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1 INTRODUCTION

The behavior of large and complex aggregates of
elementary particles, it turns out, is not to be
understood in terms of a simple extrapolation of
the properties of a few particles.

P. W. Anderson [1]
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1 Introduction

1.1 BUILDING ATOMS, MOLECULES AND MATTER

All matter, whether on Earth, in a different galaxy, or anywhere in between, is composed of
atoms. It has always fascinated me how such a vast variety of materials with different appearances,
textures, and functions can exist. The reason I chose to study chemistry was because I wanted to
understand why rubber is an insulator, why iron may rust over time, and why water can exist as
aliquid, a snowflake, a block of ice, or become invisible in the air. The answer to these questions
must surely lie within the basic building block of molecules and matter: the atom, right?

An atom consists of a nucleus - positively charged protons and neutral neutrons — surrounded
by a cloud of negatively charged electrons. By increasing the number of protons in the nucleus,
we create different types of atoms, i.e., the chemical elements. There are 118 different chemical
elements listed in the periodic table, which orders them according to their number of protons in
the nucleus (see Fig. 1.1a).

The electrons of the atom are located in so-called orbitals, which are regions around the atom
where electrons are most likely to be found. They have distinct shapes and allow the atom to
form chemical bonds with other atoms (see Fig. 1.1b) [3]. These bonds are formed when two
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Figure 1.1: (a) Periodic table of elements. All matter is composed of atoms that is one of these 118 chemical
elements of which only 92 exists naturally. [2] (b) The electrons of the atoms are located in so-called
orbitals, i.e. regions is space the electron is likely to be in. Here schematically illustrated: the spherical
s-orbital, and the p-orbital with its three orthogonal directions. The nucleus is located at the intersection
of the x, y, z-axes.
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1.1 Building atoms, molecules and matter

nm pm mm m km
1079 1076 1073 1 10°
-_—
a‘t-(:ms W h‘u?n’an
+—>
mplecules ba(tt»eria o top of Mount Everest

<> <>
proteins human hair

<&
<

con%ocal microscope

LT o

paracetamol N-Phenylglycine

eyes

Figure 1.2 : (top) Typical length scales of atoms, molecules, proteins, bacteria, colloidal particles, a human,
and the top of Mount Everest on a logarithmic scale. The orange arrows indicate the scope of sight
of a confocal microscope and the human eyes. (bottom) Chemical drawings of paracetamol and N-
Phenylglycine, and an ant and human [7, 8]

atoms overlap their orbitals and share two electrons. A structure of two or more atoms connected
by such chemical, i.e., covalent, bonds is called a molecule.

Molecules with different chemical properties are created by covalently binding a number
of atoms in a specific sequence. Synthetic chemists have mastered the manipulation of atomic
reactivity to synthesize molecules with the same atoms but in different arrangements, giving them
distinct functions. For instance, the molecules paracetamol and N-Phenylglycine both consist
of the same atoms with the chemical formula CsHgNO4, yet they have different structures (see
Fig. 1.2). The former is a well-known painkiller, while the latter is industrially used as a precursor
for blue paint pigments.

Using the framework of quantum mechanics, we can numerically calculate the energies associ-
ated with the chemical bonds between atoms, providing insight into the properties of molecules
[4]. However, calculations based on quantum mechanical theory require approximations and
simplifications for the electrons, e.g., using the Slater [5] or Gaussian basis-set, and the nucleus,
e.g., approximating the nucleus as a point charge (known as the Born-Oppenheimer approxima-
tion [6]). Moreover, these calculations become exponentially computationally intensive as the
number of electrons increases, making these simulations best suited for modeling e.g. individual
molecules .

Because molecules and atoms are incredibly small (see Fig. 1.2), we need many of them together
to observe them with our eyes or even refer to them as a material. Little did I know when I began
studying chemistry that the answers to understanding the chemical and physical properties of
materials do not just lie entirely within the molecule itself. Understanding its basic building
block, the atom, is entirely one piece of the puzzle.

13



1 Introduction
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Figure 1.3 : Molecular self-assembly at many length scales. (a) supramolecular cages connected by hydrogen
bonds (A- nm-range), (b) a virus capsid (nm-range)[13], (c) frozen water molecules form a snowflake
(mm-range), (d) gel-like cubes in a petri dish need a shaking motion to collide (cm-range), (e) computer
and STM image of a two dimensional quasicrystal composed of ferrocenecarboxylic acid (nm-range).
With Refs [13-17] from a-e, respectively.

1.2 (MOLECULAR) SELF-ASSEMBLY

Some properties and functions of materials extend beyond the characteristics of their individual
molecules and emerge from the collective arrangement of many molecules or atoms together.
For instance, entangled and unentangled polymers exhibit vastly different dynamics, which have
significant implications for properties such as melting temperatures [9]. Likewise, liquid crystals
can adjust their orientation and spatial configuration when an electric field is applied. This
adaptive quality allows them to modulate their transparency, thereby controlling the passage of
light. Such materials have become integral to modern devices, most notably in televisions and
various electronic displays, where they are a key component of liquid crystal displays (LCDs)
[10]. In the realm of advanced materials, the conductivity of graphene sheets is notably sensitive
to minute imperfections, even those as diminutive as a single atom [11]. Therefore, to truly com-
prehend these properties, one must adopt a zoomed-out perspective to examine the structures
that molecules form over length scales much larger than their individual sizes.

Intriguingly, the individual building blocks itself are not aware of any bigger picture; they
simply interact with their immediate neighbors through forces of attraction or repulsion when in
close proximity. Yet, without any external guidance or set of instructions, these building blocks
can spontaneously organize into large-scale structures. This spontaneous organization process is
called self-assembly. [12]

Self-assembling building blocks span a wide range of sizes, from molecules and nanoparticles
to colloidal particles and even macroscopic objects, self-assemble into architectures ranging from
the nm to mm or even macroscopic scale (Fig. 1.3) [18, 19]. What they need is a source of energy
that enables them to move around, meet each other and subsequently interact. For molecules
and colloidal particles, heat serves as the primary driver. Atomic motion is primarily attributed

14



1.3 Colloidal Patchy Particles

to kinetic energy, i.e. temperature; colloidal particles are immersed in a colloidal suspension
experience random, erratic motion as surrounding solvent molecules continually bombard their
surface. However, macroscopic objects, being considerably heavier, are not influenced by such
thermal effects. They typically require alternative energy sources, such as externally-induced
agitation, to initiate movement and assembly [17].

In the molecular context, upon collision of two molecules or two parts of the same molecule,
they can form non-covalent bonds through attractive interactions such as hydrogen bonds or
Van der Waals, Coulomb, and hydrophobic interactions. Compared to the covalent bonds
between atoms, these non-covalent bonds are weak. As a result, they often give rise to a soft and
deformable rather than rigid character to a material. One advantage of these weaker bonds is
their reversibility, characterized by a relatively low activation barrier. This helps the system to
escape kinetic traps and "fix" mistakes in the self-assembly over time [20-22].

As scientists, we aim to understand how or why certain structures form or break, how they can
avoid kinetic traps or repair defects via molecular self-assembly. It would teach us how to make
complex architectures ourselves or smart materials that can self-heal, or respond on demand [23,
24]. In light of the example in Fig. 1.3b, understanding the self-assembly of virus capsids opens
up the opportunity to design new antiviral drugs [25]. Likewise, nanoparticles, e.g. micelles, act
as a vehicle to transport drugs to target areas in the body, e.g. cancer cells, to maximize efficacy
and minimize side effects [26-28].

Computationally it is not feasible to simulate the intricate details of (quantum mechanical)
molecular motion to investigate molecular self-assembly as that would quickly become extremely
expensive. This is because self-assembly not only operates over extended length scales, but also
unfolds over more prolonged time scales. The former implies the need of many or large molecules,
while the latter stems from the fact that typical molecular vibrations, such as the C-H vibration,
are particularly fast compared to the translational or rotational movement of an entire molecule.
Luckily, we do not need a detailed description of covalent bonds.

Removing molecular details (in simulation) is called "coarse graining”. The quantum me-
chanical interactions are replaced by simplistic functionals that often only depend on distances
and angles of particles. There are various degrees of coarse graining. For example, in biomolec-
ular force fields such as AMBER, single atoms are substituted with straightforward pairwise
additive approximations [29]. Meanwhile, the Martini force field represents multiple atoms and
their associated chemical attributes as a single bead [30]. Naturally, an inherent drawback of
coarse graining is the loss of detailed chemical information making the method not suitable for
exploring chemical reactions.

Yet, the advantages of coarse graining are notable. Simulations become more computationally
efficient, allowing for the observation of extended trajectories and the system’s long-time dynam-
ics. Moreover, removing chemical details provides a general picture, offering insights not tethered
to a specific molecular framework. It can reveal a set of minimal requirements of chemical or
physical properties in forming a target structure, or assist in tasks like the initial screening of
prospective drug compounds. [31-33]

15



1 Introduction

1.3 CovrroipAaL PaATcHY PARTICLES

In this thesis, in order to explore and understand the structural behavior and responses of atoms,
molecules, and living matter, we use patchy colloidal particles as a model, or, in other words,
coarse-grained system. These micron-sized — not necessarily spherical— particles not only exist in
theory and simulation[39-46], but also in experiment [34-38, 47-49]. Their surface is decorated
with attractive patches that leads to self-assembly via different driving forces such as: electrostat-
ics[50], DNA coated surfaces([s1, 52], critical Casimir forces[53-60], or depletion interactions[61]
(Fig. 1.4).

There are four aspects that make patchy particles a suitable model system: their structure, simi-
lar statistics as atoms and molecules, their controllable interactions, and their direct observability.
Each aspect is discussed next.

1.3.1 STRUCTURE

In his Lectures on Gas Theory', Ludwig Boltzmann already thought of the idea that one could
simplify the physical picture of two atoms, such as iodine I, dissociating their bond, and imagine
the separation of two particles connected through localized attractions (Fig. 1.5a). The attractive
space is small compared to the size of the atom and rigidly connected to the external surface of
the atom and two atoms only are considered bound if their attractive regions fully or partially
overlap [62].

Boltzmann’s simplistic idea of an atom resembles the structure of the colloidal patchy particles
that now can be experimentally made which are used by my experimental collaborators (Fig.
1.5b) [56, 60]. The bulk (core, non-patch) of the colloidal particle is made of polystyrene (PS), and
the patches of 3-(trimethoxysilyl)propyl methacrylate (TPM) and synthesized with a technique
called colloidal fusion [63]. Due to the hydrophilic and hydrophobic affinity of the core and the
patches (Fig. 1.5¢) respectively, specific and directed, i.e. one bond per patch, bonding is made
possible via [s6].

The placement of the patches are in such a way that patchy particles can act as structural
mesoscopic, coarse-grained analogue of carbon atoms. Dipatch, trigonal planar, and tetrapatch
particles with two, three, and four patches can make structurally similar to sp-, sp2—, and sp3—
hybridized carbon atoms (Fig. 1.5d), respectively.

"Thanks to Prof. Christoph Dellago for sharing this story with me

Figure 1.4 : Scanning electron microscope (SEM) images of patchy colloidal particles. The scale bar has
length 100 nm, 1 f4m, 1 f4m, 2 m, and 500 nm from Refs [34-38] in (a) to (e), respectively.
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1.3 Colloidal Patchy Particles

c d
(© hydrophilic core ( t)etrapatch tripatch dipatch
3 0B £
A ¢ )
Y w 9
3um I
v """)C‘ \T/ — o=
hydrophobic patches sp sp? sp

Figure 1.5 : (a) Boltzmann’s idea of two atoms chemically binding via localized areas on the edge of the
atoms. Particle A is represented by the circle M with an attractive pazch in the shaded volume . A
second atom B, with its center of mass in volume w, (partially) overlaps its sensitive region 3 with . A
chemical bond exists, only if & and 3 overlap. [62] (b) SEM image of experimental tetrapatch particle
(right), and zoomed in at the patch (left). The scalebar is 1 pzm. [63] (c) The bulk and patch materials
have different chemical composition which enables them to make directed bonds. (d) The patches of the
tetra-, tri-, and dipatch particles belong to the Ty, Dap, and Dooy, symmetry group, and are positioned
in a similar fashion as the hybridized sp3, sp2, and sp bonding orbitals of carbon, respectively. These
hybridized bonding orbitals are mixtures of the s- and p-orbitals in Fig. 1.1b. The (grey-colored) bulk of
the particle is made transparent to clearly show the orientation of the patches (in orange).

Note that the trigonal planar particles have not been synthesized using the colloidal fusion
technique, and only exists in my computer simulations. However, in experiment, trigonal planar
bonding is mimicked by a tetrapatch particle with one patch bound to the capillary wall, leaving
three patches available to bind.[58, 59]

1.3.2 STATISTICS SIMILAR TO ATOMS AND MOLECULES

Another feature of the micron-size of colloidal particles is that, due to the impinging solvent
molecules that can be 1 000 to 10 000 times smaller in diameter than the colloidal particles
(Fig. 1.2), they exhibit a random motion. This motion, known as Brownian or thermal motion,
translates and rotates the particle in the solvent and makes the particles to follow Boltzmann
statistics in equilibrium, just like atoms and molecules. Therefore, patchy colloidal particles may
not only have structural similarities with atoms, but also statistically . This means that colloidal
systems show similar phase behavior as molecules, such as formation of crystal, fluid, vapor, gas,
or coexisting phases depending on the interaction potential, density and temperature. [64-66]
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1 Introduction
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Figure 1.6 : Tunable, reversible and specific critical Casimir interactions. (a) A schematic illustration of
the phase diagram of the water-lutidine binary mixture as function of temperature and composition.
Above the phase separation, or coexistence, temperature Ty (dark blue line), when T>Tc, the system
is demixed into two phases. In this region (grey region at number 4), the two phases are visible in the
capillary (bottom left illustration in (a)) and the particles may aggregate at the water-lutidine interface.
Below T<Tey, the system is mixed into one phase (bottom right illustration in (a)) and the patchy
particles either attract at the patches, at the bulk, or do not interact in the orange, green and white
regions, respectively. (b) Depending on how far you are from the critical point (dark blue dot at (¢, T¢)),
the critical Casimir attraction can be turned on or off in the total potential Viqt. . Illustrations in (b)
and (c) depict patchy particles’ behavior at points 1 to 4 in the phase diagram in (a).

However, note that a single dynamical trajectory of colloidal particles is not directly compa-
rable to a single trajectory of molecules. Atoms and molecules have inertia and deterministic
motion, whereas colloids are overdamped, show stochastic motion , and their translational
and rotational motion are defined by their respective diffusion constants. Specifically, at short
timescales, the motion of molecule is ballistic. After many collisions, the motion of molecules
becomes indeed decorrelated and effectively diffusive. So, under the assumption that the dif-
fusion constants are in the correct regime, mimicking the diffusive motion of the molecules
the dynamical behavior of colloidal particles averaged over a whole collection of trajectories is
comparable to the dynamical behavior of atoms and molecules.

1.3.3 DirRect CONTROL

The attraction between patchy particles of this thesis results from critical Casimir interactions
[67]. Critical behavior is characterized by (universal) scaling relations that manifest in various
natural phenomena such as connected networks in the brain [68], prices on the stock-market [69],
and molecular phase transitions. A favorite critical system among physicists is the Ising model
that consists of interacting spin particles on a lattice oriented up (+1) or down (-1) [70]. The spin
particles interact only with their direct neighbors and attract when aligned and repel otherwise,
such as in the case of +1 and -1 spins. Below a specific temperature, the critical temperature T,
the spins like to lower their energy by aligning either upward or downward, yielding an average
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1.3 Colloidal Patchy Particles

spin >0. Above T¢, the system contains enough kinetic energy to disorder the spins yielding the
average spin equal to 0. Around the critical point, the correlation length £ diverges, which in
practice means if a spin flips it affects the spin orientation of a particle at distance £. With the
help of the mathematical description of the Ising model, the behavior, such as its fluctuations
and diverging correlation lengths, of the spins around the critical point were able to be described
by (universal) critical scaling relations. [71]

The critical Casimir interactions arise from the diverging bulk correlation length & of the
concentration fluctuations when approaching the critical point of e.g. a binary solvent mixture.
The fluctuations of the solvent molecules become correlated over large distances and need space
to exist.” The surfaces of two objects, e.g. spherical particles [72], (chemically treated) walls [73,
74], patchy particles [53, 55, 75], quantum dots or other nanoparticles [76-78], or colloidal cubes
[79], act as boundary conditions confining fluctuations between. If their surface-surface distance
becomes smaller &, they spatially restrict the (critical) fluctuations and gives rise to an effective
force called critical Casimir force which was first introduced by Fisher and de Gennes in 1978
[80].

Figure 1.6a shows a schematic phase diagram of the water-lutidine mixture that is used in
experiment which has a lower critical point at ¢,=0.287 mass fraction lutidine in water and
T.=33.68°C [81]. Its critical behavior at convenient experimental conditions, i.e. atmospheric
pressure, and T close to and a little above room temperature, makes it a suitable candidate for
employing critical Casimir interactions.

The strength and sign, i.e. attractive or repulsive interaction, of the critical Casimir force
depends on a few factors. First of all, the dstance from the critical point, in terms of composition
c as well as temperature T, defines the critical scaling behavior and thus the shape and depth of
the critical Casimir interaction. At given composition, the temperature acts a knob to tune the
interaction in experiment; the closer you are to T¢, indicated by the five colored dots in Fig. 1.6a,
the stronger the attraction between the particles (Fig. 1.6b).

Second, at off-critical composition, i.e. c7c., a surface adsorption preference can be created
for the boundary conditions. At lutidine concentration c<c., there is an excess of water and
deficiency of lutidine in the solution with respect to critical composition. In this case, lutidine
rich density fluctuation are confined between the particles. Lutidine prefers interaction with
the hydrophobic patches enabling specific patch-patch binding in the orange region of Fig. 1.6a.
Conversely, at lutidine concentration c>c., water rich density fluctuations will be confined that
prefer binding to the bulk material of the particles enabling bulk-bulk binding in the green region
of Fig. 1.6a. The wettability of the solvent molecules on the surface of the particle is captured by
a wetting factor w and tunes the critical Casimir strength. [82, 83]

Lastly, the geometrical shape of the boundary conditions is important . A flat surface will cause
stronger forces compared to curved ones. Consequently, for spherical particles, the interaction is
directly proportional to its radius particles, calculated within the Derjaguin approximation [84],
such that particles with large radii interact stronger than those with small radii.

The critical Casimir interaction is reversible, tunable, and —under the right solvent conditions—
specific and gives us direct control of the self-assembly into molecular, supramolecular and bio-

“You can even see the critical highly correlated density fluctuation with your eyes as swirling clouds in CO2 in
this video: https://www.youtube.com/watch?v=-gCTKteN5Y4
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Figure 1.7 : Three snapshots of the video of Simon Stuij of dipatch particles assembling into colloidal
chains adapted from Ref. [56]. (a) Only monomers at ¢ =0h, (b) growing dipatch particle chains at
t =2h, and (c) fully assembled chains at ¢ =18h. Distinct chains are indicated by the colors. The scale
bar is approximately 25 pim.

inspired architectures. More on self-assembled architectures in Sec. 1.4. For a more in-depth
theoretical description of the critical Casimir potential, see Sec. 3.6.1.

1.3.4 DIRECT OBSERVATION

An feature of micron-size of patchy particles is their visibility under e.g. a brightfield or confocal
microscope. It enables direct tracking of the movement of patchy particles as seen in this” video
made by Simon Stuij (see Fig. 1.7 for snapshots). The video start with monomeric dipatch
particles; far from T.. Then, the temperature is quenched close to T, which turns on the critical
Casimir attraction between the patches of divalent particles. Subsequently, the growth of chains
by the self-assembly of dipatch particles is observed in time.

Direct visualization of the movements of the particles provides insight in the dynamics and
kinetics of phase transitions such as nucleation[85], sublimation [86], and melting [87, 88] of
crystals, the growth of nematic phases [53], and propagation of defects [58, 89, 90]. Following these
processes on the atomic scale is difficult and requires advanced techniques. For example, electron
microscopy such as scanning tunneling microscopy (STM) is able able to directly observe atoms
(see for example this' cool video, and here” for the making of) [91].

1.4 CoLLOIDAL SELF-ASSEMBLY INTO MOLECULAR AND
B1o-INSPIRED ARCHITECTURES

Despite their apparent simplicity, colloidal patchy particles have eftectively served as coarse-
grained representations for a diverse array of structures. As depicted in Fig. 1.5, these particles
can function akin to big atoms, forming colloidal configurations that structurally resemble or-
ganic molecules, such as cyclopentane (see Fig. 1.8a). [57, 92] Notably, even for water—a molecule
fundamental to our existence and characterized by thermodynamic and dynamic anomalies still
not fully grasped—tetrapatch particles have illuminated its intricate phase behavior by drawing
parallels with empty liquids. [93] This notion of "empty liquids", defined as systems exhibiting co-
existent liquid states in low-density regimes, was originally introduced by using thermodynamic
perturbation theory (see Sec. 2.2) and patchy particle simulations in Ref. [94].

Many functions and structures in biological matter, think of the hydrogen bonding network
between DNA basepair nucleotides, the stacked fatty chains and hydrophilic head groups form-

*https:/ /www.youtube.com/watch?v=DmA70xEYrzY
Thttps:/ /www.youtube.com/watch?v=0SCX78-8-q0
*https://www.youtube.com/watch?v=xA4QWwawe WA
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Figure 1.8 : (a) Patchy particles as big atoms [57]. (b) Cage formation with a clathrin patchy particle
model [102]. (c) Patchy particles as a model for antibody aggregation [99]. (d) Biomolecular mimetic
supracolloidal helices [97].
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Figure 1.9 : (a) Patchy colloidal particles self-assembled into colloidal networks. At the top, snapshots of
two simulated networks with d7'=0.12 K at passive (Pe=0), and minor activity (Pe=1) are shown. The
particles are colored according to their cluster size IV, ranging from 1 (dark blue) to >4 (bright pink).
See Chapter 6 for more details. At the bottom, an experimental patchy particle system recorded by Piet
Swinkels. The colloidal network contains linear chains (I), chains with kinks (II) and nodes (III) . From
Ref. [60]. (b) A schematic representation of a cell showcasing different architectures of actin filaments
depending on their structure and location. From Ref. [103].

ing the lipid bilayer of the cell membrane, or ligand-protein interactions, are encoded by their
non-covalent bonds. Therefore, patchy particles has served as a model system for the self-assembly
of bio-inspired architectures such as virus capsids [95], DNA-like helices [96-98], antibodies [99],
and other proteins [42, 100, 101] (see Fig. 1.8b-d).

Active physical gels, a fascinating subset of active matter, find their natural counterparts in
the cytoskeleton of for example muscle and plant cells[104]. These gels stand out due to their vis-
coelastic character combined with continuous injection of energy by molecular motors, leading
to notable non-equilibrium responses [105]. Actin filaments, which constitute the cytoskeleton’s
network, cycles through assembly and disassembly. Based on its position and corresponding func-
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tion within the cell, actin can adopt various configurations, including branched and crosslinked
networks in the cell cortex and lamellipodium, as depicted in Fig. 1.9b [103]. A mesoscopic struc-
tural analogue of the crosslinked or branched actin networks can be self-assembled using patchy
particles interacting with critical Casimir attractions (Fig. 1.9a). When integrated with active
colloidal particles, specifically Janus particles as detailed in Sec. 2.4.1, the passive colloidal gels
can respond to active forces exerted on them leading to, for example, shape changes as depicted
in Fig. 1.9a.

1.5 OUTLINE OF THE THESIS

This thesis aims to shed light on the microscopic structural behaviors of molecular and bio-
inspired materials using patchy colloidal particles through a close collaboration between experi-
ment, theory and numerical simulations. The latter two are the focus of this thesis.

As colloidal patchy particles possess similar statistics as molecules and atoms, the theories from
statistical mechanics and thermodynamics are also applicable to their systems. Chapter 2 will
give an introduction of the theoretical basics, with a focus on the canonical ensemble, describing
phase behavior including phase separation and the Van der Waals equation. When interested in
observables of (patchy particle) systems, one may resort to theory or computer simulations. For
simulating patchy particles two algorithms are used in this thesis: Monte Carlo and Brownian
molecular dynamics. We end with a brief overview of measurement algorithms that are not
discussed in detail in the other chapters.

In Chapter 3, we developed an accurate patchy particle model that interact via the critical
Casimir force in off-critical binary liquids such as water-lutidine mixtures. It is based on theoret-
ical critical Casimir potentials, the geometry of the patchy particle of interest, and benchmarked
onto experimentally measured chain length distributions and bending rigidities of colloidal semi-
flexible polymers composed of divalent patchy particles. Our model enables us to accurately
predict the experimental measurements and give a detailed mechanistic insights.

In Chapter 4, we extend Wertheim’s theoretical framework for associating divalent particles
under extreme confinement. Under the influence of the gravitational field, colloidal particles sed-
iment with sub-diameter gravitational heights to the bottom of the capillary in both simulations
and real-world experiments. This quasi-2D confinement affects chain length distributions of self-
assembling divalent patchy particles showing an abundance of monomers. By factoring in the
effect of confinement into the theory, without any adjustable parameter, the predictions of the
chain length distribution are in excellent agreement with explicit simulations of self-assembling
particles. Given the accuracy of our predictions, we provide insights into the role of confinement
on thermodynamic equilibrium and provide a quantitative explanation for how the persistence
length of semi-flexible chains aftects their reactivity in extreme confinement.

In Chapter 5, we delve into the microscopic mechanisms behind bond breakage within col-
loidal patchy particle architectures, specifically under the influence of activity. We conduct a
numerical investigation by introducing self-propelled colloids modeled as active Brownian parti-
cles into a self-assembling colloidal dispersion of dipatch and tripatch particles that form three
archetypal substructures, namely, dimers, chains, and rings. We find a rich response behavior
to the introduction of self-propelled particles, in which the activity can enhance as well as re-
duce the stability of the architecture, deform the intact structures and alter the mechanisms of
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fragmentation We rationalize these finding in terms of the rate and mechanisms of breakage as
function of the direction and magnitude of the active force by separating the bond breakage
process into two stages: escaping the potential well and separation of the particles.

In Chapter 6, we explore the responses of physical gels under the influence of activity. Active
physical gels are an interesting type of active matter, which are observed in biological systems such
as the cytoskeleton in muscle and plant tissues; these gels are vital for processes such as cell motility
and tissue repair. For this, we use patchy colloidal gels composed of divalent and trigonal planar
patchy particles interacting via the critical Casimir force as a model system. Similar as for the
active colloidal molecules from Chapter 5, we find a rich response behavior when introduction of
self-propelled particles in the colloidal networks leading to growth or fragmentation of clusters.
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THEORY AND COMPUTATIONAL
METHODS

In this chapter we start with introducing statistical mechanics and thermodynamics. Then,
phase behavior and how the Van der Waals equation or Thermodynamic Perturbation
Theory predict it. One may also resort to computer simulation to understand the behavior
and responds of materials. This thesis uses two algorithms to sample states in phase space,
namely Monte Carlo and Brownian Molecular Dynamics which are discussed.
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2 Theory and Computational Methods

THERMODYNAMICS AND STATISTICAL MECHANICS

As scientists, our aim is to understand and predict the properties of materials, allowing us to make
informed design decisions and engineer materials with targeted functionalities [32, 97,106-108].
The knob to tune properties of materials is the interaction potential V', which is an expression of
the microscopic energy and provides a complete description of the system. In our patchy particle
system, the interaction potential depends on the position r and orientation €2 of the IV particles
that are, in short, written as r"V = {ry,...rx}and QY = {Qy,...Qx}

VN, Q) = Bu(r¥, QV) + (e, QV) (2.1)

where Fi is the sum over all pair potential between the particles and describes the particle’s
shape, i.c. repulsion, and directed attraction, and E,,, is the potential energy coming from an
external source such as a wall or gravitational field.

The difference between measuring observables in experiment and in simulation is the mag-
nitude of numbers of atoms that are measured. As there are roughly 10%* water molecules in
a glass of water, a experimental measurement captures an average over many molecules. Such
experimental averages correspond to the thermodynamic limit, where the number of particles
or molecules [N approaches infinity. In simulations, representing such an immense number of
particles is unfeasible, even if a single particle were encapsulated by just one bit. Fortunately,
simulations do not require us to account for this extreme particle count.

Using statistical mechanics and the laws of thermodynamics, we can bridge the gap between
the microscopic behavior of a limited number of particles and their macroscopic quantities
measured in experiments. Central to understanding materials on a macroscopic scale is the free
energy, since all thermodynamic behavior can be derived from it. While the free energy is often
viewed as an abstract concept — it cannot be directly measured — statistical mechanics offers a
framework to relate it to mechanical quantities, such as position and velocities, which can be
measured in simulation. By minimizing the free energy, the system relaxes to a (thermodynamic)
equilibrium. Subsequently, thermodynamics provides us with connections between measurable
quantities, such as pressure I and temperature 7", which are expressed as derivatives of the free
energy, energy, and entropy.

To give the system the freedom to relax to a free energy minimum, one may fix three quantities
in the simulation such as volume V', number of particles IV, and temperature 7" referenced as
the canonical ensemble. There exist alternative ensembles as well, such as the micro canonical,
isobaric, grand canonical ensemble which keep for example the energy I, chemical potential 1 or
pressure P constant instead of IV, V" or T'. Throughout this thesis, the theory and simulations
are performed in the canonical ensemble which means that the free energy is the Helmholtz free

energy F' = U — T'S with U the energy and S’ the entropy.

In general, and thus in all ensembles, an average may be calculated by:
(A) = P(i)A(i) (2.2)

where A is the observable of interest, e.g. pressure, chemical potential, conductivity, bond
length, bending angle, or even prize money in a lottery, and P(%) is the probability of state 4. For
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Figure 2.1 : (a) A schematic phase diagram of an isotropically interacting mono-atomic substance, such
as atomic Argon (Ar). The gas (g), fluid (f), liquid (I) and solid (s) state are indicated by the letters. The
liquid is bound by (pc, T¢) and (p¢, T3). At the bottom, a structural schematic illustration of particles
in the gaseous, liquid and solid phase. (b) A schematic free energy curve for T > T, (yellow line) and
T; < T < T (blueline). The red dots indicate equal pressure, and at V; < V' < V; (red solid line)
the gas and liquid coexists, respectively. Note that the volume range only shows the gaseous and liquid,
and not the solid phase.

microscopic objects, such as atoms, or patchy particles, the probability of state 7 is determined

by its energy F; and its degeneracy €2(4)

Q(FE;) exp(—BE;)
Q
_ Q(E) exp(-fE;)
>, Q(j) exp(—BE;)

where 5 = 1/(kgT) is the inverse temperature, kg is the Boltzmann constant, and T’ the
temparture. The degeneracy 2(4) is the number of states with energy E; and is closely related to
S, and @, the partition function, is equal to » -, () exp(—[BE};) in the canonical ensemble.
Other ensembles have different expressions for (), but Eq. 2.3 still holds.

P(E) =

(2.3)

(2.4)

The partition function () encompasses the full phase space which is often an impossibly
complex and large function if there are many energy states, possibly with unknown degeneracy.
However, () defines the free energy as

F=—kgTlhQ (2.5)

and is therefore important when wanting to understand the system.

In the next sections, we will first discuss a theoretical description of mono-atomic substances.
Using thermodynamic perturbation theory, we can find explicit expressions of the free energy
and equations of state. If the systems are not so simplistic anymore, alternatively, one may resort
to computer simulations. This thesis uses two, namely: Monte Carlo (MC), and Brownian
Molecular Dynamics (BMD).
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Prase BEnavior

The three most simplistic phases of matter are the gaseous, the liquid and the solid state. Although
there are many more phases, lets assume for now, those are the only states that exist. The gas
phase is a low density phase such that particles most of the time are moving in a free path and
rarely collide with each other. Therefore, the gas state shows no structural order. The solid phase
is a high density phase where the particles are close enough to interact at all times leading to
both short and long range order. The liquid state exists somewhere in between those two when
the density is high enough and the temperature is low enough for the particles to attractively
interact a significant amount of time, leading to short ranged order, but the density is too low to
enforce long ranged order as solids show. Depending on the state variables density p = N/V
and temperature 7', the system transitions through these (coexisting) phases (see Fig. 2.1a).

Why is a particular phase or coexistence favored under varying conditions? The answer lies in
the system ’s inclination to minimize its free energy, thereby seeking its most stable state.

When the temperature is high, specifically 7' > T, (as illustrated by the yellow line in Fig. 2.1b)
where T, is the critical temperature, only one phase is stable: the fluid phase. The solid state can
be reached in a continuous fashion, upon increasing the density, i.e. compression.

In the temperature range T; < T' < T, (depicted by the blue line in Fig. 2.1b) where T is
the triple-point temperature, the free energy curve manifests inflection points. Then, multiple
points on the free energy curve can share the same tangent, as indicated by the red dots. Between
the red dots at the volume of the gas V, and liquid V/, a (linear) combination of a gas and liquid
phase (red solid line) yields a lower free energy than tracing the blue curve of /. Notably, the
third red dot, situated between V; and V;, remains inaccessible. It resides within the unstable
region of the phase diagram where F’ adopts a concave shape. The critical 7. and triple-point 7}
temperature act as an upper and lower bound for the liquid, respectively. Between 1, and T3,
through a first-order phase transition, a dilute fluid (gas) and dense fluid (liquid) coexist. Below
T3, the gas and solid phase coexist (Fig. 2.1a).

From the common tangent construction shown in Fig. 2.1b, we learn that at coexistence, the
pressure P, thatis — gTI;, T and p1 are equal in both phases (Eq. 2.6).

T, =Ty, P =Py, 1 = [ha. (2.6)

with T', P and p defined as (Eq. 2.7):

(7 r=-(v) ~(ow),, ©
“\av ),y v ) h=\an ), #7

The phase behavior of simple fluids, such as the existence of the liquid phase and the break-
down of Boyle’s law , had been for a long time not understood. In Van der Waals’ thesis in 1873,
he described molecules as elastic spheres with short range repulsion and long range attraction.
He stated that the attractive intermolecular forces can lower the pressure, and that molecules,
in contrast to what the ideal gas law assumes, occupy a region in space and effectively reduce

’Boyle’s law states that the pressure and the volume are inversely related to each other which is a good approxi-
mation for dilute systems
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Figure 2.2 : (a) The famous Lennard-Jones potential (solid line) that is able to mimic the phase behavior
of argon (Ar) with €/kp = 120 K, and 0=3.4 A. The dotted line is a pseudo potential based on gas
phase measurements. From Ref. [111]. (b) The optimized pair potential for dipatch particles interacting
via critical Casimir interactions from Chapter 3.

the volume V' [109]. In 1880, Van der Waals wrote in his Theorem of Corresponding States, the
following equation of state, i.c. an equation that describes the phase behavior of a system:

_ NkgT @

P _ =
V—-b V¥

(2.8)

where a and b are material/potential dependent parameters: a is related to the effect of the
attractive intermolecular forces, and b on the excluded volume of the particle. In 1910, he received
the Nobelprize in physics for his work on the gas-liquid theory including his equation of state,
as his elegant formula works for large range of real molecules capturing complex phase behavior
such as the gas-liquid phase transition. [110]

These attractive intermolecular forces — called the Van der Waals force— originate from perma-
nent or induced dipole-dipole interactions and density fluctuation of the electrons (dispersion
forces). A simplistic potential that mimics this attraction, and became famous for reproducing
the Van der Waals equation of state, is the Lennard-Jones (LJ) potential:

Vi = 4el(o/r)? = (o/r)°], (2.9)

where o is the particle diameter and € is the minimum of the potential (see Fig. 2.2a). L] mim-
ics the long range dipole-dipole attraction (< 7~®) and writes the short-range repulsion in a
convenient similar form as the attraction (o< 7~12) .

2.2 THERMODYNAMIC PERTURBATION THEORY

What the Van der Waals equation already suggests by its form, the properties of liquids can be
deduced as a perturbation on the ideal gas; there is a correction term to the volume and pressure
due to repulsion and attraction, respectively. Actually, particles that solely repel each other,
also show a solid phase like depicted at Fig. 2.1a at high density. Thus, a significant part of the
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structure, e.g. its radial correlation or structure factor, of interacting particles is determined by
their repulsion which forms a basis for Thermodynamic Perturbation Theory. [111]

Thermodynamic perturbation theory (TPT), describes the free energy of system 1 as a pertur-
bation on system 0 using a coupling parameter A,

Fy = Fy + A\ — Fy), (2.10)

which couples the two systems with corresponding free energies Fy (A = 0) and F; (A = 1). Via
a thermodynamic integration over A in a simulation, one may calculate the free energy difference,
Fy — F}, and deduce thermodynamic properties.

Alternatively, one may use a known free energy expression as the reference system. The simplest
repulsive potential is the hard sphere (HS) potential that has an infinite repulsion at contact, i.e.
r < o and zero interaction elsewhere (Eq. ). With this type of interaction only excluded
volume effects define phase behavior. Nonetheless, this highly simplified particle type already
contains a lot of interesting physics and is the prime example of the importance of entropy. Hard
spheres have therefore been (and still are) extensively studied to arrive at analytical expressions
of its radial distribution function and free energy at various densities. Then, the perturbation
(Fy — Fp) itself can be approximated through a Taylor expansion if the perturbation is weak
and smooth, i.e., it does not show strong variations over A, such as the L] potential (Fig. 2.2a).

WERTHEIM THEORY

Wertheim TPT enables one to predict thermodynamic properties of associating fluids through di-
rected bonds bases on the interaction potential and density only. [112-115] Essential to Wertheim’s
theory, and the Statistical Associating Fluid Theory which is a reformulation of Wertheim’s the-
ory [116], is that the attractions are short ranged, unlike the L] potential that has an attractive
range of & 2.50, and there can only form one bond per bonding site. For the setup of the
patchy particles interacting through critical Casimir interactions and Yukawa repulsion, that
have directional and deep attractive potentials, these assumptions hold (Fig. 2.2b).

As the attraction is sharp and short ranged, the perturbation cannot be performed directly
through A. Alternatively, Wertheim Theory uses the Mayer f-function:

f=exp(—pU) —1 (2.11)

where U is the energy of the interacting system. Additionally, it uses the HS system as its reference
(F), and the attractive part of the potential is the perturbation (F; — Fj).

Note that when using soft repulsive potentials in combination with perturbation theories
that use the HS as a reference, a mapping onto the HS system is required. See Sec. for this
mapping of the Yukawa repulsion of the colloidal particles.

In Chapter 4, we extended the Wertheim Theory to inhomogeneous extremely confined
systems and it gives a introduction to Wertheim Theory. As Wertheim’s original papers are quite
difficult to read, I suggest Ref. [117] as it explains the theory starting from statistical mechanics

and graph theory.
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2.3 Monte Carlo

MOLECULAR SIMULATION ALGORITHMS

In molecular simulations, particles are moved around to sample phase space to directly measure
ensemble averages (Eq. 2.2), or sample the Helmholtz free energy (Eq. 2.5) as

F(q) = —kgTInP(q) +C (2.12)

where P(q) is the probability distribution as function of some reaction coordinate q of interest,
and C'is an arbitrary constant.

In the coming sections, we will discuss Monte Carlo (MC), and Brownian Molecular Dynam-
ics (BMD) that are algorithms to move the particles around in the simulation box. Depending
on the research question, available resources and codes, one picks the algorithm that suits best.
Each algorithm has its advantages and disadvantages that are explained next.

MoNTE CARLO

The name Monte Carlo originates from the equally named gambling city of the rich in Monaco.
By gambling your way through new configurations of the system, you may lose or win some
(energy). In contrast to what the players want that gamble at the casino, losing (energy in MC) is
part of the game and actually part of the gain. MC is not only used in chemical physics, but also
in other fields such as social sciences or finance.

The Monte Carlo algorithm —my personal favorite— is based on energies only (Eq. 2.1). Under
certain circumstances, e.g. when derivatives of the energy, are complicated or unknown, or if
you want to use constraints or restraints, MC can be easier to implement compared to molecular
dynamics. The disadvantage is that MC, in principle, does not represent the dynamics of your
system; it only gives you ensemble averages. However, if specific moves are used designed to
mimic collective or dynamical motion , it could [118,119]. At the same time, this is also the beauty
of Monte Carlo as you are allowed to make nonphysical moves. While this may sound alarming
when trying to simulate physical systems, it is not a problem as MC is an excellent method to
calculate ensemble averages (Eq. 2.3).

The aim of Monte Carlo sampling is to create a collection of snapshots (configurations) that
statistically represents the Boltzmann distribution of a relevant part of phase space. It does so
by proposing trial moves to generate new configurations which are either accepted or rejected
according to set of rules that render the correct distribution.

Systems in thermal equilibrium do not exhibit total net fluxes in state space. This means that
the probability to transition from an old (o) configuration to a new (1) one, 0 — 1, is equal to
its reverse, . — 0. This property is known as detailed balance:

PSwW,,, = PAAW,, (2.13)
P Pn(0 = n)Pi(0 = n) = PPy, (n — 0)Pec(n — 0) (2.14)

where P/ = exp(—SE;)/Q with i=n or 0 is equilibrium probability of configuration with
corresponding the energy F;of the new and old configuration, respectively. The W is the transi-
tion matrix in a Markov chain, meaning that it only depends on the current configuration. Then
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s0, the transition matrix W is defined by the probability of generating the other configuration

Pien times the acceptance probability P..

In principle, only the ratio of the acceptance probabilities is important:

P.(o—mn) Pa Py (n — 0)
Pe(n—0) PSP (0— n)

= exp[—f(Ex — Eo)]

(2.15)

Pyen(n — 0)

Polo o) (2.16)

which conveniently cancels the partition function () in P leaving only the energy difference
between the two configurations.

In the original scheme proposed by Metropolis, Pgen is symmetric, i.e. their ratio in Eq. is
one. Then, given an old X,, and a new X,, configuration with corresponding energies £, and E,,,
respectively, the probability of accepting the new configuration to the collection of snapshots is:

exp(—BAE) ifAE >0

2.17
1 ifAE <0 @17)

P.(o—n)= {

where AE = E, — E,. If the move leads to lowering the energy, i.e. AE < 0, the new config-
uration is accepted. If the energy is increased, i.e. AE > 0, the new configuration is accepted
with probability exp(—SAE). In practice, if random number R < exp(—SAE), the new
configuration is accepted. Then so, the new configuration is rejected R > exp(—FAFE). Mind
that a rejection of X, means one should recount X4 in the collection of snapshots.

So with MC sampling, the observable A is measured as:

(A) = ! > A4 (2.18)

|

where L is the number of the Markov chain generated configurations according to the Boltzmann
distribution. To calculate correct averages and standard deviations, it does not matter how or
in which order the new configurations are made as the acceptance is only dependent on X;, not
Xi—1.

Now you might wonder, how the contribution of the entropy to the free energy is accounted
for, if the acceptance rule is only energy based. But it is hidden in creating new configurations
in Pye,. States with (twice) more entropy, will be generated (twice) more often and thus will
entropically contribute (twice) to the free energy.

Albeit MC’s flexibility, versatility and broad range of application, there are a few essential
ingredients when using it. First, detailed balance should hold. Second, your MC moves should
allow you to be able to explore full phase space. Third, you sample phase space sufficiently. If
these criteria are not met, you will not sample from the correct underlying distribution and your
statistics will be wrong.
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2.3 Monte Carlo

MC MOVES

There are no limitations on how to generate new configurations and the aim is to sample phase
space fast. There is a sweet balance between generating configurations that lie far apart in phase
space, but also accepting the new configurations sufficiently. Examples of moves used in this
thesis are: single particle moves, cluster moves, and tail-flip moves.

SINGLE PARTICLE MOVES.

In single particles moves, you select a random particle and choose either translation or rotation
(50/50%). For translations, the particle is translated along a random vector with a length €
(0, 7' max]- In the systems with a confining gravitational field along the z-axis, the z-value of the
random vector is reduced by a factor of 10. This is to prevent that £, becomes high by placing
the particles inside the wall or against the gravitational field.

For rotations, the particle is rotated around its center of mass with an angle ¢ € (0, P max] in

a random direction. Sec. will explain how rotations on rigid bodies are performed. As the
number of particles is constant, it follows the Metropolis acceptance rule (Eq. 2.17).
CLUSTER MOVES.

Cluster moves are performed in a similar fashion where both cluster rotations and translations
are performed. A cluster is defined as group of particles connected via bonds. A bond is defined
when two particles are attractively interacting though their patches, meaning that the attractive
part of the pair potential (Eq. 3.6) is negative. The translation or rotation of clusters larger than a
single particle have a much higher chance of creating new configurations that overlap with other
particles in the system compared to a single particle. Hence, moves involving monomers, i.e.
single particles, have significantly different acceptance probabilities that clusters larger than one.
To improve the sampling with cluster moves, the maximal rotation and translation of monomers
and larger clusters are set in different variables.

Translations are performed along a random vector of length € (0, 7", may] for the monomers,
or € (0, 7, may) for any cluster of size larger than one. Random rotations are performed around
the center of mass of a randomly selected particle with angle ¢,,, € (0, 180°] for the monomers,
and ¢ € (0, Pcmax] for any cluster of size larger than one.

In systems with gravity, the translation and rotation are not completely random as they would
lead to configurations at which the particles are placed inside the wall or against the gravitational
field. In these systems, the translation is restricted to the x,y-plane, by making a random vector
with coordinates 7" = (, y, 0). The rotation is performed around é = (0, 0, 1), i.e. a rotation
vector in the direction of the z-axis (see Sec. for detailed description of performing rota-
tions). From the quaternion, a rotation matrix is constructed that is able to perform the cluster
rotation.

When performing cluster moves, an additional rejection criterion is defined. If a cluster move
leads to the formation of a new bond, the configuration is rejected. This prevents the number
of clusters to change during a cluster move, which is an easy way to keep Pyen = 1/Neusters
constant. This additional rejection criterion makes this scheme obey detailed balance and follow
the Metropolis acceptance rule (Eq. )-
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2 Theory and Computational Methods

Note that breakage of bonds is not possible when performing correct rotations and trans-
lations. However, if bonds do break during cluster moves, it is a sign that either the rotation
of translation was not performed correctly. Specifically, one should be careful upon rotating a
(large) cluster close to the periodic boundaries. See Sec. for details.

TAIL-FLIP MOVES.

In Chapter 3, we measure bending rigidities of chains by combining single particle moves and
tail-flip moves. The tail-flip moves are introduced to decorrelate the configurations of the semi-
flexible chain faster. In this move, an interparticle bond vector 7ng of the chain is randomly
selected. Then, all particles starting from 7,onq to the tail, i.e. end of the chain, are rotated by
180° around this vector.

During these bending rigidity measurements, it was not desired that the chain would break.
Therefore, an additional acceptance/rejection criterium was added to the single particle moves:
if a bond breaks, the new configuration is rejected.

These few examples of MC moves, and additional rejection criteria, illustrate the freedom one
has in creating or rejecting configurations which makes MC versatile.

BrRoOwWNIAN MOLECULAR DYNAMICS

The solvent molecules in a colloidal suspension are typically 3-4 order of magnitude smaller in
radius than the colloidal particles. They collide with the surface of colloidal particles that leads
to stochastic rotation and translation and viscous friction acting on the colloidal particles. When
interested in collective and dynamical properties of colloidal particles, overdamped Langevin Dy-
namics, i.e. Brownian Molecular Dynamics (BMD) is the algorithm of choice. Unlike "regular”
molecular dynamics that uses e.g. Velocity Verlet, the equation of motion of Brownian particles
contains no inertial effects and mimic the stochastic thermal motion of the colloidal particles
caused by the solvent molecules. [120]

The translational equation of motion of an (active) Brownian particle is

7t + At) — 7(t) = pr(Fa + F)At + /2kgTur At€ (2.19)
where 7 is the positional vector of the particle, and ¢ the time. The F = —dV/drF is the

force acting on the particle comes from the potential V', and the active force F5 are only non-

zero for the active particles. See Ref. [121] how to construct F' for anisotropic particles. The
translational mobility tensor ir = [SD11 with Dy translational diffusion, 1 the identity
matrix, 5 = 1/kgT = 1 the inverse temperature with the Boltzmann constant kg, and the

,
temperature 1". The stochastic noise & is a vector where each element is i.i.d., with a zero mean
and unit variance over time.

The rotational equation of motion is given by

Ot + At) — Q(t) = prTAL + 2k TALE (2.20)
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Figure 2.3 : (a) In experiment, a Janus particle, that is composed of a hemisphere of metal and a hemisphere
of dielectric material, will show an active propulsion if fueled by e.g. an AC field. Adapted from Ref.
[122]. (b) A schematic illustration of an ABP with active propulsion vector F?A = F'a€4 that makes
an angle with respect to the wall (in the x, y-plane) indicated in orange. Two example trajectories of an
active (ABP, Fiy = 50kpT/0) in blue and passive Brownian particles (PBP) in black are shown.

where 7 is the torque acting on the particle coming from V', and g = BDRg1 is the rotational
mobility tensor with Dy rotational diffusion.

2.4.1 ACTIVE SYSTEMS

A widely used model to simulate self-propelling colloidal particles is the active Brownian particle
(ABP). It consists of a self-propulsion force acting on the center of mass of the colloidal particle

Fy = Faéy (2.21)

where I is the magnitude of the active force, and € is a particle fixed unit vector that expresses
the direction of the force as illustrated in Fig. 2.3b.

In an experimental setup, the Janus particle aligns its motion parallel to the wall, due to the
applied AC field as illustrated in Fig. 2.3a [122]. Furthermore, the continuous presence of gravity
prevents the active particles to self-propel against the gravitational field away from the wall [123].
As the exact response of the Janus particles to the AC field is quite complex [124], we mimic this
behavior by including an effective alignment potential with magnitude[125-127]

0 ABP without it
‘/align(éA,z) - 1 . 2,4 Wl ot g.raVI Y (222)
3€align Arcsin”(é,.)  ABP with gravity.

where €, . denotes the z-component of the active force direction as defined in Fig. 2.3b. Note
that this alignment acts as a restoring force that tries to minimize €, .. The prefactor €,1ign =
500 kgT'was chosen such that a lift-off of the particle against gravity did not occur.

Particles that contain a self-propulsion force F's show an enhanced diffusion compared to their
passive counterparts. Two example trajectories with the same time duration of single particles
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Figure 2.4 : (a) The average lifetime of a dimer measured in 5000 breakage events shown with a 95%

CI of the error of the mean. The blue horizontal bar is a guide to the eye to follow the 95% CI at
At = 2pus. (b) The chain length distribution of dipatch particles in a box with N =20 particles and
density p = 0.253N/0? ina system with gravity. Both tests are performed with the optimized potential
atd1'=0.16 K from Chapter 3.

with D1=0.0035 0 /s and Dg=0.05 rad? /s of a passive and an active Brownian particle with
Fx =50 kgT /o are shown in Fig. 2.3b. These trajectories clearly show the enhanced diffusive
behavior of active particles.

In active matter, the (dimensionless) Péclet number Pe expresses the relative importance of
the propulsion speed from the active force compared to the diffusive Brownian motion. At
low Pe, diffusive motion dominates, while at high Pe, active directed motion prevails. In the
literature, multiple definitions of Pe are used, depending on e.g. the heterogeneity of the system,
particle shape or anisotropy, or the range of the soft repulsion of the particle [128-132].

Here, we use the following definition:

_ Vo _ BE /Dy
v Dt Dgr v Dr

with vg = BFa Dr the self-propulsion velocity, D the translational diffusion coefficient and
Dy, the rotational diffusion coefficient. [133, 134] The active force magnitudes of F, = 0, 10,
50, and 100 kgT'/o correspond to Pe=0, 2.6, 13.1, and 26.1 and are achievable in a typical
experimental system.

Pe (2.23)

2.4.2 TIMESTEP At

All brute force BMD simulations are performed with a translational and rotational diffusion
constant as measured in experiment of dipatch particles with diameter 0 = 3.2um and equal
D1=0.0035 0 /sand Dg=0.05 rad? /s, respectively [5¢]. The timestep was tested in two system
using the optimized potential at d7'=0.16 K from Chapter 3.

In the first system, the lifetime of a patchy particle dimer consisting of two particles in a system
without gravity is measured. Starting from the bound state, S000 brute force BMD simulations
are performed until the particles separate 1 /20 and the bond was defined as broken. The average
lifetime of the bond is measured and is shown with a 95% confidence interval (CI) of the error
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Figure 2.5 : The object on the left, is rotated around é with angle 8 by the quaternion q =
(cosm/4,0,sin7/4,0) (Eq. 2.27) to yield to object on the right.

of the mean in Fig. 2.4a. A timestep upto At=6 s falls well into the 95% CI of the smallest
timestep.

The second system consists of N =20 dipatch particles interacting in a gravitational field. The
chain length distribution is shown at multiple values of At in Fig. 2.4b. The largest tested
timestep of At=7 pis shows excellent agreement with the MC simulations.

To be on the save side, a timestep of At= 5.0 y1s was chosen to perform all BMD simulations
with at all interaction strengths defined by d7".

2.4.3 RiGID BoDY ROTATIONS & QUATERNIONS

Numerically performing subsequent rotations of rigid bodies may lead to spurious behavior
such as Gimble lock or drifting rotational dynamics [120]. Therefore, rotations of rigid bodies are
performed using quaternions that are a four dimensional representation of 3D rotations. [135]

Similar to the rotation of a two dimensional vector that can conveniently be expressed using
imaginary numbers, rotations of three dimensional vectors can also be expressed using imaginary
numbers. For this, a quaternion the following form:

a=a+bi+cj+dk (2.24)

where a, b, ¢, and d are real numbers, and 4, j, and k are its basis vectors in the imaginary
dimension such that:

PP ==k =ijk=—1 (2.25)
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A rigid body rotation, as schematically illustrated in Fig. 2.5, can be expressed as a rotation

of angle 6 around a vector € that is defined on the quaternion’s basis vectors ¢, j, and k. The
resulting unit quaternion is:

q= exp(i(em% + ey} + ezl%)> (2.26)
cos(6/2)
| é.sin(6/2)
= | ¢, sin(6/2) (2.27)
é.sin(0/2)

which is thus easily constructed by 6 and é.

Subsequent rotations g and qy are performed as a vector product q = gy - qz resulting:

a1y — b1b2 — C1Cy — d1d2
albg + b1a2 + Cld2 - d162

1= aycy — bids + cras + dibs (2:28)
a1d2 + blcg — Clbg + d1a2
where q; = (a;, b;, ¢;, d).
The 3D rotation matrix R(q) is calculated via:
a?+ b —c—d? 2(be — ad) 2(bd + ac)
R(q) = 2(bc + ad) a? —b* + c* — d? 2(cd — ab) (2.29)
2(bd — ac) 2(cd + ab) a?— b -+ d?

where a, b, ¢, and d are as defined in Eq.

Then, in the simulation, the direction of a patch on a patchy particle can be described using
a basis patch vector and a quaternion that you define in the input files given to the code. This
basis description of the patchy particle, the location of the patch, is described with a patch vector
p,eg P = (1,0,0). Then if in a configuration the patch is for example oriented on the 2-
axis, the particle’s quaternion is q = (cos /4,0, —sin7/4,0), i.e. 2 #=90° rotation around
é=(0,—1,0) of p = (1,0,0). In practice, each particle has its own current quaternion that
allows you to calculate the current orientation of each patch via the rotation matrix in Eq.
By simply multiplying the quaternion of the particle with a new quaternion (Eq. ), the
particle’s orientation is adjusted.

MEASURING

Most measured observables are detailed in the method sections of each chapter. However, here
is a deeper explanation of determining rate constants for rare events from simulations, MC
integration, and depth-first search .
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Figure 2.6 : (a) A schematic illustration of two monovalent patches reacting into a dimer along a reaction
coordinate q. The two states at a local free energy minimum are separated by a free energy barrier. (b)
The height of the barrier determines the rate at which the systems transitions between the states. In
a time series, one may observe the times at which the system resides in A or B. (c) In TIS, the rate is
calculated using interfaces A (dotted lines) defined between the states A and B.

2.5.1 TRANSITION RATES OF RARE EVENTS

In both chemistry and physics, numerous processes, such as chemical reactions, protein folding,
and self-assembling activities, occur over significantly larger timescales than the system’s smallest
timescales, such as the vibrational timescale of chemical bonds. Additionally, the free energy
barrier of these processes can be so elevated that the system becomes stuck in a local free energy
minimum. As a result, observing these transitions in simulations becomes increasingly rare and
makes observing rare events inherently a stochastic process. [13¢]

Imagine two monovalent patchy particles in a (small) simulation box and phase space is sam-
pled using a molecular dynamics algorithm, e.g. Brownian Dynamics, to recover a free energy
profile (Fig. 2.6a). Over time, the systems transitions between the monomeric state (A), where
the patches are unbound, and the dimer state (B), where the patches are bound, as schemati-
cally illustrated in Fig. 2.6b. The transitions itself between the two states are fast, but the times,
indicated by 74 and 75 between the transitions are relatively long.

There are several ways to determine the rate constant of such a stochastic process:

* using the mean first passage time Typpr,

* using the flux and transition interface sampling (TIS) [137], or

* via the survival probability P,
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MEAN FIRST PASSAGE TIME

Assuming there are many transitions observed between state A and B, and the systems has visited
phase space sufficiently in the simulation, that is in the limit of ¢ — 00, the rate of transitioning
from state A to B converges to:

kap = lim Na_p(t)/ > oA (2.30)

which is N 4_, p is the number of transitions from A to B observed at time ¢ divided by the total
time spent in A equal to >, 7. The inverse of this equation is

kap = lim 7 (t)/Na_p(t) (2.31)
= (m"FT) (2.32)

which yields the mean first passage time <TMF PT>.

This method has been used in Chapter 5 where many brute force simulations are performed,
halted after reaching the broken state, to determine the rate of breakage through the mean first
passage time.

TRANSITION INTERFACE SAMPLING

In transition interface sampling (TIS), the phase space between state A and B is separated by
interfaces A as illustrated in Fig. 2.6¢ [136, 137]. The first interface A; defines the boundary of
state A, and following the interfaces, the system ends up at B that is defined by the last interface

An.

The rate can be calculates as

kap = 10 [[ PNl Xiz1) (233)

=2

where ¢ ¢ is the flux through the first interface, and P(\;|\;_1) is conditional probability of
reaching interface \; given that you came from A;_;. The flux can be calculated as the average
time between positive transition, i.e. from state A to outside state A, though the first interface.
The conditional probabilities can be separately measured in many uncorrelated simulations as
done in TIS, or it is measured in many single brute force simulation runs starting in A and halted
in B as done in Chapter

SURVIVAL PROBABILITY

Lastly, the rate can be calculated through the survival probability. The time distribution of
consecutive events in a Poisson process, governed by a timescale 7 that does not vary significantly
over time, is exponentially distributed.
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An exponential distribution f is defined as:

£(t) = %exp(—t/T) (2.34)

where ¢ is time and 7 = 1/k is the inverse rate.
Then, the survival probability of an exponential distribution is:

Ps(t) =1 — F(t) (2.35)
=1 —/O %exp(—t/T)dt (2.36)
=1—(—exp(=t/7)[5") (2.37)
=1—(1—exp(—t/T)) (2.38)
= exp(—t/T) (2.39)

with I’ the cumulative distribution function, or the cumulative probability of being transitioned
at time ¢. By measuring the survival probability as function of a time interval ¢, the rate k can be
measured by a fit of the exponential decay of Pis.

In Chapter 6, this method is used. In these systems, there might not be many bonds that are
formed or broken in the brute force simulations, making the method of using the mean first pas-
sage time inaccurate as the MFPT method works particularly well if there are many independent
samples of the rare event. Additionally, when fitting 7 via the the survival probability, it is not
necessary that all bonds to be broken at time ¢.

MC INTEGRATION

In chemical and physical systems, Monte Carlo (MC) methods are frequently employed for
sampling equilibrium statistics, as elucidated in 2.3. However, MC methods also serve as a
potent tool for computing complex integrals by computing the average of a function f that may
depend on a high-dimensional space x in volume V. Similar to Equation

_ Jy f(x)dx
Jy dx

where the brackets () indicate the average. Since MC methods allow for easy averaging in volume
V', we obtain:

(v (2.40)

| f0ix = (1), [ i (2.41)
=(f),V (2.42)

Therefore, the complex integral on the left-hand side can be estimated by the product of the
function average in the volume and the volume itself.

In Chapter 4, we combined both MC sampling and MC integration to determine the reaction
constants of self-assembling highly confined dipatch particles.
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Figure 2.7 : Schematic illustration of a colloidal architecture composed of divalent and trivalent particles
with their particle number written in their center. DFS (Listing 2.1) starts at particle number 464
indicated by the orange color. By following the transparent blue arrows shown on top of the colloidal
architecture, DFS walks over the bonds. If particle 2 is reached, DFS escapes its nested loops, by walking
back over the structure to the last visited branch point at particle 42, indicated by the red color. From
there, it continues to particles 492 until the full structure has been visited.

2.5.3 DePTH FIRST SEARCH

The algorithm Depth First Search (DFS) is an algoritm that allows one to follow the connections
of a graph, or bond of a colloidal architecture in this case. In the code, DFS is used, for example,
to count the size distribution of rings in a colloidal network architecture [57-59], or when one
wants to rotate a cluster in rotational MC cluster moves. In the latter, it is important that the
coordinates of the particles do not cross the periodic boundaries, else the cluster will break upon
rotating. DFS will help to create new coordinates of the cluster.

The DFS function shown below in Listing 2.1, makes smart use of a nested loop, by recalling
DFS inside DFS, to walk systematically over the structure. Before the DFS starts, all particle
numbers in the cluster have been identified and saved in a dynamic integer array defined as
IntArray particlesleft_list. Then, DES is called on the particle spart and walks over its bonds. If
the bound particle jpart has not been visited yet, it will continue with DFS on jpart indicated
by the blue transparent arrows in Fig. 2.7. If jpart has been visited already, as tracked by the
dynamic integer array IntArray particlesleft_list, it can continue the loop over the other bonds.
If the end of a chain is reached, e.g. at particle 2, the algorithm escapes the nested loop walking
back over the structure until it arrives at the last visited branch point at particle 42, as indicated
by the thin black arrow drawn outside the structure in Fig. 2.7.

void DFS(Slice *psl,int dipart, IntArray xparticlesleft_list, Slice *copyslice ){
// Depth First Search adapted from https://www.codewithharry.com/videos/data-structures-and-
algorithms-in-hindi-89/
// Adapted by HJ Jonas, specifically to gives particle in a cluster new coordinates that not
cross the periodic boundaries. Important to do when performing cluster rotations in MC.
// it walks over the particles and performs DPF, and makes smart use of a nested loop, by

recalling DFS inside DFS, to walk over the structure

//Slice *psl contains the particle coordinates and bond information
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// int dipart dis the particle on which DFS is performed

// IntArray xparticlesleft_list is the dynamical list of integers that tracks which particles
have not been visited yet.

// Slice *copyslice is a copy of Slice, but with updated coordinates of the cluster. (used for

rotating cluster is MC)

vector dr;

int jpart;

// remove dipart from list, else you will find the bond back to ipart. Now you will walk forward
to next bond
removeElementXIntArray(particlesleft_list, dpart );

// loop over the bound particles of ipart, to see if you have visited them
for (int n = 0; n < psl->pts[ipart].nbonds; n++){
jpart=psl->pts[ipart].bonds[n]; // the next bound particles to ipart;

// did you already visit jpart?
if(checkElementXIntArray(particlesleft_list, jpart )){ // checkElementXIntArray returns 1 if
jpart is in the list.
// new position jpart
dr=particles_vector(psl, jpart,ipart);

vector_add(copyslice->pts[ipart].r,dr,copyslice->pts[jpart].r);

// now perform DFS on jpart
DFS( psl,jpart, particlesleft_list, copyslice );

}

return;

Listing 2.1 : Depth First Seach code written in c.
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3 A TEMPERATURE-DEPENDENT

CRITICAL CASIMIR PATCHY PARTICLE

MODEL BENCHMARKED ONTO
EXPERIMENT

Synthetic colloidal patchy particles immersed in a binary liquid mixture can self-assemble

via critical Casimir interactions into various superstructures, such as chains and networks.

Up to now, there are no quantitatively accurate potential models that can simulate and
predict this experimentally observed behavior precisely. Here we develop a protocol to
establish such a model based on a combination of theoretical Casimir potentials and

angular switching functions. Using Monte Carlo simulations, we optimize several material-

specific parameters in the model to match the experimental chain length distribution and
persistence length. Our approach gives a systematic way to obtain accurate potentials
for critical Casimir induced patchy particle interaction and can be used in large-scale
simulations.
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3.1 INTRODUCTION

Advances in colloid chemistry have enabled the synthesis of micron-sized particles that, when
immersed in a near-critical binary liquid mixture (e.g. water and lutidine), experience anisotropic
directional interactions induced by a critical Casimir force. As such patchy particles can make
directed bonds, i.e. only one bond per patch, they can be viewed as mesoscopic analogs of (carbon)
atoms [63]. Their micron-sized scale makes them directly observable via a confocal microscope,
while they simultaneously still experience thermal motion that lets them obey the same statistical
behavior of molecules and atoms, i.e. the Boltzmann distribution. Hence, colloidal patchy
particles are well suited as an experimental model system to explore complex structures analogous
to molecular architectures. Indeed, by exquisite temperature control of the Casimir interaction,
patchy particles can form colloidal architectures, such as chains and rings, revealing molecular-like
structures [53,57] .

Much experimental work has been performed on the self-assembly of patchy particles [38, 47,
138,139] and many computer simulations have investigated generic static and dynamic properties
[43, 140-146]. However, most common colloidal interaction models cannot reproduce or predict
experimental observation because this behavior is sensitive to the precise form of the effective
interactions at the experimental conditions, as dictated by the material and solvent properties.

In this work, we aim to develop an accurate model for patchy particle systems that can quanti-
tatively predict the outcome of experiments. Such models would have several advantages. First,
it would be possible to mimic the experimental setup and understand what is happening on the
particle level, e.g. the conformational ring statistics in Ref. [57]. Assuch, simulations bring struc-
tural and dynamical insight into the experimental observations. Second, accurate potentials used
in a multi-scale simulation provide large-scale and long-time behavior, enabling the exploration
of new hypotheses. Moreover, such simulations will serve as a predictive tool and provide a guide
to design future experiments. Finally, our work shows a systematic road toward the development
of accurate effective patchy particle potentials.

While in previous work [44], we developed a potential for (experimental) dumbbell particles
where two sites are both interacting isotropically, here we focus on spherical particles with di-
rectional patches. In the experimental realization of the system, a small patch is exposed at the
surface of a colloidal particle made of a different material. The specific wetting properties of the
patch and the colloidal particle material with respect to the two components of the near-critical
liquid mixture induce the Casimir interactions between the patches [147-149].

The model we develop for simulating patchy colloidal particles is based on theoretical (isotropic)
pair potentials valid for spherical colloidal particles immersed in an oft-critical binary liquid. The
Yukawa potential describes the repulsive part, and the attractive part originates from the critical
Casimir interactions [72, 83]. As the theoretical potentials are constructed for a particle with a
radius matching the radius of curvature of the patch on the patchy particle of interest, we assume
prior knowledge of its geometry. Additionally, these isotropic potentials depend on properties of
the solvent and the colloidal particle and contain two imprecisely known parameters: the surface
charge density and the wetting scaling parameter.

Next, we model the patches of the colloidal particle by multiplying the isotropic interaction by
a switching function, which decays from one to zero, interpolating between a fully bonded and
a non-bonded configuration, depending on the relative orientations of the interacting patches.
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The precise form of this switching function is computed by performing an explicit numerical
integration over the two patch surfaces at various orientations.

As there are several unknown parameters in the theoretical potentials, it is not easy to come
up with an entirely bottom-up approach. Therefore, we adopt a hybrid top-down, bottom-up
procedure and parameterize the potential by benchmarking it on experimental measurements.

Implementing the full potential for a colloidal dipatch particle system, we performed extensive
Monte Carlo simulations for colloidal systems under gravity. As expected, the particles assemble
into chains for sufficiently strong attraction and we measure the persistence length and chain
length distributions at various temperatures (Fig. 3.1). The potential is then matched to mimic
the experimental results by tuning the surface charge density, scaling wetting parameter and
patch size.

The remainder of the paper is organized as follows. In section II, the patchy particle model is
presented, which is based on the physical dimensions of the patchy particle, theoretical critical
Casimir interactions, and electrostatic repulsion, section IIT shows details of the simulated system
to calculate the chain length distributions and persistence lengths, and in section IV, we show
the effects of the fitting parameters on the two observables and the optimization of the potential.
We end with concluding remarks.

3.2 THEORETICAL BACKGROUND

Following the bottom-up approach, we start with introducing the pair potential of isotropic
particles immersed in a binary liquid, followed by the pair potential of patchy particles. Then, by
adding the external gravitational field, the full potential is constructed.

Next, we apply our general model onto the dipatch particle system that is based on physical
dimensions of the experimentally measured particles.

I - dT=0.16K

dT'=0.14K §

Figure 3.1: (a) A top and side view from the simulation box at dT'=0.16K. (b) Snapshots from experiment
at various temperatures [53]. Distinct chain are indicated by the colors.
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3 A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment

(a) dy

i Dcdgcfcdgc

dp

Figure 3.2 : (a) The computational patchy particle is composed out of two components: the bulk colloidal
particle (white circle), and the patch colloidal particle (dotted circle). (b) A schematic illustration zoomed
in at the bond of two patchy particles. If 6, is large enough, the Dedge—edge falls outside the range of
Visotropic and only a small fraction of the patch surfaces interacts, as illustrated with the yellow color.
The patch height h,,, the projected patch diameter dy,, the patch surface-surface distance Diyin, and
Dedge—ecdge are indicated (dotted lines).

3.2.1 THE ISOTROPIC PAIR POTENTIAL

The isotropic pair potential is based on the work of Stuij ez /. [72], which presented a model for
the attractive critical Casimir potential between two spherical colloidal particles immersed in an
off-critical binary liquid. The model is constructed by mapping experimentally measured radial
distribution functions and second virial coefficients, onto pair potentials based on critical Ising
model Monte Carlo simulations and mean-field theoretical methods [150].

These isotropic potentials Visotropic are composed of the repulsive Yukawa potential Vyykawa
and the attractive critical Casimir potential obtained from the theoretical scaling function

th .. . . . . .
Ve €Y Their isotropic nature makes them a function of the interparticle distance  only.

‘/isotropic (T) - VYukawa(T) + Véheory (T) (31)

The potential Vyykawa describes the screened Coulomb repulsion between the colloidal parti-
cles in a polar solvent. It is a coarse-grained model that captures the screening effect of the electric
double layer of the ions in the solvent [151,152]. The Yukawa potential of two identical charged
particles with diameter o and a center-to-center distance 7 apart is:

<
VYukawa(r) = {Oo’ "= Jca (32)

Upexp(—k(r —o.))o./r, r > 0,
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3.2 Theoretical Background

with

VAN
(14 Kko./2)%0.’
where Z = o2 is the charge of the particles, Y the surface charge density, \g = [e*/4me

the Bjerrum length of the solvent where € is the permittivity of the solvent, e the elementary
charge, and 8 = 1/kgT the inverse temperature with kp the Boltzmann constant. The screen-

ing length, i.e. Debye length, is defined as k1= VeksgT' /€2y . p; where p; is the number

density of monovalent ions in the solvent [153].

Uy = (3.3)

The attraction is caused by critical Casimir interactions resulting from the diverging bulk
correlation length £ of the concentration fluctuations of a binary solvent near its critical point.
The surfaces of two spherical particles, or differently shaped objects such as walls, patchy particles
or cubes [82, 154-156], act as boundary conditions (BCs) confining the fluctuations between
them. When the distance between the objects becomes smaller than &, the spatial restriction
on the critical fluctuations gives rise to an effective force, called the critical Casimir force, first
introduced by Fisher and de Gennes in 1978 [80]. This effective force is attractive or repulsive
force depending on the identical or opposing surface preference of the BCs. In the theoretical
description, this surface preference is captured by so-called surface fields 5 that depend on a
material-specific (dimensionless) wetting parameter w, i.e. the hydrophilic or -phobic affinity of
the surface with the solvent [82,157, 158].

The critical Casimir interaction between two spheres of radius 12, follows a universal scaling

function © according to finite-size scaling theory (see Appendix Sec. 3.6.1)

3
w R,

Vctheory (T) — 5

OU=8Peti) () fay, A), (3.4)
where distance D = 7 — 2R,,, and r the interparticle distance of the two particles with radius
R,,. This form holds for two spheres with 12, >> D), in the Derjaguin approximation in three
dimensions (d = 3).

The first variable in the scaling function Y = sgn(t) D /&, is dependent on the scaled tem-
perature t = (T, — 1) /T.. with T, as the critical temperature and 7" the temperature, and the
solvent correlation length & = §§0j)[ |t| =" along the path ¢ — 0% at the critical composition.
The second variable in the scaling function A = sgn(hy,) D /&), depends on the bulk ordering
field hy. The bulk ordering field is proportional to the difference between the chemical potentials
of the solvent species A and B such that hy~ji4 — pip — (f14 — 4 ) With respect to the critical
point. The related solvent correlation length is §;, = & ()| py|-v/80 along the path b, — 0 with
t = 0. While the scaling exponents v, 3, 6, and the amplitude ratio 5,50_3 / ﬁt(ol are universal [71],
the magnitude of the amplitudes of ft(oi) and ¢ }(LO) is not.

The universal scaling behavior means that the critical Casimir interactions are largely inde-
pendent of microscopic details of the system but are instead a function of the thermodynamic
state of the solvent and the properties of the boundary conditions. The former includes the
composition of the binary liquid ¢, salt concentration cg,14, and phase separation temperature
T, and the latter is a function of the radius R,, of the particle, and scaling wetting parameter
w.
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3 A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment

3.2.2 THE PATCHY PARTICLE PAIR POTENTIAL

For the construction of the patchy particle pair potential, consider a patchy particle that consists
of a spherical bulk particle of diameter 0 = 2R with n,, spherical patch particles with a radius
R, located such that the patch particle cuts through the surface of the bulk particle, yielding a
exposed circular patch of diameter d,, (see Fig. 3.2a).

Due to the short nm-ranged character of the critical Casimir interaction, which is at least an
order of magnitude smaller than the particle diameter, only a small area of the exposed patch
surfaces interacts. While in principle there is also a bulk-bulk Casimir attraction, this is relatively
weak compared to the patch-patch attraction and will be dominated by the repulsive electrostatic
potential at the experimentally chosen conditions. We can therefore neglect these interactions.
Note that the situation would be reversed for compositions on the other side of the critical
composition.

Suppose two patchy particles are facing each other at their minimum energy position. In
that case, the bulk particle and the edges of the circular patch surface do not contribute to the
effective interaction calculated in the Derjaguin approximation, as this distance > Degge—cdge
(see Fig. 3.2b) falls outside the range of the critical Casimir interaction. Therefore, the effec-
tive interaction between two facing patches of two particles is accurately approximated by the
isotropic pair potential (Eq. 3.1) of two spherical particles with radius I?,,.

The pair interaction V. ;. between the patchy particles arises from the electrostatic repulsion
% p patchy p P
Vyukawa and the patch-patch attractive interaction

Vpair(ﬁja 0, 9) = Waawa(ri;) + 1<I]£Ili£1n Voie.pii (rij, 24, 925) (3.5)
where the min function gives the minimum energy of the set of all possible patch-patch potentials.
The position of each patch in the particle reference frame is given by 7, unit vectors p which

point from the particle’s center to the center of the patch. This mimics the fact that only one
bond per particle pair can be formed. This patch-patch potential V,, ., is defined as

Vpikijl (rija Qia QJ) = Vctheory (rij)spik,pjz (Q“ QJ) (3.6)
where Vctheory (7i;) is the (isotropic) critical Casimir attraction for two particles with diameter
2R, given in Eq. 3.4. The switching function Sy, p,, (£, €2;) captures the effective interaction
strength as function of the particles’ orientation {2 (given by a quaternion representation). The
strongest bond is formed if the patches are aligned, as illustrated in Fig. 3.2b, yielding S = 1.
The bond weakens when patches are rotated away, rendering S € [0, 1).

3.2.3 THE SWITCHING FUNCTION
This switching function is in principle six-dimensional (three degrees of freedom for each orien-

tation §2). However, by making use of the symmetry of the system, it reduces to three dimensions.
To do so, we define three angles 6;, 6;, and ¢; y and a distance 1 to represent all conformations
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3.2 Theoretical Background

that two particles can have when making a bond. In Fig. 3.3 on the left, the §; and 6; angles are
illustrated. They are defined as:

DPji - Tij

Pik - Ty
cos(f,) = ——— =
) Pallry|

B ‘pik||rij|7

—cos(6;) (3.7)

where p;(P;1) is the k" (1") patch vector of particle i(j), and r;; = r; — r; is the interparticle
center-to-center distance vector. The angle 0] ;1s defined as the patch vectors’ projected angle
on the plane perpendicular to the interparticle vector as illustrated in Fig. 3.3 on the right. Note
that by aligning the reference frame with r;;, we can make this representation rotationally and
translationally invariant. In this way, the six-dimensional function Sp,, p,, (€2;, €2;) is reduced

to a three-dimensional function S(0;, 0;, 0;;).

The function S(0;,0;,0;;) can be computed by a numerical integration of the effective
attractive critical Casimir interaction at various conformations defined by ¢;, 0;, and 0; ;- To
simplify the integration, the patch curvature is set equal to the curvature of the bulk particle.
In the Appendix Sec. 3.6.4, we show that the integrated function S(6;, 0;, 0;;) can be well
approximated by

S(0;,05,0:,.) ~ S'(0;)5'(0;) (3.8)

VRREY]

where S”(6;) depends only on one angle and is a fit of the part of the integrated S(6;, 05, 0; ;)
where one of the particles is fixed at #,=0°, while the other is rotated by 6; >0°:

S'(6) = exp (Z ?:chel) (3.9)

In a self-assembled patchy particle dispersion, the persistence length and distribution of the chain
lengths are not strongly affected by the choice of the definition of S by either 6;, §;, and ] y
or making the simplification of only incorporating #; and 6; as in Eq. 3.8. See the Appendix
Sec. 3.6.4for more details.

Figure 3.3 : Two single patch particles with their interparticle vector r;; (dotted arrow) and patch vectors
Pik and pj; (solid arrows). The light and dark grey colored patch are behind and in front of the plane
of the paper, respectively. The angles 6;, 0, and % are indicated with a bow.
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3 A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment

3.2.4 THE EXTERNAL POTENTIAL Vgravity

To mimic the experimental observation that patchy particles tend to sink to the bottom of
the sample due to the gravitational force F}; pulling the colloids down, we add an external
gravitational potential to the model. The gravitational potential V,

Vy(2) = Amgz = —Fyz, (3.10)

depends on gravitational acceleration (on Earth in this case) g, the height z, and the mass differ-
ence Am between the patchy particle and the solvent (see Appendix Sec. 3.6.3 for details).

The bottom of the sample is mimicked by a steep Lennard-Jones 12-6 potential (V1,;) which
is connected to V; at the transition point zc,; with an equal first derivative:

VLJ(ZCut) = V;](Zcut) (311)
VICJ(Zcut) = ‘/g/(zcut) (312)

The complete external potential is thus

VLJ(Z) z < Zeut
Voo _ 3.13
g ty(z) {‘/g(z) 2 > Zeut ( )
_ {4€LJ((Z)12 - (%)6 + i)7 7S Zeus (3.14)
_qu_b’ Z>Zcut

where €r,; is a self-chosen value. This potential is smooth up to the first derivative and is suited
for molecular dynamics as well as Monte Carlo simulations.

3.2.5 THE SYSTEM’S POTENTIAL ENERGY

The full potential of N spherical colloidal patchy particles interacting via the effective pair poten-
tial Viuir and experiencing a gravitational field is given by a summation over the pair potentials
between all pairs of patchy particles:

N N
V= Z ‘/;)air(’rijg Qi’ Q]) + Z V:gravity(zi) (315)

i<j i

and the external field Virayiey caused by the gravity and the cell boundary. The latter is only
dependent on z, the vertical component of the particle’s position.

3.2.6 CONSTRUCTING THE DIPATCH PARTICLE POTENTIAL

So far the described a model is generally applicable onto patchy particles interacting via critical
Casimir interactions and electrostatic repulsions under a gravitational field. However, the model
still contains two material-specific parameters: w (wetting parameter) and Y (surface charge
density). Since these are not precisely known, they are treated as free parameters to optimize our
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3.2 Theoretical Background

o [um] d, [pm] 6, ] i, [nm] R, (]
3.2(1) 0.58(5) 21(2) 45(5) 1.0(2)

Table 3.1 : The particle diameter o, projected patch diameter d,,, patch arc-angle 6,5, patch height A,
patch radius of curvature I, are measured with AFM. The number in brackets indicates the standard
deviation of the last digit based on four measurements.

potential model using experimental data. We stress here that these parameters are not meaningless
fit parameters but have a physical meaning and their range of possible values is thus limited.
p phy g georp

The dipatch particles of interest from Ref [53, 56] are immersed in a water-lutidine (75/25%vol)
solution with c\rg50,=1.0mM. The ions not only screen the surface charge and affect the elec-
trostatic repulsion, but also allows one to tune specific patch-patch interactions [159-161]. The
physical dimensions of these dipatch particles are measured with AFM (atomic force microscopy)
[53]. The particle’s diameter o, projected patch diameter d,,, patch arc-angle 0, patch height A,
and R, are listed in Table 3.1 and indicated in Fig. 3.2.

The parameters of the repulsive Yukawa potential (Eq. 3.2 and 3.3) of this solution are
K~ 1=2.78nm, €=2.25x 10~ °F/m [147], Ag=2.14nm, and 0,=2 R,,. The surface charge density
T remains a fitting parameter.

In an off-critical binary liquid, instead of measuring ¢, the off-set d1' = T, — T from
the phase separation temperature T, is measured. For the construction of the potentials, the
. . . . . _T. _en1/8
location of T, with respect to T, is calculated with the relation % = (%) / where
c. = 0.287 denotes the critical (lutidine mass) fraction [81], B is a non-universal scaling constant
of the water lutidine solution without salt measured in Ref. [162], and 3 is a universal scaling

constant (see Table 3.2).

theory . . . . . .
The V2" is obtained as numerical data from Ref. [72] using the universal and non-universal
scaling parameters listed in Table 3.2. For our simulations, it is convenient to have an analytical
expression and analytical interpolation of the numerical data. The data is well represented by

the functional form:
A r—o\?
Vo(r;dT,w) = — 5 &XP (—( 5 ) ) (3.16)

which we fitasa functions of the wetting scaling factor w € [0.40, 0.56] and dT" € [0.12,0.22]
K which is the temperature range of the experimental measurements. The resulting parameters
A(dT,w) and B(dT, w) turn out to be well represented by the product of two simple cubic
polynomials of the arguments (see Appendix Sec. 3.6.2).

In order to set the effective patch-patch interaction equal to the isotropic pair potential of two

. . . . th .
patch particles, the critical Casimir attraction V' *”" at distance Degge—edge should become

negligible (see Fig. 3.2b). Three potentials are shown in Fig. 3.4 using the above described
system, at various values for w with T=-0.15e/nm? and d7'=0.12K. Even at maximum value
w=1.00, when the interaction depth reaches ~-200 kg7, the interaction strength at 0.0350
(Dedge—edge=2hp+Dyyin) is negligibly small. The potential with w=0.60, which has a more
realistic interaction strength, becomes negligibly small at 0.0250". Thus, if the bonds are aligned,
ie. 9i=9j =0°, then Vpair = Visotropic-
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3 A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment

If the patches rotate, a repulsive bulk-patch interaction arises due to opposing boundary con-
ditions of the surfaces [149]. As this bulk-patch interaction distance (for 6 —0° at Degge—cdge) is
longer than the attractive interaction distance 0.0250, we assume this repulsive contribution to
be small compared to the attraction and ignore it in the description of the potential. Nevertheless,
to compensate for this assumption, a smaller effective patch width 0°% than the experimental 6,

P
is allowed. This approach circumvents the explicit calculation and benchmark of the repulsive
contribution which would introduce more unknown parameters to the model.

We employ a three-step calculation scheme, as illustrated schematically in Fig. 3.5, for bench-
marking the experimental measurements to the model. We start with defining the four input
parameters: Y, w, dT, and 9;5. In the second step, from the former three input parameters,
the isotropic potentials Viryiawa and Vi are constructed, and, in combination with the latter,
the part S’(6) of the angular switching function .S in Eq. 3.8 is determined by numerical in-
tegrating. Next, by employing MC simulations, the persistence length L,, and chain length
distribution P, are measured using Vjair and Vgravity. Finally, based on the L, and P, over the
whole temperature range, the input parameters Y, w, and H;H are adjusted, and the steps are
repeated.

To perform this adjustment efficiently, we first illustrate the effect of the input parameters on
Viair with five example potentials with d7'=0.12-0.22K (Fig. 3.6). Later in Section 3.4.1, their
qualitative effect on absolute values and temperature trends on L, and P, is demonstrated.

Decreasing T, i.e. making it more negative, makes the repulsion Vykawa stronger and, there-
fore, the pair potential weaker (Fig. 3.6a). Although S” is based on the change of the effective
attractive interaction, the repulsion plays a role in the location of the minimum, and thus also T
has an effect on S’ (Fig. 3.6¢).

As the scaling function Ois multiplied by w? and the correlation length &, by w, increasing w
will make V¢ effectively deeper and its interaction range longer. The resulting switching function
S’ becomes more narrow around  ~ 5° and less steep around 10° (not explicitly shown in
Fig. 3.6).

If both w and Y are adjusted simultaneously, potentials with similar interaction strength can
be created, but with a different temperature dependence (Fig. 3.6b). For example, by comparing
potentials (4) and (5), the minima of (4) at d7'=0.12 and 0.22K are closer together than (5).
This means that there is a weaker temperature effect in (4) compared to (5). Adjustingw and T
simultaneously can therefore serve as a knob to adjust the effective temperature dependence of

vaair-

Finally, if Hgﬁ is decreased, e.g. from 21.0° to 18.0°, the curvature of the switching function S’
shifts with a constant to smaller angles, while the curvature itself stays the same. Note that the
assumption Visotropic (Dedge—ecdge) = 0kpT should still hold upon making Hzﬂ smaller, else a
discontinuity in the force around 6 = 0° appears.

§t(,0-|)- [nm] B v I5; )
0.198 0.765 0.63 0.3265 4.789

Table 3.2 : Ciritical Casimir non-universal and universal scaling constants. From Ref. [72] [71]
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Figure 3.4 : Three pair potentials of two isotropic hydrophobic particles with radius /2, immersed in a
water-lutidine (75/25%vol) solution with 1.0mM MgSO4 with Y=-0.15¢/nm?, and w=1.00, 0.80, and
0.60 at dT'=0.12K. All potentials become negligible at 0.0350, thus Vpair (0; = 0; = 0°) = Visotropic-

3.3 SIMULATION METHODS

3.3.1 MoNTE CARLO SIMULATION OF THE CHAIN LENGTH DISTRIBUTION

For the chain length distribution simulations, a cubic box of length 51.17¢ with 1000 particles
with periodic boundary conditions, corresponding to an area fraction of n = pm/4 = 0.30,
where p is the number density, is simulated with Monte Carlo (MC). Starting from a random
configuration, the system was equilibrated by performing between 1 X 104 up to 6 X 10* MC
cycles for the weak and strong interaction strengths, respectively. Each MC cycle consists of
5 x 107 single particle (95%) and cluster moves (5%).

In a single particle move, a randomly selected particle is either rotated (50%) or translated
(50%) and can create and break bonds. Note that even though the potentials are deep, breakage
occurs. In case of the strongest potential, we observe typically thousands of bond breakage
events. The rotation is performed using a random quaternion with an angle uniformly chosen
€ [0, dgmax]. The translation is performed using a random vector 7 with length uniformly

chosen € [0, \/gdrmax} . To enhance the decorrelation and make the sampling in the quasi 2D

xy-plane more efficient, the z-component of the translation vector 7is reduced by a factor 10 to
avoid the particle being placed outside the quasi 2D plane, i.c. inside the wall or far above the
gravitational height.

For the cluster move, the translation or rotation move is performed on a chain that is composed
of particles that are connected via bonds, i.e. the attractive term in the pair potential is negative,
or on single particles. Detailed balance is obeyed by keeping the number of clusters constant.
Therefore, any new configuration that creates a new bond is rejected.

The maximum displacement dr,,x and maximum rotation dgmax of the single particle and
cluster moves are adjusted to maintain an acceptance ratio between 30-70%.

Measurements are performed on three independent samples during 7 X 10* MC cycles. The

Mg

chain length distribution is calculated as P, = = with P, the probability of a chain of

length x, n,, the number of chains with length &, and ) _, n; the total number of chains.
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3 A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment

3.3.2 MEASURING THE PERSISTENCE LENGTH

The persistence length L, is calculated via a mode analysis of the chain in the worm-like chain
model, in the same manner as done for the experimental measurement [54]. For a chain fluctuating
in a two-dimensional plane, the variance of the mode amplitudes is related to the persistence
length via:
o 2L\

(o= @) = (o) 617
where a,, is the mode amplitude of mode number n, L is the contour length of the chain [163,
164].

To determine the mode fluctuations, we use MC runs to sample the conformation of a chain
consisting of 15 dipatch particles in three independent samples, while not allowing bonds to
break. To enhance decorrelation, in addition to single particle rotation and translation moves,
tail flipping moves are performed. In this move, an interparticle bond vector 7,onq of the chain is
randomly selected. Then, all particles starting from 7,04 to the tail end of the chain are rotated
by 180° around 70n4-

3.4 RESULTS AND DISCUSSION

First in section 3.4.1, we qualitatively compare the effects of the benchmark parameters w, Y, and
Q;H on the chain length distribution P, and persistence length L,, and identify three dependen-
cies. In Section 3.4.2, we perform the quantitative benchmark onto experimental measurements.

3.4.1 THE P, AND Lj, AS A FUNCTION OF T, w, Ggff AND dT

The three distinct dependencies become apparent in the chain length distributions in Fig. 3.7
and persistence length in Fig. 3.8 for the potential (1)-(5) from Fig. 3.6.

The first effect is that an increased radial potential strength leads to longer and stiffer chains
over the complete temperature range. By comparing potentials (1), (2) and (3), we observe
increasing chain lengths, i.e. more longer chains, and stiffer chains for (3)<(2)<(1).

The second effect, that of shorter chains and stiffer chains over the complete temperature range,
is achieved by reducing the effective patch width Gzﬁ. This effect is best observed in potential

Step 1 Step 2 Step 3
T ___VYukawa=
Vpair persistence length L,
Heff :S/
p .
Voo . chain length }

w gravity distribution P,

i|~— VC =
dT —

Figure 3.5 : The three-step calculation scheme for optimizing the patchy particle potential. The solid
lines represent the dependencies, e.g. Vyykawa is only dependenton Y.
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Figure 3.6 : Pair potentials of the dipatch particles with diameter o dressed with hydrophobic patches with
radius of curvature R, immersed in a water-lutidine (75/25%vol) mixture with ImM MgSOy4. (a,b)
The radial parts, Viykawa and Ve. (c,d) The corresponding switching functions S’ with 9;3 =18.0
and 21.0°. The w and Y(Y) combinations are indicated by the numbers (1) to (5) and the color coding,
and the lines indicate dT" = 0.12K (solid) and d7" = 0.22K (dash-dotted).

(2) which shows a strong reduction of chain lengths and a significant increase of the persistence
length, but this holds for all potentials.

The third effect relates to the temperature dependence of P, and L,,. By varying both w
and Y simultaneously, one can create potential with approximately equal strength, but with a
different temperature dependence, as done for potentials (2), (4), and (5). By comparing the
chain lengths of potentials (4) and (5), at d1'=0.17K potential (4) shows the longest chains,
while at d1'=0.12K it is potential (5) instead. Additionally, in the persistence length the same
temperature trend is observed, where at d7'=0.22K the chain of potential (5) is more flexible
than that of (4), while at d7'=0.12K this is reversed. Thus, the temperature strength of the
potentials can be tuned while still retaining similar chain lengths and flexibility.

3.4.2 BENCHMARKING P, AND L, ON EXPERIMENTAL MEASUREMENTS

Now that we have examined the qualitative effects on P, and L,, as a function of w, T and
0% we can benchmark the potential on the experimental measurements quantitatively. Two

p . . . . . .
evaluation functions /21 and R2 are constructed that express the deviation of the simulation of
the L, and P, from the experiments, respectively.
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Figure 3.7 : Chain length distributions for potentials (1), (2), and (3) with 9;;5 = 21.0(a) and 18.0°(b)

and for potentials (2), (4), and (5) with Hzﬁ = 21.0°(c). Lines represent Ggﬁ and symbols dT’ as
indicated in the legend, while the color coding is from Fig. 3.6.

For the persistence length measurements, /21 is defined as the percentage of deviation from
the experimental values:

) Lsim. — [exp-

RI(LE™, L3™ dT) = pL—Xp” -100%, (3.18)
P
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Figure 3.8 : Persistence length as a function of temperature of potentials (1)-(5). The effect of T and Q;H

(a) and combining Y and w simultaneously (b) are shown. Line and symbol coding represents 9;3 as
indicated in the legend, while the color coding is from Fig. 3.6.

and is calculated for each experimentally measured temperature d1'=0.12, 0.14, 0.16K. Although
not explicitly written, both L;"p' and L;lm' are, of course, temperature dependent.

Table 3.3 shows the evaluation of the persistence length of the chains for w=0.456, 0.462,
0.470, T=-0.08, -0.09, -0.10e/nm?, and 9§H=19.0, 19.5, 20.0° for the three temperatures. For
each combination of w and T there exists an Gzﬁ in which the persistence length corresponds to
experiment within 8% indicated by the bold numbers.

In both experiments and simulations, we observe an increased monomer and dimer con-
centration, which does not coincide with the expected exponential decay of the chain length
distribution for longer chains (Fig. 3.9). Therefore, the simulated chain length distributions of
chains with @ > 2 are evaluated against fitted exponential curves of the (noisy) experimental data
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Figure 3.9 : The exponential fits onto the experimentally measured chain length distributions for x > 2
and ¢ <55, 30, 25, 10, and 8 for d1'=0.12, 0.14, 0.16, 0.18, and 0.22, respectively. The inset shows a
zoom in which the connected dots by solid thin lines represent the experimentally measured probabilities
for clarity.

w 0.456 0.462 0.470
GZH 19.0 195 20.0 | 19.0 195 20.0 | 19.0 195 20.0
T dr
0.12 55 133 196 | -1.2 93 -165 | S8 -3.0 -113

-0.10 0.14 02 76 -148 | 49 -33 -108 | 125 26 -56
0.16 0.4 -69 -143| 56 -31 -110 | 119 35 53
0.12 -1.8 -100 -175 | 28 -54 -134 | 84 01 -7.9
-0.09 0.14 38 38 117|103 02 76 |172 63 -15
0.16 49 -34 -111 (102 1.2 -70 (173 79 -1
0.12 23 -6.0 -140| 80 -1L6 -99 | 146 45 -43
-0.08 0.14 96 02 79 | 148 49 -31 | 219 114 2.0
0.16 102 14 66 | 153 57 31 | 230 132 3.2

Table 3.3 : R1(Eq. 3.18) values which expresses the percentual deviation of the simulation from experi-
ment. The bold numbers indicate the optimal HZH atgiven wand 1.

that exclude monomers and dimers. The deviation between the average of the three independent
simulations and experiments is evaluated as:

) 1 Lmax Psim_PR2 2
R2(PR? psim dT) = Z( z B e ) (3.19)

xmax

where PEQ is the experimental or fitted value. For each dT" simulation, the sum runs over the
chain lengths & upto T p,ax, the maximum chain length for which holds P, > 5 x 1072 and
length x < 45 particles.
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w 0.456 0.462 0.470
o | 190 190 195 | 190 195 195 | 195 200 20.0
Y | -010 -0.09 -0.08 | -0.10 -0.09 -0.08 | -0.10 -0.09  -0.08
dT
012 [ 060 051 0.09 | 052 0.08 269 | 024 7.13 9.69
014 | 0.61 057 160 | 054 121 3952 | 925 143.09 804.29
016 | 063 057 012 | 057 0.23 ~10° | 014 ~107 ~10°
018 | 054 0.54 043 | 055 0.45 5059 | 033 ~103 ~10%
0.22 | 048 045 055 | 045 057 040 | 056  0.32 0.07

Table 3.4 : R2 (Eq. 3.19) value which expresses the deviation of simulation from experiment in order of
magnitude. The bold values are from the selected potential.

Calculating chain length distributions requires more CPU time, because there are more par-
ticles in the simulation box. Therefore, the chain length distribution simulations were only
performed for the potentials with a good persistence length as listed in bold in Table 3.3.

Based on the smallest deviation from experiment over the whole temperature range as defined
by R1 and R2 (indicated in bold in Table 3.4), the potential with w=0.462, T=-0.090 e/nm?,
and 9§H=19.5° is selected (Fig. 3.10). This optimized potential performs best in mimicking
the experimentally measured temperature dependent chain length distribution and persistence
length as shown in Fig 3.11.

Although the simulations still show small deviations from experiment, the potential cannot
be significantly improved. For a truly perfect overlap, the potential should exhibit a weaker
temperature dependence in P, as the chains are too short at d7'=0.22K and mimic experiment
well at dT'=0.12K, while it requires a stronger temperature dependence in Ly, as R1 shifts from
positive (d71'=0.22K) to negative (d7'=0.12K). This is a contradicting property of the potential.
Thus, changing the input parameters cannot lead to an improved potential, using the current
potential forms.

0
Y=-0.090 e/nm2, w=0.462
dT [K]
-5 — 012 =—— 018
014 =— 020
0.16 =—— 0.22

VYukawa + VC [kT]
A
o

5 10 15 20

-20 0]

0.00 0.01 0.02 0.03
r-o [o]

Figure 3.10 : The radial part of the pair potentials Vyykawa and Vi and the switching function S’ (in
the inset) are shown for temperatures d1'=0.12-0.22K with w=0.462, Y=-0.09¢/nm?, and QZH =19.5°.
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Figure 3.11 : With potential parameters w=0.462, Y=-0.090e/nm?, and 9;52 19.5° the chain length
distribution P, (a) and persistence length L, (b) are simulated and mimic experiment over the temper-
ature range of dT" € [0.12, 0.22]K. The vertical error bars in (b) represent the standard deviation of
measurements consisting of 3600 images (30 minutes at a frame rate of 2fps).

We stress however, that notwithstanding these small difference the potential model is remark-
ably accurate, and can predict the assembly as well as the mechanical behavior over the relevant
temperature range. Moreover, the final values for the free parameters in the optimized model, are
physically reasonable. The patch angle QZH is very close to the measured patch width by AFM.
The surface charge density is within the expected physical range for these types of colloids, see
e.g. Ref [72]. Finally the optimal w value is lower than expected, but still reasonable. Thus, we
conclude the potential model is physically sound, and can be used for complex colloids systems.

3.5 CONCLUSION

In this work we have developed an accurate potential model to simulate patchy particles interact-
ing via critical Casimir forces. The potential model is based an a hybrid bottom-up/top-down
coarse-graining approach, in which we take isotropic interaction from accurate scaling theory,
and adjust these to the patchy particle geometry, by numerical integration and fitting as a func-
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tion of the patch orientation. While accurate, the theoretical scaling theory contains several
poorly known material parameters: the wetting factor, the charge density, and the effective patch
width. We optimized the potential by fine-tuning these parameters, so that a system of these
particles under gravitational field, mimics the experimentally observed chain length distribution
and persistence length as best as possible. Indeed, we demonstrated that the optimal potential
model accurately predicts the experimental results.

While the optimization procedure might be seen as a fitting procedure, all parameters have
a physical meaning and can be interpreted, and can only be used for fine-tuning. As there is
basically no freely adjustable parameter, it is quite remarkable that we can simulate such a complex
system accurately.

Thus, our work clearly shows how a single potential model can be developed to accurately
simulate a complex system of patchy particles interacting with critical Casimir interactions,
under a variety of conditions. Our approach provides a general framework to develop coarse-
grained effective potentials that can be used to reproduce and interpret experiments, and guide
future experiment. For instance, a direct extension of the model is to describe multivalent
patchy particles, e.g., tetra-patch particles, so that networks can be formed. Moreover, using the
optimized potential model in a (Brownian) molecular dynamics setting can provide dynamical
information.

We stress that our coarse-grained potential is naturally bound to a specific experimental sys-
tem. Changing the system, will also change the potential. Therefore, the potential needs to be
optimized for each new colloidal systems. While this seems a drawback, we stress that much or
our framework can be automatized. In fact, most of the effort will lie in the particle synthesis
and collection of experimental data to benchmark the models.

Finally, we mention that our approach still relies on functional forms for the potentials, and
on standard fitting procedures. In the future, the use of machine learning can be considered to
directly go from the theoretical isotropic potentials to the final model, without going through
the intermediate fitting steps.

3.6 APPENDIX

3.6.1 THE ISOTROPIC CRITICAL CASIMIR ATTRACTION

For the construction of the patchy particle potential we start with the theoretical prediction for
the isotropic critical Casimir interaction between two spheres with radius 2, as described in
Ref. [72,83]. Here, for completeness, we outline the basics of this isotropic interaction. First, the
scaling parameters are explained. Then, the mapping from d =4 to 3 dimensions of the critical
Casimir interaction between parallel plates is introduced, followed by the integration over two
spheres in the Derjaguin approximation. For a more exhaustive overview on critical Casimir
interactions, see Ref. [150], and on the construction of the isotropic potentials see Ref. [72].

The critical Casimir force follows universal scaling functions determined solely by the univer-
sality classes of the solvent and of the colloid surfaces that are in contact with the binary liquid
near its demixing transition.

An important determining factor in the critical Casimir force is the solvent correlation length
&. This parameter § is a function of its distance from the critical point at (1,c.), i.e. temperature
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and concentration. Specifically, it scales with the scaled temperature t = (T, — T') /T via
& = f,f‘)jt |t| with ¢ — 0 at the critical concentration and thus corresponds to the Ising

model in the absence of an external magnetic field B. The bulk ordering field A, is proportional
to the distance of the chemical potential 1 of the off-critical mixture with respect to the critical

chemical potential /1. at ¢. The correlation length & scales as §;, = §,(10) |hb‘_"/ B89 with hy — 0
att = 0. Thev = 0.63, 8 = 0.3265, and § = 4.789 are universal scaling exponents [71].

The critical Casimir force is a function of the scaled distances ) and A = sgn(hb) g between
the confining objects. During an experimental measurement, only ¢ is easily varied while A, stays
constant. Therefore, the scaling parameters are rewritten in:

Yy = sgn(t)g Y=

A
3 3 (3.20)

The critical Casimir interaction in 3 dimensions for two parallel plates is denoted 19|(|d =3) (Y, %).
This function is not directly known, but is determined via mapping 3D MC Ising model simu-
lations at 33 = 0, i.e. hy — 0, and 9= (), 2) from mean-field theory within the Landau-
Ginzburg theory [165].

i@, D)
9= (¥, = 0)

I, %) = 9=V (¥, 5 = 0) (3.21)

The material-dependent surface-solvent interactions, are dependent on the surface fields A,
[158]. Including the effect of hs via w(hs) explicitly in d = 4 gives 19|(|d:4) (Y, S5 hy) =

wdﬁl(‘d:@ (Y/w,X). It is assumed that this also hold for d = 3, although this has not been
explicitly tested.

Using the force F¢ ) (L) = SL’319|(|d:3) (L/&:, X) between two plates of surface area S

separated a distance L, integration over the two patch particle spheres with radius 2, and R; in
the Derjaguin approximation is performed to yield the force between two spheres at a distance
D, the shortest surface-surface distance between the particles,

[
- [

where the integral is over the angle ¢, and d.S(¢) is the surface of an infinitesimal ring of radius
Rsin ¢, and L(¢) is the distance between two such rings on the two spheres.

9= (L(6) /&, ) (3.22)
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The isotropic Véheory then follows by integrating over the force. Realizing that only small ¢

contribute, change of variables, rearrangement, and execution of (one of) the integrals gives [84,
147,155, 166]

VEors(D, R, RV, %) = / dzFe(2)

1 27TR R’
- SR / do(z? — 220 (2, %)
1 QRPR; A e
=___ PP gl=sDbeiy 3 3.23

where in the last line we defined the function
OU=3Le)(y ) = 7 [ dr(z™? — x*3)19‘(‘d:3) (Y, X). Note that in the Derjaguin
approximation, the (critical Casimir) interaction strength is easily scaled according to the radii
of the particles.

As 19‘(‘60 (V,A) = 19‘(‘6” (¥, X) [83], we can replace ©(d=3,Derj) (Y, X) with ©(d=3Derj) (Y, A).
For two spheres with equal radius, including the effect of the surface fields w(hys), we then finally
arrive at

R

3 ~ .
Véheory(T) — piw@(d:S,Dch)(y/w’ A) (324)

where r = D + 2R, is the center-to-center distance, and we suppressed the functional depen-
dence of R,,, Y, A and hy. This is Eq. 3.4 arising in the Main Text.

3.6.2 POTENTIAL OPTIMIZATION

In this section, we detail how we construct the fit the potential. First, V( is fitted as function
of A and B to the numerical data, and A and B are again fitted to w and dT". Second, the
construction of Viravity (2;) is discussed. Third, the integration of the switching function S is
explained.

FIT PARAMETERS FOR V(5

The critical Casimir attraction V""" is fitted to Eq. 3.16 for D € [0.004, 0.025]c with
the curve_fit function of the scipy package in Python which is a non-linear least-square fit-
ting procedure. The fitting is performed for w € [0.40, 0.56], surface charge density T €
[—0.05, —0.38] e/nm? and dT" € [0.12, 0.22] K. The values for A and B are again fitted to

the functions:

4

(w,dT) (Z a,w ) (Z bydTy> (3.25)
y=0
4

(w, dT) (Z apw ) (Z bydTy> (3.26)
y=0
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| AlokgT) Blo]
Qg -0.0150618 0.2193184
aq 21799711  -6.4152869

as -9.9192600  0.6840590
as 51.4795047  0.6859149
bo -0.2261732  -0.0072189
b1 7.2460609  0.0712114
bo -60.6003083  -0.5016291
b3 221.6023391 1.8701371
by | -304.8329480 -2.7834135

Table 3.5 : The coefficients @ and b valid for w € [0.40,0.56], surface charge density T €
[—0.05, —0.38] e/nm?, and dT" € [012, 0.22]K for the calculation of A and B as defined in Eq. 3.25
and 3.26, respectively.

Table 3.5 shows the resulting coefficients @ and b.

3.6.3 GRAVITY

As experimentalists on Earth see their patchy particles at the bottom of the sample due to the
gravitational force pulling the colloids down, we add gravity to the model. The gravitational
energy is defined as:

Vy(2) =mgz = —Fyz (3.27)

where m is the mass, g the gravitational acceleration (on earth in this case), 2 the height, and F,
the gravitational force. In order to know the effective gravitational force acting on the colloids,
we need the mass difference between the colloid and the solvent:

4 .
Am = —mrd 1 i(dremprem + Ppspps — Psl) (3.28)

3
where 7l10id is the radius of the colloid, ¢, the fractional volume, and p,, the density of material
x and the water-lutidine solution.

For the synthesis of dipatch particles [63], three spheres of polystyrene (PS) surrounding one
sphere of 3-(trimethoxysilyl)propyl methacrylate (TPM). The fractional volumes are estimated
by assuming that the sphere are touching such that ratio of the radii is rrpy:7ps=-1+2/ V3. We
calculate a volume fraction ¢prpy; = 0.0012

While the patch material is clearly distributed anisotropically, we do not expect a gravitational
torque acting on the patchy particles. Only a very small fraction TPM is used in the synthesis,
which means that the patchy particle does not deviate much from an isotropic sphere.

For a dipatch particle with radius r = 0.50, the following values are used:

¢rpm = 0.0012

¢ps = l-Orom

prom = 1.235 g/mL [167]
pps = 1.05 g/mL [168]
Psol = 0.98966 g/mL [169]
g = 9.80665 m/s”
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Which results in an Fy=-7.7kpT /o for the dipatch particles corresponding to a gravitational
height of 0.130. Solving the equations in Eq. 3.14 with €1,;=500kg T’ gives values for b=8.64kg T’
and z.=1.120.

3.6.4 CALCULATION OF THE SWITCHING FUNCTION

We calculate the switching function from a direct evaluation of the patch-patch Casimir attrac-
tion V},p,, by performing a (numerical) integration over the two surfaces of the patches in various
configurations in which the particles are placed at the minimum energy position 7,5, with

specific patch angles 6;, 0;, 0,

VEREY]

D=oco
‘/pp(’rminvehe' 9/ ) = / ‘/area(D)dA (329)

VAREY)
D=0

where D = r — 2R is the surface-surface distance, Ve, is the local Casimir potential energy
per area, and dA is a small subarea on the patch surface [84]. We can approximate this effective
interaction by performing a summation over IV 4 small subareas dA on both patch surfaces

Na
‘/;)p(rminuei)ej)egj) ~ Z‘/atrea(D) (330)

1 &
~ 045 Z VC(Dra;in)

w=ij

where we compute Vi,ea (D) from the critical Casimir interaction V(1) for each of these N4
subareas on particle © = %, j using the closest distance Dy, . to the patch surface on the other
particle, as schematically illustrated in Fig. 3.12. As V.., has units of energy per area, whereas
V¢ is in units of energy, we insert an arbitrary prefactor o to make this conversion. We do
not calculate this correction factor o explicitly. Instead, for the calculation of the integrated
switching function S intin Eq. 3.31, we normalize the integration to the conformation where the

patches are perfectly aligned, i.e. 8;=0,=0; ;=0°.

Figure 3.12 : The patch-patch interaction is calculated by integrating over both patch surfaces. The yellow
and dark-colored areas for the particle on the left and right schematically indicate the volumes in which
the N4 distances Dy ;| lie, respectively.

min
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Figure 3.13 : The S int (top row), the estimated switch functions S0, 590 and S0 (middle row)
(Eq. 3.33,3.34, and 3.35, resp.), and the difference between St and S9, 590, and S8 (bottom row)
for 9§j=0, 90, and 180° using an isotropic potential with w=0.462, Y=-0.090 e/nm?, 9§H=19.S°, and
dT=0.16K.

, Vo (Tmin, 05, 0;, 65.)
"(0;,0;,0,;) = e 31
S ( B 2]) V;)p(Tmin,QiZGj:ng:O") (33 )
Zi\’:f\” Ve (Diyin; 05, 05, 07I;j)

Z;\Ei,j Vo(Dis 00 = 0; = 0;; = 0°)

The [N small equal areas of the summation are generated using an icosphere. An icosphere is
a spherical shape composed of equally sized triangles, and, by definition, the triangles’ corners are
uniformly distributed along the surface of the sphere. Thus, summing over these triangles’ cor-
ners mimics the summation over [V 4. Also, to simplify the integration, we assume the curvature
of the patch is equal to the curvature of the colloidal bulk particle.

The top row of Fig. 3.13 shows 5™ of Eq. 3.31 for the potential with w=0.462, Y=-0.090e/nm?,
and 6,=19.5° at d1'=0.16K. For this integration, we used N4 ~4730 for each particle. The
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three plots show how the interaction energy changes upon rotating the colloidal particles with
angles 0; and 0; while 9§j=0, 90, or 180°.

Next, we would like to construct an approximation of S it hased on knowing only the switch
function at S™(0;, @; = 0°). This part of the switching function S is fitted with the function

S'(6) = exp (Z f:20l91> (3.32)

by using the curve_fit function of SciPy. The sum runs from 2, to ensure that the first derivative
of §” is zero at 0=0°. It runs upto 8, as the fitting procedure was not able to include more terms
to improve the fit. In Table 3.6, the coefficients for the switching function of the benchmarked
potential with w=0.462, T'=-0-090 e/nm?, 657=19.5°and dT" € [012, 0.22]K are shown.

From S’ we construct the functions S°, S?°, and S8 defined, respectively, as

SO(Qi, 9]) = S/(max(ﬁi, Gj)) (333)
109;
| —o— SO
@ S
—m— glin.comb.
10-%
I 10_3‘:
10_4; R
1073
107 5 10 15 20 25 30
Chain Length x [No. Particles]
3001
(b)
©
= 200
~
1001
012 0.16 0.20

dT

Figure 3.14 : The chain length distribution P, (a) and persistence length L,, (b) of using function .S as
59,89, or Slin-comb- with 1=0.462, T=-0.090 e/nm?, #57=19.5°, and dT=0.16K.
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5180(91', 93) - 590(01‘, 93) + 0.7(890(61, 6j> - 80(97’,9])) (335)

Fig. 3.13 shows these functions in the middle row and their difference with .S it in the bottom
row. The functions were made by carefully inspecting the shape of the numerical results for int
at 0, 90, and 180°. S™* at 0° and 90° are well approximated by S° and S, as one can see in the
bottom row of Fig. 3.13. Inspecting S™" at 180° and max(6;, 6;) < 5°, one observes that it is
almost identical to S99, Onlyatb < 6;,0; < 15° the value of S for 180° is lower than for
90°. In exactly this region, also S Y and S show a difference. Therefore, S8 is constructed by
adding to S the difference between S° and S%°.

To compose a functional solution for S as a function of 6;, §; and @ ; as a linear combination

of §°, 890 and S189
. SO()\—l)—I—SQO)\ A=6,./900 <1
Slm. comb. _ ) v - 36
{890(2/\)+518O(/\1), A>1 ’ (3:36)

where A = 0;;/90°. The discrepancy between |sine—glin- comb.| < 10% and lies mainly in a
region where St js approximately 0.5, which means it is not a highly occupied region. The
coefficient 0.7 in S*®” was chosen to minimize the discrepancy between .S lin. comb. 5 d S for
90 < 0;; < 180°.

We simulate the chain length distribution and persistence length to test the sensitivity of
the choice of switch function S. Figure 3.14 shows the persistence length of a 15-particle long
chain and the chain length distribution of 1000 dipatch particles with gravity at the three test
cases in which the switching function S'is: S 0§90 op Glin-comb. “Tp o persistence length of S 0
and S ©0mb- are similar, which seems to indicate that the chains under gravity have 6, ; around
0°. However, the switching function S 9 shows a stronger temperature dependence on the
persistence length.

While the choice of switching function is substantially influencing the persistence length, it
turns to have only a minor effect on the chain length distribution, as seen in Fig. 3.14. Advantages
of §% are its simple form and its dependence on the orientation of both particles. As the
S9 leads to discontinuous torques due to the max function, another advantage of S 90 is its
continuous torques in a molecular dynamics simulation. Therefore, the switching function S
used in equation 3.8 has the form of S 90

3.6.5 PARAMETER LIST

For completeness, we compose a list with all the parameters and functions including their symbol,
adescription, their value, units and reference used in the model in Table 3.7-3.9. The given values
are for the benchmarked dipatch particle potential.
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NS

S

EN symbol description value unit  Ref.
L

m.. T temperature K

N 153 inverse temperature 1/ksT

S potentials
..//m Visotropic  isotropic potential of a spherical colloidal particle (Eq. 3.1) ksT [72]
M Vyukawa  isotropic repulsive electrostatic Yukawa potential kT
Im a\onrmoQ theoretical critical Casimir interaction (acquired as numerical data) kT [72]
m Vo analytical interpolation of S%Eo% ksT
M Viair patchy particle pair potential kT
< Vbix.p;i  patch-patch potential ksT

m S’ the fitted switching function
= Spii.p;1  theswitching function of the effective patch-patch interaction of p; and pj1

S

m Veravity the external field caused by the gravity and cell boundary kT

M; dT Tew — T K
2 gravitational parameters

m €LJ a self-chosen value; it represents the steep potential of the capillary wall 500 ksT

M1 Am the mass difference between the solvent and the particle 1.04 pg

W Zheight gravitational height 0.13 o

.m solvent properties
O k1 Debye length of the lutidine/water (25/75vol%) mixture with ImM MgSO4 2.78 nm
..lm AB Bjerrum length 2.14 nm

m c composition of the binary liquid 25  vol% lutidine

N Ce critical luditine mass fraction of the water and lutidine binary mixture 0.287 [81]
N B non-universal scaling constant of the water lutidine solution without salt 0.765 et [162]
lm Csalt salt concentration, MgSO4 0.375 mM

Ry T. critical temperature of the binary lutidine/water mixture 33.68 °C  [81,170]
lm Tew phase separation temperature T.+0.08 K

W mMoLw the solvent correlation length of the binary liquid related to ¢ 0.198 nm [72]
5

m1 Table 3.7 : The parameters of the potentials, gravitational parameters and solvent properties.

NS

-
~

o
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3 A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment

symbol description value  unit Ref.
positional and orientational variables of the dipatch particle
rij the interparticle vector from particle 7 to j
r center-to-center distance between two particles, |r;;| o
D surface-surface distance between two spherical particles, 7 — o o
Diin surface-surface distance at which Visotropic (Dmin) = min(Visotropic) 0.0068 o
Dedqge—cdge  distance from the edge of the patch, to the edge of the other patch, when 05, 0; = 0°, 2hp+Dmin 0.035 o
Pik kth patch vector of particle %
0:,0; angle between patch vector and interparticle vector °
4 j patch vectors’ projected angle on the plane perpendicular to the interparticle vector °
Q; (4D) quaternion representation of the orientation of particle ¢
observables
P, probability of finding a chain of length
L, persistence length o
Ap the amplitude of the nth bending mode in the worm-like-chain model (Eq. 3.17) o [163,164]
L contour length of the chain (Eq. 3.17) o [163,164]

Table 3.9 : The parameters of the positional and orientational variables of the dipatch particle, and observables.
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ExTENDED WERTHEIM THEORY
PREDICTS THE ANOMALOUS CHAIN
LENGTH DISTRIBUTIONS OF

DIVALENT PATCHY PARTICLES UNDER

EXTREME CONFINEMENT

Colloidal patchy particles with divalent attractive interaction can self-assemble into lin-
ear polymer chains. Their equilibrium properties in 2D and 3D are well described by
Wertheim’s thermodynamic perturbation theory which predicts a well-defined exponen-
tially decaying equilibrium chain length distribution. In experimental realizations, due
to gravity, particles sediment to the bottom of the suspension forming a monolayer of
particles with a gravitational height smaller than the particle diameter. In accordance with
experiments, an anomalously high monomer concentration is observed in simulations
which is not well understood. To account for this observation, we interpret the poly-
merization as taking place in a highly confined quasi-2D plane and extend the Wertheim
thermodynamic perturbation theory by defining addition reactions constants as functions
of the chain length. We derive the theory, test it on simple square well potentials, and apply
it to the experimental case of synthetic colloidal patchy particles immersed in a binary
liquid mixture that are described by an accurate effective critical Casimir patchy particle
potential. The important interaction parameters entering the theory are explicitly com-
puted using the integral method in combination with Monte Carlo sampling. Without
any adjustable parameter, the predictions of the chain length distribution are in excellent
agreement with explicit simulations of self-assembling particles. We discuss generality of
the approach, and its application range.
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4 Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy
particles under extreme confinement

4.1 INTRODUCTION

Synthetic colloidal particles suspended in a near-critical binary liquid mixture (e.g. water and
lutidine), attract each other via a solvent mediated critical Casimir force. Through novel synthesis
routes these particles can be designed such that they form directed bonds between patches on
the surface of neighboring particles [63]. As such patchy particles simultaneously experience
thermal motion, their statistical behavior follows the Boltzmann distribution. Hence, they can
be viewed as mesoscopic analogs of (carbon) atoms, which can be directly observed via, e.g.,
confocal microscopy [57]. In this way, patchy particles can act as an experimental model system to
explore complex self-assembled structures analogous to molecular architectures, such as chains,
rings, and networks [38, 53, 54,57, 138].

To understand the self-assembly in patchy particle systems, one can of course resort to com-
puter simulations [43, 47,145, 146, 171], but an attractive alternative is to invoke statistical mechanics
which aids to a better theoretical understanding and prediction. One of the classical theories for
self-assembly of colloidal particles is the Wertheim thermodynamic perturbation theory (TPT)
[112-115], later reformulated as Statistical Associating Fluid Theory (SAFT) by Chapman et
al. [116]. Wertheim’s theory was originally intended as a molecular model [172], but also works
for mesoscopic particles. For divalent patchy particles in two and three dimensions, Wertheim
theory is able to predict the polymerization equilibrium in terms of for example the chain length
distribution, with the particle density and a pair bonding strength as the only input parameters
(140, 142, 143, 173-175]. For systems with average valencies larger than two, equilibrium properties
are predicted using Flory-Stockmayer’s polymer theory [40,176]. The location of the percolation
point, existence of empty liquids and equilibrium gels were predicted theoretically, confirmed in
simulation and validated experimentally [141,177-181].

However, when there is a mismatch in mass density of the particles and the suspending solvent,
particles will sediment to the bottom of the sample due to gravity. For sufficiently low particle
concentration (or volume fraction) and short gravitational height, the system is then confined to a
quasi-2D plane; making single layer structures possible. Direct application of Wertheim’s theory
for divalent particles in 2D or 3D will give an exponential distribution and a large discrepancy
between the experiments and theoretical prediction exists, in particular in the monomer (and
dimer) density [53,182]. In this work we address this discrepancy.

The origin of the discrepancy is that, under extreme confinement where spherical particles live
in a two-dimensional (z, y) —plane, the monomers are still able to rotate around their center-
of-mass (Fig. 4.1a). While some monomer orientations, e.g. when their patch points toward the
wall, are part of the orientational phase space, their patches are not available for bonding. This
renders the system fundamentally different compared to the standard 2D and 3D systems. As
a consequence, in order to predict thermodynamic properties, this excess rotational degree of
freedom needs to be taken into account [183]. For strong confinement due to gravity, there is an
additional anisotropy in the density along the direction perpendicular to the wall. Monomers
and small chains still have freedom to translate and rotate against gravity, while for long chains
only a small part of the chain (at the end) has this freedom as illustrated in Fig. 4.1b.

Note that directional assembly under extreme confinement not only occurs in model colloidal
patchy particle systems. In chemistry, there are many examples where confinement has been used
atits advantage. For example, nanoporous materials with pore shapes and sizes comparable to
the typical size of small molecules such as metal-organic-frameworks (MOFs), covalent organic
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4.1 Introduction

X

7= (z,y)

Figure 4.1 : Schematic illustration of possible patchy particle orientations in quasi-2D or under the
gravitational field confining the particles close to the wall (striped area). (a) In quasi-2D, i.e. with the
translation restricted to the (, y) —plane, chains cannot rotate around their center-of-mass against
the confining wall (red arrow with cross) while monomers can (green arrow without cross). (b) At
finite gravitational field, short chains have more freedom to translate against the gravitational force Iy
compared to long chains due to the stiffness of the bonds.

frameworks (COFs), zeolitic imidazolate frameworks (ZIFs) [184, 185], and nanopores composed
of for example carbon nanotubes [18¢]. Another example is that of self-assembled supramolecular
structures where the intermolecular non-covalent bonds determine the structure and chemical
function, and confinement affects the reactivity [187]. Even in the confined environment of the
living cell, where short-ranged, strongly directional hydrogen bonds provide a mode for molec-
ular assembly. Recently, the fabrication of nanoslits with Angstrém-scale separation became
possible opening an exciting field of nanofluidics that show unusual dynamics, kinetics, and
thermodynamics due to the extreme confinement [188-191]. However, a thorough theoretical
understanding of the effect of confinement on for example separation and phase transitions is
still lacking [192,193].

Such highly confined systems could be in principle described theoretically with TPT [194-19¢].
When solving TPT, one has to compute the interaction parameters in the theory. There are
two major routes to do this: via an "integral method" [197] or via classical density functional
theory (DFT) [198-200]. Solving TPT becomes increasingly complex for inhomogeneous systems
due to positional and orientational coupling [201]. While extremely powerful, the DFT-route
is currently not able to predict thermodynamic equilibrium for the Wertheim theory in highly
confined systems at low temperatures quantitatively. See e.g. Ref. [202], which shows excellent
predicted density distributions for tetrapatch particles at large wall separation, but for small wall
separations (between 1.18 — 3.02 times the particle diameter) shows discrepancies for three
different associating density functionals. In contrast, Ref. [203], following the integral route,
predicted densities accurately of spherical dipatch particles in a one-dimensional pore with a
width of the particle diameter.

In this paper we take a different approach. We interpret the rotational and translational
freedom against the gravitational field as an additional source of entropy which effectively re-
duces the reactivity. We separate the polymerization reactions of the species which gives rise to
adapted expressions for the chain length distributions in the Wertheim theory. By computing
the interaction parameter via the integral method with Monte Carlo (MC) sampling, we can
directly calculate the excess rotational and translational entropy and capture the corresponding
equilibrium reaction constants between the species.
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4 Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy
particles under extreme confinement

To validate our approach, we simulate patchy particles interacting via a simple square well
potential combined with difterent forms of orientation-dependent switching functions under
various gravitational strengths. Additionally, we apply the theory to the critical Casimir dipatch
colloid particle system, for which the chain length distribution was experimentally studied in
Ref. [53] and an accurate effective potential model was developed recently in Ref. [182]. The
extended Wertheim theory contains no fit parameters, and needs only two input parameters: the
species-dependent interaction parameters and the (particle) density p. We compare the predicted
distribution with the simulated ones, and find excellent quantitative agreement.

The paper is organized as follows: we start with a brief overview of the traditional Wertheim
theory that holds both for 2D and 3D. Then, we will introduce the adapted Wertheim theory
for the highly confined system in quasi-2D followed by the gravitationally confined systems.
Using the quasi-2D systems, we show how we can determine the excess rotational free energy of
the monomers and its effect on the chain length distribution. Next, we introduce the external
gravitational field which gives also short chains additional entropy and thus higher probability of
occurrence and show that the flexibility of the chain also plays a role on the distributions. This
effect too can be determined via the integral method giving excellent predictions of the chain
length distributions of divalent colloidal particles. Finally, we apply and validate the theory on
our accurate patchy particle model interacting via critical Casimir interactions under realistic
gravitational conditions. We end with concluding remarks, and a future outlook.

4.2 THEORY

4.2.1 FIRST ORDER THERMODYNAMIC PERTURBATION THEORY

Consider a 3D suspension of hard spherical particles or a 2D suspension of hard disks, in which
each particle is divalent, i.e dressed with two attractive patches, usually located at opposing
poles. Each patch or site is able to make a bond with a site on another particle, resulting in the
association of particles into linear chains. Moreover, each site is able to make only one single
bond, and each bond is equally likely to form. The aggregation of the monomers into larger
clusters can then be viewed as a set of addition reactions:

Al + Al — A2 (413_)
A+ Ay = A, (4.1b)
A1 + An—l - An (41C)

where A; stands for a monomer, A, for a dimer, and A,, for a chain composed of 7 monomers.
This type of reactivity is also known as isodesmic polymerization where each addition reaction of
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4.2 Theory

amonomer is associated with equal amount of free energy[204]. All reactions have an equilibrium
constant /K, defined through the law of mass action:

(4]
[Ax][An—1]
— pTL

Plﬂn—l7

K =

(4.2)

where [A,,] denotes the concentration of A,,, and p,, the chain density of 1-mers, i.e., chains of
length n.

For this situation one can apply Wertheim ’s first-order thermodynamic perturbation theory
(TPT1), and calculate the chain length probability distribution [112, 140]. The probability of
observing a non-occupied binding site is denoted as X. Then the number fraction of chains of
size 1 is on average given by

pn/p=X*(1—-X)""1 (4.3)

with p the particle density. This expression is rationalised as follows. A chain of size 7 has (n—1)
links. The probability of forming a link is 1 — X. The probability of forming rn — 1 links is thus
(1-X )"_1. However, as there are two unoccupied reactive sites, that accounts for a factor X 2,
So, for a monomer this reduces to p; = pX?2. To convince oneself that this is consistent, one
can add up all chain lengths, which would have to add up to the total density of particles:

p= ann = pX? Zn(l - X)m (4.4)

n

The geometric sum adds up to 1 /X 2 which is indeed consistent.
Next, using Eq. 4.3 and p; = pX 2 the equilibrium reaction constant K from Eq. 4.2 is

rewritten as:
1-X

-5 (4.5)

Solving for X gives

2
X=———-—.
1+v1+4Kp

Thus, given a density p as well as an equilibrium constant K, Eq. 4.3 together with Eq. 4.6
form a complete description of the system.

(4.6)

The slope of (the log of) the chain length distribution is:
Pn

n—1

=1-X=X,, (4.7)

Kp1:

where the latter equality defines the probability X, for binding or, equivalently, the fraction of
bound sites X.
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4 Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy
particles under extreme confinement

Traditionally, TPT computes the equilibrium constant K via the interaction parameter A
[197], as K = (M)A, with M the number of binding sites or patches per particle. The A-
parameter represents the (exponential of the) free energy difference of the bonding reaction with
respect to the hard particle reference state. It is calculated via an integration over space of the
Boltzmann weighted energy averaged over the allowed orientations of the particles, multiplied
by the probability of finding a particle at distance r, i.e. the radial distribution function g(r).
The interaction parameter A is then:

A= [ )1 000 o dr, (49

where r is the inter-particle vector of particle o and y with their orientations €2, and €2,
respectively, g(r) is the pair correlation function of the reference systems e.g. hard spheres,
f(r,Qq,2,) = exp AV (. 2) 1 j5 the Mayer function and V is the energy, and, finally,
0. o, denotes the orientational average of the Mayer function of particle o and 7y separated
at distance |r| = 7. This calculation of A is non-trivial, and depends on the geometry of the
setup.

4.2.2 WERTHEIM THEORY IN QUASI-2D

The treatment in Sec 4.2.1 assumes that all association reactions follow identical statistics. How-
ever, the situation is slightly different when confining the chain formation to a plane by e.g. two
walls at particle diameter separation (Fig. 4.1A). In principle, the above described TPT/SAFT
framework also applies in that case, except for one crucial difference in the assumption about
the reactivity. Upon binding of single particles (free monomers), excess rotational entropy is
lost. Therefore, the first reaction in the series where two free monomers react to form a dimer
(Eq. 4.9a) is fundamentally different from the others where only one free monomer reacts with
an existing cluster of size n > 1 (Eq. 4.9b-4.9¢):

A1 + Al - A2 (499.)
A+ Ay = Ay (4.9b)

K
A1 -+ An—l - An (49(:)

which leads to an increased monomer concentration as observed in the chain length distribution.
This type of polymerization can be thought of as cooperative where an initial nucleation of the
polymer is followed by elongation [205-207].

By classifying not just one type of bonding reaction, but two types of reactions (see Fig. 4.2),
with corresponding free energies and equilibrium constants, we derive the extended Wertheim
theory in quasi-2D. For the two addition reactions, the constants Ko and K are given by

K, = P2 and K = Pn

pi PPt

(4.10)
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A\

Figure 4.2 : Schematic illustration of the difference in sampling K5 and K in the left and right picture,
respectively. The freely rotating a-particle is radially sampled uniformly in the integration area V' (blue
shaded area) around the ~y-particle positioned at (0, 0). Due to symmetry we can reduce the sampling
volume to a hemispherical shell around the y-particle.

Rewriting the first equation gives
p2 = Kap? = p1(Kapy) (4.11)
while the next addition reaction yields
p3 = Kpip2 = p1(Kap1)(Kp1). (4.12)

Continuing along this line, for n > 2 it follows that

P = p1(Kap1)(Kpy)" 2. (4.13)

Note that the above equations express the densities of the chains. So adding all chain densities
multiplied by the chain lengths will give the imposed particle density p

p=pi+ Y npy=pi+ Y npi(Kapi)(Kpi)" 2. (4.14)

n=2 n=2

Taking out a factor K5/ K from the sum leads to

K
p=pit ooy n(Ep)" (415)

n=2

To make this a tractable sum, we add and subtract a term % p1, yielding
K K
p=p1 (1 - K2> + fgpl Z n(Kpy)" . (4.16)

When K, = K, the first term vanishes on the rhs of Eq. 4.16, recovering Eq. 4.4 in the original
TPT1. In this we recover the fraction/probability of bound sites X;, = 1 — X = K p; (see
Eq.4.7).
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4 Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy
particles under extreme confinement

The geometric sum can now be evaluated, giving

K, K, 1
A L T S 417
p p1< K>+Kp1(1_Kpl)2 (4.17)

Next we divide by p, and define the monomer fraction X; = p;/p, yielding

K, K, 1
1=X,(1—-— — X 418
(%)% 1= KpXy)? (419

Applying TPT1 amounts to solving Eq. 4.18 for the unknown monomer fraction X5, which
in turn sets the entire chain densities po, . . ., py, in Eq. 4.11-4.13. This requires knowledge of
the equilibrium constants K and K, that are directly proportional to A in Eq. 4.8, and follow
from evaluating the integral. The difference between the calculations of the A’s corresponding
to K and K, will be explained later in Sec. 4.3.4.

For the chain length probabilities P,,, the chain densities are normalized with the total chain
density p. = ) ,, Pn, which, using Eq. 4.13, results, analogous to Eq. 4.17, in

— (1= B2y Bel (4.19)
Pe = P1 K P1 KX .
so that:
Py = p1/pe
Py = ps/pe
P = pn/pe (4.20)

In this way, also the average chain length follows: L = " _, nP, = p/p..

4.2.3 WERTHEIM IN A GRAVITATIONAL FIELD

The above description for quasi-2D confinement also holds for an infinitely short gravitational
height, in which translation away from the confining wall is strongly suppressed. If the gravi-
tational field is not so strong, the particles are able to levitate on the order of the gravitational
height. In turn, this translational freedom affects both the reactivity of particle association, and
the free energy.
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4.2 Theory

Figure 4.3 : A schematic illustration of the calculation of Ko and K4 of particles under a gravitational
field. The conformations of the 7y-particle are sampled with MC allowing also translations along the
gravitational field in the z-direction.

As a consequence, there may now be multiple reaction constants:

Al + A1 g A2 (4213)
Ky

A1 + Al72 — Al,1 (421b)

A+ A = 4 (4.21¢)
K

where the reaction constants Ky # K; # Kj; # K may not be equal with each other
(see Fig. 4.3 for an illustration). Only beyond a certain chain length k (Eq. 4.21c-4.21d), the
equilibrium constant can be considered to settle.

The density p is written as outlined in the previous section:

p=" np,=pi+2p2+3ps+..+np,

n=1

k
+ (k+ Doy Ky KK A npt ([ K K™F
m=2
k n
=p1+ Z(TLP? H Km>
n=2 m=2
k
+ (H Km> ( > np?K"—k> (4.22)
m=2

n=k+1
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The second sum in this expression converges to:

Dot KT =pb Y (g K)"

n=k+1 n=k+1

pKpi(k+1—kKp)

4.23
1 (le _ 1)2 ( )
Similarly, the total chain density of the system is:
k n
pe= Y Pn=p +Z<p? 11 Kn>
n=1 n=2 m=2
k
+ (H Km> prE"E (4.24)
m=2 n=k+1
where the infinite sum converges to:
—" Kp
> K = ﬂ]fl_iKlpl (4.25)

n=k+1

Again, for given density p and reaction constants Ko, . . ., K} and K, the only unknown is
the monomer fraction X1 = p;/p(Eq. 4.22 and 4.23). As Eq. 4.22 is a higher order polynomial,
it should be (it is) solved numerically.

4.3 SIMULATION METHODS

4.3.1 GENERAL PATCHY PARTICLE PAIR POTENTIAL

To test our extension of TPT1 under strong confinement, we simulate several systems with a
variety of potentials, from simple toy systems to more accurate ones. The general expression
for the pair interaction Vi, between two patchy particles ¢ and j with orientation €2; and €2,
respectively, and separated by a distance 5, is

Vpair(rijv Q, Qj) = Vmp(rij) + min me,sz(rijv Q, Qj) (4.26)

1<k,1<n,

where Vi, denotes an isotropic repulsive potential and Vy,,, ., patch-patch attractive interac-
tion [182]. The position of each patch in the particle reference frame is given by n,, unit patch
vectors P, which point from the particle’s center to the center of the patch (Fig. 4.4). The min
function gives the minimum energy of the set of all possible patch-patch combinations and
mimics the fact that we restrict our particles to form only one bond per particle pair. For our
systems, the range and width of the patch interaction is relatively small, so that this condition is

easily fulfilled.
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Figure 4.4 : A schematic illustration of the interparticle vector r (dotted arrow), patch vectors p on each
particle (solid arrows), and the angles 6, and the patch size is defined by the angle 0,,

The attractive patch—patch potential is defined as [182]
Vouewa (Tigy Qs ) = Vaeer(135) S (€2:) 57 (;), (4.27)

where Vi, (mj )isan isotropic attractive potential. As the patches turn away from each other, the
patch-patch interaction becomes weaker as the area of overlap in between the patches decreases.
This anisotropy of the patch interactions is captured by the two switching functions S’ that are
each a function of the orientation 2 of each particle. See Ref. [182] for more details.

SQUARE WELL PAIR POTENTIAL

The simple toy systems employs a hard sphere with diameter o and a square well attraction
(Fig. 4.5). The hard sphere repulsive potential is

0  otherwise

Vas(r) = {OO r<7 (4.28)

together with a square well attraction:

e o<r<o+9¢

4.29
0 otherwise ( )

‘/;quarewell (T) - {

where § = 0.0050, and Be € [—20, —5] corresponding to a reduced temperature 7% =
—1/Be € [0.05,0.20] with 8 = 1/kgT the inverse temperature and kg the Boltzmann

constant. Note that this square well is rather narrow.
The switching function S’(£2) is defined as:

* conical, also known as the Kern-Frenkel potential [64, 208]:

1 0<0,

4.30
0 0>0, (430)

Skr(0,0,) = {
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Figure 4.5 : The toy model radial potential composed of the hard sphere repulsion Vig and square
well attraction Viquarewell. The inset shows the three switching functions Skr (conical, Eq. 4.30), Sy,
(smooth, Eq. 4.31), and Sy, (linear, Eq. 4.32).

* smooth [97]:

Ssm.(0,0,,) =

* orlinear:

Sin.(0,6,) = {

0

1—

1—cos(0p)

11— COS(WM)) <0,
0>0,

0/6, 60<6,
0>0,

(4.31)

(4.32)

where 0 is the angle between the interparticle vector r and the patch vector p, and 6, is the patch
size (Fig. 4.4). As shown in the inset in Fig. 4.5, the patch size 6, was varied from 10, 20, and 30°
for the Skr, Ssm. and Sy, switch functions, respectively.

THE CRITICAL CASIMIR PAIR POTENTIAL

The accurate effective critical Casimir potential of the dipatch particles has its own radial de-
pendence and switching function. In chapter 3, we optimized the potential based on physical
dimensions of the dipatch particles and theoretical critical Casimir potentials, to reproduce

chain length distributions and bending rigidities observed in experiment over a weak to strong
interaction range as function of the temperature [182]. The optimized parameters w=0.462,
Y=-0.09¢/nm?, and 0;;3:19.5" were used (Fig. 5.5).
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Figure 4.6 : The patchy particle radial potential for dipatch particles composed of Yukawa repulsion
Wukawa (Eq. 3.2) and critical Casimir attraction Vi (Eq. 3.6). The potential uses variables w=0.462,

Y=-0.09¢/nm?, and 9;’)&:19.5". The inset shows the switching functions thatare additionally a function
of dT'.

4.3.2 EXTERNAL POTENTIAL

The external potential Vi, at quasi-2D confinement prohibits the translation in the z-direction
via:

0 z2z=0

o 20 (4.33)

unasi—QD (Z) = {

which mimics two hard walls separated by the particle diameter (Fig. 4.1a).

The external gravitational potential is composed of two terms: a hard wall represented by a
steep Lennard-Jones potential V7, ; and a gravitational potential V; that depends, among other
things, on the mass of the particle. See the appendix B2 of Ref. [182] for more details. The
resulting total gravitational potential is:

VLJ(Z) z S Zeut
Vravi = 434
i) {vg<z> S (434
_ 4€LJ<(%)12 —(9)"+ i)’ 7S Zeut (4.35)
—Fyz —b, Z > Zews '

where €15 is an arbitrary (high) value set to 500kgT" and the gravitational force F is varied from
-3.85, to -7.70, and to -11.55 kgT'/o. These gravitational forces ranges from 0.5, 1.0, and 1.5
times the gravitational force of the dipatch particle of interest, respectively. Parameters b and
Zeut are chosen such that both the potential and the force are continuous at Zey.
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4.3.3 THE SYSTEM’S POTENTIAL ENERGY

The system’s potential energy is a sum over all pair potentials and the external field

N N
V= Z Vpair(rijv Q, Qj) + Z V;xt(zi) (4.36)

i<j %

where 7 and j run over the IV colloidal particles. The external potential Ve is either Viyasi—2p
or ‘/gravity'

4.3.4 THE CALCULATION OF A

The integral in Eq. 4.8 is performed using Monte Carlo integration via:

A=V {g)(f(r, 2 g, a.), (437)
where the average over the radial distribution function and Mayer function takes place in the
integration volume V' = f dr. The monomers are indicated by ¢ and the other reactant is the
y-particle. Each reaction constant K, in the polymerization is thus defined by the orientational
and positional distribution of the reactants and a separate computation of the corresponding
A,,, must be done.

Correct determination of the averages is key to calculate A. There are two options to measure
the average: (1) sample homogeneously over space multiplied with the probability distribution
or (2) sample from the correct distribution. This applies to both orientational (), (, aswellas

a8 8y

the translational ()|, parts of the integration. An advantage of Monte Carlo integration is that it
is capable of evaluating both averages simultaneously.

The a-particle, and the y-particle if it is unbound, are free monomers and their orientational
distribution is uniform. Giving them random orientations samples the distribution as option
(2). The y-particle’s z-positional distribution is described by the (Boltzmann distribution of
the) external potential Vi, and is sampled as option (2). If the y-particle is restricted to bound
configurations, its orientational and positional distributions are additionally described by the
pair potential. So instead of uniformly sampling orientational and positional space, its config-
urations are sampled from a chain with MC (Fig. 4.2b). Note that this MC sampling of the
~y-particle’s bonding configurations is independent of the MC sampling of A (Eq. 4.37) and
may be performed on-the-fly or beforehand. Thus, the contribution of the orientations €2, and
(2, on the average is incorporated using option (2).

The contribution of the inter-particle distance 7 on the average is sampled by placing the
a-particle randomly in a hemispherical shell of volume V" around the 7-particle. The radial
distribution function then gives the probability of finding the cv-particle at distance 7. Thus, the
contribution of the inter-particle distance on the average is incorporated using option (1).
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435 SIMULATION DETAILS
EXPLICIT MC SAMPLING OF CHAIN LENGTH DISTRIBUTIONS

Systems with the square well radial potential were simulated with MC for N =1000 divalent
particles in a cubic box of length 51.17¢ or 62.670 with periodic boundary conditions to resemble
adensityof p = 0.3820r0.255 N/ o2, respectively. Due to the extreme confinement forming a
monolayer of particles in the (, y/)-plane, the density is expressed in units of number of particles
per area in the (x, y)-plane. The particle densities were chosen to yield reasonable chain length
distributions, i.e. that probabilities for longer chain were nonzero. The systems with the critical
Casimir potential were taken from Ref. [53]. These simulations were done in a rectangular box
of dimensions 43.50 X 600 x 43.50 with periodic boundary conditions containing 666, or
1000 particles which corresponds to p = 0.255 or 0.382 N/ ?, respectively.

Starting from a random starting configuration MC moves were performed to equilibrate and
measure the systems as explained in detail in Ref. [182]. Depending on the interaction strength
and form of switch function, the equilibration consisted of 1 X 10* to 6 x 10* MC cycles and
the measurements of 5 X 10% to 2 x 10° MC cycles. Each MC cycle consists of 5 X 10° single
particle (95%) and cluster moves (5%).

The chain length distribution was measured from three independent simulations after each
MC cycle by counting the number N, of chains of length 12 and normalize by the total number of
chainsin the system yielding P, = N,,/ >, _, N,,. Irrespective of the use of the discontinuous
(square well) or continuous (critical Casimir) attractive potential, a bond is defined for a pair of

particles if VPz‘k,le (Tij7 Qi, Q]) < OkBT

MC saMPLING OF A

For the calculation of the volume average <>V in Eq. 4.37 we employ three loops. In the first
loop of 104 cycles, the configurations of the y-particle are sampled. For the quasi-2D system, a
monomer and dimer configuration are sufficient as there are only two reaction constants. For
the gravitational systems, equilibrated chains with length [ < 15 are decorrelated with 10°
single particle MC moves. The position and orientation of the hemi-sphere of the free site is
saved as the y-particle. In the second loop of 10? cycles, the new position of the a-particle is
set to 7', = 7, + r€where 1" is a random distance € [0, 0 + 0] and €'a random unit vector
pointing to the 7y hemi-sphere. The radial distribution function gives the probability of finding
the particles at positions 7, and 7%, in the hard particle reference, more details are in section
4.3.5. In the third loop of 10 cycles, the a-particle is given random orientations and the Mayer
function is calculated for the sampling of the (),. To improve the calculation of the average, the
ou-particle was given six sites instead of two. In total there are 2 X 6 possible patch combinations,
two from the 7y and six from the a-particle, leading to a simple correction of 1 /12. The final
step to calculate A is to multiply the (), with the volume of the hemispherical-shell V. The
loops may be repeated one to three times independently, depending on the convergence.

THE RADIAL DISTRIBUTION FUNCTION

The radial distribution function (RDF) of the hard sphere reference fluid is important for the
radial component of A. The quasi-2D system is radially isotropic in the (z, y)-plane, we thus
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may use a heuristic RDF gup (r) of hard disks [209, 210]. For the gravitationally confined systems,
MC simulations are performed to measure the radial distribution of hard spheres at various
densities and gravitational fields. The RDF was saved to a file and uses the distance between the
particles r = |72, and the z-coordinates of the particles z; and 25 as variables. A bin width of
dr = 0.050 and dz = 0.010 in combination with a simple flooring of the bin was sufficient
to determine the corresponding RDF during the A-calculation.

The reference hard particle diameter d when using the square well potential is simply d =
o as the attractive part of the potential is taken as the perturbation. While for the critical
Casimir patchy particle potential, we use the WCA separation to determine d = [ (1 —
exp(—/pvy))dr with vy being a smooth repulsive potential [111, 211]. In principle, the diame-
ter d is also a function of the orientation, as V. is a function of 7, €;, and €2, (Eq. 4.26)
. However, the attractive potential is rather narrow and to avoid a varying reference diam-
eter, the repulsive potential v in the WCA separation is taken at maximum attraction, i.e.
Voair = Wakawa () + Vo (7), and used as a constant.

NUMERICALLY SOLVING X

Given the density and the reaction constants, we determine the monomer fraction X; which
is bound to X; € [0, 1] using the so/ve-function from the Sym Py-Python package [212]. There
may be multiple (imaginary) solutions to the equations 4.18 or 4.22, and solutions containing a
very small imaginary part (Im(X;) < 107") were accepted. In case of multiple solutions for
X1, the smallest one was taken to solve the chain length distribution.

4.4 RESULTS AND DIscUSSION

To check the predictions of the extended Wertheim theory, we compare predicted and simulated
chain length distributions in quasi-2D of systems with a square well radial potential for the three
different switching function at a wide range of attractive strengths. The resulting simulated
(symbols) and predicted (solid lines) chain length distribution are shown in Fig. 4.7. The top
panel shows dipatch particles with a conical switch function S” = Skg with patch size 6,=10°
at p = 0.382N/0?, the middle panel S = S, with 6,=20°at p = 0.255N /02, and the
lower panela S” = S}, with 6,=30°at p = 0.382N/0?. The hallmark of all distribution is a
clear increased monomer density that does not follow the exponential decay of the sequential
polymerization, and is well described by the theory. All systems show excellent agreement be-
tween model predictions and simulations for all radial interaction strengths, forms of switching
function and densities.

These quasi-2D systems allow for determination of the associated excess rotational entropy
which can be directly determined from the ratio of chain probabilities. For the initial dimeriza-
tion, the two monomers lose an excess rotational entropy 2 X I and gain a bonding free energy
Fyona, making exp(—fB(Fyona — 2Fr0t)) = P2/ Py = Kp;. For the subsequent polymer-
ization steps, only one monomer loses F}o; and Fi,ona is gained, thus exp(—B(Fhona — Frot)) =
P3/P2 = Kpl

In Fig. 4.8, the resulting (exponents) of these free energies are collected for various patch
types and sizes, and interaction strength at p = 0.382N//0. For the conical potential with
S’ = Sk, the excess rotational entropy is independent of the interaction strength and only a
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Figure 4.7 : Predicted (solid lines) and simulated (symbols) chain length distributions of systems at various
interactions strength (/3¢ indicated by colors and symbols), switch function type S’ defined in Eq. 4.30-
4.32, and density p [N/ 02]. The inset shows the probabilities at small chain lengths.
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Figure 4.8 : The predicted (exponents of the) excess rotational entropy 8Fyot, and the bonding free
energy 3 Fyond of square well radial potentials with various switching functions in quasi-2D confined
at p = 0.382N/0?. The same color coding for 3¢ from Fig. 4.7 is used, while the symbols (S’ type)

and lines () are specified in the legend.

function of the patch size 6,,. In that case, the bonding probability is a purely geometrical factor
and, as expected, larger patch sizes contain less excess rotational entropy. Non-conical switch
functions, namely S, and Sy, , are dependent on the interaction strength. Here, stronger
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Figure 4.9 : Predicted (solid lines) and simulated (symbols) chain length distributions of systems with
S" = Sy and p=0.255 N/o2. The gravitational force is varied form f=0.5,1.0 and 1.5 times F; =
—7.70kgT /0. The same symbol/color coding of Fig. 4.7 is used.

interaction strengths lead to stiffer chains, and thus to more excess rotational entropy for the
monomers.

Fig. 4.9 shows simulated (symbols) and predicted (solid lines) chain length distribution of
the square well radial potentials with switching function S" = S, and 6,=20°at p =
0.255N /02 with a gravitational force of f=0.5,1.0 and 1.5 times F, = —7.70kgT"/o. Again,
very good agreement between predicted and simulated distributions is observed. Since the pre-
dictions included a varying K up to and including chain length | = 8 (Eq. 4.21b-4.21d), the
distributions show a gradual change of the initial slope of the exponential decay, manifesting
the gradual change of the reaction constant, as clearly shown in the insets. For f = 1.50, in
contrast, the distributions start to resemble more the quasi-2D systems and showing a sharp
transition K5 to K3 and K3 &~ K. This suggest that for higher gravitation one may consider
only smaller changes, and fewer reaction constants.

Now that we have shown that our extended Wertheim theory is able to incorporate the effects
of the gravitational field and the hard wall on the chain length distributions, we can show the
role of chain’s flexibility on its distribution at finite gravity. The binding rigidity is related to
excursions of the bending angle 6 due to the thermal fluctuations that are on the order of 1/ €.
The faster S” decays as function of 8 (see e.g. the insets of Fig. 4.5 and 5.5), the stiffer the bond.
When we select two systems with comparable K5 and K, i.e. Fio; and Fiond, in quasi-2D, their
distributions are similar (Fig. 4.10, solid lines). If these system are in a finite gravitational field
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Figure 4.11 : Predicted (solid lines) and simulated (symbols) chain length distributions of systems inter-
acting via critical Casimir interactions under a realistic gravitational field at p=0.255 and 0.382 N//o2.
Both graphs use the legend in the left graph.

instead, their statistics start to diverge significantly from each other (Fig. 4.10, dashed lines). We
assign this divergence to the flexibility of the chains: higher stiffness makes the alignment of the
particles with the wall more prominent and reduces their reactivity. This example emphasizes
the complexity of the orientation-position-dependent reactivity. As a results, there is no direct
mapping of the statistics in quasi-2D to finite gravitational strength.

Finally, we can apply the extended Wertheim theory to the experimentally relevant system
of patchy particles interacting via the critical Casimir force shown in Fig. 4.11. We can confirm
that the approximations done for the RDF, namely using the WCA separation of the repul-
sion and attraction, and fixing the hard sphere reference diameter d are sufficient. The theory
predicts the distribution at various interaction strengths well, except for the strong interaction
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strengths at d1" = 0.14 and 0.12K. At this region, the simulations at 7" = 0.14K and
p = 0.382N /o show significantly longer chain lengths than predicted due to the formation of
nematic phases that promote longer chains[53]. The current theory uses an isotropic distribution
in the (2, y) —plane and can thus not predict the enhanced reactivity due to the nematic phase.

Nematic phases additionally slow down the growth kinetics [53]. This is also where the simu-
lations have difficulty converging; at d1" = 0.12K at both densities, the chains in simulation
are still shorter than predicted. In addition, the slowdown of the growth kinetics may be caused
by the relatively narrow switching function in combination with the strong attraction of the
critical Casimir potential.

4.5 CONCLUSIONS

In this work we have extended the Wertheim first-order perturbation theory to describe self-
assembly of divalent particles under extreme confinement by introducing additional reaction
equilibrium constants that account for the reduction of rotational and translational entropy and
bond free energy of the polymerization. In the tested systems, the confinement to a monolayer
of particles is created by a gravitational field that leads to sub-diameter gravitational heights and
an anisotropy of particle density in the direction perpendicular to a wall.

Explicit calculation of these reaction constants from the interaction potential via the integral
method allowed for a prediction of the entire chain length distribution functions that agree
excellently with direct simulations of these systems. An essential part of the theory is the radial
distribution function of the reference hard particle. For finite gravity, this reference hard particle
distribution is computed explicitly, but only once for a certain density. The computation of the
interaction parameters A can then be done for all densities simultaneously.

In quasi-2D, we can separate the excess rotational entropy from the bonding free energy; the
results show that the patch form, size and interaction strength all play a role on the rotational
free energy for non-conical potentials, while for conical potentials only the patch size matters.
Additionally, we illustrate that there is no direct or straightforward mapping of the statistics
in quasi-2D onto the gravitational systems as the chain’s flexibility — thereby availability of the
bonds — defines its reactivity. This complex position-orientation-dependent reactivity can be
explicitly determined by our method.

As one might expect, due to the formation of nematic phases that are, in fact, also observed
in experiments, our approach breaks down. One of the assumptions, that the chains will form
isotropically in the (2, )-plane no longer holds. This situation is beyond the scope of the current
work.

The advantage of the approach is that it only needs an approximate form of a reference radial
distribution function to allow quantitative prediction of an entire range of densities and does
not rely on various forms of associating density functionals. Moreover, the approach allows
to understand and explain the anomalous small chain concentration of self-assembly under
sedimentation conditions.

Finally, we foresee that for other (molecular) self-assembling systems that are described by
Wertheim’s theory in bulk, our novel extended theory can be applied to describe the system’s
behavior in extreme confinement or under an external field, e.g. in nanoslits, as the theory is
validated not only for toy models but also for realistic potentials.
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ACTIVITY AFFECTS THE STABILITY,

DEFORMATION AND BREAKAGE
DYNAMICS OF COLLOIDAL
ARCHITECTURES

Living network architectures, such as the cytoskeleton, are characterized by continuous
energy injection, leading to rich but poorly understood non-equilibrium physics. There
is a need for a well-controlled (experimental) model system that allows basic insight into
such non-equilibrium processes. Activated self assembled colloidal architectures can fulfill
this role, as colloidal patchy particles can self-assemble into colloidal architectures such
as chains, rings and networks, while self-propelled colloidal particles can simultaneously
inject energy into the architecture, alter the dynamical behavior of the system, and cause
the self-assembled structures to deform and break. To gain insight, we conduct a numer-
ical investigation into the effect of introducing self-propelled colloids modeled as active
Brownian particles, into a self-assembling colloidal dispersion of dipatch and tripatch
particles. For the interaction potential, we use a previously designed model that accurately
can reproduce experimental colloidal self-assembly via the critical Casimir force [152].
Here, we focus primarily on the breakage dynamics of three archetypal substructures,
namely, dimers, chains, and rings. We find a rich response behavior to the introduction of
self-propelled particles, in which the activity can enhance as well as reduce the stability of
the architecture, deform the intact structures and alter the mechanisms of fragmentation.
We rationalize these finding in terms of the rate and mechanisms of breakage as function
of the direction and magnitude of the active force by separating the bond breakage process
into two stages: escaping the potential well and separation of the particles.
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INTRODUCTION

Structural architectures in living cells, such as the cytoskeleton in muscle or plant tissue, are
both viscoelastic and active, i.e. undergo continuous injection of energy, leading to remarkable
collective, non-equilibrium properties. Networks made of these living polymer filaments can be
viewed as active gels [104], a fascinating class of materials that show rich, responsive and functional
mechanical properties such as cell motility, replication and growth, and tissue repair [213, 214].
Therefore, such soft biological materials are of great fundamental and technological relevance.
Indeed, one of the promising directions in material science is to mimic driven biological systems in
the form of active (gel) architectures, where active particles provide continuous energy injection.
[21°]

While much research is being done in this area, both on biological materials [214, 216-220] as
well as simplified physical systems[131, 221-225], there is a need for well controlled model systems
that would allow us to investigate the fundamental physical properties of such driven materials
in a systematic way. In this work we investigate activated breakage of self-assembled colloidal
architectures.

Experimental breakthroughs in nanostructure assembly and active matter provide such pro-
totypical systems. For instance, novel synthesis routes enable the design of colloidal particles
surface-decorated with DNA [51, 52] or patches of a materials with different surface properties
compared to bulk enabling formation of directed bonds [35, 50, 63, 22¢]. Suspending the latter
type of patchy particles in a near-critical binary liquid mixture (e.g. water and lutidine), induces
attractive directed bonds between the patches on the surface of neighboring particles via a solvent
mediated critical Casimir force. These attractive bonds allow the controlled self-assembly into
complex structure such as chains, rings, and networks [35, 53, 54, 57, 135]. Experiencing thermal
motion, such patchy particles obey the Boltzmann distribution, and thus can be seen as meso-
scopic analogs of atoms. As they can be directly observed via, e.g., confocal microscopy, patchy
particles can act as an experimental model system to explore complex self-assembled colloidal
architectures analogous to their molecular counterparts [53,57, 58, 227].

At the same time, well-controlled self-propelling particle systems allow experimental control
of microscopic energy injection [228, 229]. Examples of these particles are gold coated Janus
particles that are self-propelled by catalysis of e.g. hydrogen peroxide, or colloids that are driven
via external electric, magnetic or optical fields. [122,133] These processes induce an active force
aligned along the particle orientation. As the particle is still free to rotate in the suspension, such
active particles” dynamics are often modeled as Active Brownian Particles (ABPs).

Here, we combine the two experimental breakthroughs in a simulation study to explore the
collective non-equilibrium response of colloidal architectures to the introduction of activity.
We aim to obtain microscopic insight into the two main effects of introducing activity: 1) how
does the active force lead to the breaking of colloidal chains? In particular, what effect does
activity have on the bond configurations before escaping the potential well, and how does activity
affect separating the particles into the bulk. Specifically, we look into the breakage mechanism, -
position and - rate. 2) how is the dynamics of a colloidal architecture, such as a ring or a network,
altered by such active forces. For that, we investigate global bending modes of rings.

To address these questions, we combine ABPs with patchy particles interacting via the critical
Casimir force in Brownian dynamics simulations. To make a connection to the experimental
realization of these systems, we would like to stay as close as possible to the experimental condi-

100



5.2 Methods

TPP

DP
Cy» =120 ) ¢ = 180
L

TPP particles have a 120° angle and DP particles a 180° angle between their patches.

4 5 4
QOQQ”%O@@O@@OQ

extending compressing sliding

Schematic illustrations of the DP particle decamer (including irreducible bond numbers) and
dimer. The orange colored particles are made active using three directions of active forces (orange arrows)
opposing the patch (black arrow), along the patch, perpendicular to the patch indicated as extending,
compressing or sliding forces, respectively.

tions. Therefore, we employ our accurate potential model for patchy particle systems that was
benchmarked on experiments [152].

We find that the response to activity yields a rich behavior, in which activity can both enhance
and reduce the stability of architecture, as well as alter the mechanism of fragmentation.

The paper is organized as follows. In the next section we introduce the systems, the potential
model, and simulation and analysis methods. In Sec. 5.3, we present and discuss the simulation
results for dimers, decamers and rings. We end with concluding remarks.

METHODS

SIMULATION DETAILS
PAaTcHY PARTICLE ARCHITECTURES

In this work, we investigate two types of self-assembled structures: chains, and rings. The chains
are composed of colloidal divalent patchy, or dipatch (DP), particles that have two attractive
patches at opposite sites of the particle (Fig. 5.1). We consider two chain lengths: dimers consisting
of just two, and decamers consisting of ten self-assembled DP particles. The outer two particles
in the chains are made active by considering self-propelled forces acting on the centers of the
particles in three qualitatively different ways, by compressing, extending, and sliding along the
patch-patch bond (see Fig. 5.7). In contrast to a dimer, for which the activity is directly mediated
by a single bond, the decamer can and must propagate the active force along the passive particles
in the chain. For analysis purposes, we give each bond in the decamer an index; due to symmetry,
there are only five irreducible bond numbers (Fig. 5.2).
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Schematic illustrations of the ring structures with four, illustrated with outward-facing forces,
or six, illustrated with inward-facing forces, TPP particles connected by five DP particles named T4D5
and T6DS, respectively. The orange colored particles are made active TPP particles with their force
directing towards a patch or between two patches creating outward-facing or inward-facing forces in the
ring, respectively.

The ring structures are symmetric and composed of four or six trigonal planar patchy (TPP)
particles connected via 5 or 15 DP particles. Figure illustrates the structures T4DS5 and
T6DS where the number after the T indicates the number of TPP particles, and after the D
the number of DP particles connecting the TPP particles in the chain. Also the bonds in the
rings are labeled, due to symmetry, there are only three or eight irreducible bond numbers for
the 5 and 15 DP particle-based rings, respectively. The square structures with four TPP particles
naturally contain an additional tension due to the mismatching bond angle of the TPP particle.
Figure shows how the self-propulsion forces acting on the TPP particle either point toward
the patch and creates outward-facing forces with respect to the ring, or between two patches
resulting in inward-facing forces with respect to the ring.

The ring simulations are performed in the presence of a gravitational potential that makes the
particles sediment to a horizontal surface with a gravitational height of 0.13 times the diameter
o similar to the typical experimental setup employing critical Casimir forces.

INTERACTION POTENTIAL

The effective anisotropic pair interaction between two patchy particles 7 and j with orientation
€2; and €2, respectively, and interparticle distance r; is given by

Vpair(ﬁj, €, Qj) = VYukawa(Tij) + VC(Tij)S(Qia Qj)7 (5.1)

where Vyykqwa denotes an isotropic repulsion and the second term denotes the relevant patch-
patch attraction between the particles ¢ and j, where we assume that each particle pair can only
form a single bond. This condition is easily fulfilled for our systems, as the range and width of
the patchy critical Casimir interaction is relatively small, and only one patch combination will
result in an effective attraction.
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5.2 Methods

A schematic illustration of the inter-particle vector r (dotted arrow), patch vectors p on each
particle (solid arrows), and the angles 6.
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The patchy particle radial potential for dipatch particles composed of Yukawa repulsion
Viukawa (Eq. 3.2) and critical Casimir attraction Vi (Eq. 3.6). The inset shows the switching functions
S’ that are additionally a function of d7".

The anisotropy of the patch interactions is captured by two switching functions S’ (#) thatare
in principle a function of the orientations 2 of both particles, but are simplified to a dependency
on the angles 6 of each particle

S(Q“Q]) = 1§I£];<?2{np S'(Qik)S'(Qj ) (52)
where the position of each patch in the particle reference frame is given by n,, unit patch vectors
P, which point from the particle’s center to the center of the patch as shown in Fig. 5.4. Each

particle pair can only form one bond which is mimicked by the max function in .S resulting in
the minimum attractive energy of the set of all possible patch-patch combinations in Eq.

Figure shows the optimized patchy particle potential that is capable of reproducing the
experimental system of DP particles. The exact functional forms of the Yukawa electrostatic re-
pulsion, critical Casimir attraction, and the switching functions S’ can be found in the Appendix

of Chapter 3 and Ref. [182] Appendix B.
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5 Activity affects the stability, deformation and breakage dynamics of colloidal architectures

The total potential energy of the system is the sum of all patchy particle pair interactions, and
an external gravitational potential Vi (2;)

N N
V= Vouir(rij. 2, ) + > Ve (1) (53)

1<j i

where ¢ and j run over the IV colloidal particles, and z is the vertical distance to the surface.
Details about Vi (#;) can be found in Ref. [1:2] section IL.D and Appendix B of Chapter .

EQuaTIiOoNs oF MoTION

See Sec. 7. for a detailed description of the equation of motion of (active) Brownian particles.
The translational and rotational diffusion constant are D =0.0034 02 /s, Dg=0.05 rad® /s and
as experimentally measured for dipatch particles with diameter o = 3.2pm [54, 5¢].

MonNTE CARLO

The BMD simulations are started from configurations that are equilibrated and decorrelated.
To create this collection of starting configurations, we use Monte Carlo (MC) [152]. For a given
colloidal architecture, only single particle MC moves are performed and those MC steps that lead
to bond breakage, i.e. Fpai > 0, are rejected. In the single particle move, a randomly selected
particle is randomly rotated (50% of the MC steps) around their center of mass with a randomly
selected rotation magnitude dq € [0, Onax] OF randomly translated with a magnitude dr €
[0, Tmax]- When the gravitational potential is applied, the z-direction of the random translation
is divided by 10 to prevent placing the particle inside the wall or against the gravitational field

which leads to unfavorable energies.

ANALYSIS
BoND BREAKAGE PROCESS

Starting from equilibrated structures, we conducted straightforward, "brute force” BMD simu-
lations to analyze bond breakage. Due to the random fluctuations or with the aid of the active
force, a bonded particle pair can escape its attractive well. The particle pair either rebinds going
back into the attractive well, or increases their interparticle distance to r = 1.50 at which we
assume the probability of rebinding is sufficiently low [220]. Only the latter criterion is considered
a true bond breakage upon which the simulation is halted.

To analyze the bond breakage mechanism and lifetime, we separate the bond phase space into
four regions indicating a strongly bound (1), weakly bound (2), diftusive (3), and truly broken
(4) state as illustrated in Fig. 5.0. We define these four regions using the energy £y thatis a
parameter between zero and one:

E}\ = VC(T/\) : S/Ec,min (54)

where Vi - S is the attractive (Casimir) part of the pair potential, and E¢ iy is the value of
the attractive part of Ein = Vpair (Tmin, S = 1) which is the minimum of the pair potential
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Figure 5.6 : Contour map of the bond breakage reaction coordinate A(r, .S). An example trajectory of a
breaking bond is shown with the white solid line for which its bond breakage mechanism is measured
when crossing 23 as highlighted by the black circle. The four states strongly bound (1), weakly bound
(2), free diffusion (3), and fully broken (4) as defined in Table 5.1.

(see Eq. 5.1), with 7, the corresponding interparticle distance. The distance parameter 1y =
max(7, Tmin) to prevent the A\-boundaries to lie in the repulsive part of the potential. See Table
5.1 for the criteria that define the four regions.

A region energy distance

1 strongly bound FE, <0.70

2 weakly bound 0.70 < E, <0.01

3 diffusive E, >0.01

4 truly broken ry > 1.500

Table 5.1 : The energy (E in Eq. 5.4) and distance criteria defining the four region as depicted in Fig. 5.6.

We used the label A as a (fictitious) order parameter that determines whether a configuration is
inside a certain region, and, more importantly, when crossing a boundary between these regions.
We denote the boundary (a.k.a. as an interface) between region ¢ and j as A;;. Initiated from
the strongly bound region 1, trajectories can only escape via region 2 and 3 to finally reach
region 4, crossing the interface A3y, after which the bond is considered truly broken and the
simulation is halted. This strict condition is necessary, as even after escaping the attractive well and
entering region 3, the particles diffuse around and actually have a significant chance of rebinding.
Counting trajectories that enter region 3 as being broken thus would severely underestimate
the lifetime. However, since the time to diffuse from the particles from the Aa3- to the Ags-
interface is very dependent on the location of A3y, the bond lifetime 7 itself is measured as the
last timestamp the trajectory crossed the Ao3-interface.

The lifetime of the bond is strongly related to the rate constant for the breaking process.
Considering bond-breaking as a two state dissociation process, we can express the corresponding
rate as the inverse of the bonds’ lifetime (a.k.a. residence time) kp,eax = 1/7. An alternative
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5 Activity affects the stability, deformation and breakage dynamics of colloidal architectures

way to compute the rate constant for breakage is to compute the flux for trajectories starting in
the strongly bound state to escape: [137]

kvreax = iy P(A23|A12) Paep (5.5)

where @, is the (effective positive) flux though the As-interface, P(Ao3|A12) is the condi-
tional probability of escaping the potential well, i.e. reaching As3, given that the system comes
from region 1, and P}, is the probability the particles successfully separate, i.e. reaching As4.
Respectively, they are defined as:

N
B, = w2 (5.6)
Tsim
N
P(Ag3|A12) = ]\}_}3 (5.7)
>\12
N2a4
Pse = 5.8
P Nlad ( )

where T4, is the duration of the simulation, Ny,, the number of positive crossings through
the A5 interface, i.e. from region 1 toward 2, and [Ny _,3(/Na_,4) is the number of times region
3(4) is reached given that you came from 1(2), or, in other words, the number of first crossings
of A23(A34) subsequent to Aj2(A23). One can quickly verify that the breakage rate is then
kvreak = Nosa/Tsim = 1/7, as expected. (see Ref. [137] for a discussion)

Measuring the quantities in Eq. 5.5-5.8 per bond provides microscopic insight into the in-
fluence of activation on the breakage dynamics. The first stage of bond breakage, i.c. escaping
the potential well, is defined by ®esc = P, P(A23]|A12) which expresses the rate at which
the particles escape their potential well. The second stage of bond breakage, i.e. successfully
separating the particles to 7 = 1.50, is expressed as the probability Py,. Separating the reaction
coordinate into two stages helps to identify the role of activity as stage I is mainly defined by the
shape and depth of the pair potential and buckling of the bond, and stage II by for example the
position of the bond in the structure or crowding effects by other particles.

As patchy particles have rotational and translational degrees of freedom, one can characterize
the mechanism of breaking a critical Casimir induced bond between two particles as a combi-
nation a two qualitatively different limiting cases. Figure 5.7 schematically illustrates the two
breakage mechanisms along the (7, S)-reaction coordinate: 1) a pure radial mechanism, where
particles move away from each other along the bond vector, keeps the particles’ patches aligned
and S = 1. And 2) a purely rotational, angular mechanism in which particles rotate along each
other perpendicular to the bond vector, until the overlap area between the patches is vanishing,
makes S = 0. In practice, both routes are available to the particles and the breakage mechanism
is naturally a combination of these limiting routes. Accordingly, we can follow the breakage
mechanism along the value of S as it can distinguish between radial (S = 1) or angular (S = 0)
trajectories.

For analyzing the breakage mechanism, we again use the separation of the two stages of break-
age. In the first stage, the system escapes the potential well and reaches the Ao3-interface for the
first time at a particular S-value, which we denote Spech. These Sinecn-values are counted as
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bound radial breakage
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broken
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angular breakage @ @
@@(S close to 0)

Two distinct breakage mechanisms illustrated along the (7, S)-reaction coordinate. Starting
from the bound state (top left corner), the bond breaks via the radial mechanism keeping the patches
aligned (.S-value close to 1), or via the angular mechanism where the patches rotate away (S-value close
to 0). Both routes may lead to the broken state or rebind back into the bound state.

11—3(Smech) which” probability distribution is given by Eq. 5.9. Note that the counts N;_, ;
from Eq. 5.7-5 ¢ equal the sum over all Syecn-valuesas N, ; = >~ ¢ ni,;(.S). Continuing the
simulation, the trajectory either rebinds, adding a count to 13,1 (Smech ), or breaks, adding a
count to M2_s4 (Smecn ). Then, noting that 71 ,3(S) = na_,4(S) + n3_1(.5), the probability

of breaking at given S is written in Eq. . Only upon true breakage, the last 7254 (Smecn )
is counted and normalized as the breakage mechanism Pp,ecn in Eq. . One can see that the
breakage mechanism also follows from Prect (S) = Pi—,3(S) Pa—4(S) Py where P} is the
normalization.
ni3 (S )
Pi_3(S) = 9
1%3( ) Nl (5 )
n2—>4( )
P. S) = 5.10
2—>4( ) N1ss (S) ( )
S
Prean(S) = na-a(S) (5.11)
N2—>4

By only considering the values of S at Ay3 under the condition the system came from region
1, Ag3-recrossing events are filtered out of the breakage mechanism analysis. Recrossing events,
as observed for the example trajectory in Fig. 5.¢ where the trajectory recrosses Aa3 at S = 0.1
after escaping the well at S ~ 0.3, are mainly determined by free diffusion and do not contain
information on how the system escaped the potential well.

Many of the observables, e.g. the bond lifetime, show an exponential decay over time. There-
fore, we report averages with a 95% confidence interval of the mean calculated using block
averaging. As the start configurations are equilibrated before the measurements start, and the
breakage itself is a rare event, all breakage events are uncorrelated and we take blocks of minimal
100 simulations. [231, 237]
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histogram of S (Eq.

) of a passive dimer (red solid line) and active dimers with F'a =100 kpT'/o

and force directions: extending, compressing, and sliding. The measurements are taken in (a) the full
bonding volume, i.e. region 1 + 2, and (b) when crossing (positively and negatively) the Ag3-interface.
There are 50 bins for S € [0.0, 1.0]. As the Aog-interface has minimally a value of S = 0.01 (at
E = 0.01), the first bin in (b) is approximately twice as low as the second bin.
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, respectively. (a-c) Passive dimers at d71'=0.12-0.22 K. (d-i) Active dimers at d7'=0.12 (d-f) and
0.22K (g-i) with extending, compressing, and sliding active forces at F'a=100 kp7'/o. Each row shows

it legend on the right.

REsuLTs AND DiscussioN

In this section, we present and discuss the numerical simulations. We start with the simplest

colloidal architectures in section
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extending compressing sliding

S.SHC NGO

For a configuration at A3, its probability to rebind depends on the overlap between the
bonding volume (purple region between patches), and the positional density distribution (orange
halo around the particles) which’ probability is amplified in the direction of the active force(orange
arrow). This is a schematic representation and not based on simulations. [233] See Fig. 5.9 for measured
Ps,4(S) = 1 — Prepind(:9) at the various force directions.

tion via the temperature d7". The activity is tuned by the force magnitude [ and direction (see
Methods and Fig. 5.7).

In section , we increase the complexity of the architectures toward rings, and evaluate the
influence on strained and relaxed rings of different sizes. Here we include the gravitational field
to mimic the experimental setup.

DiMER

Before the bond breaks, activity naturally affects the exploration of phase space and we show this
effect with probability histograms in Fig. 5 2. Measurements are taken at each timestep during
BMD simulations in a volume or isosurface of interest. For the effect on the bond orientation
of the dimer, we measure .S inside the bonding volume, i.e. region 1 and 2, at which the bond
is intact (Fig. 5.%a) and we observe that activity does not significantly buckle the bond as the
histogram of S of passive and active dimers overlap.

The histogram shown in Fig. 5 ¢b shows the distribution of the S-values at crossing the
Aaz-interface positively and negatively. In equilibrium, this histogram, if taken as — In(P),
represents the free energy in units of k7" and we observe that bonds mostly sample values with
6 > 0°. Each particle in the bond can rotate around the interparticle vector to maintain S’(6)
and r at a constant value (Fig. 5.4), resulting in a bonding volume proportional to sin 6. Such
behavior leads to an entropic contribution to the free energy, and configurations with 6 > 0°
are found to be more prevalent.

Activity has a specifically large effect where the gradient of the potential is comparable or
smaller than the active force, such as when crossing Aa3 (Fig. 5.¢b). Under extending forces, the
probability density shift to higher S-values compared to the passive case. This has two reasons:
First, the particles start out in the strongly bound region 1 where S'is close to one and activity
pulls the particles apart keeping S high. Second, recrossing Aoz at low S-values will be suppressed
for extending forces as they direct away from the Ao3-interface. Both arguments are indirectly
measured using P;_, 3 and P,_, 4 next. Conversely, under compressing forces, the active forces’
direction is reversed and thus more density is observed at low S-values.

Breakage Mechanism. Figure 5.9 presents the probability distributions P _,5(.5), Po—4(S5)
and Ppecn (S) (Eq. 5.9-5.11) for passive and active dimers. For the passive case, the attraction
strength is varied between d71" = 0.12-0.22K. For the active case, the active force magnitude
is set to F'4=100 kg7 /o and the dimers experience extending, compressing and sliding force
directions at d1'=0.12 and 0.22K
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color coding indicates the dT", similar to Fig. 5.5, and the line coding is shown in figure on the right.

Starting with the passive case, Fig. 5. 9a shows that to reach Ao, the patches rotate significantly
more in the strong attraction potential (d1" = 0.12K) compared to the weak attraction potential
(dT" = 0.22K). At the same time, the conditional probability to break P,_,4(.5) peaks around
S & 0, ie. the patches are rotated away, decreases quickly, and plateaus at a low value for
S > 0.5 (Fig. 5.9b). The peak at low § is reduced for stronger attraction. Since P;_,3(.5)
and Py_,4(.S) show opposing trends, the effect of d7" on the breaking mechanism is reduced
(Fig. 5.9¢). Nevertheless, the majority of bond breakage events clearly occur via the angular
mechanisms. The maximum of Ppec, (\S) shifts from Spax &= 0.2 to Spax = 0.1 with
increasing attraction strength.

Although the translational and rotational diffusion constants have no influence on equilib-
rium distributions, they do play a critical role in bond breakage dynamics as demonstrated in
Refs. [14¢] and [234]. Hence, the introduction of active particles that experience directional en-
hanced translation is expected to significantly impact the breakage mechanism. As hypothesized
above, when using extending forces, P _,3 (S) shows a shift toward high S-values (Fig. 5.9d,g),
indicating radial breakage, as the active force pulls the particles from high S in region 1 toward
the Aa3-interface. Subsequently, the probability of successfully separating the particles increases
for all values of S (Fig. 5.9¢,h), as extending forces are directed away from the bonding volume
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(see Fig. for a schematic illustration). The breakage mechanism probability distribution in
Fig. 5.9f,i shows that for extending forces both angular and radial routes are likely, with only a
small bias toward smaller .S, i.e. angular breakage. In contrast, for compressing forces, P _,3(5)
shows a shift toward lower S-values, indicating angular breakage, with respect to the passive case.
Moreover, the corresponding P»_,4(S) indicates that configurations with S > 0.5 are com-
pletely blocked from particle separation as the compressing active force restores the particles back
into the bound state (Fig. ). The breakage mechanism probability distribution Pryech (S)
shows now a significant shift toward lower S-values indicating that all bonds must break via the
angular route. Finally, sliding forces result in a distribution P;_,3 similar to that of compressing
forces. Thus, one would expect also a shift of Ppyecn (S) toward and angular breakage. However,
the probability to separate Ps_,4(S) is relatively (compared to passive case) more affected for
S > 0.5. This results in the sliding forces showing a breakage mechanism probability Pyecn (S)
similar to the passive dimers, even if the two stages of breakage are very different from passive
breakage.

This analysis clearly indicates that the breakage mechanism of dimers is strongly affected by the
separation probability P,_, 4, both in the passive or active case, and at strong or weak interaction
strength.

Bond Lifetime. Fig. a-d presents, respectively, the measured bond lifetimes in the simula-
tion Ty, the ratio of the active and passive rate constants ky, ..., the flux out of the potential
well (stage I) ®eqc, and the separation probability P, of stage II. Naturally, in the passive case,
the bond lifetimes 7y, depend strongly on d7', as a shallower potential leads to exponentially
faster breakage (Fig. a) [235, 23¢]. Under the influence of activity, Ty, can either be enhanced
or suppressed depending on the direction of the applied force.

As expected, only stage I of breakage (Fig. c), i.e. the rate of escaping the potential well,
depends on the potential depth as determined by d1". Compressing and extending forces, re-
spectively, exponentially decrease and increase the rate constant of stage I proportional to the
magnitude of F5. Because in the dimer the particles are bound with directed patches, forming a
relatively stiff bond, and which maintain the active forces at a =180° angle, the effect of activity
inside the potential well of the dimer resembles an equilibrium problem in an effective tilted po-
tential along the direction of 7 [237]. This effect can be qualitatively captured with an Arrhenius
type expression

kg (Fa) = ve PV theFadr (5.12)

with o« = —1, 1 for compressing and extending forces, respectively, and Ar the distance from
the potential minimum to the barrier location. As this distance is roughly Ar ~ 0.0070,
the expected increase/decrease is roughly a factor of 2 for F4 = 100, in agreement with the
observation (see Fig. 5.11c). Note that this analysis does not hold for sliding force case where the
force direction is not aligned with the interparticle distance vector.

The effect of activity on stage I of breakage, i.e. successful particle separation, was qualitatively
explained using Fig. and quantitatively measured in Fig. 5.9. Figure 5.11d confirms that
extending and sliding forces enhance the probability of separation P, while compression
reduces it. Additionally, Py, does not show a potential depth dependency.

Considering that activity can be viewed as an effective tilt on the potential, and Py, is dT'
independent, the contribution of the potential depth can be separated from the activity by
dividing the breakage rate constant Kpeax by the rate constant at zero activity, as shown in

111



5 Activity affects the stability, deformation and breakage dynamics of colloidal architectures

b

10

Ut

[
@ 2 o 5 i
Qo 3 —— passive 0 0

1 0 1 0
S S S
Deformations in decamers at d1" = 0.12K. The probability histogram of S (Eqn. 5.2) of
a passive chain (red solid line) and active chain with F)a =100 kgT'/o (dots) and the force directions:

extending (a), compressing (b), and sliding (c). The measurement is taken at region 1 and 2. The colored
dots indicate the reduced bond number as shown in the legend.

Fig. 5 11b as kf;,....- Consequently, for the active dimer, activity with the same magnitude and
direction have an equivalent effect on the breakage rate.

DEeEcaMER

In contrast to a dimer, a longer chain can transmit stresses resulting from active forces exerted
on its outer particles through the other bonds in the chain (Fig. 5.2). Although the breakage
mechanism of the bonds in decamers remains qualitatively similar to that of dimers (see Fig.

in Appendix ), activity has a significant impact on the dynamics and conformational distri-
butions of the chain, leading to opposing effects in bond lifetime compared to a dimer. [221]

Before any bond has broken, activity already affects the bond distributions, causing the chain
to buckle or straighten.[235] Fig. shows the probability’s distribution of S for each bond in
a passive chain and active chains with Fiy = 100 kgT'/o at dT" = 0.12K. In the freely moving
passive chain, all nine bonds are statistically identical, in line with Boltzmann’s equipartition
theorem, and appear as a single (red) curve.

Passive Chain. Although the bonds are energetically identical, both breakage stages show an
enhancement at the passive chain’s end, leading to bond 1 breaking twice as likely compared to
the bonds in the center, as the breakage rate constant of bond 1 is approximately twice as high as
those of bond 2-5 (see Fig. ¢). The breakage profile of passive semi-flexible chains has been
shown to depend on the non-linearity (i.e. anharmonicity) of the interaction potential, stiffness
of the chain, and ratio between bending relaxation times and bond lifetime. [239-243] The
critical Casimir patchy particle chains, that have a persistence length between 250-150 particles
for d1'=0.12-0.22K (see Fig. 11 in Ref. [187]), are relatively stiff and thus show end-of-chain
breakage.

Extending forces. When applying extending forces to the decamer, the chain straightens,
rendering lower S-values less likely (as can be observed in Fig. a). Simultaneously, the bonds
at the center (bonds 2-5) are more stabilized compared to bonds at the end (bond 1), evidenced
by the probability distribution of the bond energy — In P(E,,;,) (see Fig. in Appendix

). This stabilization impacts stage I of breakage with F'4=100, and to a lesser extent with
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F4 = 10: bond 2 to S diffuse slower out of the well compared to the passive chain as shown in
Fig. aand b, respectively.

The stabilization of the chain and lowering of the rate of stage I would predict an increased
lifetime. However, Fig. indicates 7, exponentially decreases with the extending force
magnitude F4. Itis the increase of stage II probability P, that is tripled when Fy = 100,
that is primarily responsible for the decrease in the decamer’s lifetime (Fig. c,d). [244] The
increase of the stage II probability is bond number independent, leaving the breakage profile in
Fig. e,f largely unaffected compared to the passive decamer.

Compressing and Sliding Forces. Under compressing and sliding forces, the chain primar-
ily buckles around the center and the second bond, respectively, as the distributions of .S in
Fig. b,c indicate.[2+5] The buckling leads to a strong destabilization of the chain, which in
turn increases the rate of stage I at high activity (see Fig. b). At low activity (Fig. a), the
effect on stage I is not as strong. The particle separation probability (stage II) is less severely
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impacted compared to stage I (Fig. a-d). Thus, the lowering of the (free) energy barrier of
stage I is the main driving force of breakage and largely explains the breakage rate profile in
Fig. e,f.

Weak interaction strength. When the attraction strength is weak (d1'=0.22K), the architecture
is not able to adjust its shape and mediate the effect of activity. These systems break fast and
often near the active force. Data not shown.

RING STRUCTURES

Complex networks or gels, in contrast to freely moving chains, can contain tension even when
energy minimized at zero temperature. The simplest architecture for which such tension can
occur, is a ring structures. In our assessment, we consider two types of rings: those with tension,
composed of four TPP particles, and those without tension, composed of six TPP particles (see
Fig. 5.3). Additionally, we vary the length of the DP-chain from 5 to 15 particles, which can
mediate the tension within the rings. We set the critical Casimir temperature to d1" = 0.16 K,
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The ring structures’ lifetime Ty at d7'=0.16K.

striking a balance between ensuring a reasonable simulation length until breakage and allowing
the structures to remain intact long enough to observe the effects of activity on the deformations
in the architectures.

The average bond lifetime of the rings is presented in Fig. . As anticipated, the presence of
tension reduces the lifetime of the structures, and larger number of bonds leads breakage. The
lifetimes Ty, of the structures follow the order T4D5 < T4D15 < T6D15 < T6D5. For all
structures and both directions of active forces, the lifetime of the rings initially increases with
increasing active force, but eventually decreases.

We use the T6D15 structure for an in-depth analysis of how the deformations (Fig. ) and
breakage rate are affected by the active forces (Fig. ). This structure does not suffer from the
misalignment of the TPP-DP bond nor from a limited number of bonds that can mediate the
activity.

Passive Rings. While each bond is energetically equal, not all bonds are conformationally
equal. The filled red circles in Fig. indicate the TPP-DP bond (bond 1) in the ring visits
lower values of S compared to bond 2-8 (Fig. ). The rate constant of stage I around bond 1,
as well as stage II, are enhanced, making it the most preferred breakage position (Fig. ).

Inward-Facing Forces. Under inward-facing forces, the dipatch particle chains buckle, as
follows from the strong shift of the black curves in Fig. 5.15a) toward lower .S values. Remarkably,
the buckling is distributed evenly over the bonds. The uniform buckling makes all bonds more
prone to escape the potential well (see Fig. a). Stage IT is affected differently, depending the
magnitude of force (Fig. c). Atlow force (F'4 = 10), only bond 1 is blocked from particle
separation, similar to what is observed in the decamer under compressing forces. Figure e
shows this blocking leads to a flat breakage rate (and profile). At high force (F'4 = 100), due to
a leverage effect of the activity, the bonds close to the active force (bond 1-4) shows enhancement
of particle separation, while bond 5-8 are suppressed. Overall it leads to enhanced breakage close
to the focal point of the active force.

Outward-Facing Forces. Under outward-facing forces, the dipatch particle chains show a minor
stabilization by evenly straightening the bonds,as indicated by the shift of the black curves to
higher S values in Fig. 5.15b). Both large and small forces marginally suppress the first stage, the
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potential escape (see Fig. 5.17a), but have a more significant effect on the stage II, the probability
Piep. All bonds show enhanced probability of particle separation proportional to the force
magnitude (Fig. c). For outward-facing forces, the second stage of bond breakage results in
an enhancement of the breakage rate that is flat at small active force and is more pronounced at
bonds close to the center of activity (i.e, low bond number) at large force.

Tension. Next, we will compare the T4D15 and T6DIS structures to identify the role of the
misaligned TPP-DP bond on the response of activity using Fig.

In the passive case and at low activity, we observe that the tension is evenly distributed over all
bonds as T6D15 and T4D15 show the same shape of stage I and stage II versus bond number.
However, T4D1S5 is faster in both stages.

At high activity, in the first stage with outward-facing forces, all bonds in T6DIS5 straighten
and strengthen, while for T4D15, the straightening of the chain between the active particles
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expose the misalignment of the TPP-DP bond making it prone to break shown in Fig. b
where @ at bond 1-2 is higher and bond 3-8 and lower than the passive case. [24¢] Both
structures shows similar increased stage II throughout all the bonds. Using inward-facing forces,
bond 1, and 4 to 6 are faster in stage 1 in T4D15. However, in both structures, Py, (stage II)
of bond 4-8 is below 1% and the differences of stage I cannot be observed in the breakage rate
Ebreak- Thus, for both force directions, the largest difference is observed at bond 1, which indeed
is the misaligned TPP-DP bond.

CONCLUSIONS

In this work we have given microscopic insight into the effect of activity, modeled as active patchy
Brownian particles connected to various patchy particle architectures: dimers, decamers, and
rings. To do so, we separated the contribution on the two stages of breakage: the rate of escaping
the pair potential well (stage I) and the probability of successful particle separation (stage IT). We
unraveled the observed behavior in the bond breakage rate, breakage mechanism, and breakage
profile and identify at which stage the influence of activity dominates.

Table 5.2 summarizes the effects of small and large active forces on dimers and decamers with
F’ directions: extending, compressing and sliding.

For the dimers, the effect of activity on the first stage of bond breakage resembles an equilib-
rium problem in an effective tilted potential along the direction of 7, and the second stage of
bond breakage was potential depth independent. Therefore, the effect of activity on the bonds’
lifetime is roughly a function of the magnitude and direction of the active force only. When
active forces point toward or away from the bonding volume, the bond life time 7 increases or
decreases, respectively.

The dimers and decamers showed qualitatively similar breakage mechanisms in both passive
and active systems. Under extending (compressing) forces, the mechanism shifted to a radial
(angular) route which is explained by the direction of the active force pointing away (toward)
from the bonding volume. The sliding mechanism lies in between these two extremes.

The active decamers showed under all force directions and magnitudes reduced or comparable
lifetimes compared to passive decamers. Extending forces straighten the chain, energetically
stabilize the bonds, and suppress the rate constant of stage I. However, the chains still show
an exponentially decaying lifetime proportional to the magnitude of the active force because
simultaneously stage II is enhanced. For sliding and large compressing forces, the chains buckle
and weaken their bonds leading to breakage peaked around the highest curvature in the chain.
The weakened bond strength (stage I) dominates in explaining the effect of activity on the
decreased lifetimes. However, at small compressing forces, stage II is suppressed at the ends of
the chain and balances the effect of stage I. The active chain then shows an approximately equal
breakage rate compared to passive chains.

All ring structures, with and without tension, show an initial stabilization of the structures
upon small active forces (F)a = 10). The initial stabilization of the structure is caused by a
minor suppression of stage I. Subsequently, for inward-facing forces, we observe an significant
suppression of stage II in bonds close to the active force leading to a strong enhancement of the
lifetime 7. However, for the outward-facing forces, the opposite is observed. The minor stabiliza-
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Summarizing table for the breakage behavior of the dimer, decamer and rings as function of active force magnitude and direction. Dimer at
dT = 0.12K, mechanism: S (angular) r (radial). The breakage rate and breakage stages are qualitatively compared to Fio = 0 using arrows for: strong
increase (orange ), increase (yellow 1), approximately equal (gray —), and decrease (blue |) with respect to the passive case. For the decamer and rings, the
breakage location is given as: edge: bonds close to the end of the chain, flat: uniform distribution, center: bonds in the middle of the chains, and w-shape:

bonds halfway the middle.
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tion of stage I is followed by a minor enhancement of stage II leading to lifetimes approximately
equal to the passive case.

At larger activity (F)a = 100), the bond lifetime 7 has reduced significantly and converges
for both directions of the forces to the same value. Additionally, this case shows most breakage
near the active force at bond 1. However, the two directions of the force each target a different
breakage stage. Inward facing forces induce buckling in the ring and weaken all bonds. Stage I
shows an overall enhancement, but stage II is only enhanced at bonds close to the active force
and suppressed at the bond in the center. Outward-facing forces show very little effect on the
conformations of the ring as well as on stage I; it is stage II that has the largest effect on the
breakage rate.

Lastly, we looked at the effect of the misaligned bond (bond 1) in the T4D1S5 structure com-
pared to T6D15. At low activity and in the passive case, the tension caused by the misalignment
can be distributed over all bonds. The lifetime of T4D14 is lower than T6D15, but there is
no enhanced reactivity in bond 1; only at large forces, we observe differences. Outward- and
inward-facing forces expose the weakness of bond 1 and enhances stage I of bond 1 significantly.
Simultaneously, as observed in T6D15, the second stage at bond 4 to 8 is very low . Effectively,
both directions of the force leads to enhanced breakage at the misaligned bond via stage I.

We can draw some general conclusions from our findings, summarized in Table 5.2. First of
all, the preferred breakage mechanism is in all cases via an angular mechanism. This might at first
seem surprising, since it seems only natural that a bond breaks along the radial axis. However,
the entropic contribution of larger angles is substantially enlarged to counteract this, and most
bonds will break at low S value, i.c. via the angular mechanism.

Second, it is a well-known fact that breakage is a combination of an activated well escape stage,
and a diffusive separation stage. When applying an active force most of the time both stages will
respond qualitatively identically: for the dimer extending and sliding force will enhance breakage
rate, while compression will suppress it. For the decamer and the rings things are different: the
extending/outward forces surprisingly lower the escape probability due to stiffening of the chain.
However, the final result is still that breakage is enhanced, as the separation stage compensates. In
contrast, sliding is significantly enhancing chain breakage. Compressing forces are most complex,
they enhance stage I but decrease stage II. The contrasting effect of forces occurring in ring
structure: inward force first stabilize rings, before they enhance breakage at higher forces.

It is clear that activity can both enhance and suppress breakage rates and mechanisms, depend-
ing on the precise magnitude and direction. We expect therefore that activity also will have a
large effect on the dynamical behavior of network formation in colloidal patchy particle systems.

Our findings will thus be important for designing adaptive and responsive active physical gels,
and rationalising their behavior. In addition, if one wants to control breakage — and formation -
of bonds one might target the different stages of breakage using activity. In a future study, we
will report on how colloid gels self-assembled from patchy particle mixtures respond to activity.

The predictions made in this work can be experimentally tested by using particle systems that
behave according to the potential used here [152]. Using microscopy the breaking behavior can
be followed and tracked, see e.g. Ref [139] and [55].

While our predictions were made specifically for critical Casimir interactions, we believe that
they can be generalized to a large class of patchy interaction potentials, that are qualitatively
similar: strong short range attractions induced by a relatively small patch in combination with
ABP dynamics. As long as the rotational and translational diffusion constants behave similarly
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5 Activity affects the stability, deformation and breakage dynamics of colloidal architectures

to those of the colloids we consider here, and the ABP model applies to the self-propulsion
mechanism, the resulting breakage dynamics should be qualitatively similar, irrespective of the
origin of the attraction and the self-propulsion.
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spectively. Dimers (a-c) and decamers (d-f) with d7'=0.12K and active force directions with extending,
compressing, and sliding active forces at F'4=100 kpT'/c. Note that breakage mechanism and both
stages are in principle bond number dependent, but here we take the average over the whole chain.

DeEcaAMERS’ BREAKAGE MECHANISM

Figure presents the P _,3, Py_,4, and P, ecp, of passive and active dimers and decamers at
dT=0.12K and F4=100 k5T /0.

Stage I of breakage in a decamer is affected by the shape of the chain. As shown in Fig.
by the distribution of S per bond, and in Fig. the distribution of F,;,, under activity
the decamer changes its shape. This shape change: straightening under extending forces, and
buckling under compressing and sliding forces is reflected in the P, _,3 of Fig. d as a shift
toward high and low S meaning radial and angular breakage, respectively.

Figure 5.15b,e show that the effect of activity on probability of successful particles separation
in the decamer is lower than in the dimer, especially at S < 0.5. The particles in the chains
are not freely diffusing in region 3, as they may be still bound to their neighbours. This effect is
explicitly measured in Fig. ¢, that shows that the ends of the chain separate twice as successful
compared to the center.

Comparing the breakage mechanism of the dimer and decamer (Fig. c,f), we observe
qualitative similarities. The passive case it is practically similar, the active case shows an exagger-
ation of the shift in breakage mechanism. Extending forces: no preferred breakage route, and
compressing and sliding forces: angular breakage.
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Passive and active decamers. The probability histogram of E i, (Eqn. 5.1) of a passive chain
(red solid line) and active chain with Fi5 =100 kgT'/o (dots) and the force directions: extending (a),
compressing (b), and sliding (c). Due to symmetry, only the first to fifth bond are shown with symbols as
depicted with the colored dots in the legend of Fig. 5.12. The inset shows a zoom out of the distributions.
The measurement is taken at Fpaiy < 0 kpT.

FrLucTtuaTIONS

To be able to understand the response of the ring structures to the introduction of activity, we
can analyse their dynamical fluctuations using Principle Component Analysis (PCA). [2+7] We
perform PCA on long straightforward Brownian dynamics simulation trajectories of rings using
the MDAnalysis software package[245, 249]. We focus on the ring system with 4 TPP and 15
DP particles (T4D15), as this system contains long chains that allow significant buckling, but is
smaller than the 6 TPP structures and thus decorrelates significantly faster.

We start with the analysis of the influence of active forces on the fluctuation dynamics and
deformations of an elastic ring using Principal Component Analysis (PCA), as depicted in
Fig. and reported Table 5 3. To enhance the likelihood of observing intact structures during
the fluctuation and deformation simulations, we set the interaction strength to d7" = 0.12 K.

We conducted Principal Component Analysis (PCA) on long trajectories, with all simulations
lasting at least 30,000 seconds. However, for an inward-directed active force F)x = 15, the sim-
ulation duration was reduced to 5,000 seconds due to observed buckling and a high probability
of breaking.

The eigenvectors corresponding to the two dominant modes, which account for approxi-
mately 80% of the variance, are depicted in Fig. , and their respective eigenvalues are listed in
Table 5.3. These dominant modes are particularly prevalent since they correspond to the lowest
curvature in the semi-flexible polymers, resulting in minimal energy cost.

For small outward-directed forces up to Fla < 25 and inward-directed forces up to Fy < 5,
no significant deformations were observed, and the contribution to the variance was not notably
different from the passive case. Any observed differences between the systems can be attributed
to limited sampling.

Conversely, larger inward-facing active forces (/' > 15) caused the DP-particle chains to
buckle, as evidenced by the average positions of these trajectories (Fig.5.20b). The buckling is
caused by the movement of the first mode (Fig. d) which indeed shows a significantly higher
contribution compared to the passive case (Table 5.3) [55]. In this deformed structure, the two
dominant modes still exist, albeit with different amplitudes.
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The contributions to the variance of the first two modes (shown in Fig. ) retrieved via PCA.
Column wise the magnitude and direction of the active force, the loading of the variance of mode 1 and
2 and their sum are shown. * In the trajectory of inward-facing F'a =15 forces, buckling and breaking
was observed.

Fa [kgT /o]

magnitude direction mode 1 mode 2 sum
0 0.55 0.26 0.81

2 in 0.59 0.25 0.84

S in 0.56 0.31 0.87

15* in 0.78 0.11 0.89

2 out 0.55 0.27 0.82

S out 0.49 0.28 0.77

15 out 0.50 0.25 0.75

25 out 0.47 0.20 0.67

Since the active force, whether inward or outward, primarily affects the radial part of the po-
tential through the translational displacement of particles, it is not expected to have a substantial
impact on the fluctuation spectrum. The fluctuations primarily depend on the bending rigidity,
as defined by the shape of the S’-function. Moreover, the active force is fixed to the particles
and constrained by two bonds. Consequently, the active force cannot reorient along fluctuation
modes to drive them, as observed in the actuated elastic solid in Ref. [250].
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PCA: The particles’ average position(a,b), and the two dominating fluctuation modes: first
mode (c,d), and second mode (e,f) of passive and activated T4D1S5 rings. For clarity, the eigenvectors

of the two fluctuation modes are illustrated with 10x magnified arrows for clarity. Each column has its
legend shown at the top.
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6 ACTIVATION OF COLLOIDAL PATCHY
PARTICLE NETWORKS

Active matter systems contain components that consume energy to generate motion,
leading to various collective behaviors observable in both biological and synthetic realms.
These systems differ from equilibrium systems where interactions are typically due to
interparticle forces or thermal fluctuations. In particular, active matter can display unique
behaviors such as flocking, clustering, and motility-induced phase separation. A notable
type of active matter is active physical gels, which are observed in biological systems such
as the cytoskeleton in muscle and plant tissues; these gels are vital for processes such as cell
motility and tissue repair. This study addresses the behavior of physical gels, specifically
patchy colloidal gels composed of divalent and trigonal planar patchy colloidal particles
interacting via the critical Casimir force [182], aiming to deepen our understanding of their
activity-driven dynamics. The trigonal planar particles, that make up the nodes of the net-
work, have been made active as Active Brownian Particles and exert forces into the colloidal
network. Upon increasing activity, three distinct global structures are observed: a homoge-
neous, an inhomogeneous, and phase separated structure. The first structural transition is
initiated at low (high) active force magnitude in combination with strong (weak) attractive
patchy potentials. The subsequent transition arises when the network is broken and active
particles push the passive particles into a high-density regions. These structural responses
are intimately related to the system’s bond probability that may increase or decrease as
function of active force magnitude and direction, and attractive potential depth affecting
both the rate of bond formation and breakage.
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6.1 INTRODUCTION

Active matter consists of individual components consuming energy to produce motion, resulting
in collective behaviors [251]. Such self-driven systems are evident across multiple length scales,
ranging from biological phenomena such as the motility and morphogenesis of cells [103] and
bird swarms, to synthetic systems such as colloidal Janus particles and colloidal rollers [122,133,
252-254]. Active particles with different shapes [129, 130], repulsive potentials [255, 25¢], including
attractive potentials [128, 253], alignment [257], or with different velocities [132], and mixtures
of passive and active particles [130, 258-261] have demonstrated a diverse phase behavior and
dynamics. This includes altering the position of phase transitions and introducing entirely
new dynamical phases. Being distinct from equilibrium systems, where dynamics arise from
interparticle forces or thermal fluctuations, active matter is intrinsically out of equilibrium. Their
unique dynamics can lead to such as flocking motion [257], clustering [262], and motility-induced
phase separation (MIPS) where active particles segregate into distinct regions [263, 264].

An intriguing class of active matter is active physical gels, exemplified by the cytoskeleton
found in muscle and plant tissues. These gels are characterized by their viscoelastic properties
and inherent activity, resulting in distinct non-equilibrium behavior [104, 105]. Central to the
cytoskeleton’s function is the actin protein, which can polymerize, forming varied structures
such as the crosslinked and branched networks seen in the cell cortex and lamellipodium [103].
The mechanical properties of actin, combined with its dynamic assembly and disassembly in
conjunction with the molecular motor myosin, enable it to function as the cell’s biological springs.
This gives actin a pivotal role in processes such as cell motility, replication, growth, and tissue
repair (213, 214].

Patchy particles, that are colloidal particles characterized by their distinct attractive binding
sites or "patches”, facilitate the self-assembly of complex colloidal architectures such as chains,
rings, and networks [38, 53, 54, 57, 138]. The colloidal networks can be constructed by mixing
patchy particles of different valencies (see Fig. 6.1), with an average valency beyond two, and can
be viewed as a physical gel, characterized by reversible bond formation and adaptive character.
Patchy colloidal gels create open architectures that achieve equilibrium [93, 94], contrasting with
non-equilibrium gels made of isotropically interacting particles [265]. This distinction is for
example evident in their spatially uniform dynamics [266]. Utilizing colloidal patchy particles as
a model system, we aim to unlock a deeper understanding of the behavior of physical gels under
activity.

For that, we employ the critical Casimir model developed and explored in the previous chap-
ters. The structure of this paper is as follows: In the subsequent section, we detail the patchy
particle model, elaborating on its interaction potential, simulation specifics, and analysis tech-
niques. In the Results section, we explore the phase behavior of activated colloidal patchy particle
networks. We observe that the connectivity (or bond probability) of the architecture that influ-
ences phase behavior displays non-monotonic trends, correlating with the attractive strength of
patchy particles and the magnitude and direction of active forces. To elucidate this behavior, we
discuss the effects of activity on bond formation and dissociation rates, which together dictate
the bond probability. We end with conclusion and perspectives on future research.
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6.2 Methods

Figure 6.1 : An example of a colloidal network composed of trigonal planar and dipatch particles in a
ratio of 30:70 percent with a color coding indicates its cluster size N, ranging from 1 (dark blue) to >4
(bright pink). The density p = 0.382N/0? and the patchy pair potential is strong (d7'=0.12K).

6.2 METHODS

6.2.1 MoDEL

Recent progress in colloid chemistry has made it possible to synthesize micrometer-sized particles
that feature patches with distinct surface properties differing from the main body of the particles
[63]. Suspending such patchy particles in a near-critical binary liquid mixture (e.g. water and
lutidine), attractive directed bonds, i.c., only one bond per patch, are induced between the
patches on the surface of neighboring particles via a solvent mediated critical Casimir force [72,
182]. While patchy particles experience thermal motion and adhere to Boltzmann statistics, they
can be directly observed using techniques such as confocal microscopy [57]. Thus, they can be
regarded as mesoscopic analogs of atoms [92] and can act as an experimental model system to
explore complex self-assembled colloidal architectures analogous to their molecular counterparts
38,53, 54,57, 138].

INTERACTION POTENTIAL

As explained in the previous chapters, the anisotropic pair interaction between two patchy
particle, ¢ and j, with orientations §2; and €;, respectively, and interparticle distance 7;; is

described by
Voair (7555 4, 25) = Wewtawa(735) + Ve (135) S (4, ©25), (6.1)

Here, Vyukawa signifies an isotropic repulsion, while the second term represents the directed
patch-patch attraction between the particles ¢ and j. It is important to note that we assume each
particle pair can form only a singular bond. Given the relatively limited range and width of the

127



6 Activation of colloidal patchy particle networks

a o b
w=0.462, T=-0.09¢/nm>
5 5 T [K]
§ W o W o6 B o2
_ W ou M| o 0.22
N
+ —10 ;\ 1.04=
g =)
3 I
215 0.5 .
X 15 2 \
00
—20 5 0 [o] 15 2
1.00 1.01 1.02 1.03 1.04
interparticle distance r [o]

Figure 6.2 : (a) The patchy particle radial potential for dipatch particles composed of Yukawa repulsion
Wyukawa (Eq. 3.2) and critical Casimir attraction Vi (Eq. 3.6). The inset shows the switching functions
S’ that are additionally a function of dT". (b) A schematic illustration of the inter-particle vector r
(dotted arrow), patch vectors p on each particle (solid arrows), and the angles 0.

patchy critical Casimir interaction, this condition is readily met in our systems, ensuring that
only one combination of patches results in an effective attraction.

The patch interactions’ anisotropy is captured by the two switching functions S’(6). While
these functions, in principle, depend on the orientations {2 of both particles, they are simplified
to depend solely on the angles 6 associated with each particle. The function is represented as:

8(9”97) = 1§I£];?.<an S’(Qik)S’(Hj ) (62)
where k and [ run over the n,, patches of each particle. The angle 6 is the angle between the
patch vector and the interparticle vector as depicted in Fig. 6.2b.

Figure 6.2a presents the optimized patchy particle potential that is capable of reproducing
the experimental system of dipatch particles. The specific functional forms of the Yukawa
electrostatic repulsion, critical Casimir attraction, and the switching functions S, can be found
in Chapter 3 and Ref. [182].

Active Janus particles, when subjected to an AC field, exhibit a propelling motion and hover
over the capillary surface[122]. Hence, beyond the gravitational potential (see Sec. 3.2.4 and
3.6.3), the external potential also incorporates an alignment potential. This alignment potential
ensures that the active force is oriented in line with the wall’s direction.

‘/align(éA,z) - §6a1ign arCSin2(éA,z) (63)

where €, . signifies the z-component of the active force direction as described in Sec. 2.4. The
prefactor €,1ign, = 500 kT’ was chosen such that alift-off of the particle against the gravitational
field did not occur.

The alignment of the active force of the TPP particle will additionally causes one patch to
always direct along the quasi-2D plane which is the patch in the direction or opposite of direction
of the active force for type I and II, respectively. In quasi-2D systems, patches orientated along
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DP TPP type 1 type 11
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Figure 6.3 : Illustrations of particle architectures. The divalent patchy (DP) particle exhibits a 180° angle
between its patches, whereas the trigonal planar patchy (TPP) particle displays a 120° angle. There are
two varieties of active TPP particles: one where the active force (depicted by the orange arrow) points
toward one patch (type I) and the other where it lies between two patches (type II).

the quasi-2D plane show an enhanced reactivity compared to patches facing the wall as shown in
previous work in Chapter 4 and Ref. [267]. Therefore, in active systems, the reactivity of active
TPP particles will be influenced by both their enhanced diftusion and the alignment. While
in a passive system there would in principle no active alignment, we have opted to include it.
In the limit of F)y — 0, the dynamics of the active systems approaches the dynamics of the
passive system and any observed distinctions between passive and active systems are attributable
exclusively to active propulsion effects.

The total potential energy of the system is the sum of all patchy particle pair interactions, and
the external potential Vix (2, €.4). The latter includes both the active force alignment potential
(Eq. 6.3) and the gravitational potential (Eq. 3.14):

N N
V= Vouir(rijs 2, ) + Y Ve (21 €.0) (6.4)

i<j i

where ¢ and j run over the IV colloidal particles, and z is the vertical distance to the wall, and € 4
is the unit vector of the direction of the active force.

6.2.2 SIMULATION DETAILS
PaTcHY PARTICLE ARCHITECTURES

In this chapter, we investigate self-assembled networks composed of colloidal dipatch (DP) and
trigonal planar patchy (TPP) particles. As depicted in Fig. 6.3, DP particles have two attractive
patches at opposite sites, while TPP particles possess three patches arranged in a planar configu-
ration with a 120° angle between them. The DP particles are allowed form bonds with both DP
and TPP particles, but the TPP particles are restricted to only bind with DP particles. This is to
prevent the TPP particles to cluster and form small rings or honeycomb lattices [59]. In this way,
the (active) TPP particles are distributed throughout the architectures and activate the passive
DP chains.

Networks are constructed by mixing 70% DP and 30% TPP particles of in total N=1000 or
500 patchy particles in a cubic simulation box of length 51.17 or 36.180 with periodic boundary
conditions, respectively. The strong attractive systems at d7'=0.12 K contains 1000 particles,

while the others comprise 500 particles. The resulting quasi-2D system has an area coverage of
roughly 17=30% or density p = 0.382N/o%. This combination of density and ratio of DP:TPP
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particles was chosen as it resulted in a highly connected network at the strongest attraction
strength at passive conditions.

MoNTE CARLO

See Sec. 2.3, for a detailed description of Monte Carlo and the explanation of single particle and
cluster moves that are performed to self-assemble a colloidal network.

EQuATIONS OF MOTION

See Sec. 2.4, for a detailed description of the equations of motion of (active) Brownian particles.
The translational and rotational diffusion constant are set to D =0.0034 02 /s, Dr=0.05
rad? /s, as experimentally measured for dipatch particles with diameter o = 3.2um/[54, 56).

6.2.3 ANALYSIS

We perform long straightforward molecular dynamics simulations on three independent sam-
ples and after reaching a steady state, i.e. when the bond probability does not drift over time,
measurements are taken from the self-assembled architectures.

The static observables include: bond probability P, = N}, bound/Nptot, which is the num-
ber of bound sites IV}, pouna divided by the total number of sites IV, 1o¢. The cluster size distribu-
tion, P; = ZL where 1 is the number of clusters of size 1, and Y. n; is the total number

of clusters. The bond occupancy of TPP particles, which is the distribution of the number of
bonds the TPP particles make. Finally, the local density distribution py, is measured by drawing
asquare grid (with a grid size of approximately 260?) and counting the number of particles in
each grid cell.
The bonding of two patches can be seen as a (chemical) reaction in which the patch transitions
from an unbound to a bound state:
kbu

unbound é bound, K= Po _ Zou (6.5)
Pu kub

where K is the bonding reaction constant, while p1, and p,, are the density of bound and unbound
(free) patches, respectively. The k1, and Ky, are the binding and unbinding rate constant,
respectively. The bound state is defined when a patch has an attractive interaction with another
patch, i.e. their attractive part of the pair potential V- - S < 0 (Eq. 3.6). A breakage event
is detected if two particles have separated more than half'a diameter 0.50, which indicates the
transition to the unbound state. Note that &y}, and ky,, do not refer to a single breakage or
binding mechanism but, instead, contain many possible breakage rates depending on colloidal
architecture and breakage location as observed in Chapter 5.

From the brute force simulations, the state of each patch is monitored and the survival prob-
ability Pk, i.e. the probability that patch did not change state, as function of time ¢ is then
recorded. Assuming that binding and unbinding times are exponentially distributed processes
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Figure 6.4 : The survival probability of the bound and unbound state of the patches as measured in brute
force simulations at d7'=0.12 K, Fi4=50 kpT '/, and type Il active particles. A fit of Eq. 6.6 measures
the binding and unbinding rate ky, = 1/7yp and kby = 1/7hy, respectively. Solid colored lines are
the measurements from three independent samples, and the black dotted lines are the fits.

and are independent events, dominated by a single timescale. The survival probability then
follows the relation

Ps(t) = exp(—t/T) (6.6)

where the binding and unbinding rates, k& = 1 /T, are subsequently deduced through a fit.
Fig. 6.4 shows an example of such a measurement and fit of the bound and unbound survival
probability.

Instead of direct counting, an alternative way to measure the bond probability F, is via the
rates kyp, and Ky

Pb
P=— 6.7
b Pu + Pb ( )
1
= —. 6.8
Eun/kou + 1 (6.8)

Therefore, the changes observed in measure P, will be explained by the effect of activity on Ky,

and kp,,.

6.3 RESULTS

6.3.1 PHASE BEHAVIOR

A mixture consisting of DP and TPP particles in a ratio of 70:30, respectively, initiated as a
random fluid, form a network structure after an equilibration with 1 x 10°"Nto1 x 10N MC
steps for the strongest to weakest interaction strength, respectively. Snapshots of the resulting
structures can be seen in the left most column of Fig. 6.5. Upon increasing the bond attraction,
a well-connected equilibrium colloidal network, or gel, forms where chains of DP particles are
interconnected via nodes composed of TPP particles (top left snapshot in Fig. 6.5 and 6.6) [179].
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Figure 6.7 : The local density p, at various active force magnitudes (F4=0, 10, 50, and 100 kg7/0)
and both directions (top row: type I, bottom row: type II), and attraction strengths (from left to right
column: d7'=0.12, 0.16, 0.20 K).

Despite achieving thermodynamic equilibrium, we still observe an abundance of monomers.
Previous work has indicated that this anomaly can be attributed to the gravitational confinement
inherent in our experimental setup[267]. To follow the effect of activity on the phase behavior of
the colloidal network, we conduct extensive Brownian Dynamics simulations (lasting more than
20,000 seconds of simulation time) for various active force magnitudes that reached steady state
after approximately 10,000 seconds of simulation time. We observe structural changes of the
architectures attributable to active propulsion effects, as depicted by the snapshots at the end of
the runs in Fig. 6.5 and 6.6 for type I and II active particles, respectively.

In the low to moderate activity regime and with both directions of active fores, an inhomo-
geneous structure with more dense and a dilute regions compared to the passive case appears
which is observed in the center (blue colored) systems in Fig. 6.5 and 6.6. What differentiates the
inhomogeneous (blue) from the homogeneous (red) structures is the distribution of the local
density py, as depicted in Fig. 6.7. In the inhomogeneous structures, we observe values of local
density, specifically at p;, < 0.15and py, > 0.6, thatare not present in the passive systems. The
onset of this inhomogeneous structure is almost immediate, i.e. for low F'4, for strong bonds
(dT" = 0.12K), starting at F'y > 3 kgT'/o . A snapshot of such a system was shown in the
Introduction in Fig. 1.9a. However, as bond strengths weaken (d7" > 0.12K), the threshold
force magnitude for this phase shift toward inhomogeneity increases. Such immediate structural
responses to activity are not observed for isotropically interacting particles, as they quickly form
a non-equilibrium gel at low temperatures, arresting the dynamics of the system [128, 268, 269].

If the system is well-connected and active TPP are anchored to the architectures, low activity
leads to better void formation compared to moderate activity. Compare, for example, at the
snapshots at d7'=0.12 K and F4=10 and 50 kg 7'/ 0 in Fig. 6.5 and 6.6, and their local density
distribution in Fig 6.7d. While activity initiates separation by persistently pushing the colloidal
clusters together, it also leads to enhanced bond breakage. Smaller (active) clusters possess faster
effective rotations and translations compared to large clusters [270, 271], leading to the dissolution
of the high-density regions and homogenization of the systems’ density.
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Figure 6.8 : Bonding occupancy of the active TPP particle type I (a) and II (b) at dT'=0.12 K.

When the passive DP particles exhibits limited connectivity with the active TPP particles,
especially in combination with type I active particles, the systems resembles a system of passive
particles immersed in an active bath [268, 269, 272]. At d1'=0.20 K, activity initially has hardy
any effect on the local density distribution. From F)y < 50 kgT'/o, we start observing void
formation leading to a separated phase at £'4=250 kgT"/o. The separated phase is identified by
the appearance of two peaks in py, (Fig. 6.7). AtdT'=0.12 K, due to high activity from F'y > 100
kgT /o, the colloidal network breaks down as type II TPP particles break their bonds, thereby
losing their ability to function as nodes (Fig.6.8b). The passive DP particles are then pushed
together to from high density regions; prompting them to aggregate into a nematic phase at
F4=100 kpT'/ 0 as seen in the green systems of Fig. 6.6. When increasing the activity further
to F'y = 250 kgT '/, the long nematic chains fragment into shorter chains. Nevertheless, the
high-density phase remains. The strength of the interaction between DP particles influences
when this phase separation occurs; stronger interactions lead to earlier separation as the patchy
interaction prevents the particles from moving to less dense areas.

Despite the pronounced structural changes witnessed in the high activity regime, our primary
interest lies in the intermediate, experimentally accessible, region (up to F)4 = 50 kgT'/0). In
this regime, a significant portion of the network structure remains intact, albeit being influenced

by activity.

6.3.2 BREAKING AND FORMING BONDS

The structure of the colloidal network, which determines the phase behavior, is directly related
to bond probability. We observe a non trivial behavior, either effectively reducing or increasing
bond probability depending on bond strength, active force magnitude, and direction, as shown
in Fig. 6.9a.

At F4=0 kgT'/ 0, the measured binding rate k., is lower for systems with stronger attraction
potentials due to fewer available patches, as seen in Fig.6.9¢c. This can be explained as follows: an
alternative way to write the bonding reaction is:

2P = P, K=12 _ (6.9)
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Figure 6.9 : The bond probability measured at steady state (a), the breaking (b) and binding (c) rate of
the particles, and their ratio (d) at various active force magnitude and direction. Note that d1'=0.14 K is
not shown for clarity in b-d, as it is very similar to d7'=0.12 K. The inset of (c) shows a zoom-in of k1,
at d1'=0.20K and an effective binding rate (black dotted line) calculated by multiplying the measured

passive binding rate kO up, With an effective diffusion DT =Dt + D and the normal diffusion D
for the active TPP and DP, respectively. [133] The shaded area represents a 95% confidence interval of

the error of the mean from three independent samples.

where two free patches P form a bond P, with its reaction constant K is defined by &, and
ko, the association and dissociation rate constants, respectively [234]. Both reaction equations

in Eq. 6.5 and Eq. 6.9 describes the same process, and setting [[1; = p 2 gives ky, = [Plkon.

Thus, means that &y, as defined in Eq. 6.5 is directly proportional to the density of free patches

[P] in the system confirming the observed trend in Fig.6.9c.

Upon increasing activity, the binding rate constant kyy, rises with the active force magnitude
for all studied systems. This increased binding rate is partially attributed to the activity enhanced
diftusion of the TPP particles. To shed light on this underlying mechanism, consider the system at
dT'=0.20 K, predominantly comprising free (TPP) particles. In this context, we can approximate
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the effect of enhanced diffusion on k., assuming that rates are proportional to the diffusion
constant k o< D as written in the Smoluchowski diffusion-limited reaction rate constant [234,
273]. Given that the system has a 70:30 ratio of DP to TPP particles, the measured passive

binding rate k2, is multiplied by the factor (0.3DF + 0.7 D) with DT = Dy + 2§R and

Vg = BF 4Dy [133]. In the system with type I activity, the approximation is qualitatively similar
to the the measured &y}, at low activity as shown in the inset of Fig.6.9¢ by the black dotted line.

The breakage rate constant ky,, at F4=0 kg1'/o is directly related to the potential depth,
set by dT'; deeper attraction translates into slower breakage, as depicted in Fig. 6.9b. However,
upon increasing activity, we observe non-monotonic behavior: at weak attraction strength, type
I active particles show reduced breakage rate constants. In contrast, type II particles and those
with stronger attraction strengths display an increase in these rate constants.

To delve deeper into this topic, one might revisit Chapter 5, which details the influence of
activity on bond breakage rates. The main results are summarized here. When the active force
induces buckling, it becomes the prime factor in amplifying the rate of bond breakage. This
particularly impacts the first stage of bond breakage — the rate at which particles escape the
potential well. The activation of the initial stage of bond breakage can lead to changes in the
order of magnitudes different compared to passive cases. This is, for example, evident in applying
sliding forces on the decamer, as shown in Fig. 5.13. For systems that do not buckle—such as
compressed dimers, extended forces applied to a decamer, or forces directed outwardly in a ring
structure—the orientation of the active force plays a decisive role. Depending on its direction,
either toward or against the bonding volume, it can either suppression or enhancement the bond
breakage rate, respectively.

In passive systems with strong attraction, the clusters are relatively large with long DP chains,
visible in the cluster size distribution in Fig. 6.10, and most TPP particles are bound to the
colloidal architectures as shown in Fig. 6.8a. Upon increasing activity in both directions to
F4=25 kpT /o, forces are exerted on the colloidal architectures leading to the fragmentation
of the clusters and a noticeable decline in triple-bound TPP particles. For type I, they mainly
become double and single-bound states (Fig.6.8a). For the type II TPP particles, we observe that
the majority shift to a monomeric state. Akin to what is observed in the lifetime of colloidal
rings (Fig. 5.16), a maximum in double-bound TPP particles around F4=10 kgT'/ o is observed
(Fig.6.8b).

Moreover, alongside the TPP-DP bond breakages, DP-DP bonds also show susceptibility to
increased activity as for example observed in decamers with sliding and extending forces captured
in Fig. 5.14. The cluster size distribution at d7'=0.12 K indeed immediately shows breaking into
smaller clusters upon applying activity in both force directions (Fig. 6.10a).

At activity levels of F'y =50 kgT'/0, a clear distinction between type I and II particles is
observed. Although the monomeric type II TPP particles are not anchored to any colloidal
architecture structure (Fig.6.8b), their potential to catalyze bond breakage via collisions remains.
Conversely, type I TPP particles predominantly exist in a singly-bound state (Fig. 6.8a), bonding
with DP particles to form what we term an "active chain”. By inspecting the snapshots, we can
identify two variants of these active chains: those with one or with two active particles capping a
DP chain. Both varieties exhibit enhanced stability due to activity, evident from the increased
prevalence of small clusters (of size /N. < 20) under both weak and strong attraction potentials
as function of F4, as depicted in Fig. 6.10a and b.

137



6 Activation of colloidal patchy particle networks

04 0.
a 107y b 10 v,
31( 10714 [ m 50
210 S 10724 | 10
21074 o 10734 -@- typel
QIO’“ 10-4 —& typell
1079 . “ . 107

10°
N, [No. particles] N. [No. particles]

Figure 6.10 : Cluster size distributions at d1'=0.12 (a), and 0.20 K (b). The magnitude of activity is F'4 =0,
10, or S0 kgT'/o and has directions as type I or II as indicated by the colors and symbols, respectively.

Can we understand why these active chains are stabilized? For chains featuring a single type I
particle, the active force, aligned tangentially, reduces the likelihood of particle separation i.c. the
second stage of bond breakage (see Chapter 5). Coupled with enhanced diffusion, the free patch
at the other side of the chain becomes significantly more reactive yielding more short chains
(N, < 20). For chains with two active particles exerting a compressive force, our measurements
indicated that a decamer breaks faster at d1'=0.12, yet displays lifetimes analogous to passive
scenarios at d1'=0.22 K (see Fig. 5.14). For non-buckling chains, such as the dimers covered
in Chapter 5 (see Fig. 5.11), or those made up of one or two DP particle paired with two TPP
particles, compressing forces will extend their lifetime, again leading to enhanced stability for
short chains.

6.4 CONCLUSIONS

In this study, extensive numerical Brownian simulations of have been carried out on colloidal
networks representing active physical gels. The architectures, initially self-assembled by passive
divalent colloidal patchy particles and trigonal planar patchy particles in a 70:30 ratio, are then
activated by modeling the trigonal planar patchy particles as active Brownian particles. By mod-
ulating the magnitude and direction of the active force, we observe inhomogeneous-structure
characterized formation of low density voids and high density clusters, showing a broadening
of the local density distribution toward densities that are not observed in the passive systems.
The inhomogeneous structures are observed at strong (weak) attraction strength of the patchy
particles and small (large) active force magnitude at both directions of the force.

In systems characterized by strong binding where the majority of active particles are bound
within the colloidal architectures, an increase in the active force magnitude results in effectively
less bonds. Although, both rate of bond breakage, as well as rate of bond formation are en-
hanced, their ratio confirms the trend in observed reduced bond probability. Activity leads to
fragmentation of the colloidal network, suppresses the formation of inhomogeneous structures.
For the system at d7'=0.12 K, there is an optimal active force magnitude of F'4=10 kT /o at
which a balance is struck: the architectures develop the inhomogeneous structure akin to phase
separation but still retain a sufficient number of bonds to form a coherent network structure.
As a result, this specific system displayed a broader local density distribution opposed to those at
directly lower or higher activity levels.

138



6.4 Conclusions

In systems where bonding is sparse either due to weak patchy attractions or high activity in
strong attractive systems, there is a noticeable difference between the two active force directions.
Type I particles, which have the active force pointing in the direction of one patch, tend to
bind with DP particles, forming small, stable chains though enhanced effective diffusion of the
chains and a suppression of the second stage of bond breakage as in detail discussed in Chapter 5.
Interestingly, the formation of small stable chains with type I active particles leads to an effective
decrease of the breakage rate for the weakly attractive systems at d7'=0.16 and 0.20 K compared
to passive systems. In these active systems, we can observe a growth of bond probability as
function of active force magnitude, something which is not observed for type II active particles.

At high active forces F')y > 100 kgT'/ 0, type Il active particles that become monomeric and
push the passive DP particles into high density regions form motility induced phase separation
or, specifically at d7'=0.12 K, a nematic phase. The type I active particles, forming the stable
small chains, suppress the formation of this separated phase which is only observed at F'4=250
kT /o and dT=0.12 K.

In summary, using accurate models for patchy particles, we predict an extremely rich behavior
of colloidal architectures in response to activity. Depending on the attractive patchy potential,
and magnitude and direction of the active force, the bond probability of the systems show can
show an increase or decrease, which leads to the observation of a homogeneous, inhomogeneous,
and separated structures. In the near future, experiments will test these predictions.

6.4.1 FUTURE OUTLOOK

For our next steps, a primary and straightforward suggestion is to simply consider larger systems
with more particles. The phase behavior may be shifted or influenced by the constrained size
of the current system. Additionally, we have not discussed any (global) relaxation pathways of
bond breakage and formation.

A logical next step would be to change the density, or adjust the fraction of active particles.
Colloidal gels formed from particles with limited valence, such as patchy particles, are known to
form equilibrium gels that, at strong attraction/low temperature, form highly connected and
percolated networks. With fewer active particles, the networks will form open structures might
keep more bonds intact and initiates the inhomogeneous structure and separated phase at lower
activity. Now, the latter phase may contain network architectures instead of only chain in the
system in the current study.

Although we observed similarities in stable structures, notably the small active chains and
double-bonded TPP particles under low activity as observed in Chapter 5, we did not examine the
breakage dynamics, specifically the breakage location in the colloidal architectures in this study.
Inhomogeneous breakage dynamics is in contrast to what is observed in passive equilibrium gels
that shows spatially homogeneous dynamics [266].

Drawing inspiration from biology, active physical gels, which may not have a continuous
energy injection by molecular motors gives the physical gels the opportunity to restructure their
network in between external stimuli. The repair dynamics in a far-from-equilibrium state could
offer valuable insights into the adaptability of the actin network within the cytoskeleton. Such
insight can enhance our understanding of cellular resilience and functionality.
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SUMMARY

Materials possess properties and functionalities that arise from the collective organization of their
constituent building blocks such as molecules or colloidal particles. Through non-covalent bonds
such as hydrogen bonds or Van der Waals, Coulomb, and hydrophobic interactions, the building
blocks self-assemble into architectures much larger than their individual sizes. Compared to
the covalent bonds between atoms, these non-covalent bonds are weak. As a result, they often
give rise to a soft and deformable rather than rigid character to a material. Many functions and
structure in biological matter , think of the hydrogen bonding network between DNA basepair
nucleotides, the stacked fatty chains and hydrophilic head groups forming the lipid bilayer of
the cell membrane, or ligand-protein interactions, and the self-assembly of virus capsids are
encoded by their non-covalent bonds. Understand such complex matter, that is inherently out
of equilibrium in living organisms, remains a grand challenge.

In this thesis, we use patchy colloidal particles interacting via critical Casimir interactions that
act as mesoscopic structural analogs of molecular, supramolecular and bio-inspired architectures.
As such patchy particles can make directed bonds, i.e., only one bond per patch, they can be
viewed as a coarse-grained, mesoscopic analog of (carbon) atoms. Due to their micrometer-sized
scale, they are directly observable via confocal microscopy. Yet, they still experience thermal
motion, ensuring their adherence to statistical behaviors intrinsic to molecules and atoms, such
as the Boltzmann distribution. Hence, colloidal patchy particles are well suited as an experi-
mental and computational model system to explore complex structures analogous to molecular,
supramolecular or bio-inspired architectures. Incorporating actively propelled colloidal particles
into the architectures, we can give insight into the structural behaviors of such materials in and
out of equilibrium.

Chapter 2 gives an introduction to the basics of statistical mechanics and thermodynamics,
focused on the canonical ensemble, describing phase behavior including coexistence and the Van
der Waals equation. When interested in phase behavior of molecular or colloidal systems, one
may resort to theory such as thermodynamic perturbation theory, including Wertheim Theory,
that allows for predicting phase behavior. Or one resorts to computer simulations, for which
two algorithms were explained: Monte Carlo, and Brownian molecular dynamics. We ended
with a few measurement algorithms that were not explained in-depth in their respective chapters.

In Chapter 3, we developed an accurate patchy particle model for particles that interact via
the critical Casimir force when immersed in off-critical binary liquids. The potential is based on
theoretical critical Casimir potentials valid for isotropically interaction particles and the geometry
of the patchy particle of interest. Through an integration over the patch geometry, three fitting
parameters were used to benchmark the simulation outcomes onto experimentally measured
chain length distributions and bending rigidities of colloidal semi-flexible polymers composes
of divalent patchy particles in a series of varying attractive conditions. Such an accurate model
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allows for microscopic structural and dynamical insight, and provide large-scale and long-time
behavior when used in a multi-scale simulation, enabling the exploration of new hypotheses.

In Chapter 4, we extend Wertheim’s theoretical framework for associating divalent particles
under extreme confinement. Our inspiration stemmed from observing the influence of the
gravity, which led colloidal particles to sediment with sub-diameter gravitational heights in
both simulations and real-world experiments. We observed a significant presence of monomers
that displayed reduced reactivity compared to larger chains, ascribed to the loss of rotational
entropy experienced by monomers during bond formation. By factoring in this effect into
the theory, we were able to predict the chain length distributions for a large range variety of
potentials, from toy-models to our accurate critical Casimir potential, in excellent agreement with
explicit Monte Carlo simulations. Given the accuracy of our predictions, we give insight into the
influence of confinement and provide a quantitative explanation on how the persistence length
of semi-flexible chains affects their reactivity under extreme confinement. Another advantage
of the accurate predictions of chain length distributions, the procedure of optimizing potential
parameters, as done in Chapter 3, can now be done in minutes instead of weeks.

In Chapter 5, we delve into the microscopic mechanisms behind bond breakage within col-
loidal patchy particle architectures, specifically under the influence of activity. We conduct a
numerical investigation by introducing self-propelled colloids modeled as active Brownian parti-
cles into a self-assembling colloidal dispersion of dipatch and tripatch particles that form three
archetypal substructures, namely, dimers, chains, and rings. We find a rich response behavior
to the introduction of self-propelled particles, in which the activity can enhance as well as re-
duce the stability of the architecture, deform the intact structures and alter the mechanisms of
fragmentation. We rationalize these finding in terms of the rate and mechanisms of breakage
as function of the direction and magnitude of the active force by separating the bond breakage
process into two stages: escaping the potential well and separation of the particles. Notably, when
the active force induces buckling, it becomes the prime factor in amplifying the rate of bond
breakage. This particularly impacts the first stage of bond breakage — the rate at which particles
escape the potential well. For systems that do not buckle—such as compressed dimers, extended
forces applied to a decamer, or forces directed outwardly in a ring structure—the orientation
of the active force plays a decisive role. Depending on its direction, either toward or against the
bonding volume, it can either suppression or enhancement the bond breakage rate, respectively.

In Chapter 6, we explore the responses of physical gels under the influence of activity. Active
physical gels are an interesting type of active matter, which are observed in biological systems
such as the cytoskeleton in muscle and plant tissues; these gels are vital for processes such as cell
motility and tissue repair. For this, we use patchy colloidal gels composed of divalent and trigonal
planar patchy colloidal particles interacting via the critical Casimir force as a model system.
Similar as for the active colloidal molecules from Chapter 5, we find a rich response behavior
when introduction of self-propelled particles in the colloidal networks leading to growth or
fragmentation of clusters. In addition, we observe three distinct global structures upon increasing
activity: a homogeneous, an inhomogeneous, and phase separated structure. The first structural
transition is initiated at low (high) active force magnitude in combination with strong (weak)
attractive patchy potentials. The subsequent transition arises when the network is broken and
active particles push the passive particles into a high-density regions.

By building an accurate model that mimics the experimental conditions patchy colloidal parti-
cles immersed in a binary liquid interacting via critical Casimir forces gave a unique microscopic
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insight into the dynamical and structural behavior of molecular and bio-inspired architectures
in and out of equilibrium. Examples outside of this thesis are: the gravitationally confined self-
assembly semi-flexible chains can act as a model system of confined polymerization of DNA,
microtubules, or amyloids on membranes or under other confines spaces [53] which is a topic
closely related to our Wertheim predictions that have shown the non-negligible effects of using
realistic models for assembly under confinement. Additionally, our simulations could confirm
noisy experimental measurements of colloidal molecules and showed that the conformation
distribution of colloidal molecules, specifically colloidal cyclopentane, is influenced by the gravi-
tational confinement [57].
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Materialen kunnen eigenschappen en functionaliteiten bezitten die voortkomen uit de collectieve
organisatie van hun samenstellende bouwstenen, zoals moleculen of colloidale deeltjes. Via niet-
covalente bindingen zoals waterstofbruggen of Van der Waals, Coulomb en hydrofobe interacties,
assembleren de bouwstenen zichzelf tot structuren die vele malen groter kunnen zijn dan hun
individuele afmetingen. In vergelijking met de covalente bindingen tussen atomen, zijn deze
niet-covalente bindingen zwak. Als gevolg daarvan geven ze vaak een zacht en vervormbaar in
plaats van een star karakter aan materialen. Veel structuren, en daarbij hun functies, in biologisch
materiaal ontstaan vanuit niet-covalente bindingen, denk aan het waterstofbrugnetwerk tussen
nucleotiden van DNA-basenparen, de gestapelde vetzuren en hydrofiele kopgroepen van de
lipide dubbellaag van het celmembraan, of ligand-eiwit interacties, en de zelfassemblage van
viruscapsiden. Het begrijpen van dergelijk complex materiaal, dat inherent uit evenwicht is in
levende organismen, blijft een grote uitdaging.

In deze dissertatie gebruiken we colloidale deeltjes met *patches’ die niet-covalente bindingen
maken via kritische Casimir interacties en dienen als mesoscopische structurele analogen van
moleculaire, supramoleculaire en bio-geinspireerde architecturen. Aangezien dergelijke deeltjes
via hun patches gerichte bindingen kunnen maken, d.w.z. slechts één binding per patch, kunnen
ze worden beschouwd als een grofkorrelig, mesoscopisch analoog van (koolstof)atomen. Van-
wege hun micrometergrootte zijn ze direct waarneembaar via bijvoorbeeld confocale microscopie.
Toch ervaren ze nog steeds thermische beweging, wat zorgt voor hun naleving van statistische ge-
dragingen die intrinsiek zijn aan moleculen en atomen, zoals de Boltzmann-distributie. Daarom
zijn colloidale patchy deeltjes geschikt als een experimenteel en computationeel modelsysteem
om complexe structuren te verkennen die analoog zijn aan moleculaire, supramoleculaire of bio-
geinspireerde architecturen. In combinatie met actief aangedreven colloidale deeltjes geankerd
aan de architecturen, krijgen we inzicht in de structurele gedragingen van dergelijke materialen
in en uit evenwicht.

Hoofdstuk 2 geeft een inleiding van de basisprincipes van de statistische mechanica en ther-
modynamica, specifiek in het canonieke ensemble, waarbij het fasengedrag wordt beschreven,
inclusief coéxistentie en de Van der Waals vergelijking. Wanneer men geinteresseerd is in het
fasengedrag van moleculaire of colloidale systemen, kan men zich wenden tot theorieén zoals de
thermodynamische perturbatietheorie, inclusief de Wertheim Theorie, die het voorspellen van
fasengedrag mogelijk maakt. Of men wendt zich tot computersimulaties, waarvoor twee algorit-
men werden uitgelegd: Monte Carlo en Brownse moleculaire dynamica. We eindigden met een
paar meetalgoritmen die niet diepgaand werden uitgelegd in hun respectievelijke hoofdstukken.

In Hoofdstuk 3 hebben we een nauwkeurig model ontwikkeld voor colloidale deeltjes met
patches die interacteren via de kritische Casimir kracht wanneer ze zich in bijna-kritische binaire
mengsels bevinden. Het potentiaal is gebaseerd op theoretische kritische Casimir potentialen
geldig voor isotrope interacterende deeltjes en de geometrie van het colloidale deeltje met patches.
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Door middel van een integratie over de geometrie van de patch werden drie fitparameters gebruikt
om de simulatie-uitkomsten te benchmarken op experimenteel gemeten ketenlengteverdelingen
en flexibiliteit van colloidale semi-flexibele polymeren samengesteld uit divalente patchy deeltjes
in een reeks van sterk en zwak interacterende omstandigheden. Zo’n nauwkeurig model maakt
microscopisch structureel en dynamisch inzicht mogelijk, en wanneer het wordt gebruike in
een multi-schaal simulatie biedt toegang tot grootschalig en langdurig gedrag, waardoor de
verkenning van nieuwe hypothesen mogelijk wordt.

In Hoofdstuk 4 breiden we Wertheim’s theoretische kader uit voor het associéren van diva-
lente deeltjes onder extreme insluiting. Onze inspiratie kwam voort uit observaties van colloidale
deeltjes die zonken naar de bodem van een capillair tot sub-diameter hoogtes in zowel simulaties
als echte experimenten door de zwaartekracht. We observeerden een overvloed van monomeren
die een verminderde reactiviteit vertoonden in vergelijking met langere ketens, toegeschreven
aan het verlies van rotatie-entropie ervaren door monomeren tijdens de vorming van bindingen.
Door dit effect in de theorie mee te nemen, konden we de ketenlengteverdelingen voor een grote
verscheidenheid aan potentieel voorspellen, van speelgoedmodellen tot ons nauwkeurige kriti-
sche Casimir model, in uitstekende overeenstemming met expliciete Monte Carlo-simulaties.
Gezien de nauwkeurigheid van onze voorspellingen, geven we inzicht in de invloed van inslui-
ting en bieden we een kwantitatieve verklaring voor hoe de flexibiliteit van semi-flexibele ketens
hun reactiviteit beinvloedt onder extreme insluiting. Een ander voordeel van de nauwkeurige
voorspellingen van ketenlengteverdelingen is dat de procedure voor het optimaliseren van poten-
tieelparameters, zoals gedaan in Hoofdstuk 3, nu in minuten in plaats van weken kan worden
uitgevoerd.

In Hoofdstuk S duiken we in het breken van colloidale patchy deeltjesarchitecturen, speci-
fiek onder invloed van activiteit. We voeren een numerick onderzoek uit door zelfaangedreven
colloiden, gemodelleerd als actieve Brownse deeltjes, te introduceren in een zelfassemblerende
colloidale dispersie van dipatch- en tripatchdeeltjes die drie archetypische substructuren vormen,
namelijk twee- en tien-deeltjes-lange-ketens en ringen. We vinden een rijk reactiegedrag op de
introductie van zelfaangedreven deeltjes, waarbij de activiteit zowel de stabiliteit van de architec-
tuur kan versterken als verminderen, de intacte structuren kan vervormen en de mechanismen
van fragmentatie kan veranderen. We rationaliseren deze bevindingen in termen van de snelheid
en mechanismen van breken als functie van de richting en grootte van de actieve kracht, door
het proces van bindingbreuk in twee stadia te scheiden: ontsnappen uit de potentiaalput en
scheiding van de deeltjes. Opvallend is dat wanneer de actieve kracht knikken veroorzaakt, het
de belangrijkste factor wordt bij het versterken van de bindingbreuksnelheid. Dit heeft vooral
invloed op het eerste stadium van bindingbreuk — de snelheid waarmee deeltjes de potentiaalput
ontsnappen. Voor systemen die niet knikken - zoals gecomprimeerde dimeren, uitgerekkende
krachten toegepast op een decameren, of naar buiten gerichte krachten in een ringstructuur -
speelt de oriéntatie van de actieve kracht een beslissende rol. Athankelijk van de richting, naar of
van het bindingsvolume af, kan het de snelheid van bindingbreuk respectievelijk onderdrukken
of versterken.

In Hoofdstuk 6 verkennen we de reactie van fysische gels onder invloed van activiteit. Actieve
tysische gels zijn een interessant type actieve materie, die wordt waargenomen in biologische
systemen zoals het cytoskelet in spier- en plantenweefsels; deze gels zijn essentieel voor processen
zoals celbeweeglijkheid en weefselherstel. Als modelsysteem hiervoor gebruiken we colloidale
gels bestaande uit divalente en trigonaal planaire patchy colloidale deeltjes die interacteren via de
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kritische Casimir kracht. Net als bij de actieve colloidale moleculen uit Hoofdstuk 5, vinden we
een rijk reactiegedrag bij de introductie van zelfaangedreven deeltjes in de colloidale netwerken,
wat leidt tot groei of fragmentatie van clusters. Bovendien observeren we drie verschillende
globale structuren bij het introduceren van activiteit: een homogene, een inhomogene en een
gescheiden structuur. De eerste structurele overgang wordt geinitieerd bij lage (hoge) actieve
krachtmagnitude in combinatie met sterke (zwakke) aantrekkingen tussen de colloidiale deeljes.
De daaropvolgende overgang ontstaat wanneer het netwerk wordt verbroken en actieve deeltjes
de passieve deeltjes naar hoogdichtheidsgebieden duwen.

Door het gebruik van een nauwkeurig patchy colloidale deeltjes model dat experimentele
waarnemingen kan voorspelling, geven we een uniek microscopisch inzicht in het dynamische
en structurele gedrag van moleculaire en bio-geinspireerde architecturen in en uit evenwicht.
Voorbeelden buiten deze dissertatie zijn: de gravitationeel ingesloten zelfassemblage van semi-
flexibele ketens die dienen als een modelsysteem voor ingesloten polymerisatie van bijvoorbeeld
DNA, microtubuli of amyloiden op membranen of onder andere ingesloten ruimtes [53]. Dit
onderwerp is nauw verwant aan onze Wertheim voorspellingen die een niet te verwaarlozen
effect hebben aangetoond van het gebruik van realistische modellen voor assemblage onder
insluiting. Bovendien konden onze simulaties de experimentele metingen met ruis van colloidale
moleculen bevestigen en aantonen dat de conformatieverdelingen van colloidale moleculen,
specifiek colloidaal cyclopentaan, worden beinvloed door de gravitationele insluiting [57].
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