
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Code generation for AMReX with applications to numerical relativity

Peterson, A.J.; Willcox, D.; Mösta, P.
DOI
10.1088/1361-6382/ad0b37
Publication date
2023
Document Version
Final published version
Published in
Classical and Quantum Gravity
License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-
we-take-care)
Link to publication

Citation for published version (APA):
Peterson, A. J., Willcox, D., & Mösta, P. (2023). Code generation for AMReX with applications
to numerical relativity. Classical and Quantum Gravity, 40(24), Article 245013.
https://doi.org/10.1088/1361-6382/ad0b37

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 May 2024

https://doi.org/10.1088/1361-6382/ad0b37
https://dare.uva.nl/personal/pure/en/publications/code-generation-for-amrex-with-applications-to-numerical-relativity(eace4472-f6bc-4540-84a8-b3b37a2c44d9).html
https://doi.org/10.1088/1361-6382/ad0b37

Classical and Quantum Gravity

Class. Quantum Grav. 40 (2023) 245013 (28pp) https://doi.org/10.1088/1361-6382/ad0b37

Code generation for AMReX with
applications to numerical relativity

Adam J Peterson1,2,∗, Don Willcox1 and Philipp Mösta3

1 Center for Computational Science and Engineering, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, United States of America
2 Strategic Deterrence Directorate, Lawrence Livermore National Laboratory,
Livermore, CA 94550, United States of America
3 GRAPPA, Anton Pannekoek Institute for Astronomy, Institute of High-Energy
Physics, and Insitute of Theoretical Physics University of Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands

E-mail: peterson129@llnl.gov

Received 1 March 2023; revised 25 October 2023
Accepted for publication 9 November 2023
Published 21 November 2023

Abstract
We present a new python/SymPy based code generator for producing execut-
able numerical expressions for partial differential equations in AMReX-based
applications. We demonstrate the code generator capabilities for the case of
3+ 1 ADM formulations of numerical relativity for the constraint damped,
conformal Z4 formulations (Z4c and CCZ4). The generated spacetime solvers
are examined for stability and accuracy using a selection of checks from the
standard Apples with Apples testbeds for numerical relativity applications. We
also explore physically interesting vacuum spacetimes including head-on and
inspiraling black hole binary collisions, and investigate the simulated gravita-
tional waveforms from such events with the Newman–Penrose formulation of
waveform extraction.

Keywords: code generation, adaptive mesh refinement, numerical relativity

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the most exciting developments in astrophysics and cosmology in the last decade has
been the arrival of gravitational wave astronomy. Observations from LIGO [1], VIRGO [2],
and other gravitational wave observatories have opened up a new probe into the Universe [3],

∗
Author to whom any correspondence should be addressed.

1361-6382/23/245013+28$33.00 © 2023 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6382/ad0b37
https://orcid.org/0000-0003-1121-6782
mailto:peterson129@llnl.gov
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ad0b37&domain=pdf&date_stamp=2023-11-21

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

and in particular, new testing into the strong field limit of general relativity via black hole/neut-
ron star collisions. For both observational and testing purposes there comes the necessity
to accurately simulate relativistic spacetime physics in the regions of large curvature (non-
perturbative), such as those in the vicinity of black holes and neutron stars. Also of interest is
the dynamical evolution of stellar core collapse supernovae, which for proper understanding,
requires accurate evolution of general relativistic/magnetohydrodynamic systems.

For these reasons (and many others) a market has developed for large scale numerical simu-
lations capable of evolving general relativistic systems in both vacuum and matter filled space-
times. In the past decade many codes have been developed that successfully evolve spacetimes
for both black hole and neutron star systems, in particular those in compact binary evolutions.
It has also become clear that such complex systems involve highly non-trivial partial differen-
tial equations associated with the 3+ 1 decomposition of Einstein’s equations. Since no single
code can capture all of the physics of interest for all studies of astrophysical and cosmolo-
gical systems, in many cases one is required to develop codes from scratch that are tailored for
the particular physics of interest. For each study, one is required to translate tensor symbolic
expressions to computational numerical language (finite-differencing, index expansions, etc)
for each separate project. For such complex numerical systems, this is both impractical and
inconvenient for the researcher interested in modeling multiple physical phenomena in the
context of high spacetime curvature.

It has also become clear in the past few years that 3+ 1 formulations of general relativity
provide excellent testing grounds for new PDE code generators, as they are well studied sys-
tems with numerous examples in the literature to compare results. Formulations such as the
BSSNOK [4, 5] and Z4 [6–8] approaches provide particularly rigorous tests of code genera-
tion due to their large number of evolved variables, non-linearity of their equations of motion,
and multiple finite-difference stenciling for both forward, backward, and centered indexing.
They are also known to be numerically stable [9] if formulated correctly, and thus provide a
sensitive test of the correctness of the generated code [10].

The goal of this project is to develop and demonstrate the utility of code generation to
facilitate the translation of symbolic tensor formulations of equations to discretized formulas
written in low level programming languages such as C++ or Fortran. Python based symbolic
manipulation tools such as SymPy, NumPy, and SciPy are excellent applications for perform-
ing calculations on symbolic/tensor objects. However, as numerical solvers for large systems
increasingly rely on parallelization and adaptive mesh refinement (AMR) based applications
that are typically written in low level languages, it is necessary to develop translators that can
generate executable expressions for such languages.

To this end we develop a code generator (which will be made available for public use)
capable of producing executable expressions for AMReX based PDE solvers from symbolic
manipulation tools written in SymPy and NumPy. Previous projects have produced packages
designed specifically for mathematica [11] and python [12] interfaces with more examples
found in the Einstein Toolkit, and we wish to extend these interests to a python-to-AMReX
code generation. Specifically, for this project, we demonstrate code generation for the con-
formal Z4 (Z4c) [6–8] and conformal covariant Z4 (CCZ4) [13, 14] formulations of general
relativity and evaluate the resulting system using selected examples of Apples with Apples
tests for numerical spacetime solvers. AMReX provides the necessary infrastructure for devel-
oping massively parallel block structured AMR applications. In particular, AMReX provides
the necessary tools to evolve hyperbolic PDEs associated with 3+ 1 formulations of general
relativity. The code generator is designed to read textbook expressions of symbolic equations

2

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

written in SymPy and produce the necessary finite differenced equivalents written as AMReX
executable lines.

We organize our presentation as follows: We begin in section 2 with a review of the Z4c
formulations of general relativity. In section 3 we discuss numerical methods for finite dif-
ferencing and AMReX’s algorithms for AMR. Section 4 is devoted to the specifics of code
generation for AMReX applications. In section 5 we demonstrate some of the standard tests
for our numerical solvers, and apply the code to black hole binary systems in section 6. We
conclude with a discussion and summary in section 7.

2. Review of 3+ 1 formulation of Einstein equations

For the bulk of the simulations performed in this project, we used the 3+ 1 Z4c formulation
[6] of numerical relativity with constraint damping [7]. The Z4c formulation is based on the
extension of Einstein’s equations to include constraint damping terms for stability purposes.
More specifically, the Z4c formulation is given as follows:

Gab = 8πTab− 2∇(aZb) + gab∇cZ
c+κ1

[
2n(aZb) +κ2gabncZ

c
]
, (1)

with the Einstein tensor:

Gab = Rab−
1
2
gabR. (2)

Here, Rab is the Ricci tensor and R the Ricci scalar. ∇a is the covariant derivative compatible
with the metric gab. Za is a vector field of constraints. The field na is the timelike unit normals
to the spacelike hypersurfaces in the 3+ 1 decomposition of the spacetime manifold. The
constraint Za is decomposed into the normal projectionΘ≡−naZa, and Zi =⊥a

i Za orthogonal
to the normal na. Clearly, if Za = 0, solutions to (1) are also solutions of the Einstein equations.

The introduction of the fields Za in (1) introduce additional evolution equations in the Z4c
system. Thus in addition to the dynamical evolution of the spatial metric γij and extrinsic
curvature Kij,

∂tγij =−2αKij+Lβγij

∂tKij =−DiDjα+α

[
Rij+KKij− 2KikK

k
j + 2D̂(iZj)

−κ1 (1+κ2)Θγij

]
+ 4πα [γij (S− ρADM)− 2Sij] +LβKij, (3)

additional equations for Θ and Zi are included in the dynamical evolution:

∂tΘ=
1
2
α
[
H+ 2D̂iZi − 2κ1 (2+κ2)Θ

]
+LβΘ

∂tZi = α [Mi +DiΘ−κ1Zi] + γ1/3Zj∂t
[
γ−1/3γij

]
+βjD̂jZi, (4)

with the definition

D̂iZj ≡ γ1/3γkj∂i

[
γ−1/3Zk

]
. (5)

3

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Here γ ≡ detγij. Additionally, the Hamiltonian and momentum constraints are written as:

H= R−KijK
ij+K2 − 16πρADM (6)

Mi = D j [Kij− γijK]− 8πSi . (7)

The Z4c system is further developed with a conformal transformation of the spatial metric,
along with additional conformal transformations of the dynamical variables. We define the
following:

γ̃ij = γ−1/3γij, ϕ =
1
12

logγ (8)

Ãij = γ−1/3

(
Kij−

1
3
γijK

)
, K̂= K− 2Θ (9)

Γ̃i = 2γ̃ijZj+ γ̃ijγ̃kl∂lγ̃jk, Γ̃id = Γ̃ijkγ̃
jk. (10)

With these definitions the Z4c system (3) and (4) takes the form

∂tϕ =−1
6
α
(
K̂+ 2Θ

)
+βi∂iϕ +

1
6
∂iβ

i (11)

∂tγ̃ij =−2αÃij+ 2γ̃k(i∂j)β
k− 2

3
γ̃ij∂kβ

k+βk∂kγ̃ij (12)

∂tK̂=−DiD
iα+α

[
ÃijÃ

ij+
1
3

(
K̂+ 2Θ

)2
+κ1 (1−κ2)Θ

]
+ 4πα(S+ ρADM)+βi ∂i K̂ (13)

∂tÃij = e−4ϕ [−DiDjα+α(Rij− 8πSij)]
tf
+α

[(
K̂+ 2Θ

)
Ãij− 2ÃikÃ

k
j

]
+ 2Ãk(i∂j)β

k− 2
3
Ãij∂kβ

k+βk∂kÃij (14)

∂tΘ=
1
2
α

[
R− ÃijÃ

ij+
2
3

(
K̂+ 2Θ

)2
− 16πρADM

− 2κ1 (2+κ2)Θ

]
+βi ∂iΘ (15)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1
3
γ̃ij∂j∂kβ

k− 2Ãij∂jα+ 2α

[
Γ̃ijkÃ

jk+ 6Ãij∂jϕ

− 1
3
γ̃ij∂j

(
2K̂+Θ

)
−κ1

(
Γ̃i − Γ̃id

)
− 8πγ̃ijSj

]

+
2
3
Γ̃id ∂jβ

j− Γ̃jd∂jβ
i +βj∂jΓ̃

i. (16)

Here the Ricci tensor Rij of γij can be decomposed into a conformal part Rϕ
ij and the Ricci

tensor R̃ij associated with γ̃ij. Additionally, the constraints associated with Zi are absorbed into
the definition of R̃ij:

4

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Rij = Rϕ
ij + R̃ij (17)

Rϕ
ij =−2D̃i D̃jϕ − 2γ̃ijD̃kD̃

kϕ + 4
(
D̃iϕ D̃jϕ − γ̃ijD̃kϕ D̃

kϕ
)

(18)

R̃ij =−1
2
γ̃lm∂i ∂jγ̃lm+ γ̃k(i∂j)Γ̃

k+ Γ̃kdΓ̃(ij)k+ γ̃lm
(
2Γ̃kl(iΓ̃j)km+ Γ̃kimΓ̃klj

)
. (19)

This formulation also introduces the algebraic constraints:

det γ̃ = 1, TrA≡ γ̃ijÃij = 0. (20)

Finally, to close the system of PDEs, we must introduce gauge fixing of the lapse α, and
shift β. For most of the systems considered in this project we will implement the puncture
gauge conditions composed of the Bona–Masso lapse [15] and the Gamma-Driver condition
on the shift [9, 16]:

∂tα=−µLα
2K̂+βi ∂iα (21)

∂tβ
i = µSα

2Γ̃i − ηβi +βj∂jβ
i. (22)

For most purposes the 1+ log variant is used with µL = 2/α and µS = 1/α2.
For completion of the Apples with Apples tests, we perform a gauge wave test below where

we used the CCZ4 formulation described in the appendix. In this case we will also employ the
harmonic lapse condition µL = 1 with zero shift β= 0.

All of the dynamical tests considered in this project are performed in vacuum spacetimes
with ρADM = Sij = 0.

3. Numerical methods

In this section we will describe in detail our numerical methods for evaluating the Z4 systems
described in the previous section. We intend to make our formulations and explanations as
detailed as possible so other research efforts may compare with our results with no ambiguities
in methods appearing. This section will be devoted to the general numerical methods used
for our simulations below. Additional information specific to the particular problem will be
described in the appropriate sections below.

3.1. Discretization

For spacetime solver applications we mostly employ the cell-centered data approach, however
we occasionally make use of mixed nodal and cell centered data for certain one dimensional
tests where determining convergence behavior was of primary interest.

For all problems considered, evolution is carried out using fourth order Runge–Kutta (RK)
time integration. The algebraic constraints (20) are enforced at each of the substeps of the
RK time step. Spatial discretization is carried out using both second order and fourth order
accurate finite differencing depending on the problem of interest. For second order accurate
problems centered discretization is performed as:

∂i → D0i, ∂i ∂j →

{
D0iD0j, if i ̸= j

D+iD−i if i = j
, (23)

5

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

where

D+vj ≡
vj+1 − vj

∆x

D−vj ≡
vj− vj−1

∆x

D0vj ≡
vj+1 − vj−1

2∆x

D+D−vj ≡
vj+1 − 2vj+ vj−1

∆x2
. (24)

For fourth order accurate problems the spatial derivatives are defined for centered discretiza-
tion as:

∂i → D(4)
i ≡ D0i

(
1− ∆x2

6
D+iD−i

)
∂i ∂j → D(4)

0i ≡

{
D(4)

0i D
(4)
0j , if i ̸= j

D+iD−j

(
1− ∆x2

12 D+iD−i

)
if i = j

. (25)

To accommodate the advection terms βi ∂i f appearing in the Z4c system (16) and gauge
conditions (22), we make use of upwinded discretization:

∂i → D(up)
i =

{
D+i− 1

2∆xiD+iD+i if βi > 0

D−i+
1
2∆xiD−iD−i if βi < 0

. (26)

Finally, to stabilize high frequency modes which are excited in the numerical evolution,
we employ Kreiss-Oliger dissipation whereby the right hand sides (RHS) of the equations of
motion are modified:

∂tf= RHS(f)→ ∂tf= RHS(f)+Qf, (27)

where the operator Q is defined as Q= Qx+Qy+Qz, with

Qx ≡ σKO (−1)r+1
∆x2r−1 (D+)

r
(D−)

r
/22r, (28)

and correspondingly for Qy and Qz. Here r is defined as the r≡O/2+ 1 for an orderO accur-
ate finite differencing scheme. For our purposes we usually set σKO ∼ 0.1, however for CCZ4
problems a higher value σKO ∼ 0.5 is necessary.

3.2. AMR

To support the multiple length scales within black hole binary simulations (evolution near the
event horizon, and waveform extraction in the linear region), as well as ensuring that bound-
ary conditions do not interfere with the physical region of interest, most spacetime evolution
simulations rely on either fixed (FMR) or AMR techniques. For this project we have built our
code in the AMReX software framework.

AMReX is a software framework for providing massively parallel, block-structured AMR
applications. AMReX uses a nested hierarchy of logically rectangular grids as illustrated in
figure 1. Here refined grid domains are always bounded by their parent grid domain, though
they may intersect multiple blocks within that parent grid. Each grid block is also formulated
with appropriate ghost cells which are either filled with boundary conditions (if the block

6

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 1. Illustration of AMR grids with two levels of factor 2 refinement. The coarsest
grid covers the domain with 162 cells. Bold lines represent grid boundaries. The two
intermediate resolution grids are at level 1 and the cells are a factor of two finer than
those at level 0. The two finest grids are at level 2 and the cells are a factor of 2 finer
than the level 1 cells. Note that the level 2 grids are properly nested within the union of
level 1 grids, but there is no direct parent-child connection.

intersects the domain boundary) or are filled by interpolation from the next coarser grid. The
interpolation procedure is described in the following paragraphs.

Refinement of grids takes place simultaneously in both space and time. Our particular
AMReX applications use the subcycling-in-time approach, whereby finer grids are evolved
multiple times with smaller time steps than the coarser levels. Figure 2 illustrates the sequence
of time step evolution at specific refinement levels.

For all FMR and AMR applications used in this project, during regridding, refined levels
are filled using the cell conservative quartic method. In this method a 4th order polynomial
is used to fit the data. For each cell involved in constructing the polynomial, the average of
the polynomial inside that cell is equal to the cell averaged value of the original data on the
coarser level.We find that this approach (of the standard interpolations available in theAMReX
toolkit) leads to the best stability and minimizes reflections of constraint violations at refine-
ment boundaries. Coarse level data that is covered by a finer grid is updated by averaging down
the fine level data after each RK stage.

To maintain 4th-order time and spatial accuracy at coarse-fine boundaries we perform a
4th-order accurate time interpolation of fine ghost cells at each stage of the RK procedure. In
this procedure approximations for fine level ghost data at each intermediate stage of the RK
procedure are determined by interpolating solutions and derivatives at the coarse level using
the RK stage values k1, . . .,k4. The specifics of this procedure are illustrated in great detail in
section 3.1 of [17].

3.3. Specifics of AMReX

The AMReX framework includes several parameters for the user to select in order to optimize
refinement and regridding, as well as optimizing memory distribution for parallel processes.

7

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 2. The subcycling approach is illustrated as a nested sequence of time substeps
in each level. Here the sequence of level advancement is shown for the example of 2
refinement levels (in addition to the coarse level) and can be extrapolated to any max
level. Higher levels are advanced with smaller time steps and performed in the order
shown (labeled as steps 1 through 9).

Throughout this project we include specifications of these parameters so future researchers
may recreate our results with as little ambiguity as possible. We describe the meaning and use
of these additional parameters here.

During the gridding and regridding processes, at each level of refinement the domain is
divided into logically rectangular blocks of cells based on the parameters specified at run time.
When dividing the region, cells in a block must be divisible by the blocking factor (in each
direction, though we use one value for all directions in this project), and blocks may contain
no more cells than specified by the max grid size.

Finally, when tagging cells for refinement a box is grown in each direction by a minimum
of the number of cells specified. Throughout this work we use one buffer cell when tagging
and regridding.

4. AMReX code generator

The complexity of the Einstein equations presents amajor hurdle towardswriting efficient code
in low level languages, where the barrier is significant between symbolic tensorial expressions
and the executable blocks of code. Many high level languages such as python and mathematica
provide tensor manipulation packages that can be used to perform index manipulation within
tensor calculations.

However, symbolic outputs from high level languages need significant manipulation to
make equivalent low level executable blocks. One example occurs when one wishes to write
finite differenced equivalents of partial derivatives especially for higher order accuracy to
fourth order and beyond. Equally prevalent is the case of tensor index expansion.

8

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

The case of writing executable code blocks for Einstein’s equations are particularly involved
when one considers the requirement of fourth (or higher) order finite differencingwithmultiple
centering schemes, and the complexity of the tensor expressions themselves. Additionally,
one is required to write right hand side expressions for upwards of 20 components, as well as
perform post-updating corrections after each RK time step in the integration.

Many packages have been developed (such as Kranc, nrpy+, and Cpi) to overcome this
hurdle, by automating the process of translating symbolic (textbook) expressions to execut-
able blocks in low level languages such as C/C++ or Fortran. One goal for this project was
to develop an equivalent method of code generation to translate the symbolic Z4c expres-
sions (16) into executable lines of code for AMReX, which itself is built on C++ and Fortran.
The AMReX Code Generator is built using SymPy to ease the manipulation and expansion
of tensors and finite difference derivatives, as well as make use of general definitions of
Christoffel symbols and curvature tensors from their formulations from the metric tensor. Thus
the user has to spend less effort expanding such definitions, and instead may rely on the code
generator to produce the correctly expanded expressions.

The logical architecture of the code generator is designed around symbolic objects that
contain information that can be accessed viamember functions. To elaborate, a symbolic object
such as the scalar curvature K or a component of the spatial metric tensor γ12 contains specific
data that can be accessed and arranged to output expressions AMReX compilable code . Each
symbolic object contains member variables such as the symbol name (e.g. ψ), the AMReX
indexed expression (for referencing grid data), and the symbolic equation referenced as one
might wish to do with intermediate symbols such as the spatial Christoffel symbols Γijk which
contain expressions written in spatial derivatives of the spatial metric tensor γij.

The pieces of data contained in the symbolic objects can be accessed and used in sub-
sequent expressions as SymPy symbolic objects. The user may, for example, reference sym-
bolic objects and their symbolic derivatives when building a ‘right hand side’ expression as
will be demonstrated below. Addtionally, member functions can be used to output expresssions
in AMReX code such as assigning a variable to specific grid data, or intermediate expression.

As an example, if one is considering a simple Klein–Gordon system written in first order
in time derivatives:

∂tψ = π

∂tπ = m2ψ +∇2ψ. (29)

In a python script one would write:

psi = stvar(‘psi’, state = True) \\Declaration of evolved variables
pi = stvar(‘pi’, state = True)

dtpsi = stvar(‘RHS_psi’, rhs = True) \\Declaration of right hand
sides
dtpi = stvar(‘RHS_pi’, rhs = True)

m = stvar(‘m’) \\Constant mass term

dDDpsi_LL.expr = psi.diff(’dDD’, Accuracy = 2) \\2nd order, 2nd
Derivative

dtpsi.expr = pi.symb

9

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

dtpi.expr = m**2*psi.symb**2 + dDDpsi_LL[0][0].symb
+ dDDpsi_LL[1][1].symb

One may then output these variables in executable form, such as:

print(psi.symb2isymb())
print(dtpsi.symb2expr())

with the resulting output:

psi = state(i, j, k, Idx::psi);
rhs(i, j, k, Idx::psi) = std::pow(m,2)*psi + dDDpsi_LL_00
+ dDDpsi_LL_11;

Additionally, one may output appropriately expanded finite differencing formulas for
numerical derivatives to arbitrary accuracy and with offsetting for up/down-winding. For
example, the 4th order central differenced first derivatives of ψ can be accessed using:

print(dDpsi_L.symb2expr())

with output

amrex::Real dDpsi_L_0 = ((2.0/3.0)*state_fab(i + 1, j, k, Idx::psi)
- 1.0/12.0*state_fab(i + 2, j, k, Idx::psi)
- 2.0/3.0*state_fab(i - 1, j, k, Idx::psi)
+ (1.0/12.0)*state_fab(i - 2, j, k,
Idx::psi))/dx[0];

amrex::Real dDpsi_L_1 = ((2.0/3.0)*state_fab(i, j + 1, k, Idx::psi)
- 1.0/12.0*state_fab(i, j + 2, k, Idx::psi)
- 2.0/3.0*state_fab(i, j - 1, k, Idx::psi)
+ (1.0/12.0)*state_fab(i, j - 2, k,
Idx::psi))/dx[1];

In this case, the domain dimension has been defined as dim= 2, but up to dim= 3 is supported.
Here arbitrary orders of finite differencing are accessed by determining the finite difference
coefficient matrix using the Lagrange polynomial expression for the specific stencil being
considered.

Additionally, as a matter of convenience for the numerical relativist, libraries of func-
tions have been written to automatically define symbolic versions of complex objects such
as the Riemann tensor or Christoffel symbols in terms of a previously defined spatial metric.
Assuming proper spatial derivatives have been previously defined the user may simply invoke
various functions to perform the proper expansion of the symbolic expressions containing the
metric derivatives, etc without having to write out expressions by hand.

Finally, the code generator implements symmetrization of tensors to avoid redundant defin-
itions for symbolic tensor components. When defining the metric tensor and referencing spe-
cific components, the code generator automatically redefines the three redundant components
(for a 3× 3 symmetric tensor) of the tensor object in terms of their symmetric counterparts.
When assigning the tensor object for AMReX expressions, only the independent components
will be written. Future iterations of the code generator will also implement sub-expression
elimination processes to further optimize generated code.

10

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

5. AwA tests and results

In order to validate the spacetime solver built by the code generator discussed in the previous
section, we perform a selected set of tests from the standard Apples with Apples testbeds for
Einstein solvers. To this end we perform tests designed to validate the accuracy and conver-
gence of the solvers under refinements of the numerical grid.

We include the standard robust stability test to probe the constraint damping behavior in
both 2nd and 4th order finite differencing. We also perform one dimensional linear wave (2nd
order finite differencing) and gauge wave tests (4th order finite differencing) for both conver-
gence testing and stability for long time evolutions. These tests are also useful in that they
require no numerically constructed initial data, and instead involve exact initial data.

Finally, we perform black hole binary simulations for both head on collisions and binary
inspirals for equal mass black holes. Head on collisions also involve exact initial data via
the puncture approach. They also provide a straightforward method for testing convergence
behavior in waveform extractions. Binary inspirals are more difficult to asses for accuracy,
however it is useful to compare both the waveforms and black hole trajectories with other
previously constructed spacetime solvers.

5.1. Robust stability test

The Robust stability test serves to diagnose the constrain violation behavior of a particular
method of solving Einstein’s equations. It has most notably served to characterize stability
behavior for solvers based on the 3+ 1 ADM, BSSN, Z4, etc. It is well known that the ADM
solvers suffer from rapid undesirable growth of constraint violation that effectively renders
solver based on this method useless. It has also been demonstrated that the BSSN methods
develop moderate but bounded growth of constraint violations, and the Z4c methods result in
decreasing constraint violations.

Here we simply wish to validate our solver based on code generation in the Z4c scheme
with puncture gauge conditions in both 2nd order and 4th order finite differencing. To this end
we expect to observe decreasing constraint violation behavior.

For this test we perform the simulations on a cell centered grid of nx = 64ρ points in the
x direction. For 2nd order tests we use ny = nz = 4ρ, and for 4th order tests ny = nz = 8ρ. We
perform the test on a domain of x ∈ (−0.64,0.64). For 2nd order tests y and z ∈ (−0.04,0.04).
For 4th order we have y and z ∈ (−0.08,0.08). All 22 variables are initialized randomly
ε= (−10−10/ρ2,10−10/ρ2). Evolution is performed with η= 2, κ1 = κ2 = 0, σKO = 0.1. We
perform the test for a CFL factor of 0.5 for 1000 light crossing times (tfinal = 1280) on the
domain.

The constraint violations are monitored using the suggested diagnostic variable [18]:

C≡
√
H2 + γijMiMj+Θ2 + 4γijZiZj, (30)

where H and Mi are the Hamiltonian and Momentum constraints defined in (7).
The results for both 2nd and 4th order finite differencing are shown in figures 3 and 4

respectively. In each case we observe the expected constraint damping behavior of the dia-
gnostic variable C.

5.2. Linear wave test

We test numerical stability and precision of our generated solver by evolving a linear wave as a
perturbation on theMinkowski background. In this case a linear wave is an exact solution of the

11

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 3. Here the norm of the constraint monitor ||C|| is graphed for the robust
stability test. Second order finite differencing is used for spatial derivatives in
the evolution equations. Three values for ρ were considered for amplitudes ε=
(−10−10/ρ2,10−10/ρ2).

Figure 4. Here the norm of the constraint monitor ||C|| is graphed for the robust
stability test. Fourth order finite differencing is used for spatial derivatives in
the evolution equations. Three values for ρ were considered for amplitudes ε=
(−10−8/ρ2,10−8/ρ2).

12

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 5. Comparison of wave forms for linear wave initial data at t= 1000 crossing
times. Here we compare the wave forms for γ11 − 1. Resulting forms for ρ= 1,2 are
shown (sparsely dotted, and dotted respectively). The resulting form for ρ= 8 is also
shown (dashed line), along with the exact solution (solid line). Drifting of solutions for
lower resolutions is observed, though higher resolutions show convergence to the exact
case (see figure 6).

linearized Einstein equations which are valid for small amplitudes where interaction terms are
below threshold for generating transitions between modes. Thus a linear wave of sufficiently
small amplitude should maintain its structure up to numerical accuracy and machine precision.

To this end we use analytic initial data of the form:

γ̃xx = 1, γyy = 1+ b, γzz = 1− b (31)

α= 1, Kyy =
1
2
∂tb, Kzz =−1

2
∂tb, (32)

with

b= Asin

(
2π (x− t)

d

)
, (33)

where A= 10−8 and d= 1.28. The amplitude A is chosen such that non-linear terms in (16)
are below machine precision and can thus be numerically neglected in the evolution.

The test is performed for 2nd order on a (node, cell, cell) centered grid with nx = 64ρ, ny =
nz = 4ρ on the domain x ∈ (−0.64,0.64), and y,z ∈ (−0.04,0.04). We perform the test for
ρ= 1,2,4, and 8. Here we choose η= 2, κ1 = 0.02 κ2 = 0, with dissipation factor σKO = 0.1.
We chose the Courant factor as λ= 0.5.

Figure 5 illustrates the γyy wave forms for a linear wave at t= 1000 crossing times. The
convergence of solutions is apparent in these plots. The convergence of increasing resolutions

13

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 6. Convergence of linear wave forms for 2nd order finite differencing using the
convergence formula in (34). Here we compare waveforms for ρ= 1,2,4,8, and 16
using the formulas for Cρ=4 (dotted), Cρ=8 (dashed), and Cρ=16 (solid).

is further illustrated in figure 6. Here the convergence is defined by comparing results at three
different resolutions via the formula:

Cρ ≡ log
||uρ − uρ/2||
||uρ/2 − uρ/4||

, (34)

where the norm ||u|| is defined as the sum of squares of the 22 evolved variables in (16)
and (22):

||u||2 =
∑
i

u2i = ϕ2 + γ̃2ij + K̂2 + Ãij+ . . . (35)

and the logarithm is base 2 or 4 depending on the order of finite differencing we consider. We
will use this definition for both the linear wave and gauge wave tests below (with appropriate
variables redefined when the CCZ4 formulation is used).

5.3. Gauge wave test

As a final quantitative test for our code generated solvers, we employ the gauge wave test
with 4th order finite differencing. Gauge wave tests serve to illustrate several key characterist-
ics of convergence of Einstein solvers. In particular, gauge wave tests allow one to probe the
numerical stability and accuracy of the solver in a technically non-perturbative manor (arbit-
rary wave amplitude), by introducing an exact time dependent solution of Einstein’s equations
that are gauge equivalent to vacuum spacetime. Thus one is able to illustrate how well the
solver maintains gauge invariance. Typically this is achieved by monitoring the Hamiltonian
and momentum constraints (7) for long time evolutions.

14

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 7. Comparison of gauge waves at t= 1000 crossing times, for ρ= 4 (dotted) and
ρ= 8 (dashed). Here we compare γ11 − 1. The exact solutions is plotted (solid line).
Evolution is done in CCZ4 formulation with harmonic lapse and zero shift.

For this test we initialize the variables according to an exact gauge wave:

γ̃xx = 1− b, γyy = 1, γzz = 1 (36)

α=
√
1− b, Kxx =

∂tb

2
√
1+ b

, Γ̂x =− 2∂xb

3(1− b)5/3
, (37)

where b is defined as in (33) with d= 1. Here we choose an amplitude A= 0.1. Such an amp-
litude allows for non-linear terms in the equations of motion to affect the solution, and also
allows for testing at 4th order finite differencing.

For this test we again use a (node, cell, cell)-centered grid, with nx = 64ρ, ny = nz = 4ρ on
the domain x ∈ (−0.5,0.5), and y,z ∈ (−0.03125,0.03125). However, we choose to evolve
the system in a CCZ4 scheme, with harmonic lapse condition (µL = 1), and zero shift.
Additionally, we set η= 2, κ1 = 1, κ2 = 0, and κ3 = 1, with dissipation factor σKO = 0.3. We
evolve with a CFL factor of λ= 0.5.

Figure 7 illustrates the convergence of wave forms at t= 1000 crossing times for increasing
ρ to the exact solution. Thewaveform convergence as a function of time is shown quantitatively
in figure 8. Finally, we also monitor the Hamiltonian constraint (7) as a function of time for
all value of ρ considered. Shown in figure 9, is the integrated value of H as a function of time.
The convergence of H at 4th order is shown in figure 10.

6. Black hole binary systems

As a final set of tests for the code generated spacetime solver, we wish to demonstrate numer-
ical simulations of black hole binary mergers. Such tests serve both as interesting physical

15

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 8. Convergence of waveforms for gauge waves with 4th order finite differencing.
Comparisons are performed for ρ= 8, ρ= 4, ρ= 2, and ρ= 1, using the formulas for
Cρ=4 (dashed) and Cρ=8 (solid) given in (34).

Figure 9. Shown is the H constraint (7) as a function of crossing times for ρ= 1,2,4,
and 8 (solid, dashed, dot-dashed, and dotted respectively) for gaugewaves with 4th order
finite differencing.

16

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 10. Convergence of H constraint for gauge waves with 4th order finite differen-
cing. Here the convergence of H is performed with (34) using the single variable u≡ H
for Cρ=4 (dashed) and Cρ=8 (solid).

systems, as well as a strong test of numerical stability for three spatial dimensions. We are
also able to observe the behavior of physical simulations in the presence of FMR and AMR.

To perform these tests we will consider both a head on binary collision, as well as a binary
inspiral. In both cases we observe the gravitational radiation via the Weyl scalar ψ4 in the
Newman–Penrose tetrad formulation for waveform extraction.

The initial data for black hole binaries is generated in a separate solver from the evolution
system (16).

6.1. Head on collision

The goal of the equal mass black hole head on collision test is to quantitatively demonstrate
the convergence behavior of the extracted wave forms for several resolutions. Here multiple
resolutions can be tested easily since the solution of the initial data [19–21] is exact for puncture
black holes initially at rest on the initial spatial hypersurface. In particular, it is clear from the
appendix that an exact solution of the constraints is achieved by simply setting Aij = K= 0
and u= 0 in (45). Thus, initial data for head on collisions is analytic, and no comparison of
numerical initial data is necessary.

For the initial data the equation (47) is solved analytically with u= 0, and the definition of
ξ given in (46). Here we place two equal mass black hole punctures at rest with bare masses
M± = 0.5 at coordinate positions x⃗± = (0,±1.1515,0).

In this case we use a cell centered numerical grid with (nx,ny,nz) = (64ρ,64ρ,64ρ) for
ρ= 1,2,4, and 8 at the coarsest level, on the domain x,y,z ∈ (−128,128). Here the spatial
derivatives are approximated using 4th order finite differencing, however it should be noted that
convergence will only be available to 2nd order as explained below. We perform the evolution

17

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 11. The ψ20
4 waveform for the head-on black hole collision at r= 20 is shown for

both the lowest resolution n= 64 (dashed) and the highest resolution n= 256 (solid).

with six levels of FMR (with level l= 0 as the coarsest level) with a refinement factor of
2 at each level. Cells are tagged for refinement with the criterion r< 64,32,16,8,4,2, for
r= (x2 + y2 + z2)1/2 the standard radius on a Cartesian grid. We choose a blocking factor of
16 for ρ= 1,2 and 32 for ρ= 4,8. The max grid size is set to 32 cells. One buffer cell is used.
Regridding takes place every ten timesteps. The systems is evolved with the Z4c scheme, with
puncture gauge conditioning. For this case we set η= 2, κ1 = 0.02, and κ2 = 0. We choose a
dissipation factor of σKO = 0.1. The Courant factor is chosen to be λ= 0.5.

To analyze the simulation we perform a waveform extraction at various coordinate radii in
the near linear regime r= 20,30,40,50. The wave form is constructed using the Newman–
Penrose formalism (reviewed in appendix C), which is additionally generated using the code
generator. Following the construction of the Weyl scalar ψ4, we determine the l= 2, m= 0
spherical harmonic amplitude ψ20

4 . Since the data is native to Cartesian coordinates, we per-
form a trilinear interpolation to the sphere at the radius of extraction.

As stated previously, evolution is performed using 4th order spatial finite differencing.
However, it can be shown that numerical interpolation and integration of cell centered
Cartesian data on a spherical shell leads to an expected 2nd order convergence of the wave-
form for increasing resolution. This is indeed observed as shown in figures 11 and 12. The
robustness of the wave form is shown in figure 13 showing the waveform at several times
corresponding to the travel distance of the wave.

6.2. Black hole inspiral

The final test we wish to present is that of an equal mass black hole binary inspiral (see [22]) as
one might expect to compare with observational data from gravitational wave interferometer
observatories. This last test has the added requirement of numerically generated initial data,
that is fed into the Z4c solver, which will then serve as a test of both solvers.

18

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 12. To illustrate the convergence of the waveform for a head on collision, we
zoom in on the highest peak in figure 11. All three resolutions are shown; lowest (dotted),
medium (dashed), and highest (solid).

Figure 13. The robustness of the waveform is illustrated by plotting the waveform at 3
radii r= 20 (solid), r= 30 (dashed), and r= 40 (dotted). The r= 30 and r= 40 wave-
forms are plotted with a ∆t= 10 and ∆t= 20 delay respectively and overlaid to illus-
trate the evolution of the waveform.

19

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 14. Blackhole binary trajectories. The black hole ‘centers’ are tracked by fol-
lowing the minimized lapse (solid and dashed lines denote each black hole center in the
trajectory).

For the initial data we solve (47) using the solution for the momentum constraint (42), and
the definition of ξ given in (46). Here we place two equal mass black hole punctures with
bare massesM± = 0.4856 at coordinate positions x⃗± = (0,±4.891,0). Here the punctures are
given initial momenta P⃗± = (∓0.0969,0,0). The initial data system is solved using relaxa-
tion until the Hamiltonian constraint is satisfied to the order H≲ 10−6 outside the black hole
horizons.

Following the initial data solving procedure, we initialize the gauge variables as α= ψ−2,
βi = 0 as in Brill–Lindquist initial data. Additionally, we initially set ϕ = logψ per the defin-
ition, and γ̃ij = δij. Additionally, we set K̂= θ = Γ̃i = 0.

For this case we performed the simulation on a coarse grid of (nx,ny,nz) = (256,256,256),
for a domain x,y,z ∈ (−512,512) with 4th order spatial finite differencing. In this case we use
a mixed FMR/AMR grid with 8 levels of refinement, and a refinement factor of 2. The first
4 levels are refined on a fixed grid as in the head on collision case with r< 256,128,64,32.
The last 4 levels are tagged using AMR on the lapse α < 0.8,0.7,0.6,0.5. This type of mixed
FMR/AMR allows for consistent interpolation and integration of waveforms to spherical shells
at the radius of the extraction for some r> 32. Here the blocking factor is chosen to be 8 with a
max grid size of 16 with one buffer cell. The AMRgrid is updated after every 5 time steps in the
RK4 evolution. We evolve the equations of motion in the Z4c formalism in the puncture gauge
withη= 0.25, κ1 = 0.02, κ2 = 0, and a dissipation factor σKO = 0.1. We choose a Courant
factor of λ= 0.1.

Figure 14 illustrates the trajectory of the black holes as the simulation progresses. The
results are similar to trajectories for equal mass binaries as obtained by previous analysis

20

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 15. Blackhole binary (l= 2, m= 2) waveforms for both the real (solid) and
imaginary (dashed) parts of rψ22

4 .

[23]. Note however, one should be aware that differences in gauge conditioning and evolu-
tion schemes can lead to quantitative differences in the plotted trajectories.

As in the previous case of the head on collision, the simulation is analyzed by extracting
the wave forms at fixed radii in the linear regime. Here we extract the wave forms at coordin-
ate radius r= 50 outside the FMR region (defined for r> 32, where regridding does not take
place). In this case we calculate the l= 2,m= 2 spherical harmonic amplitude of the Weyl
scalar ψ22

4 . Figure 15 illustrates the time dependent values of the spherical wave forms at the
extraction radius.

7. Summary and discussion

To summarize our presentation in this paper, we have developed and demonstrated a code gen-
eration method for constructing complex PDE solvers for AMReX applications. The method
of code generation significantly reduces the time spent analyzing and debugging large lines
of code. Additionally code generation allows one to generate executable code for low level
(fast) languages from symbolic tensor manipulation packages in higher level languages found
in python and Mathematica applications.

We have demonstrated the application of code generation to the complex equations involved
in a 3+ 1 formulation of numerical relativity. In particular we have adapted our code generator
to produce executables for AMReX applications of numerical relativity. We find that the gen-
erated systems of equations for Z4c and CCZ4 formulations produce accurate results when
probed with the AwA tests for numerical relativity solvers. We thus conclude that the gen-
erated code is reliable and accurate, and may be used in more general contexts beyond the
construction of numerical relativity solvers.

21

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

As an example of future applications, we intend to adapt the code generator to consider
more complicated physical systems such as those of neutron star binaries, or core collapse
supernovae. Such endeavors will require implementation of proper boundary conditions, such
as Sommerfeld conditions for outward propagating waves, which will further require the
use of code generation within AMReX. Such applications will further push the develop-
ment of code generation as one considered hydrodynamics and magnetohydrodynamics in a
dynamical spacetime. Additionally, code generation opens the door for consideration of more
exotic spacetime solves such as those associated with time evolution in holographic space-
time problems such as those encountered in the AdS/CFT correspondence, or holographic
superconductors.

Data availability statement

The data cannot be made publicly available upon publication because they are not available in
a format that is sufficiently accessible or reusable by other researchers. The data that support
the findings of this study are available upon reasonable request from the authors.

Acknowledgment

This research was funded by the ExaStar project within the Exascale Computing Project (17-
SC-20-SC). Large scale computations were performed using the Cori supercomputer of the
National Energy Research Scientific Computing Center.

A P is very thankful to Erik Schnetter, Vasilli Mewes, and Ann Almgren for useful discus-
sions and advice for this project.

Appendix A. Review of Bowen York initial data

Here we review the method of generating black hole binary initial data as presented in [24]
and [25]. The initial data are generated by ensuring that the constraints (7) are satisfied on
an initial spatial hypersurface Σ of the spacetime manifold. Following the original conformal
decomposition of the spatial metric

γij = ψ4γ̃ij, (38)

where we switch from ϕ and χ to ψ as the conformal factor for convenience. We may then
insert (38) into the Hamiltonian constraint (7):

8D̃2ψ −ψR−ψ5K2 +ψ−7ÂijÂij = 0, (39)

where we have introduced the conformal decomposition of Âij ≡ ψ2Aij. Hear D̃2 = γ̃ijD̃i D̃j is
the covariant Laplacian with D̃i the covariant derivative compatible with the spatial conformal
metric γ̃ij.

With these definitions we rewrite the momentum constraint (7) as:

D̃jÂ
ij− 2

3
ψ6γ̃ijD̃jK= 0. (40)

22

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Analytical solutions to equation (40) compatible with black hole spacetimes are well
known. In particular we may chose the conformal transverse traceless approach with an ini-
tially flat conformal metric γ̃ij = ηij with maximal slicing K= 0 (Bowen–York initial data). In
this case one is left with

∂jÂ
ij = 0 (41)

which is linear, and thus possess simple solutions. Specifically, one may consider a single
moving black hole with initial position Ci, and initial momentum Pi in Cartesian coordinates.
Solutions possessing these characteristics may be written as:

ÂijCP =
2
3r2C

(
Pi njC +PjniC −

(
ηij− niC n

j
C

)
nkCPk

)
. (42)

The linearity of (41) allows one to add several solutions of (42) together. In particular one may
select several values for C and P and write a general solution

Âij =
∑
n

ÂijCnPn . (43)

We then turn to the Hamiltonian constraint (39) with conformal flatness and maximal sli-
cing:

∇2ψ =−1
8
ψ−7ÂijÂ

ij. (44)

In the puncture approach [26] to solving (44) one absorbs the analytic singularities into ψ and
considers corrections to ψ that are solved numerically. To this end for a black hole binary we
write:

ψ = 1+
1
ξ
+ u, (45)

for freely chosen bare masses M1,2. Here ξ is defined as:

ξ ≡ M1

2rC1

+
M2

2rC2

. (46)

In this case the Hamiltonian constraint (44) reduces to:

∇2u=−1
8
ÂijÂ

ij

(
ξ

ξ (1+ u)+ 1

)7

. (47)

One may then employ standard methods of numerical solutions to elliptic equations to find u.
For this particular project we employed a simple relaxation procedure where the initial guess
for u was determined via the approximation described in [27].

The grid setup and FMR/AMR algorithm for the initial data is determined by the grid setup
of the problem we intend to evolve. Grid and AMR inputs are chosen to match for both initial
data and Z4c (or CCZ4) solver. This allows for easy copying from one solver to the next.

Appendix B. Conformal covariant Z4 (CCZ4) system

For certain tests and physical situations it is advantageous to consider an alternate to the Z4c
formulation known as the CCZ4 formulation for evolution of the equations of motion. The
CCZ4 is based on the same conformal decomposition of the original Z4 system as shown in (1),
(3) and (4). The CCZ4 amounts to a rearrangement of terms in the Z4 system with additional
adjustable parameters determining the conformal covariance of the evolution of the equations

23

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

of motion. For particular tests such as the gauge wave test, it has been well documented that the
constraint damped CCZ4 leads to improved stability of the evolution. However, the desirability
of conformal covariance presents stability issues with black hole binary evolutions. In these
cases the conformal covariance of the equations is sacrificed for numerical stability.

We present the final equations of the CCZ4 system with the variable definitions given in
section 2. We however adjust our definition of the conformal factor in the spatial metric as:

γ̃ij =W2γij, (48)

and thus we have a redefinition of the conformal variable W= exp(−2ϕ). See [13] and [14]
for details and justification for this redefinition.

With this redefinition the CCZ4 system decomposes as:

∂tW=
1
3
αWK+βi∂iW− 1

3
W∂iβ

i (49)

∂tγ̃ij =−2αÃij+ 2γ̃k(i∂j)β
k− 2

3
γ̃ij∂kβ

k+βk∂kγ̃ij (50)

∂tK=−DiD
iα+α

(
R+ 2DiZ

i +K2 − 2ΘK
)
− 3ακ1 (1+κ2)Θ

+ 4πα(S− 3ρADM)+βi∂iK (51)

∂tÃij =W2
[
−DiDjα+α

(
Rij+ 2D(iZj) − 8πSij

)]tf
+α

[
(K− 2Θ) Ãij

−2ÃikÃ
k
j

]
+ 2Ãk(i∂j)β

k− 2
3
Ãij∂kβ

k+βk∂kÃij (52)

∂tΘ=
1
2
α

[
R+ 2DiZ

i − ÃijÃ
ij+

2
3
K2 − 2ΘK− 16πρADM

− 2κ1 (2+κ2)Θ

]
−Zi∂iα+βi ∂iΘ (53)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1
3
γ̃ij∂j∂kβ

k− 2Ãij∂jα+ 2α

[
Γ̃ijkÃ

jk− 3Ãij
∂jW
W

−2
3
γ̃ij∂jK− 8πγ̃ijSj

]
+ 2γ̃ik

[
α∂kΘ−Θ∂kα− 2

3
αKZk

]
+

2
3
Γ̃id ∂jβ

j− Γ̃jd∂jβ
i + 2κ3

[
2
3
γ̃ijZj∂kβ

k− γ̃jkZj∂kβ
i

]
− 2ακ1γ̃

ijZj+βj∂jΓ̃
i. (54)

Here the Ricci tensor Rij of γij can be decomposed into a conformal and the Ricci tensor
R̃ij associated with γ̃ij. Additionally, the constraints associated with Zi are absorbed into the
definition of R̃ij:

Rij = RWij + R̃ij (55)

RWij =
1
W2

[
W
(
D̃i D̃jW+ γ̃ijD̃lD̃

lW
)
− 2γ̃ij D̃

lWD̃lW
]

(56)

R̃ij =−1
2
γ̃lm∂i ∂jγ̃lm+ γ̃k(i∂j)Γ̃

k
d + Γ̃kdΓ̃(ij)k+ γ̃lm

(
2Γ̃kl(iΓ̃j)km+ Γ̃kimΓ̃klj

)
. (57)

Note the slight difference in definition of R̃ij in the second termwith that in the Z4c formulation
in (19). As in the Z4c formulation we enforce the algebraic constraints as in (20).

24

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Here the puncture gauge conditions for the lapse α, and shift βi take the form:

∂tα=−µLα
2 (K− 2Θ)+βi ∂iα (58)

∂tβ
i = µSα

2Γ̃i − ηβi +βj∂jβ
i. (59)

Appendix C. Newman–Penrose waveform extraction

To extract the gravitational waveform of a black hole collision, we adopt the Newman–
Penrose formulation (see [28, 28–32]). Here the ten components of the Weyl tensor (4)Cµναβ

is decomposed into five complex valued scalars constructed from contractions with a null tet-
rad (lα,kα,mα, m̄α). Considering quasi-Kinnersly tetrads it is possible to show that the Weyl
scalar ψ4 defined as

ψ4 ≡−(4)Cµναβk
µm̄νkαmβ , (60)

has the property that as r→∞,

ψ4 → ∂2t h+ − i∂2t h×, (61)

where h+ and h× are the two independent transverse modes of the metric perturbation.
Performing the 3+ 1 decomposition it can be shown:

ψ4 =
(
Rijkl+ 2Ki[kKl]j

)
nim̄jnkm̄l− 8

(
Kj[k,l] +Γpj[kKl]p

)
n[0m̄j]nkm̄l

+ 4(Rjl−KjpK
p
l +KKjl)n

[0m̄j]n[0m̄l]. (62)

Following the general expression for the Weyl scalar in (62), we implement the quasi-
Kinnersley tetrad as constructed in [Baker, Campanelli, Lousto]. In this procedure an ortho-
gonal set of spatial vectors aligned with the (̂φ) and (̂r) directions is selected, along with a
third vector constructed from the cross product. These are written in Cartesian coordinates as:

va1 = [−y,x,0] ,
va2 = [x,y,z] ,

va3 = det(γ)1/2 γadϵdbcv
b
1v
c
2, (63)

where ϵabc is the standard Levi-Cevita symbol with ϵ123 = 1.
An orthonormal basis is then constructed via the Gram–Schmidt procedure. Specifically,

orthonormal vectors va1,v
a
2, and v

a
3 are manipulated one after the other as follows:

va1 →
va1√
ω11

,

va2 →
va2 −ω12√

ω22
,

va3 →
va3 −ω13va1 −ω23va2√

ω33
, (64)

where ωij ≡ vai v
b
j γab. Note that for each v

a
i in (64), the numerator is evaluated first, and then

the denominator with newly constructed value of vai .

25

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

The tetrad is now constructed using the orthonormal basis (64) along with the time-like unit
normal uµ, which in the 3+ 1 decomposition takes the form:

uµ =
1
α

(
1,−βi

)
. (65)

The null tetrad is then constructed as:

lµ =
1√
2
(uµ + rµ)

nµ =
1√
2
(uµ − rµ)

mµ =
1√
2
(θµ + iφµ) . (66)

The Weyl scalar transforms as a spherical tensor with spin weight −2 and is thus decom-
posed with the spin weighted spherical harmonics Y−2

lm :

ψ4 (t,r,θ,φ) =
∞∑
l=2

m=l∑
m=−l

ψlm4 (t,r)Y−2
lm (θ,φ) . (67)

with spherical amplitude:

ψlm4 =

ˆ
dΩY−2⋆

lm ψ4. (68)

The spin-weighted spherical harmonics are defined as:

Y−2
lm ≡

√
(l− 2)!
(l+ 2)!

(
Wlm (θ,φ)− i

Xlm (θ,φ)
sinθ

)
, (69)

with Wlm(θ,φ) and Xlm(θ,φ) defined as:

Wlm (θ,φ) =

(
∂2θ − cotθ∂θ −

∂2φ

sin2 θ

)
Ylm (θ,φ) ,

Xlm = 2∂φ (∂θ − cotθ)Ylm (θ,φ) , (70)

and the standard definition of the spherical harmonics:

Ylm (θ,φ) =

√
2l+ 1
4π

√
(l−m)!
(l+m)!

Plm (cosθ)e
imφ, (71)

where Plm are the associated Legendre polynomials.
For the cases we consider for head on and inspiraling black hole binary collisions we expli-

citly use the s=−2 weighted spherical harmonics:

Y−2
20 =

3
4

√
5
6π

sin2 θ,

Y−2
22 =

1
8

√
5
π
(1+ cosθ)2 e2iπ. (72)

26

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

Figure 16. Weak scaling performance of our Z4c code-generated solver with adaptive
mesh refinement on the NERSC Perlmutter machine running a black hole collision test
problem. Shown is the code’s figure of merit, the number of cells advanced per micro-
second of simulation walltime. Two weak scaling series are shown in our plot, repres-
enting CPU (green diamond) and GPU (blue circles) results along with their ideal weak
scaling curves extrapolated from the measured single-node figure of merit (orange and
red lines, respectively).

Appendix D. Performance testing results

To assess our code performance on modern supercomputing architectures, we evaluated the
weak scaling performance of our Z4c code-generated solver with AMR on the NERSC
Perlmutter machine running a black hole collision test problem. The test problem is distributed
with the code on github, for reference.Wemeasure a quantity we refer to as the code’s figure of
merit, the number of cells advanced per microsecond of simulation walltime. Two weak scal-
ing series are shown in our plot, representing CPU (green diamond) and GPU (blue circles)
results along with their ideal weak scaling curves extrapolated from the measured single-node
figure of merit (orange and red lines, respectively). We measured weak scaling from 1 to 24
nodes on Perlmutter, using the dedicated CPU nodes (2x AMD EPYC 7763) and GPU nodes
(1x AMD EPYC 7763 + 4x NVIDIA A100) for the respective tests. For the CPU test, we
allocate 1 MPI rank per core, while for the GPU test, we allocate 1 MPI rank per GPU.

As shown in figure 16 We see reasonable weak scaling for this problem, with deviations
from the ideal scaling curves around 64 GPUs. We note that the black holes are moving across
the domain, and we are using nine total levels of refinement. In this test case, the grid refine-
ment boundaries are likewise moving, resulting in additional communication that would not
be present in a static refinement problem, so this is a stress test for scaling performance in a
case where regridding changes the grid layout and communication pattern among MPI ranks
(and thus, GPUs) dynamically. We ascribe qualitative differences between CPU and GPU
scaling to the addition of communication between host and device memory in the latter case.
Nevertheless, we have shown that we can effectively get a good speedup from GPUs on a
GPU-based supercomputer with 3-4x speedup on dedicated CPU and GPU nodes. We note

27

Class. Quantum Grav. 40 (2023) 245013 A J Peterson et al

that if we were to run the CPU-scaling on the GPU nodes instead, there would be only 1 AMD
EPYC 7763 per node instead of 2 on the dedicated CPU nodes, likely resulting in an additional
factor of 2x GPU speedup over the speedup we show above. To show performance in the mode
users are likely to actually use NERSC Perlmutter however, we have chosen to show results
using the dedicated CPU and GPU nodes.

ORCID iD

Adam J Peterson https://orcid.org/0000-0003-1121-6782

References

[1] Abramovici A et al 1992 Science 256 325–33
[2] Caron B et al 1997 Class. Quantum Grav. 14 1461–9
[3] Abbott B P et al (LIGO Scientific and Virgo) 2016 Phys. Rev. Lett. 116 061102
[4] Baker J G, Centrella J, Choi D I, Koppitz M and van Meter J 2006 Phys. Rev. Lett. 96 111102
[5] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Phys. Rev. Lett. 96 111101
[6] Bona C, Ledvinka T, Palenzuela C and Zacek M 2003 Phys. Rev. D 67 104005
[7] Gundlach C, Martin-Garcia J M, Calabrese G and Hinder I 2005Class. Quantum Grav. 22 3767–74
[8] Bernuzzi S and Hilditch D 2010 Phys. Rev. D 81 084003
[9] Gundlach C and Martin-Garcia J M 2006 Phys. Rev. D 74 024016

[10] Babiuc M C et al 2008 Class. Quantum Grav. 25 125012
[11] Husa S, Hinder I and Lechner C 2006 Comput. Phys. Commun. 174 983–1004
[12] Ruchlin I, Etienne Z B and Baumgarte T W 2018 Phys. Rev. D 97 064036
[13] Marronetti P, Tichy W, Bruegmann B, Gonzalez J and Sperhake U 2008 Phys. Rev. D 77 064010
[14] Cao Z, Yo H J and Yu J P 2008 Phys. Rev. D 78 124011
[15] Bona C, Masso J, Seidel E and Stela J 1995 Phys. Rev. Lett. 75 600–3
[16] Alcubierre M, Bruegmann B, Diener P, Koppitz M, Pollney D, Seidel E and Takahashi R 2003

Phys. Rev. D 67 084023
[17] McCorquodale P and Colella P 2011 Commun. Appl. Math. Comput. Sci. 6 1–25
[18] Cao Z and Hilditch D 2012 Phys. Rev. D 85 124032
[19] Brill D R and Lindquist R W 1963 Phys. Rev. 131 471–6
[20] Brandt S R and Bruegmann B 1997 arXiv:gr-qc/9711015 [gr-qc]
[21] Okawa H 2013 Int. J. Mod. Phys. A 28 1340016
[22] Hilditch D, Bernuzzi S, Thierfelder M, Cao Z, Tichy W and Bruegmann B 2013 Phys. Rev. D

88 084057
[23] Etienne Z B, Liu Y T, Shapiro S L and Baumgarte T W 2009 Phys. Rev. D 79 044024
[24] Bowen J M and York J W Jr 1980 Phys. Rev. D 21 2047–56
[25] Kulkarni A, Shepley L and York J W Jr 1983 Phys. Lett. A 96 228–30
[26] Brandt S and Bruegmann B 1997 Phys. Rev. Lett. 78 3606–9
[27] Dennison K A, Baumgarte T W and Pfeiffer H P 2006 Phys. Rev. D 74 064016
[28] Campanelli M, Krivan W and Lousto C O 1998 Phys. Rev. D 58 024016
[29] Campanelli M, Lousto C O, Baker J G, Khanna G and Pullin J 1998 Phys. Rev. D 58 084019

Campanelli M, Lousto C O, Baker J G, Khanna G and Pullin J 2000 Phys. Rev. D 62 069901
(erratum)

[30] Campanelli M and Lousto C O 1999 Phys. Rev. D 59 124022
[31] Baker J G, Campanelli M and Lousto C O 2002 Phys. Rev. D 65 044001
[32] Campanelli M, Kelly B J and Lousto C O 2006 Phys. Rev. D 73 064005

28

https://orcid.org/0000-0003-1121-6782
https://orcid.org/0000-0003-1121-6782
https://doi.org/10.1126/science.256.5055.325
https://doi.org/10.1126/science.256.5055.325
https://doi.org/10.1088/0264-9381/14/6/011
https://doi.org/10.1088/0264-9381/14/6/011
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevD.67.104005
https://doi.org/10.1103/PhysRevD.67.104005
https://doi.org/10.1088/0264-9381/22/17/025
https://doi.org/10.1088/0264-9381/22/17/025
https://doi.org/10.1103/PhysRevD.81.084003
https://doi.org/10.1103/PhysRevD.81.084003
https://doi.org/10.1103/PhysRevD.74.024016
https://doi.org/10.1103/PhysRevD.74.024016
https://doi.org/10.1088/0264-9381/25/12/125012
https://doi.org/10.1088/0264-9381/25/12/125012
https://doi.org/10.1016/j.cpc.2006.02.002
https://doi.org/10.1016/j.cpc.2006.02.002
https://doi.org/10.1103/PhysRevD.97.064036
https://doi.org/10.1103/PhysRevD.97.064036
https://doi.org/10.1103/PhysRevD.77.064010
https://doi.org/10.1103/PhysRevD.77.064010
https://doi.org/10.1103/PhysRevD.78.124011
https://doi.org/10.1103/PhysRevD.78.124011
https://doi.org/10.1103/PhysRevLett.75.600
https://doi.org/10.1103/PhysRevLett.75.600
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.2140/camcos.2011.6.1
https://doi.org/10.2140/camcos.2011.6.1
https://doi.org/10.1103/PhysRevD.85.124032
https://doi.org/10.1103/PhysRevD.85.124032
https://doi.org/10.1103/PhysRev.131.471
https://doi.org/10.1103/PhysRev.131.471
https://arxiv.org/abs/gr-qc/9711015
https://doi.org/10.1142/S0217751X13400162
https://doi.org/10.1142/S0217751X13400162
https://doi.org/10.1103/PhysRevD.88.084057
https://doi.org/10.1103/PhysRevD.88.084057
https://doi.org/10.1103/PhysRevD.79.044024
https://doi.org/10.1103/PhysRevD.79.044024
https://doi.org/10.1103/PhysRevD.21.2047
https://doi.org/10.1103/PhysRevD.21.2047
https://doi.org/10.1016/0375-9601(83)90338-9
https://doi.org/10.1016/0375-9601(83)90338-9
https://doi.org/10.1103/PhysRevLett.78.3606
https://doi.org/10.1103/PhysRevLett.78.3606
https://doi.org/10.1103/PhysRevD.74.064016
https://doi.org/10.1103/PhysRevD.74.064016
https://doi.org/10.1103/PhysRevD.58.024016
https://doi.org/10.1103/PhysRevD.58.024016
https://doi.org/10.1103/PhysRevD.58.084019
https://doi.org/10.1103/PhysRevD.58.084019
https://doi.org/10.1103/PhysRevD.62.069901
https://doi.org/10.1103/PhysRevD.62.069901
https://doi.org/10.1103/PhysRevD.59.124022
https://doi.org/10.1103/PhysRevD.59.124022
https://doi.org/10.1103/PhysRevD.65.044001
https://doi.org/10.1103/PhysRevD.65.044001
https://doi.org/10.1103/PhysRevD.73.064005
https://doi.org/10.1103/PhysRevD.73.064005

	Code generation for AMReX with applications to numerical relativity
	1. Introduction
	2. Review of 3+1 formulation of Einstein equations
	3. Numerical methods
	3.1. Discretization
	3.2. AMR
	3.3. Specifics of AMReX

	4. AMReX code generator
	5. AwA tests and results
	5.1. Robust stability test
	5.2. Linear wave test
	5.3. Gauge wave test

	6. Black hole binary systems
	6.1. Head on collision
	6.2. Black hole inspiral

	7. Summary and discussion
	Appendix A. Review of Bowen York initial data
	Appendix B. Conformal covariant Z4 (CCZ4) system
	Appendix C. Newman–Penrose waveform extraction
	Appendix D. Performance testing results
	References

