erage results, whilst the blue contours represent the 1 σ confidence 
interval on this estimate. 
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hat this can therefore be impro v ed immediately by either (i) further
peeding up the simulator, or (ii) having access to more CPU cores
here the simulations can be further parallelized. 

.3 Consistency and validation tests 

he posterior sanity checks and explicit evidence for excellent 
econstruction of the true values for the parameters in our case study
re an important step towards developing and testing our analysis 
ipeline. On the other hand, given that our goal is to target data
nalysis challenges where there are no traditional methods available 
either because they scale too poorly with the number of parameters, 
r because they have an analytically intractable data likelihood – we 
eed to develop additional consistency checks to validate our results. 
his is very much an active field of research in SBI, and a set of
stablished methods now exist (Hermans et al. 2021a ; Lueckmann 
t al. 2021 ). 

The most common, and the one that we will present here, are
nown as co v erage tests (Hermans et al. 2021a ). We will focus on
 xpected co v erage tests of our inference pipeline, which make precise
he idea of variations in posterior estimates o v er v arious observ ational
r statistical fluctuations. In particular, e xpected co v erage tests ask
he following question: how often does the x per cent credible interval
ontain the true value , avera g ed o ver observations g enerated from
he joint distribution x, θ ∼ p(x, θ )? By definition, a well-calibrated 
osterior distribution will contain the true value inside the x per cent
redible internal x per cent of the time. As such, to carry out this
est, we can generate a set of simulations 24 from the truncated prior
n the final round of inference (so that we test the most rele v ant
egion of parameter space), and then perform inference on each 
imulation using our trained final round ratio estimators. For each 
onfidence level x per cent ∈ [0, 1], we can then count how many
imulations have inference results that contain the corresponding true 
alue within this confidence interval. A posterior will pass this test if
his results in an approximately diagonal line in the expected versus
mpirical co v erage plane. Importantly, since the inference must be 
one individually for each mock observation, it is typically infeasible 
o perform this sort of co v erage test with fully sequential methods
including e.g. MCMC or nested sampling), especially in scenarios 
ith high simulation cost such as stellar streams. Finally, one should 
ote that this co v erage test is diagnostic in the sense that a failure
ndicates a poorly calibrated posterior estimate, but success does not 
uarantee that the correct posterior has been found. 
We provide the coverage test results for all 16 parameters in the

ppendix (see Figs B2 and B3 ), but also give a specific example for
he age of the stream t age in Fig. 6 opposite. We see that in all cases we
chieve good coverage results, which can easily be improved further 
y allocating a slightly larger simulation budget. This co v erage test
iagnostic will remain applicable irrespective of the forward model 
r parameter choices, and is one of the key metrics for being able to
alidate SBI methods. 

 C O N C L U S I O N S  A N D  O U T L O O K  

n this work, we have presented the development and application of
 brand new SBI data analysis pipeline for modelling (see Section 2 )
nd analysing stellar streams (see Sections 3 and 4 ). In this last
ection, we present our key conclusions and provide some outlook 
s to the classes of analysis challenge we can now attempt to tackle,
4 Here we generate 1000 new simulations. 

o
(  

w

s well as the steps that would be required to achieve them. The key
ontributions in the work are as follows: 

(i) Scalable SBI pipeline . We hav e dev eloped a brand new SBI
lgorithm to analyse stellar streams in the Milky Way (see Section 3
or a discussion on the application of simulation-based methods to 
tellar streams). In particular, we have implemented the TMNRE 

lgorithm (Miller et al. 2022b ) with the aim to develop a scalable
nference method. The moti v ation for choosing this algorithm for
he analysis of stellar streams is mainly due to simulation efficiency
hat results from targeting indi vidual observ ations and focusing on

arginals. We showed in Section 4 that we were able to perform
nference on all 16 parameters of our model with only 350k
imulations. This sort of performance is the key argument for the
bility of our approach to analyse streams with far more realistic
orward models. 

(ii) Robust and flexible method. Another important aspect of the 
nalysis methodology developed here is its flexibility and robustness 
o changes in observation strategy or simulation model. By definition, 
ur approach is simulation-based and therefore has the advantages 
hat it does not (i) assume any explicit likelihood for e.g. the
bservational model, only the existence of a forward simulator, and 
ii) assume any particular form of the data output. On the latter point,
hilst we have developed the algorithm alongside our modelling 
MNRAS 525, 3662–3681 (2023) 
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ode sstrax , the analysis pipeline would remain identical for any
imulator. This is the crucial aspect that will allow our method to
e used for making direct comparisons between different stream
imulation strategies and observational models. 

(iii) Public analysis code . We hav e built our analysis method
n top of the swyft software which is a pytorch -based imple-
entation of TMNRE (Miller et al. 2022b ). Specifically, we have

ublicly released the albatross code that is currently coupled to
he sstrax modelling code by default. The albatross code is
ighly modular and can in principle be coupled to any forward model,
or example galpy (Bovy 2015 ), without any change in the analysis
ethodology. This will eventually allow for direct comparisons in

he inference between different modelling strategies. 
(iv) Public modelling code. As mentioned above, one of the key
oti v ations for developing the albatross implementation of the
MNRE algorithm was to create a framework that allows for robust,
calable inference on complex models. In the same vein, we devel-
ped a new modelling code sstrax that is accelerated through the
ax programming paradigm (Bradbury et al. 2018 ). This allows for

ast (around a second per simulation) and realistic forward modelling
f streams. We have designed the code to be readily extendable
o include any physical effects such as subhalo impacts, varying
ravitational potentials, higher fidelity tidal disruption models etc.
s abo v e, re gardless of the modelling choices, the inference pipeline
ill crucially remain identical. 

.1 Outlook 

e argued in the introduction that stellar streams are an exciting
robe of galactic and dark matter physics. This is particularly true as
he quality of observations continues to significantly impro v e in the
ras of Gaia and the Vera Rubin observatory (Abell et al. 2009 ; Gaia
ollaboration 2018 , 2021 ; Bechtol et al. 2019 ). Taking full advantage
f this data is challenging, ho we ver, both in terms of robust statistical
nalysis and the complexity of simulations required. Ultimately, if we
re interested in using stellar streams to analyse scenarios such as the
rigin and statistics of substructure in the stream (Banik et al. 2018 ,
021a , b ; Banik & Bovy 2019 ), or the impact of a large population of
ow mass subhaloes on streams in the Milky Way (Erkal & Belokurov
015a , b ; Bonaca et al. 2018 ), we will hav e to o v ercome these hurdles.
his is the context we had in mind when developing albatross
nd sstrax . The aim was to develop a scalable, simulation-efficient
ramework that did not make any assumption about the complexity
f the forward simulator. This is exactly the sort of task that SBI
ethods were developed to address. In terms of specific outlook, we

elieve there are a number of interesting avenues to pursue given the
apabilities developed here. 

On the analysis side, there are a number of interesting claims in
he literature about the origin and characterization of the gaps and
eatures in streams such as GD1 (Grillmair & Dionatos 2006 ; Eyre
010 ; de Boer et al. 2018 ; Price-Whelan & Bonaca 2018 ). More
pecifically, it would be an extremely important result to classify
.g. the gap in GD1 as being due to a compact object or subhalo
ollision (Carlberg & Grillmair 2013 ; de Boer et al. 2018 ; Price-
helan & Bonaca 2018 ). To obtain a definitive answer , however ,

ne needs to show that the features cannot (at least to some degree of
tatistical certainty) arise by chance as a result of some stochasticity
n the tidal stripping process, selection effects at the level of stream
etection, or as a result of a more complex model of the Milky
ay potential including known substructure such as dwarf galaxies

r globular clusters (Amorisco et al. 2016 ; Dillamore et al. 2022 ;
oke & Hattori 2022 ). Similarly, it would be interesting to provide a
NRAS 525, 3662–3681 (2023) 
onclusive answer as to the relative shape and size of the Milky Way
ravitational potential from an analysis of individual or multiple
treams (Shipp et al. 2021 ). The key advantage of the framework
e have put forward here is that one can (and should) ask all of

hese questions simultaneously. This is a more precise version of the
tatement in the introduction where we argued that we would ideally
ike to analyse the large- and small-scale structures present in stellar
treams at the same time. On a more cautionary note, in order to mo v e
owards analysing real data in its full complexity with this class of SBI
ethods, it will be important to characterize and quantify the sensi-

ivity of the inference method to perturbations or misspecifications in
he forward model. This is particularly rele v ant in the case of stellar
treams where the physics is highly complex, and it is unlikely to be
ossible for a simulation model to be developed that is simultane-
usly fully self-consistent and fast enough for parameter inference.
ne step towards this goal could include analysing mock streams
enerated from N -body simulations (see e.g. Varghese et al. 2011 )
ith identifiable parameters that match those in the model (such as

he cluster velocity dispersion, analytic potential, or the age of the
tream). One should bear in mind, ho we ver, that this is not necessarily
n issue directly with SBI, but also affects traditional approaches such
s MCMC if e.g. the modelling or data likelihood is miscalibrated. 

Of course, to achieve these analysis goals, we must also make
rogress on modelling. Having a flexible analysis and simulation
ipeline that does not assume e.g. symmetry in the Milky Way
otential, or uniform stripping times in the evolution of the cluster
oti v ates us to focus on improving the realism of each aspect.

n particular, there are a number of key developments that would
lace the analysis questions abo v e on a much more solid footing and
llow us to analyse real data with confidence. First, we should focus
ttention on the observational model – in this work we constructed
 very simple framework to describe the detection and measurement
f Milky Way streams. In reality, ho we ver, data such as that from
aia is significantly more complicated (Gaia Collaboration 2018 ,
021 ), accounting for e.g. position dependent errors, selection effects
ased upon proper motions and metallicities, and spatially varying
ackground densities (Gaia Collaboration 2018 , 2021 ). Realistic
odelling of this will be particularly rele v ant for robustly studying

.g. small-scale features in streams. Secondly, the dynamics of tidal
isruption and the release of stars from the cluster is vital for
enerating realistic density perturbations along the stream track.
gain, since this could be an interesting observable for studying e.g.

he collective implications of a population of small perturbers (Banik
t al. 2018 ; Bonaca et al. 2018 ; Banik & Bovy 2019 ; Delos & Schmidt
022 ), or the internal properties of globular clusters (Gialluca et al.
021 ), development of the model realism will inevitably lead to more
nformative inference results. Thirdly, we know that on the sort of
ime-scales rele v ant to stellar streams, the Milky Way and its potential
re dynamical, both in terms of its global structure, as well as the
arge amount of substructure in the form of dwarf galaxies, other
lusters, or gas clouds (Amorisco et al. 2016 ; Dillamore et al. 2022 ;
oke & Hattori 2022 ). It would be interesting to take input from e.g.
 -body simulations of Milky Way formation and trace the evolution
f streams in such a dynamical potential. As we argued abo v e, this
ould be done without any change in the analysis pipeline. 

In summary, the development of a scalable and flexible SBI ap-
roach to analysing stellar streams can allow us to answer important
uestions about the evolution of, and substructure in our own galaxy.
ided by high quality observations by the latest surv e ys (Abell et al.
009 ; Gaia Collaboration 2018 , 2021 ; Bechtol et al. 2019 ), we can
se this to start asking concrete questions regarding the nature of dark
atter, the evolution, and structure of the Milky Way, or the dynamics

https://github.com/undark-lab/albatross
https://github.com/undark-lab/sstrax
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f dwarf galaxies and globular clusters. To achieve this will require 
evelopment from the perspective of modelling stream dynamics and 
urv e y observ ations. Ho we ver, ha ving a rob ust simulation efficient
nference strategy is strong moti v ation for starting to mo v e further
owards this ambitious goal. 
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PPENDIX  A :  C O - O R D I NAT E  

R A N S F O R M AT I O N S  IN  SSTRAX 

ere we detail the co-ordinate transformations we use in sstrax
o mo v e from the Cartesian simulation frame X halo ≡ ( x , y , z)
NRAS 525, 3662–3681 (2023) 
o the GD1 co-ordinates ( r , φ1 , φ2 ). This is implemented in the
rojection.py module, and is e xplicitly giv en by the following
et of relations, 

 halo ≡ ( x , y , z) , (A1) 

hen, in a frame centred at the sun with x sun = 8 kpc , 

 sun ≡ ( ̃  x , ˜ y , ̃  z ) = ( x sun − x , y , z) . (A2) 

e can convert to galactic co-ordinates X gal ≡ ( r , b , l ) via, 

 = 

√ 

˜ x 2 + ˜ y 2 + ̃  z 2 , (A3) 

 = arcsin ( ̃  y /r) , (A4) 

 = arctan ( ̃  y / ̃  x ) . (A5) 

hen, we can rotate to equatorial co-ordinates X equat ≡ ( r , α, δ)
hrough, 

= tan −1 

(
cos b sin ( l NGP − l) 

cos δNGP sin b − sin δNGP cos b cos ( l NGP − l) 

)
+ αNGP (A6) 

= arcsin ( sin δNGP sin b + cos δNGP cos b cos ( l NGP − l) ) , (A7) 

ith δNGP = 27 . 12825118085622 deg , l NGP =
22 . 9319185680026 deg , and αNGP = 192 . 85948 deg . After
his, we can rotate to a Cartesian co-ordinate frame aligned with the
tream X gd1, cart ≡ ( x g , y g , z g ) with, 
 

 

x g 
y g 
z g 

⎞ 

⎠ = 

⎡ 

⎣ 

−0 . 4776303088 −0 . 1738432154 0 . 8611897727 
0 . 510844589 −0 . 8524449229 0 . 111245042 
0 . 7147776536 0 . 4930681392 0 . 4959603976 

⎤ 

⎦ 

×
⎛ 

⎝ 

r cos α cos δ
r cos α sin δ

r cos δ

⎞ 

⎠ , (A8) 

aken from Ref. (Koposov et al. 2010 ). Finally, we can construct our
D1 co-ordinates X gd1 ≡ ( r , φ1 , φ2 ) via, 

1 = arctan ( y g /x g ) , φ2 = arcsin ( z g /r) . (A9) 

he final step in the co-ordinate transformations is to construct the
elocity in a different co-ordinate frame given the velocity in the
imulation frame. For this, we take advantage of the autodifferen-
iation capability of jax and numerically compute the Jacobian
 ij ≡ ∂ X 

i 
gd1 /∂ X 

j 

halo . The velocity in the GD1 co-ordinate frame
 gd1 ≡ ( v rad , φ̇1 , φ̇2 ) is given by V gd1 = J · V halo . The proper motions
φj 

are then given by μφj 
= φ̇j /r . 

PPENDI X  B:  N E T WO R K  A R C H I T E C T U R E  

n Fig. B1 , we show the network architecture used in the alba-
ross code to process output from the simulator and estimate the

ele v ant likelihood-to-e vidence ratios. 
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Figure B1. Schematic network diagram illustrating the data processing and 
ratio estimation network architecture employed in albatross . 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/3/3662/7243399 by U
niversiteit van Am

sterdam
 user on 15 January 2024



3680 J. Alvey, M. Gerdes and C. Weniger 

MNRAS 525, 3662–3681 (2023) 

Figure B2. Co v erage results for the case study giv en in Section 4 for all parameters in the sstrax stream model. This is the same information as Fig. B3 , but 
with more emphasis placed on the tail regions via the definition p = 

∫ z p 
−z p 

d z (1 / 
√ 

2 π) exp ( −z 2 / 2). The pink curves indicate the average coverage, whilst the 
blue contours represent the 1 σ uncertainty of this estimate. 
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Figure B3. Co v erage results for the case study given in Section 4 for all parameters in the sstrax stream model. The pink curves indicate the average 
co v erage, whilst the blue contours represent the 1 σ uncertainty of this estimate. 
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